kpatch/kmod/core/core.c
Jessica Yu a095b4ed41 kmod/core: ensure the readonly flag is reset correctly
When the core module loops through an object's list of dynrelas, it
determines whether or not the target location of the dynrela is in a
read-only region of the patch module. If it is, the readonly flag is set to
1 and it calls set_memory_{rw,ro} before and after the probe_kernel_write()
operation. This flag gets set once, and never gets reset for subsequent
iterations. Therefore, if a target happens to be in a RW section of the
patch module, and readonly = 1 had been set before, we may unintentionally
set a normally RW page to RO. Fix this by setting the readonly flag with
each iteration of the loop.

Fixes #681.
2017-03-03 11:41:30 -08:00

1151 lines
28 KiB
C

/*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2013-2014 Josh Poimboeuf <jpoimboe@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* kpatch core module
*
* Patch modules register with this module to redirect old functions to new
* functions.
*
* For each function patched by the module we must:
* - Call stop_machine
* - Ensure that no task has the old function in its call stack
* - Add the new function address to kpatch_func_hash
*
* After that, each call to the old function calls into kpatch_ftrace_handler()
* which finds the new function in kpatch_func_hash table and updates the
* return instruction pointer so that ftrace will return to the new function.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <linux/ftrace.h>
#include <linux/hashtable.h>
#include <linux/hardirq.h>
#include <linux/uaccess.h>
#include <linux/kallsyms.h>
#include <linux/version.h>
#include <linux/string.h>
#include <linux/stacktrace.h>
#include <asm/stacktrace.h>
#include <asm/cacheflush.h>
#include <generated/utsrelease.h>
#include "kpatch.h"
#ifndef UTS_UBUNTU_RELEASE_ABI
#define UTS_UBUNTU_RELEASE_ABI 0
#endif
#if !defined(CONFIG_FUNCTION_TRACER) || \
!defined(CONFIG_HAVE_FENTRY) || \
!defined(CONFIG_MODULES) || \
!defined(CONFIG_SYSFS) || \
!defined(CONFIG_KALLSYMS_ALL)
#error "CONFIG_FUNCTION_TRACER, CONFIG_HAVE_FENTRY, CONFIG_MODULES, CONFIG_SYSFS, CONFIG_KALLSYMS_ALL kernel config options are required"
#endif
#define KPATCH_HASH_BITS 8
static DEFINE_HASHTABLE(kpatch_func_hash, KPATCH_HASH_BITS);
static DEFINE_SEMAPHORE(kpatch_mutex);
static LIST_HEAD(kpmod_list);
static int kpatch_num_patched;
struct kobject *kpatch_root_kobj;
EXPORT_SYMBOL_GPL(kpatch_root_kobj);
struct kpatch_kallsyms_args {
const char *objname;
const char *name;
unsigned long addr;
unsigned long count;
unsigned long pos;
};
/* this is a double loop, use goto instead of break */
#define do_for_each_linked_func(kpmod, func) { \
struct kpatch_object *_object; \
list_for_each_entry(_object, &kpmod->objects, list) { \
if (!kpatch_object_linked(_object)) \
continue; \
list_for_each_entry(func, &_object->funcs, list) {
#define while_for_each_linked_func() \
} \
} \
}
/*
* The kpatch core module has a state machine which allows for proper
* synchronization with kpatch_ftrace_handler() when it runs in NMI context.
*
* +-----------------------------------------------------+
* | |
* | +
* v +---> KPATCH_STATE_SUCCESS
* KPATCH_STATE_IDLE +---> KPATCH_STATE_UPDATING |
* ^ +---> KPATCH_STATE_FAILURE
* | +
* | |
* +-----------------------------------------------------+
*
* KPATCH_STATE_IDLE: No updates are pending. The func hash is valid, and the
* reader doesn't need to check func->op.
*
* KPATCH_STATE_UPDATING: An update is in progress. The reader must call
* kpatch_state_finish(KPATCH_STATE_FAILURE) before accessing the func hash.
