kpatch/kpatch-build/create-diff-object.c

1559 lines
38 KiB
C

/*
* create-diff-object.c
*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2013-2014 Josh Poimboeuf <jpoimboe@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA,
* 02110-1301, USA.
*/
/*
* This file contains the heart of the ELF object differencing engine.
*
* The tool takes two ELF objects from two versions of the same source
* file; a "base" object and a "patched" object. These object need to have
* been compiled with the -ffunction-sections and -fdata-sections GCC options.
*
* The tool compares the objects at a section level to determine what
* sections have changed. Once a list of changed sections has been generated,
* various rules are applied to determine any object local sections that
* are dependencies of the changed section and also need to be included in
* the output object.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <error.h>
#include <gelf.h>
#include <argp.h>
#include <libgen.h>
#define ERROR(format, ...) \
error(1, 0, "%s: %d: " format, __FUNCTION__, __LINE__, ##__VA_ARGS__)
#define DIFF_FATAL(format, ...) \
({ \
printf("%s: " format "\n", objname, ##__VA_ARGS__); \
error(2, 0, "unreconcilable difference"); \
})
#define log_debug(format, ...) log(DEBUG, format, ##__VA_ARGS__)
#define log_normal(format, ...) log(NORMAL, "%s: " format, objname, ##__VA_ARGS__)
#define log(level, format, ...) \
({ \
if (loglevel <= (level)) \
printf(format, ##__VA_ARGS__); \
})
char *objname;
enum loglevel {
DEBUG,
NORMAL
};
static enum loglevel loglevel = NORMAL;
/*******************
* Data structures
* ****************/
struct section;
struct symbol;
struct rela;
enum status {
NEW,
CHANGED,
SAME
};
struct table {
void *data;
size_t nr;
};
struct section {
struct section *twin, *twino;
GElf_Shdr sh;
Elf_Data *data;
char *name;
int index;
enum status status;
int include;
union {
struct { /* if (is_rela_section()) */
struct section *base;
struct table relas;
};
struct { /* else */
struct section *rela;
struct symbol *secsym, *sym;
};
};
};
struct symbol {
struct symbol *twin, *twino;
struct section *sec;
GElf_Sym sym;
char *name;
int index;
unsigned char bind, type;
enum status status;
int include;
};
struct rela {
GElf_Rela rela;
struct symbol *sym;
unsigned char type;
int addend;
int offset;
char *string;
};
#define for_each_entry(init, iter, entry, table, type) \
for (iter = init; (iter) < (table)->nr && ((entry) = &((type)(table)->data)[iter]); (iter)++)
#define for_each_section(iter, entry, table) \
for_each_entry(0, iter, entry, table, struct section *)
#define for_each_symbol(iter, entry, table) \
for_each_entry(1, iter, entry, table, struct symbol *)
#define for_each_symbol_zero(iter, entry, table) \
for_each_entry(0, iter, entry, table, struct symbol *)
#define for_each_rela(iter, entry, table) \
for_each_entry(0, iter, entry, table, struct rela *)
struct kpatch_elf {
Elf *elf;
struct table sections;
struct table symbols;
};
/*******************
* Helper functions
******************/
char *status_str(enum status status)
{
switch(status) {
case NEW:
return "NEW";
case CHANGED:
return "CHANGED";
case SAME:
return "SAME";
default:
ERROR("status_str");
}
/* never reached */
return NULL;
}
int is_rela_section(struct section *sec)
{
return (sec->sh.sh_type == SHT_RELA);
}
struct section *find_section_by_index(struct table *table, unsigned int index)
{
if (index == 0 || index > table->nr)
return NULL;
return &((struct section *)(table->data))[index-1];
}
struct section *find_section_by_name(struct table *table, const char *name)
{
struct section *sec;
int i;
for_each_section(i, sec, table)
if (!strcmp(sec->name, name))
return sec;
return NULL;
}
struct symbol *find_symbol_by_index(struct table *table, size_t index)
{
if (index >= table->nr)
return NULL;
return &((struct symbol *)(table->data))[index];
}
struct symbol *find_symbol_by_name(struct table *table, const char *name)
{
struct symbol *sym;
int i;
for_each_symbol(i, sym, table)
if (sym->name && !strcmp(sym->name, name))
return sym;
return NULL;
}
void alloc_table(struct table *table, size_t entsize, size_t nr)
{
size_t size = nr * entsize;
table->data = malloc(size);
if (!table->data)
ERROR("malloc");
memset(table->data, 0, size);
table->nr = nr;
}
/*************
* Functions
* **********/
void kpatch_create_rela_table(struct kpatch_elf *kelf, struct section *sec)
{
int rela_nr, i;
struct rela *rela;
unsigned int symndx;
/* find matching base (text/data) section */
sec->base = find_section_by_name(&kelf->sections, sec->name + 5);
if (!sec->base)
ERROR("can't find base section for rela section %s", sec->name);
/* create reverse link from base section to this rela section */
sec->base->rela = sec;
/* allocate rela table for section */
rela_nr = sec->sh.sh_size / sec->sh.sh_entsize;
alloc_table(&sec->relas, sizeof(struct rela), rela_nr);
log_debug("\n=== rela table for %s (%d entries) ===\n",
sec->base->name, rela_nr);
/* read and store the rela entries */
for_each_rela(i, rela, &sec->relas) {
if (!gelf_getrela(sec->data, i, &rela->rela))
ERROR("gelf_getrela");
rela->type = GELF_R_TYPE(rela->rela.r_info);
rela->addend = rela->rela.r_addend;
rela->offset = rela->rela.r_offset;
symndx = GELF_R_SYM(rela->rela.r_info);
rela->sym = find_symbol_by_index(&kelf->symbols, symndx);
if (!rela->sym)
ERROR("could not find rela entry symbol\n");
if (rela->sym->sec && (rela->sym->sec->sh.sh_flags & SHF_STRINGS)) {
rela->string = rela->sym->sec->data->d_buf + rela->addend;
if (!rela->string)
ERROR("could not lookup rela string\n");
}
log_debug("offset %d, type %d, %s %s %d", rela->offset,
rela->type, rela->sym->name,
(rela->addend < 0)?"-":"+", abs(rela->addend));
if (rela->string)
log_debug(" (string = %s)", rela->string);
log_debug("\n");
}
}
void kpatch_create_section_table(struct kpatch_elf *kelf)
{
Elf_Scn *scn = NULL;
struct section *sec;
size_t shstrndx, sections_nr;
int i;
if (elf_getshdrnum(kelf->elf, &sections_nr))
ERROR("elf_getshdrnum");
/*
* elf_getshdrnum() includes section index 0 but elf_nextscn
* doesn't return that section so subtract one.
