kpatch/kmod/core/core.c
Seth Jennings 880e271841 dynrelas support, obsoleting link-vmlinux-syms
This adds dynamic linking support for the patch modules.  It is the
first step toward supporting patching module code and relocatable
kernels.

Rela entries that reference non-included local and non-exported global
symbols are converted to "dynrelas".  These dynrelas are relocations
that are done by the core module, not the kernel module linker.  This
allows the core module to apply offsets to the base addresses found
in the base vmlinux or module.

Signed-off-by: Seth Jennings <sjenning@redhat.com>
2014-05-15 13:29:15 -05:00

697 lines
18 KiB
C

/*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2013-2014 Josh Poimboeuf <jpoimboe@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* kpatch core module
*
* Patch modules register with this module to redirect old functions to new
* functions.
*
* For each function patched by the module we must:
* - Call stop_machine
* - Ensure that no task has the old function in its call stack
* - Add the new function address to kpatch_func_hash
*
* After that, each call to the old function calls into kpatch_ftrace_handler()
* which finds the new function in kpatch_func_hash table and updates the
* return instruction pointer so that ftrace will return to the new function.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/ftrace.h>
#include <linux/hashtable.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
#include <asm/stacktrace.h>
#include <asm/cacheflush.h>
#include "kpatch.h"
#if !defined(CONFIG_FUNCTION_TRACER) || \
!defined(CONFIG_HAVE_FENTRY) || \
!defined(CONFIG_MODULES) || \
!defined(CONFIG_SYSFS)
#error "CONFIG_FUNCTION_TRACER, CONFIG_HAVE_FENTRY, CONFIG_MODULES, and CONFIG_SYSFS kernel config options are required"
#endif
#define KPATCH_HASH_BITS 8
static DEFINE_HASHTABLE(kpatch_func_hash, KPATCH_HASH_BITS);
static DEFINE_SEMAPHORE(kpatch_mutex);
static int kpatch_num_registered;
static struct kobject *kpatch_root_kobj;
struct kobject *kpatch_patches_kobj;
EXPORT_SYMBOL_GPL(kpatch_patches_kobj);
struct kpatch_backtrace_args {
struct kpatch_module *kpmod;
int ret;
};
/*
* The kpatch core module has a state machine which allows for proper
* synchronization with kpatch_ftrace_handler() when it runs in NMI context.
*
* +-----------------------------------------------------+
* | |
* | +
* v +---> KPATCH_STATE_SUCCESS
* KPATCH_STATE_IDLE +---> KPATCH_STATE_UPDATING |
* ^ +---> KPATCH_STATE_FAILURE
* | +
* | |
* +-----------------------------------------------------+
*
* KPATCH_STATE_IDLE: No updates are pending. The func hash is valid, and the
* reader doesn't need to check func->op.
*
* KPATCH_STATE_UPDATING: An update is in progress. The reader must call
* kpatch_state_finish(KPATCH_STATE_FAILURE) before accessing the func hash.
*
* KPATCH_STATE_FAILURE: An update failed, and the func hash might be
* inconsistent (pending patched funcs might not have been removed yet). If
* func->op is KPATCH_OP_PATCH, then rollback to the previous version of the
* func.
*
* KPATCH_STATE_SUCCESS: An update succeeded, but the func hash might be
* inconsistent (pending unpatched funcs might not have been removed yet). If
* func->op is KPATCH_OP_UNPATCH, then rollback to the previous version of the
* func.
*/
enum {
KPATCH_STATE_IDLE,
KPATCH_STATE_UPDATING,
KPATCH_STATE_SUCCESS,
KPATCH_STATE_FAILURE,
};
static atomic_t kpatch_state;
enum kpatch_op {
KPATCH_OP_NONE,
KPATCH_OP_PATCH,
KPATCH_OP_UNPATCH,
};
struct kpatch_func {
struct kpatch_patch *patch;
struct hlist_node node;
struct kpatch_module *kpmod;
enum kpatch_op op;
};
/*
* This structure is allocated on a per registered module basis
* and is stored in the struct kpatch_module "internal" field.