*
* KPATCH_STATE_FAILURE: An update failed, and the func hash might be
* inconsistent (pending patched funcs might not have been removed yet). If
* func->op is KPATCH_OP_PATCH, then rollback to the previous version of the
* func.
*
* KPATCH_STATE_SUCCESS: An update succeeded, but the func hash might be
* inconsistent (pending unpatched funcs might not have been removed yet). If
* func->op is KPATCH_OP_UNPATCH, then rollback to the previous version of the
* func.
*/
enum {
KPATCH_STATE_IDLE,
KPATCH_STATE_UPDATING,
KPATCH_STATE_SUCCESS,
KPATCH_STATE_FAILURE,
};
static atomic_t kpatch_state;
static int (*kpatch_set_memory_rw)(unsigned long addr, int numpages);
static int (*kpatch_set_memory_ro)(unsigned long addr, int numpages);
#define MAX_STACK_TRACE_DEPTH 64
static unsigned long stack_entries[MAX_STACK_TRACE_DEPTH];
struct stack_trace trace = {
.max_entries = ARRAY_SIZE(stack_entries),
.entries = &stack_entries[0],
};
static inline void kpatch_state_idle(void)
{
int state = atomic_read(&kpatch_state);
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
atomic_set(&kpatch_state, KPATCH_STATE_IDLE);
}
static inline void kpatch_state_updating(void)
{
WARN_ON(atomic_read(&kpatch_state) != KPATCH_STATE_IDLE);
atomic_set(&kpatch_state, KPATCH_STATE_UPDATING);
}
/* If state is updating, change it to success or failure and return new state */
static inline int kpatch_state_finish(int state)
{
int result;
WARN_ON(state != KPATCH_STATE_SUCCESS && state != KPATCH_STATE_FAILURE);
result = atomic_cmpxchg(&kpatch_state, KPATCH_STATE_UPDATING, state);
return result == KPATCH_STATE_UPDATING ? state : result;
}
static struct kpatch_func *kpatch_get_func(unsigned long ip)
{
struct kpatch_func *f;
/* Here, we have to use rcu safe hlist because of NMI concurrency */
hash_for_each_possible_rcu(kpatch_func_hash, f, node, ip)
if (f->old_addr == ip)
return f;
return NULL;
}
static struct kpatch_func *kpatch_get_prev_func(struct kpatch_func *f,
unsigned long ip)
{
hlist_for_each_entry_continue_rcu(f, node)
if (f->old_addr == ip)
return f;
return NULL;
}
static inline bool kpatch_object_linked(struct kpatch_object *object)
{
return object->mod || !strcmp(object->name, "vmlinux");
}
static inline int kpatch_compare_addresses(unsigned long stack_addr,
unsigned long func_addr,
unsigned long func_size,
const char *func_name)
{
if (stack_addr >= func_addr && stack_addr < func_addr + func_size) {
pr_err("activeness safety check failed for %s\n", func_name);
return -EBUSY;
}
return 0;
}
static int kpatch_backtrace_address_verify(struct kpatch_module *kpmod,
unsigned long address)
{
struct kpatch_func *func;
int i;
int ret;
/* check kpmod funcs */
do_for_each_linked_func(kpmod, func) {
unsigned long func_addr, func_size;
const char *func_name;
struct kpatch_func *active_func;
if (func->force)
continue;
active_func = kpatch_get_func(func->old_addr);
if (!active_func) {
/* patching an unpatched func */
func_addr = func->old_addr;
func_size = func->old_size;
func_name = func->name;
} else {
/* repatching or unpatching */
func_addr = active_func->new_addr;
func_size = active_func->new_size;
func_name = active_func->name;
}
ret = kpatch_compare_addresses(address, func_addr,
func_size, func_name);
if (ret)
return ret;
} while_for_each_linked_func();
/* in the replace case, need to check the func hash as well */
hash_for_each_rcu(kpatch_func_hash, i, func, node) {
if (func->op == KPATCH_OP_UNPATCH && !func->force) {
ret = kpatch_compare_addresses(address,
func->new_addr,
func->new_size,
func->name);
if (ret)
return ret;
}
}
return ret;
}
/*
* Verify activeness safety, i.e. that none of the to-be-patched functions are
* on the stack of any task.
