/* * create-diff-object.c * * Copyright (C) 2014 Seth Jennings * Copyright (C) 2013-2014 Josh Poimboeuf * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA, * 02110-1301, USA. */ /* * This file contains the heart of the ELF object differencing engine. * * The tool takes two ELF objects from two versions of the same source * file; a "base" object and a "patched" object. These object need to have * been compiled with the -ffunction-sections and -fdata-sections GCC options. * * The tool compares the objects at a section level to determine what * sections have changed. Once a list of changed sections has been generated, * various rules are applied to determine any object local sections that * are dependencies of the changed section and also need to be included in * the output object. */ #include #include #include #include #include #include #include #include #include #include #include #include "list.h" #include "lookup.h" #include "kpatch.h" #define ERROR(format, ...) \ error(1, 0, "%s: %d: " format, __FUNCTION__, __LINE__, ##__VA_ARGS__) #define DIFF_FATAL(format, ...) \ ({ \ printf("%s: " format "\n", objname, ##__VA_ARGS__); \ error(2, 0, "unreconcilable difference"); \ }) #define log_debug(format, ...) log(DEBUG, format, ##__VA_ARGS__) #define log_normal(format, ...) log(NORMAL, "%s: " format, objname, ##__VA_ARGS__) #define log(level, format, ...) \ ({ \ if (loglevel <= (level)) \ printf(format, ##__VA_ARGS__); \ }) char *objname; enum loglevel { DEBUG, NORMAL }; static enum loglevel loglevel = NORMAL; /******************* * Data structures * ****************/ struct section; struct symbol; struct rela; enum status { NEW, CHANGED, SAME }; struct section { struct list_head list; struct section *twin; GElf_Shdr sh; Elf_Data *data; char *name; int index; enum status status; int include; union { struct { /* if (is_rela_section()) */ struct section *base; struct list_head relas; }; struct { /* else */ struct section *rela; struct symbol *secsym, *sym; }; }; }; struct symbol { struct list_head list; struct symbol *twin; struct section *sec; GElf_Sym sym; char *name; int index; unsigned char bind, type; enum status status; int include; }; struct rela { struct list_head list; GElf_Rela rela; struct symbol *sym; unsigned char type; int addend; int offset; char *string; }; struct string { struct list_head list; char *name; }; struct kpatch_elf { Elf *elf; struct list_head sections; struct list_head symbols; struct list_head strings; int fd; }; /******************* * Helper functions ******************/ char *status_str(enum status status) { switch(status) { case NEW: return "NEW"; case CHANGED: return "CHANGED"; case SAME: return "SAME"; default: ERROR("status_str"); } /* never reached */ return NULL; } int is_rela_section(struct section *sec) { return (sec->sh.sh_type == SHT_RELA); } struct section *find_section_by_index(struct list_head *list, unsigned int index) { struct section *sec; list_for_each_entry(sec, list, list) if (sec->index == index) return sec; return NULL; } struct section *find_section_by_name(struct list_head *list, const char *name) { struct section *sec; list_for_each_entry(sec, list, list) if (!strcmp(sec->name, name)) return sec; return NULL; } struct symbol *find_symbol_by_index(struct list_head *list, size_t index) { struct symbol *sym; list_for_each_entry(sym, list, list) if (sym->index == index) return sym; return NULL; } struct symbol *find_symbol_by_name(struct list_head *list, const char *name) { struct symbol *sym; list_for_each_entry(sym, list, list) if (sym->name && !strcmp(sym->name, name)) return sym; return NULL; } #define ALLOC_LINK(_new, _list) \ { \ (_new) = malloc(sizeof(*(_new))); \ if (!(_new)) \ ERROR("malloc"); \ memset((_new), 0, sizeof(*(_new))); \ INIT_LIST_HEAD(&(_new)->list); \ list_add_tail(&(_new)->list, (_list)); \ } /* returns the offset of the string in the string table */ int offset_of_string(struct list_head *list, char *name) { struct string *string; int index = 0; /* try to find string in the string list */ list_for_each_entry(string, list, list) { if (!strcmp(string->name, name)) return index; index += strlen(string->name) + 1; } /* allocate a new string */ ALLOC_LINK(string, list); string->name = name; return index; } /************* * Functions * **********/ void kpatch_create_rela_list(struct kpatch_elf *kelf, struct section *sec) { int rela_nr, index = 0; struct rela *rela; unsigned int symndx; /* find matching base (text/data) section */ sec->base = find_section_by_name(&kelf->sections, sec->name + 5); if (!sec->base) ERROR("can't find base section for rela section %s", sec->name); /* create reverse link from base section to this rela section */ sec->base->rela = sec; rela_nr = sec->sh.sh_size / sec->sh.sh_entsize; log_debug("\n=== rela list for %s (%d entries) ===\n", sec->base->name, rela_nr); /* read and store the rela entries */ while (rela_nr--) { ALLOC_LINK(rela, &sec->relas); if (!gelf_getrela(sec->data, index, &rela->rela)) ERROR("gelf_getrela"); index++; rela->type = GELF_R_TYPE(rela->rela.r_info); rela->addend = rela->rela.r_addend; rela->offset = rela->rela.r_offset; symndx = GELF_R_SYM(rela->rela.r_info); rela->sym = find_symbol_by_index(&kelf->symbols, symndx); if (!rela->sym) ERROR("could not find rela entry symbol\n"); if (rela->sym->sec && (rela->sym->sec->sh.sh_flags & SHF_STRINGS)) { rela->string = rela->sym->sec->data->d_buf + rela->addend; if (!rela->string) ERROR("could not lookup rela string\n"); } log_debug("offset %d, type %d, %s %s %d", rela->offset, rela->type, rela->sym->name, (rela->addend < 0)?"