* Any data associated with each registered module used internally
* by this core module can be added here.
*/
struct kpatch_internal {
struct kpatch_func *funcs;
};
static inline void kpatch_state_idle(void)
{
int state = atomic_read(&kpatch_state);
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
atomic_set(&kpatch_state, KPATCH_STATE_IDLE);
}
static inline void kpatch_state_updating(void)
{
WARN_ON(atomic_read(&kpatch_state) != KPATCH_STATE_IDLE);
atomic_set(&kpatch_state, KPATCH_STATE_UPDATING);
}
/* If state is updating, change it to success or failure and return new state */
static inline int kpatch_state_finish(int state)
{
int result;
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
result = atomic_cmpxchg(&kpatch_state, KPATCH_STATE_UPDATING, state);
return result == KPATCH_STATE_UPDATING ? state : result;
}
static struct kpatch_func *kpatch_get_func(unsigned long ip)
{
struct kpatch_func *f;
/* Here, we have to use rcu safe hlist because of NMI concurrency */
hash_for_each_possible_rcu(kpatch_func_hash, f, node, ip)
if (f->patch->old_addr == ip)
return f;
return NULL;
}
static struct kpatch_func *kpatch_get_prev_func(struct kpatch_func *f,
unsigned long ip)
{
hlist_for_each_entry_continue_rcu(f, node)
if (f->patch->old_addr == ip)
return f;
return NULL;
}
static inline int kpatch_compare_addresses(unsigned long stack_addr,
unsigned long func_addr,
unsigned long func_size)
{
if (stack_addr >= func_addr && stack_addr < func_addr + func_size) {
/* TODO: use kallsyms to print symbol name */
pr_err("activeness safety check failed for function at address 0x%lx\n",
stack_addr);
return -EBUSY;
}
return 0;
}
static void kpatch_backtrace_address_verify(void *data, unsigned long address,
int reliable)
{
struct kpatch_backtrace_args *args = data;
struct kpatch_module *kpmod = args->kpmod;
struct kpatch_func *func;
int i;
if (args->ret)
return;
/* check kpmod funcs */
for (i = 0; i < kpmod->patches_nr; i++) {
unsigned long func_addr, func_size;
struct kpatch_func *active_func;
func = &kpmod->internal->funcs[i];
active_func = kpatch_get_func(func->patch->old_addr);
if (!active_func) {
/* patching an unpatched func */
func_addr = func->patch->old_addr;
func_size = func->patch->old_size;
} else {
/* repatching or unpatching */
func_addr = active_func->patch->new_addr;
func_size = active_func->patch->new_size;
}
args->ret = kpatch_compare_addresses(address, func_addr,
func_size);
if (args->ret)
return;
}
/* in the replace case, need to check the func hash as well */
hash_for_each_rcu(kpatch_func_hash, i, func, node) {
if (func->op == KPATCH_OP_UNPATCH) {
args->ret = kpatch_compare_addresses(address,
func->patch->new_addr,
func->patch->new_size);
if (args->ret)
return;
}
}
}
static int kpatch_backtrace_stack(void *data, char *name)
{
return 0;
}
static const struct stacktrace_ops kpatch_backtrace_ops = {
.address = kpatch_backtrace_address_verify,
.stack = kpatch_backtrace_stack,
.walk_stack = print_context_stack_bp,
};
/*
* Verify activeness safety, i.e. that none of the to-be-patched functions are
* on the stack of any task.
*
* This function is called from stop_machine() context.