*
* This function is called from stop_machine() context.
*/
static int kpatch_verify_activeness_safety(struct kpatch_module *kpmod)
{
struct task_struct *g, *t;
int i;
int ret = 0;
/* Check the stacks of all tasks. */
do_each_thread(g, t) {
trace.nr_entries = 0;
save_stack_trace_tsk(t, &trace);
if (trace.nr_entries >= trace.max_entries) {
ret = -EBUSY;
pr_err("more than %u trace entries!\n",
trace.max_entries);
goto out;
}
for (i = 0; i < trace.nr_entries; i++) {
if (trace.entries[i] == ULONG_MAX)
break;
ret = kpatch_backtrace_address_verify(kpmod,
trace.entries[i]);
if (ret)
goto out;
}
} while_each_thread(g, t);
out:
if (ret) {
pr_err("PID: %d Comm: %.20s\n", t->pid, t->comm);
for (i = 0; i < trace.nr_entries; i++) {
if (trace.entries[i] == ULONG_MAX)
break;
pr_err(" [<%pK>] %pB\n",
(void *)trace.entries[i],
(void *)trace.entries[i]);
}
}
return ret;
}
/* Called from stop_machine */
static int kpatch_apply_patch(void *data)
{
struct kpatch_module *kpmod = data;
struct kpatch_func *func;
struct kpatch_hook *hook;
struct kpatch_object *object;
int ret;
ret = kpatch_verify_activeness_safety(kpmod);
if (ret) {
kpatch_state_finish(KPATCH_STATE_FAILURE);
return ret;
}
/* tentatively add the new funcs to the global func hash */
do_for_each_linked_func(kpmod, func) {
hash_add_rcu(kpatch_func_hash, &func->node, func->old_addr);
} while_for_each_linked_func();
/* memory barrier between func hash add and state change */
smp_wmb();
/*
* Check if any inconsistent NMI has happened while updating. If not,
* move to success state.
*/
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
if (ret == KPATCH_STATE_FAILURE) {
pr_err("NMI activeness safety check failed\n");
/* Failed, we have to rollback patching process */
do_for_each_linked_func(kpmod, func) {
hash_del_rcu(&func->node);
} while_for_each_linked_func();
return -EBUSY;
}
/* run any user-defined load hooks */
list_for_each_entry(object, &kpmod->objects, list) {
if (!kpatch_object_linked(object))
continue;
list_for_each_entry(hook, &object->hooks_load, list)
(*hook->hook)();
}
return 0;
}
/* Called from stop_machine */
static int kpatch_remove_patch(void *data)
{
struct kpatch_module *kpmod = data;
struct kpatch_func *func;
struct kpatch_hook *hook;
struct kpatch_object *object;
int ret;
ret = kpatch_verify_activeness_safety(kpmod);
if (ret) {
kpatch_state_finish(KPATCH_STATE_FAILURE);
return ret;
}
/* Check if any inconsistent NMI has happened while updating */
ret = kpatch_state_finish(KPATCH_STATE_SUCCESS);
if (ret == KPATCH_STATE_FAILURE)
return -EBUSY;
/* Succeeded, remove all updating funcs from hash table */
do_for_each_linked_func(kpmod, func) {
hash_del_rcu(&func->node);
} while_for_each_linked_func();
/* run any user-defined unload hooks */
list_for_each_entry(object, &kpmod->objects, list) {
if (!kpatch_object_linked(object))
continue;
list_for_each_entry(hook, &object->hooks_unload, list)
(*hook->hook)();
}
return 0;
}
/*
* This is where the magic happens. Update regs->ip to tell ftrace to return
* to the new function.