-":"+", abs(rela->addend)); if (rela->string) log_debug(" (string = %s)", rela->string); log_debug("\n"); } } void kpatch_create_section_list(struct kpatch_elf *kelf) { Elf_Scn *scn = NULL; struct section *sec; size_t shstrndx, sections_nr; if (elf_getshdrnum(kelf->elf, §ions_nr)) ERROR("elf_getshdrnum"); /* * elf_getshdrnum() includes section index 0 but elf_nextscn * doesn't return that section so subtract one. */ sections_nr--; if (elf_getshdrstrndx(kelf->elf, &shstrndx)) ERROR("elf_getshdrstrndx"); log_debug("=== section list (%zu) ===\n", sections_nr); while (sections_nr--) { ALLOC_LINK(sec, &kelf->sections); scn = elf_nextscn(kelf->elf, scn); if (!scn) ERROR("scn NULL"); if (!gelf_getshdr(scn, &sec->sh)) ERROR("gelf_getshdr"); sec->name = elf_strptr(kelf->elf, shstrndx, sec->sh.sh_name); if (!sec->name) ERROR("elf_strptr"); sec->data = elf_getdata(scn, NULL); if (!sec->data) ERROR("elf_getdata"); sec->index = elf_ndxscn(scn); log_debug("ndx %02d, data %p, size %zu, name %s\n", sec->index, sec->data->d_buf, sec->data->d_size, sec->name); } /* Sanity check, one more call to elf_nextscn() should return NULL */ if (elf_nextscn(kelf->elf, scn)) ERROR("expected NULL"); } int is_bundleable(struct symbol *sym) { if (sym->type == STT_FUNC && !strncmp(sym->sec->name, ".text.",6) && !strcmp(sym->sec->name + 6, sym->name)) return 1; if (sym->type == STT_OBJECT && !strncmp(sym->sec->name, ".data.",6) && !strcmp(sym->sec->name + 6, sym->name)) return 1; if (sym->type == STT_OBJECT && !strncmp(sym->sec->name, ".bss.",5) && !strcmp(sym->sec->name + 5, sym->name)) return 1; return 0; } void kpatch_create_symbol_list(struct kpatch_elf *kelf) { struct section *symtab; struct symbol *sym; int symbols_nr, index = 0; symtab = find_section_by_name(&kelf->sections, ".symtab"); if (!symtab) ERROR("missing symbol table"); symbols_nr = symtab->sh.sh_size / symtab->sh.sh_entsize; log_debug("\n=== symbol list (%d entries) ===\n", symbols_nr); while (symbols_nr--) { ALLOC_LINK(sym, &kelf->symbols); sym->index = index; if (!gelf_getsym(symtab->data, index, &sym->sym)) ERROR("gelf_getsym"); index++; sym->name = elf_strptr(kelf->elf, symtab->sh.sh_link, sym->sym.st_name); if (!sym->name) ERROR("elf_strptr"); sym->type = GELF_ST_TYPE(sym->sym.st_info); sym->bind = GELF_ST_BIND(sym->sym.st_info); if (sym->sym.st_shndx > SHN_UNDEF && sym->sym.st_shndx < SHN_LORESERVE) { sym->sec = find_section_by_index(&kelf->sections, sym->sym.st_shndx); if (!sym->sec) ERROR("couldn't find section for symbol %s\n", sym->name); if (is_bundleable(sym)) { if (sym->sym.st_value != 0) ERROR("symbol %s at offset %lu within section %s, expected 0", sym->name, sym->sym.st_value, sym->sec->name); sym->sec->sym = sym; } else if (sym->type == STT_SECTION) { sym->sec->secsym = sym; /* use the section name as the symbol name */ sym->name = sym->sec->name; } } log_debug("sym %02d, type %d, bind %d, ndx %02d, name %s", sym->index, sym->type, sym->bind, sym->sym.st_shndx, sym->name); if (sym->sec) log_debug(" -> %s", sym->sec->name); log_debug("\n"); } } struct kpatch_elf *kpatch_elf_open(const char *name) { Elf *elf; int fd; struct kpatch_elf *kelf; struct section *sec; fd = open(name, O_RDONLY); if (fd == -1) ERROR("open"); elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); if (!elf) ERROR("elf_begin"); kelf = malloc(sizeof(*kelf)); if (!kelf) ERROR("malloc"); memset(kelf, 0, sizeof(*kelf)); INIT_LIST_HEAD(&kelf->sections); INIT_LIST_HEAD(&kelf->symbols); INIT_LIST_HEAD(&kelf->strings); /* read and store section, symbol entries from file */ kelf->elf = elf; kelf->fd = fd; kpatch_create_section_list(kelf); kpatch_create_symbol_list(kelf); /* for each rela section, read and store the rela entries */ list_for_each_entry(sec, &kelf->sections, list) { if (!is_rela_section(sec)) continue; INIT_LIST_HEAD(&sec->relas); kpatch_create_rela_list(kelf, sec); } return kelf; } int rela_equal(struct rela *rela1, struct rela *rela2) { if (rela1->type != rela2->type || rela1->offset != rela2->offset) return 0; if (rela1->string) { if (rela2->string && !strcmp(rela1->string, rela2->string)) return 1; } else { if (strcmp(rela1->sym->name, rela2->sym->name)) return 0; if (rela1->addend == rela2->addend) return 1; } return 0; } void kpatch_compare_correlated_rela_section(struct section *sec) { struct rela *rela1, *rela2 = NULL; rela2 = list_entry(sec->twin->relas.next, struct rela, list); list_for_each_entry(rela1, &sec->relas, list) { if (rela_equal(rela1, rela2)) { rela2 = list_entry(rela2->list.next, struct rela, list); continue; } sec->status = CHANGED; return; } sec->status = SAME; } void kpatch_compare_correlated_nonrela_section(struct section *sec) { struct section *sec1 = sec, *sec2 = sec->twin; if (sec1->sh.sh_type != SHT_NOBITS && memcmp(sec1->data->d_buf, sec2->data->d_buf, sec1->data->d_size)) sec->status = CHANGED; else sec->status = SAME; } void kpatch_compare_correlated_section(struct section *sec) { struct section *sec1 = sec, *sec2 = sec->twin; /* Compare section headers (must match or fatal) */ if (sec1->sh.sh_type != sec2->sh.sh_type || sec1->sh.sh_flags != sec2->sh.sh_flags || sec1->sh.sh_addr != sec2->sh.sh_addr || sec1->sh.sh_addralign != sec2->sh.sh_addralign || sec1->sh.sh_entsize != sec2->sh.sh_entsize || sec1->sh.sh_link != sec1->sh.sh_link) DIFF_FATAL("%s section header details differ", sec1->name); if (sec1->sh.sh_size != sec2->sh.sh_size || sec1->data->d_size != sec2->data->d_size) { sec->status = CHANGED; goto out; } if (is_rela_section(sec)) kpatch_compare_correlated_rela_section(sec); else kpatch_compare_correlated_nonrela_section(sec); out: if (sec->status == CHANGED) log_debug("section %s has changed\n", sec->name); } void kpatch_compare_sections(struct list_head *seclist) { struct section *sec; list_for_each_entry(sec, seclist, list) { if (sec->twin) kpatch_compare_correlated_section(sec); else