kpatch: dynamic kernel patching =============================== kpatch is a Linux dynamic kernel patching infrastructure which allows you to patch a running kernel without rebooting or restarting any processes. It enables sysadmins to apply critical security patches to the kernel immediately, without having to wait for long-running tasks to complete, for users to log off, or for scheduled reboot windows. It gives more control over uptime without sacrificing security or stability. kpatch is currently in active development. For now, it should _not_ be used in production environments. **WARNING: Use with caution! Kernel crashes, spontaneous reboots, and data loss may occur!** Here's a video of kpatch in action: [![kpatch video](http://img.youtube.com/vi/juyQ5TsJRTA/0.jpg)](http://www.youtube.com/watch?v=juyQ5TsJRTA) And a few more: - https://www.youtube.com/watch?v=rN0sFjrJQfU - https://www.youtube.com/watch?v=Mftc80KyjA4 Installation ------------ ###Prerequisites ####Fedora 20 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: ```bash sudo yum install gcc kernel-devel elfutils elfutils-devel ``` Install the dependencies for the "kpatch-build" command: ```bash sudo yum install rpmdevtools pesign yum-utils openssl wget sudo yum-builddep kernel sudo debuginfo-install kernel # optional, but highly recommended sudo yum install ccache ccache --max-size=5G ``` ####RHEL 7 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: ```bash sudo yum install gcc kernel-devel elfutils elfutils-devel ``` Install the dependencies for the "kpatch-build" command: ```bash sudo yum-config-manager --enable rhel-7-server-optional-rpms sudo yum install rpmdevtools pesign yum-utils zlib-devel \ binutils-devel newt-devel python-devel perl-ExtUtils-Embed \ audit-libs-devel numactl-devel pciutils-devel bison sudo yum-builddep kernel sudo debuginfo-install kernel # optional, but highly recommended sudo yum install ccache ccache --max-size=5G ``` ####CentOS 7 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: ```bash sudo yum install gcc kernel-devel elfutils elfutils-devel ``` Install the dependencies for the "kpatch-build" command: ```bash sudo yum install rpmdevtools pesign yum-utils zlib-devel \ binutils-devel newt-devel python-devel perl-ExtUtils-Embed \ audit-libs audit-libs-devel numactl-devel pciutils-devel bison # enable CentOS 7 debug repo sudo yum-config-manager --enable debug sudo yum-builddep kernel sudo debuginfo-install kernel # optional, but highly recommended - enable EPEL 7 sudo yum install ccache ccache --max-size=5G ``` ####Oracle Linux 7 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: ```bash sudo yum install gcc kernel-devel elfutils elfutils-devel ``` Install the dependencies for the "kpatch-build" command: ```bash sudo yum install rpmdevtools pesign yum-utils zlib-devel \ binutils-devel newt-devel python-devel perl-ExtUtils-Embed \ audit-libs numactl-devel pciutils-devel bison # enable ol7_optional_latest repo sudo yum-config-manager --enable ol7_optional_latest sudo yum-builddep kernel # manually install kernel debuginfo packages rpm -ivh https://oss.oracle.com/ol7/debuginfo/kernel-debuginfo-$(uname -r).rpm rpm -ivh https://oss.oracle.com/ol7/debuginfo/kernel-debuginfo-common-x86_64-$(uname -r).rpm # optional, but highly recommended - enable EPEL 7 sudo yum install ccache ccache --max-size=5G ``` ####Ubuntu 14.04 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: ```bash apt-get install make gcc libelf-dev ``` Install the dependencies for the "kpatch-build" command: ```bash apt-get install dpkg-dev apt-get build-dep linux # optional, but highly recommended apt-get install ccache ccache --max-size=5G ``` Install kernel debug symbols: ```bash # Add ddebs repository codename=$(lsb_release -sc) sudo tee /etc/apt/sources.list.d/ddebs.list << EOF deb http://ddebs.ubuntu.com/ ${codename} main restricted universe multiverse deb http://ddebs.ubuntu.com/ ${codename}-security main restricted universe multiverse deb http://ddebs.ubuntu.com/ ${codename}-updates main restricted universe multiverse deb http://ddebs.ubuntu.com/ ${codename}-proposed main restricted universe multiverse EOF # add APT key wget -Nq http://ddebs.ubuntu.com/dbgsym-release-key.asc -O- | sudo apt-key add - apt-get update && apt-get install linux-image-$(uname -r)-dbgsym ``` ####Debian 8.0 *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Install the dependencies for compiling kpatch: apt-get install make gcc libelf-dev build-essential Install and prepare the kernel sources: ```bash apt-get install linux-source-$(uname -r) cd /usr/src && tar xvf linux-source-$(uname -r).tar.xz && ln -s linux-source-$(uname -r) linux && cd linux cp /boot/config-$(uname -r) .config for OPTION in CONFIG_KALLSYMS_ALL CONFIG_FUNCTION_TRACER ; do sed -i "s/# $OPTION is not set/$OPTION=y/g" .config ; done sed -i "s/^SUBLEVEL.