*
* If there are multiple patch modules that have registered to patch the same
* function, the last one to register wins, as it'll be first in the hash
* bucket.
*/
static void notrace
kpatch_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *fops, struct pt_regs *regs)
{
struct kpatch_func *func;
int state;
preempt_disable_notrace();
if (likely(!in_nmi()))
func = kpatch_get_func(ip);
else {
/* Checking for NMI inconsistency */
state = kpatch_state_finish(KPATCH_STATE_FAILURE);
/* no memory reordering between state and func hash read */
smp_rmb();
func = kpatch_get_func(ip);
if (likely(state == KPATCH_STATE_IDLE))
goto done;
if (state == KPATCH_STATE_SUCCESS) {
/*
* Patching succeeded. If the function was being
* unpatched, roll back to the previous version.
*/
if (func && func->op == KPATCH_OP_UNPATCH)
func = kpatch_get_prev_func(func, ip);
} else {
/*
* Patching failed. If the function was being patched,
* roll back to the previous version.
*/
if (func && func->op == KPATCH_OP_PATCH)
func = kpatch_get_prev_func(func, ip);
}
}
done:
if (func)
regs->ip = func->new_addr + MCOUNT_INSN_SIZE;
preempt_enable_notrace();
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 19, 0)
#define FTRACE_OPS_FL_IPMODIFY 0
#endif
static struct ftrace_ops kpatch_ftrace_ops __read_mostly = {
.func = kpatch_ftrace_handler,
.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
};
static int kpatch_ftrace_add_func(unsigned long ip)
{
int ret;
/* check if any other patch modules have also patched this func */
if (kpatch_get_func(ip))
return 0;
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, ip, 0, 0);
if (ret) {
pr_err("can't set ftrace filter at address 0x%lx\n", ip);
return ret;
}
if (!kpatch_num_patched) {
ret = register_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
pr_err("can't register ftrace handler\n");
ftrace_set_filter_ip(&kpatch_ftrace_ops, ip, 1, 0);
return ret;
}
}
kpatch_num_patched++;
return 0;
}
static int kpatch_ftrace_remove_func(unsigned long ip)
{
int ret;
/* check if any other patch modules have also patched this func */
if (kpatch_get_func(ip))
return 0;
if (kpatch_num_patched == 1) {
ret = unregister_ftrace_function(&kpatch_ftrace_ops);
if (ret) {
pr_err("can't unregister ftrace handler\n");
return ret;
}
}
kpatch_num_patched--;
ret = ftrace_set_filter_ip(&kpatch_ftrace_ops, ip, 1, 0);
if (ret) {
pr_err("can't remove ftrace filter at address 0x%lx\n", ip);
return ret;
}
return 0;
}
static int kpatch_kallsyms_callback(void *data, const char *name,
struct module *mod,
unsigned long addr)
{
struct kpatch_kallsyms_args *args = data;
bool vmlinux = !strcmp(args->objname, "vmlinux");
if ((mod && vmlinux) || (!mod && !vmlinux))
return 0;
if (strcmp(args->name, name))
return 0;
if (!vmlinux && strcmp(args->objname, mod->name))
return 0;
args->addr = addr;
args->count++;
/*
* Finish the search when the symbol is found for the desired position
* or the position is not defined for a non-unique symbol.
*/
if ((args->pos && (args->count == args->pos)) ||
(!args->pos && (args->count > 1))) {
return 1;
}
return 0;
}
static int kpatch_find_object_symbol(const char *objname, const char *name,
unsigned long sympos, unsigned long *addr)
{
struct kpatch_kallsyms_args args = {
.objname = objname,
.name = name,
.addr = 0,
.count = 0,
.pos = sympos,
};
mutex_lock(&module_mutex);
kallsyms_on_each_symbol(kpatch_kallsyms_callback, &args);
mutex_unlock(&module_mutex);
/*
* Ensure an address was found. If sympos is 0, ensure symbol is unique;
* otherwise ensure the symbol position count matches sympos.