*/
static int kpatch_verify_activeness_safety(struct kpatch_module *kpmod)
{
struct task_struct *g, *t;
int ret = 0;
struct kpatch_backtrace_args args = {
.kpmod = kpmod,
.ret = 0
};
/* Check the stacks of all tasks. */
do_each_thread(g, t) {
dump_trace(t, NULL, NULL, 0, &kpatch_backtrace_ops, &args);
if (args.ret) {
ret = args.ret;
goto out;
}
} while_each_thread(g, t);
out:
return ret;
}
/* Called from stop_machine */
static int kpatch_apply_patch(void *data)
{
struct kpatch_module *kpmod = data;
struct kpatch_func *funcs = kpmod->internal->funcs;
int num_funcs = kpmod->patches_nr;
int i, ret;
ret = kpatch_verify_activeness_safety(kpmod);
if (ret) {
kpatch_state_finish(KPATCH_STATE_FAILURE);
return ret;
}
/* tentatively add the new funcs to the global func hash */
for (i = 0; i < num_funcs; i++)
hash_add_rcu(kpatch_func_hash, &funcs[i].node,
funcs[i].patch->old_addr);
/* memory barrier between func hash add and state change */
smp_wmb();
/*
* Check if any inconsistent NMI has happened while updating. If not,
* move to success state.
*/
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
if (ret == KPATCH_STATE_FAILURE) {
pr_err("NMI activeness safety check failed\n");
/* Failed, we have to rollback patching process */
for (i = 0; i < num_funcs; i++)
hash_del_rcu(&funcs[i].node);
return -EBUSY;
}
return 0;
}
/* Called from stop_machine */
static int kpatch_remove_patch(void *data)
{
struct kpatch_module *kpmod = data;
struct kpatch_func *funcs = kpmod->internal->funcs;
int num_funcs = kpmod->patches_nr;
int ret, i;
ret = kpatch_verify_activeness_safety(kpmod);
if (ret) {
kpatch_state_finish(KPATCH_STATE_FAILURE);
return ret;
}
/* Check if any inconsistent NMI has happened while updating */
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
if (ret == KPATCH_STATE_FAILURE)
return -EBUSY;
/* Succeeded, remove all updating funcs from hash table */
for (i = 0; i < num_funcs; i++)
hash_del_rcu(&funcs[i].node);
return 0;
}
/*
* This is where the magic happens. Update regs->ip to tell ftrace to return
* to the new function.
*
* If there are multiple patch modules that have registered to patch the same
* function, the last one to register wins, as it'll be first in the hash
* bucket.
*/
static void notrace
kpatch_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *fops, struct pt_regs *regs)
{
struct kpatch_func *func;
int state;
preempt_disable_notrace();
if (likely(!in_nmi()))
func = kpatch_get_func(ip);
else {
/* Checking for NMI inconsistency */
state = kpatch_state_finish(KPATCH_STATE_FAILURE);
/* no memory reordering between state and func hash read */
smp_rmb();
func = kpatch_get_func(ip);
if (likely(state == KPATCH_STATE_IDLE))
goto done;
if (state == KPATCH_STATE_SUCCESS) {
/*
* Patching succeeded. If the function was being
* unpatched, roll back to the previous version.
*/
if (func && func->op == KPATCH_OP_UNPATCH)
func = kpatch_get_prev_func(func, ip);
} else {
/*
* Patching failed. If the function was being patched,
* roll back to the previous version.
*/
if (func && func->op == KPATCH_OP_PATCH)
func = kpatch_get_prev_func(func, ip);
}
}
done:
if (func)
regs->ip = func->patch->new_addr;
preempt_enable_notrace();
}
static struct ftrace_ops kpatch_ftrace_ops __read_mostly = {
.func = kpatch_ftrace_handler,
.flags = FTRACE_OPS_FL_SAVE_REGS,
};
/* Remove kpatch_funcs from ftrace filter */
static void kpatch_remove_funcs_from_filter(struct kpatch_func *funcs,
int num_funcs)
{
int i, ret = 0;
for (i = 0; i < num_funcs; i++) {
struct kpatch_func *func = &funcs[i];
/*
* If any other modules have also patched this function, don't
* remove its ftrace handler.