*/
sections_nr--;
alloc_table(&kelf->sections, sizeof(struct section), sections_nr);
if (elf_getshdrstrndx(kelf->elf, &shstrndx))
ERROR("elf_getshdrstrndx");
log_debug("=== section list (%zu) ===\n", sections_nr);
for_each_section(i, sec, &kelf->sections) {
scn = elf_nextscn(kelf->elf, scn);
if (!scn)
ERROR("scn NULL");
if (!gelf_getshdr(scn, &sec->sh))
ERROR("gelf_getshdr");
sec->name = elf_strptr(kelf->elf, shstrndx, sec->sh.sh_name);
if (!sec->name)
ERROR("elf_strptr");
sec->data = elf_getdata(scn, NULL);
if (!sec->data)
ERROR("elf_getdata");
sec->index = elf_ndxscn(scn);
log_debug("ndx %02d, data %p, size %zu, name %s\n",
sec->index, sec->data->d_buf, sec->data->d_size,
sec->name);
}
/* Sanity check, one more call to elf_nextscn() should return NULL */
if (elf_nextscn(kelf->elf, scn))
ERROR("expected NULL");
}
int is_bundleable(struct symbol *sym)
{
if (sym->type == STT_FUNC &&
!strncmp(sym->sec->name, ".text.",6) &&
!strcmp(sym->sec->name + 6, sym->name))
return 1;
if (sym->type == STT_OBJECT &&
!strncmp(sym->sec->name, ".data.",6) &&
!strcmp(sym->sec->name + 6, sym->name))
return 1;
if (sym->type == STT_OBJECT &&
!strncmp(sym->sec->name, ".bss.",5) &&
!strcmp(sym->sec->name + 5, sym->name))
return 1;
return 0;
}
void kpatch_create_symbol_table(struct kpatch_elf *kelf)
{
struct section *symtab;
struct symbol *sym;
int symbols_nr, i;
symtab = find_section_by_name(&kelf->sections, ".symtab");
if (!symtab)
ERROR("missing symbol table");
symbols_nr = symtab->sh.sh_size / symtab->sh.sh_entsize;
alloc_table(&kelf->symbols, sizeof(struct symbol), symbols_nr);
log_debug("\n=== symbol table (%d entries) ===\n", symbols_nr);
/* iterator i declared in for_each_entry() macro */
for_each_symbol(i, sym, &kelf->symbols) {
sym->index = i;
if (!gelf_getsym(symtab->data, i, &sym->sym))
ERROR("gelf_getsym");
sym->name = elf_strptr(kelf->elf, symtab->sh.sh_link,
sym->sym.st_name);
if (!sym->name)
ERROR("elf_strptr");
sym->type = GELF_ST_TYPE(sym->sym.st_info);
sym->bind = GELF_ST_BIND(sym->sym.st_info);
if (sym->sym.st_shndx > SHN_UNDEF &&
sym->sym.st_shndx < SHN_LORESERVE) {
sym->sec = find_section_by_index(&kelf->sections,
sym->sym.st_shndx);
if (!sym->sec)
ERROR("couldn't find section for symbol %s\n",
sym->name);
if (is_bundleable(sym)) {
if (sym->sym.st_value != 0)
ERROR("symbol %s at offset %lu within section %s, expected 0",
sym->name, sym->sym.st_value, sym->sec->name);
sym->sec->sym = sym;
} else if (sym->type == STT_SECTION) {
sym->sec->secsym = sym;
/* use the section name as the symbol name */
sym->name = sym->sec->name;
}
}
log_debug("sym %02d, type %d, bind %d, ndx %02d, name %s",
sym->index, sym->type, sym->bind, sym->sym.st_shndx,
sym->name);
if (sym->sec)
log_debug(" -> %s", sym->sec->name);
log_debug("\n");
}
}
struct kpatch_elf *kpatch_elf_open(const char *name)
{
Elf *elf;
int fd, i;
struct kpatch_elf *kelf;
struct section *sec;
fd = open(name, O_RDONLY);
if (fd == -1)
ERROR("open");
elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
if (!elf)
ERROR("elf_begin");
kelf = malloc(sizeof(*kelf));
if (!kelf)
ERROR("malloc");
memset(kelf, 0, sizeof(*kelf));
/* read and store section, symbol entries from file */