*/
if (args.addr == 0)
pr_err("symbol '%s' not found in symbol table\n", name);
else if (args.count > 1 && sympos == 0) {
pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
name, objname);
} else if (sympos != args.count && sympos > 0) {
pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
sympos, name, objname);
} else {
*addr = args.addr;
return 0;
}
*addr = 0;
return -EINVAL;
}
/*
* External symbols are located outside the parent object (where the parent
* object is either vmlinux or the kmod being patched).
*/
static int kpatch_find_external_symbol(const char *objname, const char *name,
unsigned long sympos, unsigned long *addr)
{
const struct kernel_symbol *sym;
/* first, check if it's an exported symbol */
preempt_disable();
sym = find_symbol(name, NULL, NULL, true, true);
preempt_enable();
if (sym) {
*addr = sym->value;
return 0;
}
/* otherwise check if it's in another .o within the patch module */
return kpatch_find_object_symbol(objname, name, sympos, addr);
}
static int kpatch_write_relocations(struct kpatch_module *kpmod,
struct kpatch_object *object)
{
int ret, size, readonly = 0, numpages;
struct kpatch_dynrela *dynrela;
u64 loc, val;
#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0) ) || \
( LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0) && \
UTS_UBUNTU_RELEASE_ABI >= 7 ) \
)
unsigned long core = (unsigned long)kpmod->mod->core_layout.base;
unsigned long core_size = kpmod->mod->core_layout.size;
#else
unsigned long core = (unsigned long)kpmod->mod->module_core;
unsigned long core_size = kpmod->mod->core_size;
#endif
list_for_each_entry(dynrela, &object->dynrelas, list) {
if (dynrela->external)
ret = kpatch_find_external_symbol(kpmod->mod->name,
dynrela->name,
dynrela->sympos,
&dynrela->src);
else
ret = kpatch_find_object_symbol(object->name,
dynrela->name,
dynrela->sympos,
&dynrela->src);
if (ret) {
pr_err("unable to find symbol '%s'\n", dynrela->name);
return ret;
}
switch (dynrela->type) {
case R_X86_64_NONE:
continue;
case R_X86_64_PC32:
loc = dynrela->dest;
val = (u32)(dynrela->src + dynrela->addend -
dynrela->dest);
size = 4;
break;
case R_X86_64_32S:
loc = dynrela->dest;
val = (s32)dynrela->src + dynrela->addend;
size = 4;
break;
case R_X86_64_64:
loc = dynrela->dest;
val = dynrela->src;
size = 8;
break;
default:
pr_err("unsupported rela type %ld for source %s (0x%lx <- 0x%lx)\n",
dynrela->type, dynrela->name, dynrela->dest,
dynrela->src);
return -EINVAL;
}
if (loc < core || loc >= core + core_size) {
pr_err("bad dynrela location 0x%llx for symbol %s\n",
loc, dynrela->name);
return -EINVAL;
}
/*
* Skip it if the instruction to be relocated has been
* changed already (paravirt or alternatives may do this).