*/
if (kpatch_get_func(func->patch->old_addr))
continue;
/* Remove the ftrace handler for this function. */
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops,
func->patch->old_addr, 1, 0);
WARN(ret, "can't remove ftrace filter at address 0x%lx (rc=%d)",
func->patch->old_addr, ret);
}
}
int kpatch_register(struct kpatch_module *kpmod, bool replace)
{
int ret, i;
struct kpatch_func *funcs, *func;
int num_funcs = kpmod->patches_nr;
struct kpatch_dynrela *dynrela;
void *loc;
u64 val;
int size;
if (!kpmod->mod || !kpmod->patches || !num_funcs)
return -EINVAL;
kpmod->enabled = false;
kpmod->internal = kmalloc(sizeof(*kpmod->internal), GFP_KERNEL);
if (!kpmod->internal)
return -ENOMEM;
funcs = kmalloc(sizeof(*funcs) * num_funcs, GFP_KERNEL);
if (!funcs) {
kfree(kpmod->internal);
return -ENOMEM;
}
kpmod->internal->funcs = funcs;
down(&kpatch_mutex);
if (!try_module_get(kpmod->mod)) {
ret = -ENODEV;
goto err_up;
}
for (i = 0; i < kpmod->dynrelas_nr; i++) {
dynrela = &kpmod->dynrelas[i];
switch (dynrela->type) {
case R_X86_64_PC32:
loc = (void *)dynrela->dest;
val = (u32)(dynrela->src - dynrela->dest);
size = 4;
break;
case R_X86_64_32S:
loc = (void *)dynrela->dest;
val = (s32)dynrela->src;
size = 4;
break;
default:
printk("unsupported rela type %ld for "
"0x%lx <- 0x%lx at index %d\n",
dynrela->type, dynrela->dest,
dynrela->src, i);
ret = -EINVAL;
goto err_up;
}
set_memory_rw((unsigned long)loc & PAGE_MASK, 1);
ret = probe_kernel_write(loc, &val, size);
set_memory_ro((unsigned long)loc & PAGE_MASK, 1);
if (ret)
goto err_up;
}
for (i = 0; i < num_funcs; i++) {
func = &funcs[i];
func->op = KPATCH_OP_PATCH;
func->kpmod = kpmod;
func->patch = &kpmod->patches[i];
/*
* If any other modules have also patched this function, it
* already has an ftrace handler.
*/
if (kpatch_get_func(func->patch->old_addr))
continue;
/* Add an ftrace handler for this function. */
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops,
func->patch->old_addr, 0, 0);
if (ret) {
pr_err("can't set ftrace filter at address 0x%lx\n",
func->patch->old_addr);
num_funcs = i;
goto err_rollback;
}
}
/* Register the ftrace handler if it hasn't been done already. */
if (!kpatch_num_registered) {
ret = register_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
pr_err("can't register ftrace handler\n");
goto err_rollback;
}
}
kpatch_num_registered++;
if (replace)
hash_for_each_rcu(kpatch_func_hash, i, func, node)
func->op = KPATCH_OP_UNPATCH;
/* memory barrier between func hash and state write */
smp_wmb();
kpatch_state_updating();
/*
* Idle the CPUs, verify activeness safety, and atomically make the new
* functions visible to the ftrace handler.
*/
ret = stop_machine(kpatch_apply_patch, kpmod, NULL);
/*
* For the replace case, remove any obsolete funcs from the hash and
* the ftrace filter, and disable the owning patch module so that it
* can be removed.