*/SUBLEVEL =/" Makefile make -j`getconf _NPROCESSORS_CONF` deb-pkg KDEB_PKGVERSION=$(uname -r).9-1 ``` Install the kernel packages and reboot dpkg -i /usr/src/*.deb reboot Install the dependencies for the "kpatch-build" command: apt-get install dpkg-dev apt-get build-dep linux # optional, but highly recommended apt-get install ccache ccache --max-size=5G ####Debian 7.x *NOTE: You'll need about 15GB of free disk space for the kpatch-build cache in `~/.kpatch` and for ccache.* Add backports repositories: ```bash echo "deb http://http.debian.net/debian wheezy-backports main" > /etc/apt/sources.list.d/wheezy-backports.list echo "deb http://packages.incloudus.com backports-incloudus main" > /etc/apt/sources.list.d/incloudus.list wget http://packages.incloudus.com/incloudus/incloudus.pub -O- | apt-key add - aptitude update ``` Install the linux kernel, symbols and gcc 4.9: aptitude install -t wheezy-backports -y initramfs-tools aptitude install -y gcc gcc-4.9 g++-4.9 linux-image-3.14 linux-image-3.14-dbg Configure gcc 4.9 as the default gcc compiler: update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.7 20 update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 50 update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.7 20 update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 50 Install kpatch and these dependencies: aptitude install kpatch Configure ccache (installed by kpatch package): ccache --max-size=5G ###Build Compile kpatch: make ###Install OPTIONAL: Install kpatch to `/usr/local`: sudo make install Alternatively, the kpatch and kpatch-build scripts can be run directly from the git tree. Quick start ----------- > NOTE: While kpatch is designed to work with any recent Linux kernel on any distribution, the `kpatch-build` command has **ONLY** been tested and confirmed to work on Fedora 20, RHEL 7, Oracle Linux 7, CentOS 7 and Ubuntu 14.04. First, make a source code patch against the kernel tree using diff, git, or quilt. As a contrived example, let's patch /proc/meminfo to show VmallocChunk in ALL CAPS so we can see it better: $ cat meminfo-string.patch Index: src/fs/proc/meminfo.c =================================================================== --- src.orig/fs/proc/meminfo.c +++ src/fs/proc/meminfo.c @@ -95,7 +95,7 @@ static int meminfo_proc_show(struct seq_ "Committed_AS: %8lu kB\n" "VmallocTotal: %8lu kB\n" "VmallocUsed: %8lu kB\n" - "VmallocChunk: %8lu kB\n" + "VMALLOCCHUNK: %8lu kB\n" #ifdef CONFIG_MEMORY_FAILURE "HardwareCorrupted: %5lu kB\n" #endif Build the patch module: $ kpatch-build -t vmlinux meminfo-string.patch Using cache at /home/jpoimboe/.kpatch/3.13.10-200.fc20.x86_64/src Testing patch file checking file fs/proc/meminfo.c Building original kernel Building patched kernel Detecting changed objects Rebuilding changed objects Extracting new and modified ELF sections meminfo.o: changed function: meminfo_proc_show Building patch module: kpatch-meminfo-string.ko SUCCESS > NOTE: The `-t vmlinux` option is used to tell `kpatch-build` to only look for > changes in the `vmlinux` base kernel image, which is much faster than also > compiling all the kernel modules. If your patch affects a kernel module, you > can either omit this option to build everything, and have `kpatch-build` > detect which modules changed, or you can specify the affected kernel build > targets with multiple `-t` options. That outputs a patch module named `kpatch-meminfo-string.ko` in the current directory. Now apply it to the running kernel: $ sudo kpatch load kpatch-meminfo-string.ko loading core module: /usr/local/lib/modules/3.13.10-200.fc20.x86_64/kpatch/kpatch.ko loading patch module: kpatch-meminfo-string.ko Done! The kernel is now patched. $ grep -i chunk /proc/meminfo VMALLOCCHUNK: 34359337092 kB How it works ------------ kpatch works at a function granularity: old functions are replaced with new ones. It has four main components: - **kpatch-build**: a collection of tools which convert a source diff patch to a patch module. They work by compiling the kernel both with and without the source patch, comparing the binaries, and generating a patch module which includes new binary versions of the functions to be replaced. - **patch module**: a kernel module (.ko file) which includes the replacement functions and metadata about the original functions. - **kpatch core module**: a kernel module (.ko file) which provides an interface for the patch modules to register new functions for replacement. It uses the kernel ftrace subsystem to hook into the original function's mcount call instruction, so that a call to the original function is redirected to the replacement function. - **kpatch utility:** a command-line tool which allows a user to manage a collection of patch modules. One or more patch modules may be configured to load at boot time, so that a system can remain patched even after a reboot into the same version of the kernel. ### kpatch-build The "kpatch-build" command converts a source-level diff patch file to a kernel patch module. Most of its work is performed by the kpatch-build script which uses a utility named `create-diff-object` to compare changed objects. The primary steps in kpatch-build are: - Build the unstripped vmlinux for the kernel - Patch the source tree - Rebuild vmlinux and monitor which objects are being rebuilt. These are the "changed objects". - Recompile each changed object with `-ffunction-sections -fdata-sections`, resulting in the changed patched objects - Unpatch the source tree - Recompile each changed object with `-ffunction-sections -fdata-sections`, resulting in the changed original objects - For every changed object, use `create-diff-object` to do the following: * Analyze each original/patched object pair for patchability * Add `.kpatch.funcs` and `.rela.kpatch.funcs` sections to the output object. The kpatch core module uses this to determine the list of functions that need to be redirected using ftrace. * Add `.kpatch.dynrelas` and `.rela.kpatch.dynrelas` sections to the output object. This will be used to resolve references to non-included local and non-exported global symbols. These relocations will be resolved by the kpatch core module. * Generate the resulting output object containing the new and modified sections - Link all the output objects into a cumulative object - Generate the patch module ### Patching The patch modules register with the core module (`kpatch.ko`). They provide information about original functions that need to be replaced, and corresponding function pointers to the replacement functions. The core module registers a handler function with ftrace. The handler function is called by ftrace immediately before the original function begins executing. This occurs with the help of the reserved mcount call at the beginning of every function, created by the gcc `-mfentry` flag. The ftrace handler then modifies the return instruction pointer (IP) address on the stack and returns to ftrace, which then restores the original function's arguments and stack, and "returns" to the new function. Limitations ----------- - Patches to functions which are always on the stack of at least one process in the system are not supported. Examples: schedule(), sys_poll(), sys_select(), sys_read(), sys_nanosleep(). Attempting to apply such a patch will cause the insmod of the patch module to return an error. - Patches which modify init functions (annotated with `__init`) are not supported. kpatch-build will return an error if the patch attempts to do so. - Patches which modify statically allocated data are not supported. kpatch-build will detect that and return an error. (In the future we will add a facility to support it. It will probably require the user to write code which runs at patch module loading time which manually updates the data.) - Patches which change the way a function interacts with dynamically allocated data might be safe, or might not. It