kelf->elf = elf;
kpatch_create_section_table(kelf);
kpatch_create_symbol_table(kelf);
/* for each rela section, read and store the rela entries */
for_each_section(i, sec, &kelf->sections) {
if (!is_rela_section(sec))
continue;
kpatch_create_rela_table(kelf, sec);
}
return kelf;
}
int rela_equal(struct rela *rela1, struct rela *rela2)
{
if (rela1->type != rela2->type ||
rela1->offset != rela2->offset)
return 0;
if (rela1->string) {
if (rela2->string &&
!strcmp(rela1->string, rela2->string))
return 1;
} else {
if (strcmp(rela1->sym->name, rela2->sym->name))
return 0;
if (rela1->addend == rela2->addend)
return 1;
}
return 0;
}
void kpatch_compare_correlated_rela_section(struct section *sec)
{
struct rela *rela1, *rela2;
int i;
for_each_rela(i, rela1, &sec->relas) {
rela2 = &((struct rela *)(sec->twin->relas.data))[i];
if (rela_equal(rela1, rela2))
continue;
sec->status = CHANGED;
return;
}
sec->status = SAME;
}
void kpatch_compare_correlated_nonrela_section(struct section *sec)
{
struct section *sec1 = sec, *sec2 = sec->twin;
if (sec1->sh.sh_type != SHT_NOBITS &&
memcmp(sec1->data->d_buf, sec2->data->d_buf, sec1->data->d_size))
sec->status = CHANGED;
else
sec->status = SAME;
}
void kpatch_compare_correlated_section(struct section *sec)
{
struct section *sec1 = sec, *sec2 = sec->twin;
/* Compare section headers (must match or fatal) */
if (sec1->sh.sh_type != sec2->sh.sh_type ||
sec1->sh.sh_flags != sec2->sh.sh_flags ||
sec1->sh.sh_addr != sec2->sh.sh_addr ||
sec1->sh.sh_addralign != sec2->sh.sh_addralign ||
sec1->sh.sh_entsize != sec2->sh.sh_entsize ||
sec1->sh.sh_link != sec1->sh.sh_link)
DIFF_FATAL("%s section header details differ", sec1->name);
if (sec1->sh.sh_size != sec2->sh.sh_size ||
sec1->data->d_size != sec2->data->d_size) {
sec->status = CHANGED;
goto out;
}
if (is_rela_section(sec))
kpatch_compare_correlated_rela_section(sec);
else
kpatch_compare_correlated_nonrela_section(sec);
out:
if (sec->status == CHANGED)
log_debug("section %s has changed\n", sec->name);
}
void kpatch_compare_sections(struct table *table)
{
struct section *sec;
int i;
for_each_section(i, sec, table) {
if (sec->twin)
kpatch_compare_correlated_section(sec);
else
sec->status = NEW;
/* sync symbol status */
if (is_rela_section(sec)) {
if (sec->base->sym && sec->base->sym->status != CHANGED)
sec->base->sym->status = sec->status;
} else {
if (sec->sym && sec->sym->status != CHANGED)
sec->sym->status = sec->status;
}
}
}
void kpatch_compare_correlated_symbol(struct symbol *sym)
{
struct symbol *sym1 = sym, *sym2 = sym->twin;
if (sym1->sym.st_info != sym2->sym.st_info ||
sym1->sym.st_other != sym2->sym.st_other ||
(sym1->sec && sym2->sec && sym1->sec->twin != sym2->sec) ||
(sym1->sec && !sym2->sec) ||
(sym2->sec && !sym1->sec))
DIFF_FATAL("symbol info mismatch: %s", sym1->name);
if (sym1->type == STT_OBJECT &&
sym1->sym.st_size != sym2->sym.st_size)
DIFF_FATAL("object size mismatch: %s", sym1->name);
if (sym1->sym.st_shndx == SHN_UNDEF ||
sym1->sym.st_shndx == SHN_ABS)
sym1->status = SAME;
/*
* The status of LOCAL symbols is dependent on the status of their
* matching section and is set during section comparison.