*/
if (!ret && replace)
hash_for_each_rcu(kpatch_func_hash, i, func, node) {
if (func->op != KPATCH_OP_UNPATCH)
continue;
hash_del_rcu(&func->node);
kpatch_remove_funcs_from_filter(func, 1);
if (func->kpmod->enabled) {
kpatch_num_registered--;
func->kpmod->enabled = false;
pr_notice("unloaded patch module \"%s\"\n",
func->kpmod->mod->name);
module_put(func->kpmod->mod);
}
}
/* memory barrier between func hash and state write */
smp_wmb();
/* NMI handlers can return to normal now */
kpatch_state_idle();
/*
* Wait for all existing NMI handlers to complete so that they don't
* see any changes to funcs or funcs->op that might occur after this
* point.
*
* Any NMI handlers starting after this point will see the IDLE state.
*/
synchronize_rcu();
if (ret)
goto err_unregister;
for (i = 0; i < num_funcs; i++)
funcs[i].op = KPATCH_OP_NONE;
/* TODO: need TAINT_KPATCH */
pr_notice_once("tainting kernel with TAINT_USER\n");
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
pr_notice("loaded patch module \"%s\"\n", kpmod->mod->name);
kpmod->enabled = true;
up(&kpatch_mutex);
return 0;
err_unregister:
if (replace)
hash_for_each_rcu(kpatch_func_hash, i, func, node)
func->op = KPATCH_OP_NONE;
if (kpatch_num_registered == 1) {
int ret2 = unregister_ftrace_function(&kpatch_ftrace_ops);
if (ret2) {
pr_err("ftrace unregister failed (%d)\n", ret2);
goto err_rollback;
}
}
kpatch_num_registered--;
err_rollback:
kpatch_remove_funcs_from_filter(funcs, num_funcs);
module_put(kpmod->mod);
err_up:
up(&kpatch_mutex);
kfree(kpmod->internal->funcs);
kfree(kpmod->internal);
return ret;
}
EXPORT_SYMBOL(kpatch_register);
int kpatch_unregister(struct kpatch_module *kpmod)
{
struct kpatch_func *funcs = kpmod->internal->funcs;
int num_funcs = kpmod->patches_nr;
int i, ret;
if (!kpmod->enabled)
return -EINVAL;
down(&kpatch_mutex);
for (i = 0; i < num_funcs; i++)
funcs[i].op = KPATCH_OP_UNPATCH;
/* memory barrier between func hash and state write */
smp_wmb();
kpatch_state_updating();
ret = stop_machine(kpatch_remove_patch, kpmod, NULL);
/* NMI handlers can return to normal now */
kpatch_state_idle();
/*
* Wait for all existing NMI handlers to complete so that they don't
* see any changes to funcs or funcs->op that might occur after this
* point.
*
* Any NMI handlers starting after this point will see the IDLE state.
*/
synchronize_rcu();
if (ret) {
for (i = 0; i < num_funcs; i++)
funcs[i].op = KPATCH_OP_NONE;
goto out;
}
kpatch_num_registered--;
if (!kpatch_num_registered) {
ret = unregister_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
WARN(1, "can't unregister ftrace handler");
kpatch_num_registered++;
}
}
kpatch_remove_funcs_from_filter(funcs, num_funcs);
kfree(kpmod->internal->funcs);
kfree(kpmod->internal);
pr_notice("unloaded patch module \"%s\"\n", kpmod->mod->name);
kpmod->enabled = false;
module_put(kpmod->mod);
out:
up(&kpatch_mutex);
return ret;
}
EXPORT_SYMBOL(kpatch_unregister);
static int kpatch_init(void)
{
kpatch_root_kobj = kobject_create_and_add("kpatch", kernel_kobj);
if (!kpatch_root_kobj)
return -ENOMEM;
kpatch_patches_kobj = kobject_create_and_add("patches",
kpatch_root_kobj);
if (!kpatch_patches_kobj)
return -ENOMEM;
return 0;
}
static void kpatch_exit(void)
{
WARN_ON(kpatch_num_registered != 0);
kobject_put(kpatch_patches_kobj);
kobject_put(kpatch_root_kobj);
}
module_init(kpatch_init);
module_exit(kpatch_exit);
MODULE_LICENSE("GPL");