sec->status = NEW; /* sync symbol status */ if (is_rela_section(sec)) { if (sec->base->sym && sec->base->sym->status != CHANGED) sec->base->sym->status = sec->status; } else { if (sec->sym && sec->sym->status != CHANGED) sec->sym->status = sec->status; } } } void kpatch_compare_correlated_symbol(struct symbol *sym) { struct symbol *sym1 = sym, *sym2 = sym->twin; if (sym1->sym.st_info != sym2->sym.st_info || sym1->sym.st_other != sym2->sym.st_other || (sym1->sec && sym2->sec && sym1->sec->twin != sym2->sec) || (sym1->sec && !sym2->sec) || (sym2->sec && !sym1->sec)) DIFF_FATAL("symbol info mismatch: %s", sym1->name); if (sym1->type == STT_OBJECT && sym1->sym.st_size != sym2->sym.st_size) DIFF_FATAL("object size mismatch: %s", sym1->name); if (sym1->sym.st_shndx == SHN_UNDEF || sym1->sym.st_shndx == SHN_ABS) sym1->status = SAME; /* * The status of LOCAL symbols is dependent on the status of their * matching section and is set during section comparison. */ } void kpatch_compare_symbols(struct list_head *symlist) { struct symbol *sym; list_for_each_entry(sym, symlist, list) { if (sym->twin) kpatch_compare_correlated_symbol(sym); else sym->status = NEW; log_debug("symbol %s is %s\n", sym->name, status_str(sym->status)); } } void kpatch_correlate_sections(struct list_head *seclist1, struct list_head *seclist2) { struct section *sec1, *sec2; list_for_each_entry(sec1, seclist1, list) { list_for_each_entry(sec2, seclist2, list) { if (strcmp(sec1->name, sec2->name)) continue; sec1->twin = sec2; sec2->twin = sec1; /* set initial status, might change */ sec1->status = sec2->status = SAME; break; } } } void kpatch_correlate_symbols(struct list_head *symlist1, struct list_head *symlist2) { struct symbol *sym1, *sym2; list_for_each_entry(sym1, symlist1, list) { list_for_each_entry(sym2, symlist2, list) { if (!strcmp(sym1->name, sym2->name)) { sym1->twin = sym2; sym2->twin = sym1; /* set initial status, might change */ sym1->status = sym2->status = SAME; break; } } } } void kpatch_compare_elf_headers(Elf *elf1, Elf *elf2) { GElf_Ehdr eh1, eh2; if (!gelf_getehdr(elf1, &eh1)) ERROR("gelf_getehdr"); if (!gelf_getehdr(elf2, &eh2)) ERROR("gelf_getehdr"); if (memcmp(eh1.e_ident, eh2.e_ident, EI_NIDENT) || eh1.e_type != eh2.e_type || eh1.e_machine != eh2.e_machine || eh1.e_version != eh2.e_version || eh1.e_entry != eh2.e_entry || eh1.e_phoff != eh2.e_phoff || eh1.e_flags != eh2.e_flags || eh1.e_ehsize != eh2.e_ehsize || eh1.e_phentsize != eh2.e_phentsize || eh1.e_shentsize != eh2.e_shentsize) DIFF_FATAL("ELF headers differ"); } void kpatch_check_program_headers(Elf *elf) { size_t ph_nr; if (elf_getphdrnum(elf, &ph_nr)) ERROR("elf_getphdrnum"); if (ph_nr != 0) DIFF_FATAL("ELF contains program header"); } void kpatch_correlate_elfs(struct kpatch_elf *kelf1, struct kpatch_elf *kelf2) { kpatch_correlate_sections(&kelf1->sections, &kelf2->sections); kpatch_correlate_symbols(&kelf1->symbols, &kelf2->symbols); } void kpatch_compare_correlated_elements(struct kpatch_elf *kelf) { /* lists are already correlated at this point */ kpatch_compare_sections(&kelf->sections); kpatch_compare_symbols(&kelf->symbols); } void kpatch_replace_sections_syms(struct kpatch_elf *kelf) { struct section *sec; struct rela *rela; struct symbol *sym; list_for_each_entry(sec, &kelf->sections, list) { if (!is_rela_section(sec)) continue; list_for_each_entry(rela, &sec->relas, list) { /* * Replace references to bundled sections with their * symbols. */ if (rela->sym->type == STT_SECTION && rela->sym->sec && rela->sym->sec->sym) { log_debug("replacing %s with %s\n", rela->sym->name, rela->sym->sec->sym->name); rela->sym = rela->sym->sec->sym; continue; } /* * .data..percpu is a special data section whose data * symbols aren't bundled with sections when using * -fdata-sections. We need to replace the section * references with their corresponding objects. */ if (strcmp(rela->sym->name, ".data..percpu")) continue; list_for_each_entry(sym, &kelf->symbols, list) { if (sym->sec != rela->sym->sec || sym->sym.st_value != rela->addend) continue; log_debug("replacing %s with %s\n", rela->sym->name, sym->name); rela->sym = sym; break; } } } } void kpatch_dump_kelf(struct kpatch_elf *kelf) { struct section *sec; struct symbol *sym; struct rela *rela; if (loglevel > DEBUG) return; printf("\n=== Sections ===\n"); list_for_each_entry(sec, &kelf->sections, list) { printf("%02d %s (%s)", sec->index, sec->name, status_str(sec->status)); if (is_rela_section(sec)) { printf(", base-> %s\n", sec->base->name); printf("rela section expansion\n"); list_for_each_entry(rela, &sec->relas, list) { printf("sym %d, offset %d, type %d, %s %s %d\n", rela->sym->index, rela->offset, rela->type, rela->sym->name, (rela->addend < 0)?"-":"+", abs(rela->addend)); } } else { if (sec->sym) printf(", sym-> %s", sec->sym->name); if (sec->secsym) printf(", secsym-> %s", sec->secsym->name); if (sec->rela) printf(", rela-> %s", sec->rela->name); } printf("\n"); } printf("\n=== Symbols ===\n"); list_for_each_entry(sym, &kelf->symbols, list) { printf("sym %02d, type %d, bind %d, ndx %02d, name %s (%s)", sym->index, sym->type, sym->bind, sym->sym.st_shndx, sym->name, status_str(sym->status)); if (sym->sec && (sym->type == STT_FUNC || sym->type == STT_OBJECT)) printf(" -> %s", sym->sec->name); printf("\n"); } } void kpatch_verify_patchability(struct kpatch_elf *kelf) { struct section *sec; int errs = 0; list_for_each_entry(sec, &kelf->sections, list) if (sec->status == CHANGED && !sec->include) { log_normal("%s: changed section %s not selected for inclusion\n", objname, sec->name); errs++; } if (errs) DIFF_FATAL("%d unsupported section change(s)", errs); } #define inc_printf(fmt, ...) \ log_debug("%*s" fmt, recurselevel, "", ##__VA_ARGS__); void