*/
}
void kpatch_compare_symbols(struct table *table)
{
struct symbol *sym;
int i;
for_each_symbol(i, sym, table) {
if (sym->twin)
kpatch_compare_correlated_symbol(sym);
else
sym->status = NEW;
log_debug("symbol %s is %s\n", sym->name, status_str(sym->status));
}
}
void kpatch_correlate_sections(struct table *table1, struct table *table2)
{
struct section *sec1, *sec2;
int i, j;
for_each_section(i, sec1, table1) {
for_each_section(j, sec2, table2) {
if (strcmp(sec1->name, sec2->name))
continue;
sec1->twin = sec2;
sec2->twin = sec1;
/* set initial status, might change */
sec1->status = sec2->status = SAME;
break;
}
}
}
void kpatch_correlate_symbols(struct table *table1, struct table *table2)
{
struct symbol *sym1, *sym2;
int i, j;
for_each_symbol(i, sym1, table1) {
for_each_symbol(j, sym2, table2) {
if (!strcmp(sym1->name, sym2->name)) {
sym1->twin = sym2;
sym2->twin = sym1;
/* set initial status, might change */
sym1->status = sym2->status = SAME;
break;
}
}
}
}
void kpatch_compare_elf_headers(Elf *elf1, Elf *elf2)
{
GElf_Ehdr eh1, eh2;
if (!gelf_getehdr(elf1, &eh1))
ERROR("gelf_getehdr");
if (!gelf_getehdr(elf2, &eh2))
ERROR("gelf_getehdr");
if (memcmp(eh1.e_ident, eh2.e_ident, EI_NIDENT) ||
eh1.e_type != eh2.e_type ||
eh1.e_machine != eh2.e_machine ||
eh1.e_version != eh2.e_version ||
eh1.e_entry != eh2.e_entry ||
eh1.e_phoff != eh2.e_phoff ||
eh1.e_flags != eh2.e_flags ||
eh1.e_ehsize != eh2.e_ehsize ||
eh1.e_phentsize != eh2.e_phentsize ||
eh1.e_shentsize != eh2.e_shentsize)
DIFF_FATAL("ELF headers differ");
}
void kpatch_check_program_headers(Elf *elf)
{
size_t ph_nr;
if (elf_getphdrnum(elf, &ph_nr))
ERROR("elf_getphdrnum");
if (ph_nr != 0)
DIFF_FATAL("ELF contains program header");
}
void kpatch_correlate_elfs(struct kpatch_elf *kelf1, struct kpatch_elf *kelf2)
{
kpatch_correlate_sections(&kelf1->sections, &kelf2->sections);
kpatch_correlate_symbols(&kelf1->symbols, &kelf2->symbols);
}
void kpatch_compare_correlated_elements(struct kpatch_elf *kelf)
{
/* tables are already correlated at this point */
kpatch_compare_sections(&kelf->sections);
kpatch_compare_symbols(&kelf->symbols);
}
void kpatch_replace_sections_syms(struct kpatch_elf *kelf)
{
struct section *sec;
struct rela *rela;
int i, j;
for_each_section(i, sec, &kelf->sections) {
if (!is_rela_section(sec))
continue;
for_each_rela(j, rela, &sec->relas) {
if (rela->sym->type != STT_SECTION ||
!rela->sym->sec || !rela->sym->sec->sym)
continue;
log_debug("replacing %s with %s\n",
rela->sym->name, rela->sym->sec->sym->name);
rela->sym = rela->sym->sec->sym;
}
}
}
void kpatch_dump_kelf(struct kpatch_elf *kelf)
{
struct section *sec;
struct symbol *sym;
struct rela *rela;
int i, j;
if (loglevel > DEBUG)
return;
printf("\n=== Sections ===\n");
for_each_section(i, sec, &kelf->sections) {
printf("%02d %s (%s)", sec->index, sec->name, status_str(sec->status));
if (is_rela_section(sec)) {
printf(", base-> %s\n", sec->base->name);
printf("rela section expansion\n");
for_each_rela(j, rela, &sec->relas) {
printf("sym %lu, offset %d, type %d, %s %s %d\n",
GELF_R_SYM(rela->rela.r_info),
rela->offset, rela->type,
rela->sym->name,
(rela->addend < 0)?"-":"+",
abs(rela->addend));
}
} else {
if (sec->sym)
printf(", sym-> %s", sec->sym->name);
if (sec->secsym)
printf(", secsym-> %s", sec->secsym->name);
if (sec->rela)
printf(", rela-> %s", sec->rela->name);
}
printf("\n");
}
printf("\n=== Symbols ===\n");
for_each_symbol(i, sym, &kelf->symbols) {
printf("sym %02d, type %d, bind %d, ndx %02d, name %s (%s)",
sym->index, sym->type, sym->bind, sym->sym.st_shndx,
sym->name, status_str(sym->status));
if (sym->sec && (sym->type == STT_FUNC || sym->type == STT_OBJECT))
printf(" -> %s", sym->sec->name);
printf("\n");
}
}
void kpatch_verify_patchability(struct kpatch_elf *kelf)
{
struct section *sec;
int i;
int errs = 0;
for_each_section(i, sec, &kelf->sections)
if (sec->status == CHANGED && !sec->include) {
log_normal("%s: changed section %s not selected for inclusion\n",
objname, sec->name);
errs++;
}
if (errs)
DIFF_FATAL("%d unsupported section change(s)", errs);
}
#define inc_printf(fmt, ...) \
log_debug("%*s" fmt, recurselevel, "", ##__VA_ARGS__);
void kpatch_include_symbol(struct symbol *sym, int recurselevel)
{
struct rela *rela;
struct section *sec;
int i;
inc_printf("start include_symbol(%s)\n", sym->name);
sym->include = 1;
inc_printf("symbol %s is included\n", sym->name);
/*
* Check if sym is a non-local symbol (sym->sec is NULL) or
* if an unchanged local symbol. This a base case for the
* inclusion recursion.