*/
if (memchr_inv((void *)loc, 0, size)) {
pr_notice("Skipped dynrela for %s (0x%lx <- 0x%lx): the instruction has been changed already.\n",
dynrela->name, dynrela->dest, dynrela->src);
pr_notice_once(
"This is not necessarily a bug but it may indicate in some cases "
"that the binary patch does not handle paravirt operations, alternatives or the like properly.\n");
continue;
}
#ifdef CONFIG_DEBUG_SET_MODULE_RONX
#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0) ) || \
( LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0) && \
UTS_UBUNTU_RELEASE_ABI >= 7 ) \
)
readonly = (loc < core + kpmod->mod->core_layout.ro_size);
#else
readonly = (loc < core + kpmod->mod->core_ro_size);
#endif
#endif
numpages = (PAGE_SIZE - (loc & ~PAGE_MASK) >= size) ? 1 : 2;
if (readonly)
kpatch_set_memory_rw(loc & PAGE_MASK, numpages);
ret = probe_kernel_write((void *)loc, &val, size);
if (readonly)
kpatch_set_memory_ro(loc & PAGE_MASK, numpages);
if (ret) {
pr_err("write to 0x%llx failed for symbol %s\n",
loc, dynrela->name);
return ret;
}
}
return 0;
}
static int kpatch_unlink_object(struct kpatch_object *object)
{
struct kpatch_func *func;
int ret;
list_for_each_entry(func, &object->funcs, list) {
if (!func->old_addr)
continue;
ret = kpatch_ftrace_remove_func(func->old_addr);
if (ret) {
WARN(1, "can't unregister ftrace for address 0x%lx\n",
func->old_addr);
return ret;
}
}
if (object->mod)
module_put(object->mod);
return 0;
}
/*
* Link to a to-be-patched object in preparation for patching it.
*
* - Find the object module
* - Write patch module relocations which reference the object
* - Calculate the patched functions' addresses
* - Register them with ftrace
*/
static int kpatch_link_object(struct kpatch_module *kpmod,
struct kpatch_object *object)
{
struct module *mod = NULL;
struct kpatch_func *func, *func_err = NULL;
int ret;
bool vmlinux = !strcmp(object->name, "vmlinux");
if (!vmlinux) {
mutex_lock(&module_mutex);
mod = find_module(object->name);
if (!mod) {
/*
* The module hasn't been loaded yet. We can patch it
* later in kpatch_module_notify().
*/
mutex_unlock(&module_mutex);
return 0;
}
/* should never fail because we have the mutex */
WARN_ON(!try_module_get(mod));
mutex_unlock(&module_mutex);
object->mod = mod;
}
ret = kpatch_write_relocations(kpmod, object);
if (ret)
goto err_put;
list_for_each_entry(func, &object->funcs, list) {
/* lookup the old location */
ret = kpatch_find_object_symbol(object->name,
func->name,
func->sympos,
&func->old_addr);
if (ret) {
func_err = func;
goto err_ftrace;
}
/* add to ftrace filter and register handler if needed */
ret = kpatch_ftrace_add_func(func->old_addr);
if (ret) {
func_err = func;
goto err_ftrace;
}
}
return 0;
err_ftrace:
list_for_each_entry(func, &object->funcs, list) {
if (func == func_err)
break;
WARN_ON(kpatch_ftrace_remove_func(func->old_addr));
}
err_put:
if (!vmlinux)
module_put(mod);
return ret;
}
static int kpatch_module_notify(struct notifier_block *nb, unsigned long action,
void *data)
{
struct module *mod = data;
struct kpatch_module *kpmod;
struct kpatch_object *object;
struct kpatch_func *func;
struct kpatch_hook *hook;
int ret = 0;
bool found = false;