kpatch_include_symbol(struct symbol *sym, int recurselevel) { struct rela *rela; struct section *sec; inc_printf("start include_symbol(%s)\n", sym->name); sym->include = 1; inc_printf("symbol %s is included\n", sym->name); /* * Check if sym is a non-local symbol (sym->sec is NULL) or * if an unchanged local symbol. This a base case for the * inclusion recursion. */ if (!sym->sec || (sym->type != STT_SECTION && sym->status == SAME)) goto out; sec = sym->sec; sec->include = 1; inc_printf("section %s is included\n", sec->name); if (sec->secsym == sym) goto out; if (sec->secsym) { sec->secsym->include = 1; inc_printf("section symbol %s is included\n", sec->secsym->name); } if (!sec->rela) goto out; sec->rela->include = 1; inc_printf("section %s is included\n", sec->rela->name); list_for_each_entry(rela, &sec->rela->relas, list) { if (rela->sym->include) continue; kpatch_include_symbol(rela->sym, recurselevel+1); } out: inc_printf("end include_symbol(%s)\n", sym->name); return; } void kpatch_include_standard_elements(struct kpatch_elf *kelf) { struct section *sec; list_for_each_entry(sec, &kelf->sections, list) { /* include these sections even if they haven't changed */ if (!strcmp(sec->name, ".shstrtab") || !strcmp(sec->name, ".strtab") || !strcmp(sec->name, ".symtab")) sec->include = 1; } /* include the NULL symbol */ list_entry(kelf->symbols.next, struct symbol, list)->include = 1; } int kpatch_include_changed_functions(struct kpatch_elf *kelf) { struct symbol *sym; int changed_nr = 0; log_debug("\n=== Inclusion Tree ===\n"); list_for_each_entry(sym, &kelf->symbols, list) { if (sym->status == CHANGED && sym->type == STT_FUNC) { changed_nr++; log_normal("changed function: %s\n", sym->name); if (!sym->include) kpatch_include_symbol(sym, 0); } if (sym->type == STT_FILE) sym->include = 1; } return changed_nr; } void kpatch_migrate_symbols(struct list_head *src, struct list_head *dst, int (*select)(struct symbol *)) { struct symbol *sym, *safe; list_for_each_entry_safe(sym, safe, src, list) { if (select && !select(sym)) continue; list_del(&sym->list); list_add_tail(&sym->list, dst); } } int is_null_sym(struct symbol *sym) { return !strlen(sym->name); } int is_file_sym(struct symbol *sym) { return sym->type == STT_FILE; } int is_local_func_sym(struct symbol *sym) { return sym->bind == STB_LOCAL && sym->type == STT_FUNC; } int is_local_sym(struct symbol *sym) { return sym->bind == STB_LOCAL; } void kpatch_migrate_included_elements(struct kpatch_elf *kelf, struct kpatch_elf **kelfout) { struct section *sec, *safesec; struct symbol *sym, *safesym; struct kpatch_elf *out; /* allocate output kelf */ out = malloc(sizeof(*out)); if (!out) ERROR("malloc"); memset(out, 0, sizeof(*out)); INIT_LIST_HEAD(&out->sections); INIT_LIST_HEAD(&out->symbols); INIT_LIST_HEAD(&out->strings); /* migrate included sections from kelf to out */ list_for_each_entry_safe(sec, safesec, &kelf->sections, list) { if (!sec->include) continue; list_del(&sec->list); list_add_tail(&sec->list, &out->sections); sec->index = 0; } /* migrate included symbols from kelf to out */ list_for_each_entry_safe(sym, safesym, &kelf->symbols, list) { if (!sym->include) continue; list_del(&sym->list); list_add_tail(&sym->list, &out->symbols); sym->index = 0; if (sym->sec && !sym->sec->include) /* break link to non-included section */ sym->sec = NULL; } *kelfout = out; } void kpatch_reorder_symbols(struct kpatch_elf *kelf) { LIST_HEAD(symbols); /* migrate NULL sym */ kpatch_migrate_symbols(&kelf->symbols, &symbols, is_null_sym); /* migrate LOCAL FILE sym */ kpatch_migrate_symbols(&kelf->symbols, &symbols, is_file_sym); /* migrate LOCAL FUNC syms */ kpatch_migrate_symbols(&kelf->symbols, &symbols, is_local_func_sym); /* migrate all other LOCAL syms */ kpatch_migrate_symbols(&kelf->symbols, &symbols, is_local_sym); /* migrate all other (GLOBAL) syms */ kpatch_migrate_symbols(&kelf->symbols, &symbols, NULL); list_replace(&symbols, &kelf->symbols); } void kpatch_reindex_elements(struct kpatch_elf *kelf) { struct section *sec; struct symbol *sym; int index; index = 1; /* elf write function handles NULL section 0 */ list_for_each_entry(sec, &kelf->sections, list) sec->index = index++; index = 0; list_for_each_entry(sym, &kelf->symbols, list) { sym->index = index++; if (sym->sec) sym->sym.st_shndx = sym->sec->index; else if (sym->sym.st_shndx != SHN_ABS) sym->sym.st_shndx = SHN_UNDEF; } } /* * The format of section __bug_table is a table of struct bug_entry. Each * bug_entry has three fields: * - relocated address of instruction pointer at BUG * - relocated address of string with filename * - line number of the BUG * * Therefore, .rela__bug_table has two relocations per entry. The first * relocation is that of the instruction pointer at the BUG. The second is the * pointer to the filename string in .rodata.str1.1. These two related * relocations we will call a "pair". * * This function goes through .rela__bug_table and finds pairs the refer to * functions that have been marked as changed. If one is found, that pair is * copied into the new version of the .rela__bug_table section. If no pairs * are found, the bug table (both the __bug_table and .rela__bug_table * sections) are considered unchanged and not copied into the final output. * * The __bug_table section is not modified and therefore will contains "blank" * bug_entry slots i.e. ones that do not get relocated and therefore the IP * fields are zero. While this wastes space, it doesn't hurt anything and * keeps the code cleaner by not having to regenerate the __bug_table section * as well. */ void kpatch_regenerate_bug_table_rela_section(struct kpatch_elf *kelf) { struct section *sec; struct rela *rela, *safe; int nr = 0, copynext = 0, i = 0; LIST_HEAD(newrelas); sec = find_section_by_name(&kelf->sections, ".rela__bug_table"); if (!sec) return; list_for_each_entry_safe(rela, safe, &sec->relas, list) { if (i % 2) { /* filename reloc */ if (!copynext) continue; rela->sym->include = 1; rela->sym->sec->include = 1; list_del(&rela->list); list_add_tail(&rela->list, &newrelas); nr++; copynext = 0; } else if (rela->sym->sec->status != SAME) { /* IP reloc */ log_debug("new/changed symbol %s found in bug table\n", rela->sym->name); /* copy BOTH relocs for this bug_entry */ list_del(&rela->list); list_add_tail(&rela->list, &newrelas); nr++; /* tell the next loop to copy the filename reloc */ copynext = 1; } i++; } if (!nr) { /* no changed functions referenced */ sec->status = SAME; sec->base->status = SAME; return; } /* overwrite with new relas list */ list_replace(&newrelas, &sec->relas); /* include both rela and text sections */ sec->include = 1; sec->base->include = 1; /* * Adjust d_size but not d_buf. d_buf is overwritten in * kpatch_create_rela_section() from the relas list. No * point in regen'ing the buffer here just to be discarded * later. */ sec->data->d_size = sec->sh.sh_entsize * nr; } void kpatch_regenerate_smp_locks_sections(struct kpatch_elf *kelf) { struct section *sec; struct rela *rela, *safe; int nr = 0, offset = 0; LIST_HEAD(newrelas); sec = find_section_by_name(&kelf->sections, ".rela.smp_locks"); if (!sec) return; list_for_each_entry_safe(rela, safe, &sec->relas, list) { if (rela->sym->sec->status != SAME) { log_debug("new/changed symbol %s found in smp locks table\n", rela->sym->name); list_del(&rela->list); list_add_tail(&rela->list, &newrelas); rela->offset = offset; rela->rela.r_offset = offset; offset += 4; nr++; } } if (!nr) { /* no changed functions referenced */ sec->status = SAME; sec->base->status = SAME; return; } /* overwrite with new relas list */ list_replace(&newrelas, &sec->relas); /* include both rela and text sections */ sec->include = 1; sec->base->include = 1; /* * Adjust d_size but not d_buf. d_buf is overwritten in * kpatch_create_rela_section() from the relas list. No * point in regen'ing the buffer here just to be discarded * later. */ sec->data->d_size = sec->sh.sh_entsize * nr; /* truncate smp_locks section */ sec->base->data->d_size = offset; } void kpatch_regenerate_parainstructions_sections(struct kpatch_elf *kelf) { struct section *sec; struct rela *rela, *safe; int nr = 0, offset = 0; char *old, *new; LIST_HEAD(newrelas); sec = find_section_by_name(&kelf->sections, ".rela.parainstructions"); if (!sec) return; old = sec->base->data->d_buf; /* alloc buffer for new text section */ new = malloc(sec->base->sh.sh_size); if (!new) ERROR("malloc"); list_for_each_entry_safe(rela, safe, &sec->relas, list) { if (rela->sym->sec->status != SAME) { log_debug("new/changed symbol %s found in parainstructions table\n", rela->sym->name); /* copy rela entry into new list*/ list_del(&rela->list); list_add_tail(&rela->list, &newrelas); /* adjust offset in both table entry and rela section */ rela->offset = offset; rela->rela.r_offset = offset; /* copy the entry to the new text section */ memcpy(new + offset, old, 16); offset += 16; nr++; } old += 16; } if (!nr) { /* no changed functions referenced */ sec->status = SAME; sec->base->status = SAME; return; } /* overwrite with new relas table */ list_replace(&newrelas, &sec->relas); /* mark sections for inclusion */ sec->include = 1; sec->base->include = 1; sec->base->secsym->include = 1; /* update rela section data size */ sec->data->d_size = sec->sh.sh_entsize * nr; /* update text section data buf and size */ sec->base->data->d_buf = new; sec->base->data->d_size = offset; } void print_strtab(char *buf, size_t size) { int i; for (i = 0; i < size; i++) { if (buf[i] == 0) printf("\\0"); else printf("%c",buf[i]); } } void kpatch_create_shstrtab(struct kpatch_elf *kelf) { struct section *shstrtab, *sec; size_t size, offset, len; char *buf; shstrtab = find_section_by_name(&kelf->sections, ".shstrtab"); if (!shstrtab) ERROR("find_section_by_name"); /* determine size of string table */ size = 1; /* for initial NULL terminator */ list_for_each_entry(sec, &kelf->sections, list) size += strlen(sec->name) + 1; /* include NULL terminator */ /* allocate data buffer */ buf = malloc(size); if (!buf) ERROR("malloc"); memset(buf, 0, size); /* populate string table and link with section header */ offset = 1; list_for_each_entry(sec, &kelf->sections, list) { len = strlen(sec->name) + 1; sec->sh.sh_name = offset; memcpy(buf + offset, sec->name, len); offset += len; } if (offset != size) ERROR("shstrtab size mismatch"); shstrtab->data->d_buf = buf; shstrtab->data->d_size = size; if (loglevel <= DEBUG) { printf("shstrtab: "); print_strtab(buf, size); printf("\n"); list_for_each_entry(sec, &kelf->sections, list) printf("%s @ shstrtab offset %d\n", sec->name, sec->sh.sh_name); } } void kpatch_create_strtab(struct kpatch_elf *kelf) { struct section *strtab; struct symbol *sym; size_t size = 0, offset = 0, len; char *buf; strtab = find_section_by_name(&kelf->sections, ".strtab"); if (!strtab) ERROR("find_section_by_name"); /* determine size of string table */ list_for_each_entry(sym, &kelf->symbols, list) { if (sym->type == STT_SECTION) continue; size += strlen(sym->name) + 1; /* include NULL terminator */ } /* allocate data buffer */ buf = malloc(size); if (!buf) ERROR("malloc"); memset(buf, 0, size); /* populate string table and link with section header */ list_for_each_entry(sym, &kelf->symbols, list) { if (sym->type == STT_SECTION) { sym->sym.st_name = 0; continue; } len = strlen(sym->name) + 1; sym->sym.st_name = offset; memcpy(buf + offset, sym->name, len); offset += len; } if (offset != size) ERROR("shstrtab size mismatch"); strtab->data->d_buf = buf; strtab->data->d_size = size; if (loglevel <= DEBUG) { printf("strtab: "); print_strtab(buf, size); printf("\n"); list_for_each_entry(sym, &kelf->symbols, list) printf("%s @ strtab offset %d\n", sym->name, sym->sym.st_name); } } void kpatch_create_symtab(struct kpatch_elf *kelf) { struct section *symtab; struct symbol *sym; char *buf; size_t size; int nr = 0, offset = 0, nr_local = 0; symtab = find_section_by_name(&kelf->sections, ".symtab"); if (!symtab) ERROR("find_section_by_name"); /* count symbols */ list_for_each_entry(sym, &kelf->symbols, list) nr++; /* create new symtab buffer */ size = nr * symtab->sh.sh_entsize; buf = malloc(size); if (!buf) ERROR("malloc"); memset(buf, 0, size); offset = 0; list_for_each_entry(sym, &kelf->symbols, list) { memcpy(buf + offset, &sym->sym, symtab->sh.sh_entsize); offset += symtab->sh.sh_entsize; if (is_local_sym(sym)) nr_local++; } symtab->data->d_buf = buf; symtab->data->d_size = size; /* update symtab section header */ symtab->sh.sh_link = find_section_by_name(&kelf->sections, ".strtab")->index; symtab->sh.sh_info = nr_local; } void kpatch_create_patches_sections(struct kpatch_elf *kelf, struct lookup_table *table, char *hint) { int nr, size, index; struct section *sec, *relasec; struct symbol *sym, *strsym; struct rela *rela; struct lookup_result result; struct kpatch_patch *patches; /* count patched functions */ nr = 0; list_for_each_entry(sym, &kelf->symbols, list) if (sym->type == STT_FUNC && sym->sec) nr++; /* create .kpatch.patches */ /* allocate section resources */ ALLOC_LINK(sec, &kelf->sections); size = nr * sizeof(*patches); patches = malloc(size); if (!patches) ERROR("malloc"); sec->name = ".kpatch.patches"; /* set data */ sec->data = malloc(sizeof(*sec->data)); if (!sec->data) ERROR("malloc"); sec->data->d_buf = patches; sec->data->d_size = size; sec->data->d_type = ELF_T_BYTE; /* set section header */ sec->sh.sh_type = SHT_PROGBITS; sec->sh.sh_entsize = sizeof(*patches); sec->sh.sh_addralign = 8; sec->sh.sh_flags = SHF_ALLOC; sec->sh.sh_size = size; /* create .rela.patches */ /* allocate section resources */ ALLOC_LINK(relasec, &kelf->sections); relasec->name = ".rela.kpatch.patches"; relasec->base = sec; INIT_LIST_HEAD(&relasec->relas); /* set data, buffers generated by kpatch_rebuild_rela_section_data() */ relasec->data = malloc(sizeof(*relasec->data)); if (!relasec->data) ERROR("malloc"); /* set section header */ relasec->sh.sh_type = SHT_RELA; relasec->sh.sh_entsize = sizeof(GElf_Rela); relasec->sh.sh_addralign = 8; /* lookup strings symbol */ strsym = find_symbol_by_name(&kelf->symbols, ".kpatch.strings"); if (!strsym) ERROR("can't find .kpatch.strings symbol"); /* populate sections */ index = 0; list_for_each_entry(sym, &kelf->symbols, list) { if (sym->type == STT_FUNC && sym->sec) { if (sym->bind == STB_LOCAL) { if (lookup_local_symbol(table, sym->name, hint, &result)) ERROR("lookup_local_symbol %s (%s)", sym->name, hint); } else { if(lookup_global_symbol(table, sym->name, &result)) ERROR("lookup_global_symbol %s", sym->name); } log_debug("lookup for %s @ 0x%016lx len %lu\n", sym->name, result.value, result.size); /* add entry in text section */ patches[index].old_addr = result.value; patches[index].old_size = result.size; patches[index].new_size = sym->sym.st_size; /* * Add a relocation that will populate * the patches[index].new_addr field at * module load time. */ ALLOC_LINK(rela, &relasec->relas); rela->sym = sym; rela->type = R_X86_64_64; rela->addend = 0; rela->offset = index * sizeof(*patches); /* * Add a relocation that will populate * the patches[index].name field. */ ALLOC_LINK(rela, &relasec->relas); rela->sym = strsym; rela->type = R_X86_64_64; rela->addend = offset_of_string(&kelf->strings, sym->name); rela->offset = index * sizeof(*patches) + offsetof(struct kpatch_patch, name); index++; } } /* sanity check, index should equal nr */ if (index != nr) ERROR("size mismatch in patches sections"); } void kpatch_create_dynamic_rela_sections(struct kpatch_elf *kelf, struct lookup_table *table, char *hint) { int nr, size, index; struct section *sec, *relasec; struct rela *rela, *dynrela, *safe; struct symbol *strsym; struct lookup_result result; struct kpatch_dynrela *dynrelas; /* count rela entries that need to be dynamic */ nr = 0; list_for_each_entry(sec, &kelf->sections, list) { if (!is_rela_section(sec)) continue; if (!strcmp(sec->name, ".rela.kpatch.patches")) continue; list_for_each_entry(rela, &sec->relas, list) { if (lookup_is_exported_symbol(table, rela->sym->name)) continue; if (!rela->sym->sec) nr++; } } /* create .kpatch.dynrelas*/ /* allocate section resources */ ALLOC_LINK(sec, &kelf->sections); size = nr * sizeof(*dynrelas); dynrelas = malloc(size); if (!dynrelas) ERROR("malloc"); sec->name = ".kpatch.dynrelas"; /* set data */ sec->data = malloc(sizeof(*sec->data)); if (!sec->data) ERROR("malloc"); sec->data->d_buf = dynrelas; sec->data->d_size = size; sec->data->d_type = ELF_T_BYTE; /* set section header */ sec->sh.sh_type = SHT_PROGBITS; sec->sh.sh_entsize = sizeof(*dynrelas); sec->sh.sh_addralign = 8; sec->sh.sh_flags = SHF_ALLOC; sec->sh.sh_size = size; /* create .rela.kpatch.dynrelas*/ /* allocate section resources */ ALLOC_LINK(relasec, &kelf->sections); relasec->name = ".rela.kpatch.dynrelas"; relasec->base = sec; INIT_LIST_HEAD(&relasec->relas); /* set data, buffers generated by kpatch_rebuild_rela_section_data() */ relasec->data = malloc(sizeof(*relasec->data)); if (!relasec->data) ERROR("malloc"); /* set section header */ relasec->sh.sh_type = SHT_RELA; relasec->sh.sh_entsize = sizeof(GElf_Rela); relasec->sh.sh_addralign = 8; /* lookup strings symbol */ strsym = find_symbol_by_name(&kelf->symbols, ".kpatch.strings"); if (!strsym) ERROR("can't find .kpatch.strings symbol"); /* populate sections (reuse sec for iterator here) */ index = 0; list_for_each_entry(sec, &kelf->sections, list) { if (!is_rela_section(sec)) continue; if (!strcmp(sec->name, ".rela.kpatch.patches") || !strcmp(sec->name, ".rela.kpatch.dynrelas")) continue; list_for_each_entry_safe(rela, safe, &sec->relas, list) { if (lookup_is_exported_symbol(table, rela->sym->name)) continue; if (!rela->sym->sec) { if (rela->sym->bind == STB_LOCAL) { if (lookup_local_symbol(table, rela->sym->name, hint, &result)) ERROR("lookup_local_symbol %s (%s)", rela->sym->name, hint); } else { if(lookup_global_symbol(table, rela->sym->name, &result)) ERROR("lookup_global_symbol %s", rela->sym->name); } log_debug("lookup for %s @ 0x%016lx len %lu\n", rela->sym->name, result.value, result.size); /* dest filed in by rela entry below */ dynrelas[index].src = result.value; dynrelas[index].addend = rela->addend; dynrelas[index].type = rela->type; /* add rela to fill in dest field */ ALLOC_LINK(dynrela, &relasec->relas); if (!sec->base->sym) ERROR("expected bundled symbol for section %s for dynrela src %s", sec->base->name, rela->sym->name); dynrela->sym = sec->base->sym; dynrela->type = R_X86_64_64; dynrela->addend = rela->offset; dynrela->offset = index * sizeof(*dynrelas); /* add rela to fill in name field */ ALLOC_LINK(dynrela, &relasec->relas); dynrela->sym = strsym; dynrela->type = R_X86_64_64; dynrela->addend = offset_of_string(&kelf->strings, rela->sym->name); dynrela->offset = index * sizeof(*dynrelas) + offsetof(struct kpatch_dynrela, name); list_del(&rela->list); free(rela); index++; } } } /* sanity check, index should equal nr */ if (index != nr) ERROR("size mismatch in dynrelas sections"); } /* * This function strips out symbols that were referenced by changed rela * sections, but the rela entries that referenced them were converted to * dynrelas and are no longer needed. */ void kpatch_strip_unneeded_syms(struct kpatch_elf *kelf, struct lookup_table *table) { struct symbol *sym, *safe; list_for_each_entry_safe(sym, safe, &kelf->symbols, list) { if (sym->bind == STB_LOCAL && sym->sym.st_shndx == SHN_UNDEF) continue; /* skip NULL symbol */ if (sym->type == STT_FILE) continue; if (lookup_is_exported_symbol(table, sym->name)) continue; if (sym->sec) continue; list_del(&sym->list); free(sym); } } void kpatch_create_strings_elements(struct kpatch_elf *kelf) { struct section *sec; struct symbol *sym; /* create .kpatch.strings */ /* allocate section resources */ ALLOC_LINK(sec, &kelf->sections); sec->name = ".kpatch.strings"; /* set data */ sec->data = malloc(sizeof(*sec->data)); if (!sec->data) ERROR("malloc"); sec->data->d_type = ELF_T_BYTE; /* set section header */ sec->sh.sh_type = SHT_PROGBITS; sec->sh.sh_entsize = 1; sec->sh.sh_addralign = 1; sec->sh.sh_flags = SHF_ALLOC; /* create .kpatch.strings section symbol (reuse sym variable) */ ALLOC_LINK(sym, &kelf->symbols); sym->sec = sec; sym->sym.st_info = GELF_ST_INFO(STB_LOCAL, STT_SECTION); sym->type = STT_SECTION; sym->bind = STB_LOCAL; sym->name = ".kpatch.strings"; } void kpatch_build_strings_section_data(struct kpatch_elf *kelf) { struct string *string; struct section *sec; int size; char *strtab; sec = find_section_by_name(&kelf->sections, ".kpatch.strings"); if (!sec) ERROR("can't find .kpatch.strings"); /* determine size */ size = 0; list_for_each_entry(string, &kelf->strings, list) size += strlen(string->name) + 1; /* allocate section resources */ strtab = malloc(size); if (!strtab) ERROR("malloc"); sec->data->d_buf = strtab; sec->data->d_size = size; /* populate strings section data */ list_for_each_entry(string, &kelf->strings, list) { strcpy(strtab, string->name); strtab += strlen(string->name) + 1; } } void kpatch_rebuild_rela_section_data(struct section *sec) { struct rela *rela; int nr = 0, index = 0, size; GElf_Rela *relas; list_for_each_entry(rela, &sec->relas, list) nr++; size = nr * sizeof(*relas); relas = malloc(size); if (!relas) ERROR("malloc"); sec->data->d_buf = relas; sec->data->d_size = size; /* d_type remains ELF_T_RELA */ sec->sh.sh_size = size; list_for_each_entry(rela, &sec->relas, list) { relas[index].r_offset = rela->offset; relas[index].r_addend = rela->addend; relas[index].r_info = GELF_R_INFO(rela->sym->index, rela->type); index++; } /* sanity check, index should equal nr */ if (index != nr) ERROR("size mismatch in rebuilt rela section"); } void kpatch_write_output_elf(struct kpatch_elf *kelf, Elf *elf, char *outfile) { int fd; struct section *sec; Elf *elfout; GElf_Ehdr eh, ehout; Elf_Scn *scn; Elf_Data *data; GElf_Shdr sh; /* TODO make this argv */ fd = creat(outfile, 0777); if (fd == -1) ERROR("creat"); elfout = elf_begin(fd, ELF_C_WRITE, NULL); if (!elfout) ERROR("elf_begin"); if (!gelf_newehdr(elfout, gelf_getclass(kelf->elf))) ERROR("gelf_newehdr"); if (!gelf_getehdr(elfout, &ehout)) ERROR("gelf_getehdr"); if (!gelf_getehdr(elf, &eh)) ERROR("gelf_getehdr"); memset(&ehout, 0, sizeof(ehout)); ehout.e_ident[EI_DATA] = eh.e_ident[EI_DATA]; ehout.e_machine = eh.e_machine; ehout.e_type = eh.e_type; ehout.e_version = EV_CURRENT; ehout.e_shstrndx = find_section_by_name(&kelf->sections, ".shstrtab")->index; /* add changed sections */ list_for_each_entry(sec, &kelf->sections, list) { scn = elf_newscn(elfout); if (!scn) ERROR("elf_newscn"); data = elf_newdata(scn); if (!data) ERROR("elf_newdata"); if (!elf_flagdata(data, ELF_C_SET, ELF_F_DIRTY)) ERROR("elf_flagdata"); data->d_type = sec->data->d_type; data->d_buf = sec->data->d_buf; data->d_size = sec->data->d_size; if(!gelf_getshdr(scn, &sh)) ERROR("gelf_getshdr"); sh = sec->sh; if (!gelf_update_shdr(scn, &sh)) ERROR("gelf_update_shdr"); } if (!gelf_update_ehdr(elfout, &ehout)) ERROR("gelf_update_ehdr"); if (elf_update(elfout, ELF_C_WRITE) < 0) { printf("%s\n",elf_errmsg(-1)); ERROR("elf_update"); } } struct arguments { char *args[4]; int debug; }; static char args_doc[] = "original.o patched.o vmlinux output.o"; static struct argp_option options[] = { {"debug", 'd', 0, 0, "Show debug output" }, { 0 } }; static error_t parse_opt (int key, char *arg, struct argp_state *state) { /* Get the input argument from argp_parse, which we know is a pointer to our arguments structure. */ struct arguments *arguments = state->input; switch (key) { case 'd': arguments->debug = 1; break; case ARGP_KEY_ARG: if (state->arg_num >= 4) /* Too many arguments. */ argp_usage (state); arguments->args[state->arg_num] = arg; break; case ARGP_KEY_END: if (state->arg_num < 4) /* Not enough arguments. */ argp_usage (state); break; default: return ARGP_ERR_UNKNOWN; } return 0; } static struct argp argp = { options, parse_opt, args_doc, 0 }; /* * While this is a one-shot program without a lot of proper cleanup in case * of an error, this function serves a debugging purpose: to break down and * zero data structures we shouldn't be accessing anymore. This should * help cause an immediate and obvious issue when a logic error leads to * accessing data that is not intended to be accessed past a particular point. */ void kpatch_elf_teardown(struct kpatch_elf *kelf) { struct section *sec, *safesec; struct symbol *sym, *safesym; struct rela *rela, *saferela; list_for_each_entry_safe(sec, safesec, &kelf->sections, list) { if (is_rela_section(sec)) { list_for_each_entry_safe(rela, saferela, &sec->relas, list) { memset(rela, 0, sizeof(*rela)); free(rela); } memset(sec, 0, sizeof(*sec)); free(sec); } } list_for_each_entry_safe(sym, safesym, &kelf->symbols, list) { memset(sym, 0, sizeof(*sym)); free(sym); } INIT_LIST_HEAD(&kelf->sections); INIT_LIST_HEAD(&kelf->symbols); } void kpatch_elf_free(struct kpatch_elf *kelf) { elf_end(kelf->elf); close(kelf->fd); memset(kelf, 0, sizeof(*kelf)); free(kelf); } int main(int argc, char *argv[]) { struct kpatch_elf *kelf_base, *kelf_patched, *kelf_out; char *outfile; struct arguments arguments; int num_changed; struct lookup_table *vmlinux; struct section *sec, *symtab; struct symbol *sym; char *hint; arguments.debug = 0; argp_parse (&argp, argc, argv, 0, 0, &arguments); if (arguments.debug) loglevel = DEBUG; elf_version(EV_CURRENT); objname = basename(arguments.args[0]); kelf_base = kpatch_elf_open(arguments.args[0]); kelf_patched = kpatch_elf_open(arguments.args[1]); vmlinux = lookup_open(arguments.args[2]); outfile = arguments.args[3]; kpatch_compare_elf_headers(kelf_base->elf, kelf_patched->elf); kpatch_check_program_headers(kelf_base->elf); kpatch_check_program_headers(kelf_patched->elf); kpatch_correlate_elfs(kelf_base, kelf_patched); /* * After this point, we don't care about kelf_base anymore. * We access its sections via the twin pointers in the * section, symbol, and rela lists of kelf_patched. */ kpatch_compare_correlated_elements(kelf_patched); kpatch_elf_teardown(kelf_base); kpatch_elf_free(kelf_base); /* * Mangle the relas a little. The compiler will sometimes * use section symbols to reference local objects and functions * rather than the object or function symbols themselves. * We substitute the object/function symbols for the section * symbol in this case so that the existing object/function * in vmlinux can be linked to. */ kpatch_replace_sections_syms(kelf_patched); kpatch_regenerate_bug_table_rela_section(kelf_patched); kpatch_regenerate_smp_locks_sections(kelf_patched); kpatch_regenerate_parainstructions_sections(kelf_patched); kpatch_include_standard_elements(kelf_patched); num_changed = kpatch_include_changed_functions(kelf_patched); kpatch_dump_kelf(kelf_patched); kpatch_verify_patchability(kelf_patched); if (!num_changed) { log_normal("no changed functions were found\n"); return 3; /* 1 is ERROR, 2 is DIFF_FATAL */ } /* this is destructive to kelf_patched */ kpatch_migrate_included_elements(kelf_patched, &kelf_out); /* * Teardown kelf_patched since we shouldn't access sections or symbols * through it anymore. Don't free however, since our section and symbol * name fields still point to strings in the Elf object owned by * kpatch_patched. */ kpatch_elf_teardown(kelf_patched); list_for_each_entry(sym, &kelf_out->symbols, list) { if (sym->type == STT_FILE) { hint = sym->name; break; } } kpatch_create_strings_elements(kelf_out); kpatch_create_patches_sections(kelf_out, vmlinux, hint); kpatch_create_dynamic_rela_sections(kelf_out, vmlinux, hint); kpatch_build_strings_section_data(kelf_out); /* * At this point, the set of output sections and symbols is * finalized. Reorder the symbols into linker-compliant * order and index all the symbols and sections. After the * indexes have been established, update index data * throughout the structure. */ kpatch_reorder_symbols(kelf_out); kpatch_strip_unneeded_syms(kelf_out, vmlinux); kpatch_reindex_elements(kelf_out); /* * Update rela section headers and rebuild the rela section data * buffers from the relas lists. */ symtab = find_section_by_name(&kelf_out->sections, ".symtab"); list_for_each_entry(sec, &kelf_out->sections, list) { if (!is_rela_section(sec)) continue; sec->sh.sh_link = symtab->index; sec->sh.sh_info = sec->base->index; kpatch_rebuild_rela_section_data(sec); } kpatch_create_shstrtab(kelf_out); kpatch_create_strtab(kelf_out); kpatch_create_symtab(kelf_out); kpatch_dump_kelf(kelf_out); kpatch_write_output_elf(kelf_out, kelf_patched->elf, outfile); kpatch_elf_free(kelf_patched); kpatch_elf_teardown(kelf_out); kpatch_elf_free(kelf_out); return 0; }