*/
if (!sym->sec || (sym->type != STT_SECTION && sym->status == SAME))
goto out;
sec = sym->sec;
sec->include = 1;
inc_printf("section %s is included\n", sec->name);
if (sec->secsym == sym)
goto out;
if (sec->secsym) {
sec->secsym->include = 1;
inc_printf("section symbol %s is included\n", sec->secsym->name);
}
if (!sec->rela)
goto out;
sec->rela->include = 1;
inc_printf("section %s is included\n", sec->rela->name);
for_each_rela(i, rela, &sec->rela->relas) {
if (rela->sym->include)
continue;
kpatch_include_symbol(rela->sym, recurselevel+1);
}
out:
inc_printf("end include_symbol(%s)\n", sym->name);
return;
}
void kpatch_include_standard_sections(struct kpatch_elf *kelf)
{
struct section *sec;
int i;
for_each_section(i, sec, &kelf->sections) {
/* include these sections even if they haven't changed */
if (!strcmp(sec->name, ".shstrtab") ||
!strcmp(sec->name, ".strtab") ||
!strcmp(sec->name, ".symtab"))
sec->include = 1;
}
}
int kpatch_include_changed_functions(struct kpatch_elf *kelf)
{
struct symbol *sym;
int i, changed_nr = 0;
log_debug("\n=== Inclusion Tree ===\n");
for_each_symbol(i, sym, &kelf->symbols) {
if (sym->status == CHANGED &&
sym->type == STT_FUNC) {
changed_nr++;
log_normal("changed function: %s\n", sym->name);
if (!sym->include)
kpatch_include_symbol(sym, 0);
}
if (sym->type == STT_FILE)
sym->include = 1;
}
return changed_nr;
}
int kpatch_copy_symbols(int startndx, struct kpatch_elf *src,
struct kpatch_elf *dst,
int (*select)(struct symbol *))
{
struct symbol *srcsym, *dstsym;
int i, index = startndx;
for_each_symbol(i, srcsym, &src->symbols) {
if (!srcsym->include)
continue;
if (select && !select(srcsym))
continue;
dstsym = &((struct symbol *)(dst->symbols.data))[index];
*dstsym = *srcsym;
dstsym->index = index;
dstsym->twino = srcsym;
srcsym->twino = dstsym;
index++;
if (srcsym->sec && srcsym->sec->twino)
dstsym->sym.st_shndx = srcsym->sec->twino->index;
srcsym->include = 0;
}
return index;
}
int is_file_sym(struct symbol *sym)
{
return sym->type == STT_FILE;
}
int is_local_func_sym(struct symbol *sym)
{
return sym->bind == STB_LOCAL && sym->type == STT_FUNC;
}
int is_local_sym(struct symbol *sym)
{
return sym->bind == STB_LOCAL;
}
void kpatch_generate_output(struct kpatch_elf *kelf, struct kpatch_elf **kelfout)
{
int sections_nr = 0, symbols_nr = 0, i, index;
struct section *sec, *secout;
struct symbol *sym;
struct kpatch_elf *out;
/* count output sections */
for_each_section(i, sec, &kelf->sections)
if (sec->include)
sections_nr++;
log_debug("outputting %d sections\n",sections_nr);
/* count output symbols */
for_each_symbol_zero(i, sym, &kelf->symbols) {
if (i == 0 || sym->include)
symbols_nr++;
}
log_debug("outputting %d symbols\n",symbols_nr);
/* allocate output kelf */
out = malloc(sizeof(*out));
if (!out)
ERROR("malloc");
memset(out, 0, sizeof(*out));
/* allocate tables */
alloc_table(&out->sections, sizeof(struct section), sections_nr);
alloc_table(&out->symbols, sizeof(struct symbol), symbols_nr);
/* copy to output kelf sections, link to kelf, and reindex */
index = 0;
for_each_section(i, sec, &kelf->sections) {
if (!sec->include)
continue;
secout = &((struct section *)(out->sections.data))[index];
*secout = *sec;
secout->index = ++index;
secout->twino = sec;
sec->twino = secout;
}
/*
* Search symbol table for local functions and objects whose sections
* are not included, and modify them to be non-local.
*/
for_each_symbol(i, sym, &kelf->symbols) {
if ((sym->type == STT_OBJECT ||
sym->type == STT_FUNC) &&
!sym->sec->include) {
sym->type = STT_NOTYPE;
sym->bind = STB_GLOBAL;
sym->sym.st_info = GELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
sym->sym.st_shndx = SHN_UNDEF;
sym->sym.st_size = 0;
}
}
/*
* Copy functions to the output kelf and reindex. Once the symbol is
* copied, its include field is set to zero so it isn't copied again
* by a subsequent kpatch_copy_symbols() call.
*/
/* start at 1 to skip over symbol 0 (all zeros) */
index = 1;
/* copy (LOCAL) FILE sym */
index = kpatch_copy_symbols(index, kelf, out, is_file_sym);
/* copy LOCAL FUNC syms */
index = kpatch_copy_symbols(index, kelf, out, is_local_func_sym);
/* copy all other LOCAL syms */
index = kpatch_copy_symbols(index, kelf, out, is_local_sym);
/* copy all other (GLOBAL) syms */
index = kpatch_copy_symbols(index, kelf, out, NULL);
*kelfout = out;
}
void kpatch_write_inventory_file(struct kpatch_elf *kelf, char *outfile)
{
FILE *out;
char outbuf[255];
int i;
struct section *sec;
struct symbol *sym;
if (snprintf(outbuf, 254, "%s.inventory", outfile) < 0)
ERROR("snprintf");
out = fopen(outbuf, "w");
if (!out)
ERROR("fopen");
for_each_section(i, sec, &kelf->sections)
fprintf(out, "section %s\n", sec->name);
for_each_symbol(i, sym, &kelf->symbols)
fprintf(out, "symbol %s %d %d\n", sym->name, sym->type, sym->bind);
fclose(out);
}
/*
* The format of section __bug_table is a table of struct bug_entry. Each
* bug_entry has three fields:
* - relocated address of instruction pointer at BUG
* - relocated address of string with filename
* - line number of the BUG
*
* Therefore, .rela__bug_table has two relocations per entry. The first
* relocation is that of the instruction pointer at the BUG. The second is the
* pointer to the filename string in .rodata.str1.1. These two related
* relocations we will call a "pair".