if (action != MODULE_STATE_COMING)
return 0;
down(&kpatch_mutex);
list_for_each_entry(kpmod, &kpmod_list, list) {
list_for_each_entry(object, &kpmod->objects, list) {
if (kpatch_object_linked(object))
continue;
if (!strcmp(object->name, mod->name)) {
found = true;
goto done;
}
}
}
done:
if (!found)
goto out;
ret = kpatch_link_object(kpmod, object);
if (ret)
goto out;
BUG_ON(!object->mod);
pr_notice("patching newly loaded module '%s'\n", object->name);
/* run any user-defined load hooks */
list_for_each_entry(hook, &object->hooks_load, list)
(*hook->hook)();
/* add to the global func hash */
list_for_each_entry(func, &object->funcs, list)
hash_add_rcu(kpatch_func_hash, &func->node, func->old_addr);
out:
up(&kpatch_mutex);
/* no way to stop the module load on error */
WARN(ret, "error (%d) patching newly loaded module '%s'\n", ret,
object->name);
return 0;
}
int kpatch_register(struct kpatch_module *kpmod, bool replace)
{
int ret, i, force = 0;
struct kpatch_object *object, *object_err = NULL;
struct kpatch_func *func;
if (!kpmod->mod || list_empty(&kpmod->objects))
return -EINVAL;
down(&kpatch_mutex);
if (kpmod->enabled) {
ret = -EINVAL;
goto err_up;
}
list_add_tail(&kpmod->list, &kpmod_list);
if (!try_module_get(kpmod->mod)) {
ret = -ENODEV;
goto err_list;
}
list_for_each_entry(object, &kpmod->objects, list) {
ret = kpatch_link_object(kpmod, object);
if (ret) {
object_err = object;
goto err_unlink;
}
if (!kpatch_object_linked(object)) {
pr_notice("delaying patch of unloaded module '%s'\n",
object->name);
continue;
}
if (strcmp(object->name, "vmlinux"))
pr_notice("patching module '%s'\n", object->name);
list_for_each_entry(func, &object->funcs, list)
func->op = KPATCH_OP_PATCH;
}
if (replace)
hash_for_each_rcu(kpatch_func_hash, i, func, node)
func->op = KPATCH_OP_UNPATCH;
/* memory barrier between func hash and state write */
smp_wmb();
kpatch_state_updating();
/*
* Idle the CPUs, verify activeness safety, and atomically make the new
* functions visible to the ftrace handler.
*/
ret = stop_machine(kpatch_apply_patch, kpmod, NULL);
/*
* For the replace case, remove any obsolete funcs from the hash and
* the ftrace filter, and disable the owning patch module so that it
* can be removed.
*/
if (!ret && replace) {
struct kpatch_module *kpmod2, *safe;
hash_for_each_rcu(kpatch_func_hash, i, func, node) {
if (func->op != KPATCH_OP_UNPATCH)
continue;
if (func->force)
force = 1;
hash_del_rcu(&func->node);
WARN_ON(kpatch_ftrace_remove_func(func->old_addr));
}
list_for_each_entry_safe(kpmod2, safe, &kpmod_list, list) {
if (kpmod == kpmod2)
continue;
kpmod2->enabled = false;
pr_notice("unloaded patch module '%s'\n",
kpmod2->mod->name);
/*
* Don't allow modules with forced functions to be
* removed because they might still be in use.
*/
if (!force)
module_put(kpmod2->mod);
list_del(&kpmod2->list);
}
}
/* memory barrier between func hash and state write */
smp_wmb();
/* NMI handlers can return to normal now */
kpatch_state_idle();
/*
* Wait for all existing NMI handlers to complete so that they don't
* see any changes to funcs or funcs->op that might occur after this
* point.
*
* Any NMI handlers starting after this point will see the IDLE state.