*
* This function goes through .rela__bug_table and finds pairs the refer to
* functions that have been marked as changed. If one is found, that pair is
* copied into the new version of the .rela__bug_table section. If no pairs
* are found, the bug table (both the __bug_table and .rela__bug_table
* sections) are considered unchanged and not copied into the final output.
*
* The __bug_table section is not modified and therefore will contains "blank"
* bug_entry slots i.e. ones that do not get relocated and therefore the IP
* fields are zero. While this wastes space, it doesn't hurt anything and
* keeps the code cleaner by not having to regenerate the __bug_table section
* as well.
*/
void kpatch_regenerate_bug_table_rela_section(struct kpatch_elf *kelf)
{
struct section *sec;
struct table table;
struct rela *rela, *dstrela;
int i, nr = 0, copynext = 0;
sec = find_section_by_name(&kelf->sections, ".rela__bug_table");
if (!sec)
return;
/* alloc buffer of original size (probably won't use it all) */
alloc_table(&table, sizeof(struct rela), sec->relas.nr);
dstrela = table.data;
for_each_rela(i, rela, &sec->relas) {
if (i % 2) { /* filename reloc */
if (!copynext)
continue;
rela->sym->include = 1;
rela->sym->sec->include = 1;
*dstrela++ = *rela;
nr++;
copynext = 0;
}
else if (rela->sym->sec->status != SAME) { /* IP reloc */
log_debug("new/changed symbol %s found in bug table\n",
rela->sym->name);
/* copy BOTH relocs for this bug_entry */
*dstrela++ = *rela;
nr++;
/* tell the next loop to copy the filename reloc */
copynext = 1;
}
}
if (!nr) {
/* no changed functions referenced by bug table */
sec->status = SAME;
sec->base->status = SAME;
return;
}
/* overwrite with new relas table */
table.nr = nr;
sec->relas = table;
sec->include = 1;
sec->base->include = 1;
/*
* Adjust d_size but not d_buf. d_buf is overwritten in
* kpatch_create_rela_section() from the relas table. No
* point in regen'ing the buffer here just to be discarded
* later.
*/
sec->data->d_size = sec->sh.sh_entsize * nr;
}
void kpatch_regenerate_smp_locks_sections(struct kpatch_elf *kelf)
{
struct section *sec;
struct table table;
struct rela *rela, *dstrela;
int i, nr = 0, offset = 0;
sec = find_section_by_name(&kelf->sections, ".rela.smp_locks");
if (!sec)
return;
/* alloc buffer of original size (probably won't use it all) */
alloc_table(&table, sizeof(struct rela), sec->relas.nr);
dstrela = table.data;
for_each_rela(i, rela, &sec->relas) {
if (rela->sym->sec->status != SAME) {
log_debug("new/changed symbol %s found in smp locks table\n",
rela->sym->name);
*dstrela = *rela;
dstrela->offset = offset;
dstrela->rela.r_offset = offset;
dstrela++;
offset += 4;
nr++;
}
}
if (!nr) {
/* no changed functions referenced by bug table */
sec->status = SAME;
sec->base->status = SAME;
return;
}
/* overwrite with new relas table */
table.nr = nr;
sec->relas = table;
sec->include = 1;
sec->base->include = 1;
/*
* Adjust d_size but not d_buf. d_buf is overwritten in
* kpatch_create_rela_section() from the relas table. No
* point in regen'ing the buffer here just to be discarded
* later.
*/
sec->data->d_size = sec->sh.sh_entsize * nr;
/* truncate smp_locks section */
sec->base->data->d_size = offset;
}
void kpatch_regenerate_parainstructions_sections(struct kpatch_elf *kelf)
{
struct section *sec;
struct table table;
struct rela *rela, *dstrela;
int i, nr = 0, offset = 0;
char *old, *new;
sec = find_section_by_name(&kelf->sections, ".rela.parainstructions");
if (!sec)
return;
/* alloc buffer of original size (probably won't use it all) */
alloc_table(&table, sizeof(struct rela), sec->relas.nr);
dstrela = table.data;
old = sec->base->data->d_buf;
/* alloc buffer for new text section */
new = malloc(sec->base->sh.sh_size);
if (!new)
ERROR("malloc");
for_each_rela(i, rela, &sec->relas) {
if (rela->sym->sec->status != SAME) {
log_debug("new/changed symbol %s found in parainstructions table\n",
rela->sym->name);
/* copy rela entry into new table */
*dstrela = *rela;
/* adjust offset in both table entry and rela section */
dstrela->offset = offset;
dstrela->rela.r_offset = offset;
/* copy the entry to the new text section */
memcpy(new + offset, old, 16);
offset += 16;
dstrela++;
nr++;
}
old += 16;
}
if (!nr) {
/* no changed functions referenced by parainstructions table */
sec->status = SAME;
sec->base->status = SAME;
return;
}
/* overwrite with new relas table */
table.nr = nr;
sec->relas = table;
/* mark sections for inclusion */
sec->include = 1;
sec->base->include = 1;
/* update rela section data size */
sec->data->d_size = sec->sh.sh_entsize * nr;
/* update text section data buf and size */
sec->base->data->d_buf = new;
sec->base->data->d_size = offset;
}
void kpatch_create_rela_section(struct section *sec, int link)
{
struct rela *rela;
int i, symndx, type;
char *buf;
size_t size;
/* create new rela data buffer */
size = sec->data->d_size;
buf = malloc(size);
if (!buf)
ERROR("malloc");
memset(buf, 0, size);
/* reindex and copy into buffer */
for_each_rela(i, rela, &sec->relas) {
if (!rela->sym || !rela->sym->twino)
ERROR("expected rela symbol in rela section %s entry %d",
sec->name, i);
symndx = rela->sym->twino->index;
type = GELF_R_TYPE(rela->rela.r_info);
rela->rela.r_info = GELF_R_INFO(symndx, type);
memcpy(buf + (i * sec->sh.sh_entsize), &rela->rela,
sec->sh.sh_entsize);
}
sec->data->d_buf = buf;
/* size is unchanged */
sec->sh.sh_link = link;
/* info is section index of text section that matches this rela */
sec->sh.sh_info = sec->twino->base->twino->index;
}
void kpatch_create_rela_sections(struct kpatch_elf *kelf)
{
struct section *sec;
int i, link;
link = find_section_by_name(&kelf->sections, ".symtab")->index;
/* reindex rela symbols */
for_each_section(i, sec, &kelf->sections)
if (is_rela_section(sec))
kpatch_create_rela_section(sec, link);
}
void print_strtab(char *buf, size_t size)
{
int i;
for (i = 0; i < size; i++) {
if (buf[i] == 0)
printf("\\0");
else
printf("%c",buf[i]);
}
}
void kpatch_create_shstrtab(struct kpatch_elf *kelf)
{
struct section *shstrtab, *sec;
size_t size, offset, len;
int i;
char *buf;
shstrtab = find_section_by_name(&kelf->sections, ".shstrtab");
if (!shstrtab)
ERROR("find_section_by_name");
/* determine size of string table */
size = 1; /* for initial NULL terminator */
for_each_section(i, sec, &kelf->sections)
size += strlen(sec->name) + 1; /* include NULL terminator */
/* allocate data buffer */
buf = malloc(size);
if (!buf)
ERROR("malloc");
memset(buf, 0, size);
/* populate string table and link with section header */
offset = 1;
for_each_section(i, sec, &kelf->sections) {
len = strlen(sec->name) + 1;
sec->sh.sh_name = offset;
memcpy(buf + offset, sec->name, len);
offset += len;
}
if (offset != size)
ERROR("shstrtab size mismatch");
shstrtab->data->d_buf = buf;
shstrtab->data->d_size = size;
if (loglevel <= DEBUG) {
printf("shstrtab: ");
print_strtab(buf, size);
printf("\n");
for_each_section(i, sec, &kelf->sections)
printf("%s @ shstrtab offset %d\n",
sec->name, sec->sh.sh_name);
}
}
void kpatch_create_strtab(struct kpatch_elf *kelf)
{
struct section *strtab;
struct symbol *sym;
size_t size, offset, len;
int i;
char *buf;
strtab = find_section_by_name(&kelf->sections, ".strtab");
if (!strtab)
ERROR("find_section_by_name");
/* determine size of string table */
size = 1; /* for initial NULL terminator */
for_each_symbol(i, sym, &kelf->symbols) {
if (sym->type == STT_SECTION)
continue;
size += strlen(sym->name) + 1; /* include NULL terminator */
}
/* allocate data buffer */
buf = malloc(size);
if (!buf)
ERROR("malloc");
memset(buf, 0, size);
/* populate string table and link with section header */
offset = 1;
for_each_symbol(i, sym, &kelf->symbols) {
if (sym->type == STT_SECTION) {
sym->sym.st_name = 0;
continue;
}
len = strlen(sym->name) + 1;
sym->sym.st_name = offset;
memcpy(buf + offset, sym->name, len);
offset += len;
}
if (offset != size)
ERROR("shstrtab size mismatch");
strtab->data->d_buf = buf;
strtab->data->d_size = size;
if (loglevel <= DEBUG) {
printf("strtab: ");
print_strtab(buf, size);
printf("\n");
for_each_symbol_zero(i, sym, &kelf->symbols)
printf("%s @ strtab offset %d\n",
sym->name, sym->sym.st_name);
}
}
void kpatch_create_symtab(struct kpatch_elf *kelf)
{
struct section *symtab;
struct symbol *sym;
char *buf;
size_t size;
int i;
symtab = find_section_by_name(&kelf->sections, ".symtab");
if (!symtab)
ERROR("find_section_by_name");
/* create new symtab buffer */
size = kelf->symbols.nr * symtab->sh.sh_entsize;
buf = malloc(size);
if (!buf)
ERROR("malloc");
memset(buf, 0, size);
for_each_symbol_zero(i, sym, &kelf->symbols) {
memcpy(buf + (i * symtab->sh.sh_entsize), &sym->sym,
symtab->sh.sh_entsize);
}
symtab->data->d_buf = buf;
symtab->data->d_size = size;
symtab->sh.sh_link =
find_section_by_name(&kelf->sections, ".strtab")->index;
symtab->sh.sh_info =
find_section_by_name(&kelf->sections, ".shstrtab")->index;
}