*/
synchronize_rcu();
if (ret)
goto err_ops;
do_for_each_linked_func(kpmod, func) {
func->op = KPATCH_OP_NONE;
} while_for_each_linked_func();
/* HAS_MODULE_TAINT - upstream 2992ef29ae01 "livepatch/module: make TAINT_LIVEPATCH module-specific" */
/* HAS_MODULE_TAINT_LONG - upstream 7fd8329ba502 "taint/module: Clean up global and module taint flags handling" */
#ifdef RHEL_RELEASE_CODE
# if RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(7, 4)
# define HAS_MODULE_TAINT
# endif
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)
# define HAS_MODULE_TAINT_LONG
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
# define HAS_MODULE_TAINT
#endif
#ifdef TAINT_LIVEPATCH
pr_notice_once("tainting kernel with TAINT_LIVEPATCH\n");
add_taint(TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
# ifdef HAS_MODULE_TAINT_LONG
set_bit(TAINT_LIVEPATCH, &kpmod->mod->taints);
# elif defined(HAS_MODULE_TAINT)
kpmod->mod->taints |= (1 << TAINT_LIVEPATCH);
# endif
#else
pr_notice_once("tainting kernel with TAINT_USER\n");
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
#endif
pr_notice("loaded patch module '%s'\n", kpmod->mod->name);
kpmod->enabled = true;
up(&kpatch_mutex);
return 0;
err_ops:
if (replace)
hash_for_each_rcu(kpatch_func_hash, i, func, node)
func->op = KPATCH_OP_NONE;
err_unlink:
list_for_each_entry(object, &kpmod->objects, list) {
if (object == object_err)
break;
if (!kpatch_object_linked(object))
continue;
WARN_ON(kpatch_unlink_object(object));
}
module_put(kpmod->mod);
err_list:
list_del(&kpmod->list);
err_up:
up(&kpatch_mutex);
return ret;
}
EXPORT_SYMBOL(kpatch_register);
int kpatch_unregister(struct kpatch_module *kpmod)
{
struct kpatch_object *object;
struct kpatch_func *func;
int ret, force = 0;
down(&kpatch_mutex);
if (!kpmod->enabled) {
ret = -EINVAL;
goto out;
}
do_for_each_linked_func(kpmod, func) {
func->op = KPATCH_OP_UNPATCH;
if (func->force)
force = 1;
} while_for_each_linked_func();
/* memory barrier between func hash and state write */
smp_wmb();
kpatch_state_updating();
ret = stop_machine(kpatch_remove_patch, kpmod, NULL);
/* NMI handlers can return to normal now */
kpatch_state_idle();
/*
* Wait for all existing NMI handlers to complete so that they don't
* see any changes to funcs or funcs->op that might occur after this
* point.
*
* Any NMI handlers starting after this point will see the IDLE state.
*/
synchronize_rcu();
if (ret) {
do_for_each_linked_func(kpmod, func) {
func->op = KPATCH_OP_NONE;
} while_for_each_linked_func();
goto out;
}
list_for_each_entry(object, &kpmod->objects, list) {
if (!kpatch_object_linked(object))
continue;
ret = kpatch_unlink_object(object);
if (ret)
goto out;
}
pr_notice("unloaded patch module '%s'\n", kpmod->mod->name);
kpmod->enabled = false;
/*
* Don't allow modules with forced functions to be removed because they
* might still be in use.
*/
if (!force)
module_put(kpmod->mod);
list_del(&kpmod->list);
out:
up(&kpatch_mutex);
return ret;
}
EXPORT_SYMBOL(kpatch_unregister);
static struct notifier_block kpatch_module_nb = {
.notifier_call = kpatch_module_notify,
.priority = INT_MIN, /* called last */
};
static int kpatch_init(void)
{
int ret;
kpatch_set_memory_rw = (void *)kallsyms_lookup_name("set_memory_rw");
if (!kpatch_set_memory_rw) {
pr_err("can't find set_memory_rw symbol\n");
return -ENXIO;
}
kpatch_set_memory_ro = (void *)kallsyms_lookup_name("set_memory_ro");
if (!kpatch_set_memory_ro) {
pr_err("can't find set_memory_ro symbol\n");
return -ENXIO;
}
kpatch_root_kobj = kobject_create_and_add("kpatch", kernel_kobj);
if (!kpatch_root_kobj)
return -ENOMEM;
ret = register_module_notifier(&kpatch_module_nb);
if (ret)
goto err_root_kobj;
return 0;
err_root_kobj:
kobject_put(kpatch_root_kobj);
return ret;
}
static void kpatch_exit(void)
{
rcu_barrier();
WARN_ON(kpatch_num_patched != 0);
WARN_ON(unregister_module_notifier(&kpatch_module_nb));
kobject_put(kpatch_root_kobj);
}
module_init(kpatch_init);
module_exit(kpatch_exit);
MODULE_LICENSE("GPL");