void kpatch_write_output_elf(struct kpatch_elf *kelf, Elf *elf, char *outfile)
{
int fd, i;
struct section *sec;
Elf *elfout;
GElf_Ehdr eh, ehout;
Elf_Scn *scn;
Elf_Data *data;
GElf_Shdr sh;
/* TODO make this argv */
fd = creat(outfile, 0777);
if (fd == -1)
ERROR("creat");
elfout = elf_begin(fd, ELF_C_WRITE, NULL);
if (!elfout)
ERROR("elf_begin");
if (!gelf_newehdr(elfout, gelf_getclass(kelf->elf)))
ERROR("gelf_newehdr");
if (!gelf_getehdr(elfout, &ehout))
ERROR("gelf_getehdr");
if (!gelf_getehdr(elf, &eh))
ERROR("gelf_getehdr");
memset(&ehout, 0, sizeof(ehout));
ehout.e_ident[EI_DATA] = eh.e_ident[EI_DATA];
ehout.e_machine = eh.e_machine;
ehout.e_type = eh.e_type;
ehout.e_version = EV_CURRENT;
ehout.e_shstrndx = find_section_by_name(&kelf->sections, ".shstrtab")->index;
/* add changed sections */
for_each_section(i, sec, &kelf->sections) {
scn = elf_newscn(elfout);
if (!scn)
ERROR("elf_newscn");
data = elf_newdata(scn);
if (!data)
ERROR("elf_newdata");
*data = *sec->data;
if(!gelf_getshdr(scn, &sh))
ERROR("gelf_getshdr");
sh = sec->sh;
if (!elf_flagdata(data, ELF_C_SET, ELF_F_DIRTY))
ERROR("elf_flagdata");
if (!gelf_update_shdr(scn, &sh))
ERROR("gelf_update_shdr");
}
if (!gelf_update_ehdr(elfout, &ehout))
ERROR("gelf_update_ehdr");
if (elf_update(elfout, ELF_C_WRITE) < 0) {
printf("%s\n",elf_errmsg(-1));
ERROR("elf_update");
}
}
struct arguments {
char *args[3];
int debug;
int inventory;
};
static char args_doc[] = "original.o patched.o output.o";
static struct argp_option options[] = {
{"debug", 'd', 0, 0, "Show debug output" },
{"inventory", 'i', 0, 0, "Create inventory file with list of sections and symbols" },
{ 0 }
};
static error_t parse_opt (int key, char *arg, struct argp_state *state)
{
/* Get the input argument from argp_parse, which we
know is a pointer to our arguments structure. */
struct arguments *arguments = state->input;
switch (key)
{
case 'd':
arguments->debug = 1;
break;
case 'i':
arguments->inventory = 1;
break;
case ARGP_KEY_ARG:
if (state->arg_num >= 3)
/* Too many arguments. */
argp_usage (state);
arguments->args[state->arg_num] = arg;
break;
case ARGP_KEY_END:
if (state->arg_num < 3)
/* Not enough arguments. */
argp_usage (state);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static struct argp argp = { options, parse_opt, args_doc, 0 };
int main(int argc, char *argv[])
{
struct kpatch_elf *kelf_base, *kelf_patched, *kelf_out;
char *outfile;
struct arguments arguments;
int num_changed;
arguments.debug = 0;
arguments.inventory = 0;
argp_parse (&argp, argc, argv, 0, 0, &arguments);
if (arguments.debug)
loglevel = DEBUG;
elf_version(EV_CURRENT);
objname = basename(arguments.args[0]);
kelf_base = kpatch_elf_open(arguments.args[0]);
kelf_patched = kpatch_elf_open(arguments.args[1]);
outfile = arguments.args[2];
kpatch_compare_elf_headers(kelf_base->elf, kelf_patched->elf);
kpatch_check_program_headers(kelf_base->elf);
kpatch_check_program_headers(kelf_patched->elf);
kpatch_correlate_elfs(kelf_base, kelf_patched);
/*
* After this point, we don't care about kelf_base anymore.
* We access its sections via the twin pointers in the
* section, symbol, and rela lists of kelf_patched.
*/
kpatch_compare_correlated_elements(kelf_patched);
/*
* Mangle the relas a little. The compiler will sometimes
* use section symbols to reference local objects and functions
* rather than the object or function symbols themselves.
* We substitute the object/function symbols for the section
* symbol in this case so that the existing object/function
* in vmlinux can be linked to.
*/
kpatch_replace_sections_syms(kelf_patched);
kpatch_regenerate_bug_table_rela_section(kelf_patched);
kpatch_regenerate_smp_locks_sections(kelf_patched);
kpatch_regenerate_parainstructions_sections(kelf_patched);
kpatch_include_standard_sections(kelf_patched);
num_changed = kpatch_include_changed_functions(kelf_patched);
kpatch_dump_kelf(kelf_patched);
kpatch_verify_patchability(kelf_patched);
if (!num_changed) {
log_normal("no changed functions were found\n");
return 3; /* 1 is ERROR, 2 is DIFF_FATAL */
}
/* Generate the output elf */
kpatch_generate_output(kelf_patched, &kelf_out);
kpatch_create_rela_sections(kelf_out);
kpatch_create_shstrtab(kelf_out);
kpatch_create_strtab(kelf_out);
kpatch_create_symtab(kelf_out);
kpatch_dump_kelf(kelf_out);
if (arguments.inventory)
kpatch_write_inventory_file(kelf_out, outfile);
kpatch_write_output_elf(kelf_out, kelf_patched->elf, outfile);
return 0;
}