isn't possible for kpatch-build to verify the safety of this kind of patch. It's up to the user to understand what the patch does, whether the new functions interact with dynamically allocated data in a different way than the old functions did, and whether it would be safe to atomically apply such a patch to a running kernel. - Patches which modify functions in vdso are not supported. These run in user-space and ftrace can't hook them. - Some incompatibilities currently exist between kpatch and usage of ftrace and kprobes. See the Frequently Asked Questions section for more details. Frequently Asked Questions -------------------------- **Q. Isn't this just a virus/rootkit injection framework?** kpatch uses kernel modules to replace code. It requires the `CAP_SYS_MODULE` capability. If you already have that capability, then you already have the ability to arbitrarily modify the kernel, with or without kpatch. **Q. How can I detect if somebody has patched the kernel?** When a patch module is loaded, the `TAINT_USER` flag is set. To test for it, `cat /proc/sys/kernel/tainted` and check to see if the value of 64 has been OR'ed in. Eventually we hope to have a dedicated `TAINT_KPATCH` flag instead. Note that the `TAINT_OOT_MODULE` flag (4096) will also be set, since the patch module is built outside the Linux kernel source tree. If your patch module is unsigned, the `TAINT_FORCED_MODULE` flag (2) will also be set. Starting with Linux 3.15, this will be changed to the more specific `TAINT_UNSIGNED_MODULE` (8192). **Q. Will it destabilize my system?** No, as long as the patch is chosen carefully. See the Limitations section above. **Q. Why does kpatch use ftrace to jump to the replacement function instead of adding the jump directly?** ftrace owns the first "call mcount" instruction of every kernel function. In order to keep compatibility with ftrace, we go through ftrace rather than updating the instruction directly. This approach also ensures that the code modification path is reliable, since ftrace has been doing it successfully for years. **Q Is kpatch compatible with \?** We aim to be good kernel citizens and maintain compatibility. A kpatch replacement function is no different than a function loaded by any other kernel module. Each replacement function has its own symbol name and kallsyms entry, so it looks like a normal function to the kernel. - **oops stack traces**: Yes. If the replacement function is involved in an oops, the stack trace will show the function and kernel module name of the replacement function, just like any other kernel module function. The oops message will also show the taint flag (currently `TAINT_USER`). - **kdump/crash**: Yes. Replacement functions are normal functions, so crash will have no issues. - **ftrace**: Yes, but certain uses of ftrace which involve opening the `/sys/kernel/debug/tracing/trace` file or using `trace-cmd record` can result in a tiny window of time where a patch gets temporarily disabled. Therefore it's a good idea to avoid using ftrace on a patched system until this issue is resolved. - **systemtap/kprobes**: Some incompatibilities exist. - If you setup a kprobe module at the beginning of a function before loading a kpatch module, and they both affect the same function, kprobes "wins" until the kprobe has been unregistered. This is tracked in issue [#47](https://github.com/dynup/kpatch/issues/47). - Setting a kretprobe before loading a kpatch module could be unsafe. See issue [#67](https://github.com/dynup/kpatch/issues/67). - **perf**: Yes. - **tracepoints**: Patches to a function which uses tracepoints will result in the tracepoints being effectively disabled as long as the patch is applied. **Q. Why not use something like kexec instead?** If you want to avoid a hardware reboot, but are ok with restarting processes, kexec is a good alternative. **Q. If an application can't handle a reboot, it's designed wrong.** That's a good poi... [system reboots] **Q. What changes are needed in other upstream projects?** We hope to make the following changes to other projects: - kernel: - ftrace improvements to close any windows that would allow a patch to be inadvertently disabled - hot patch taint flag - possibly the kpatch core module itself - crash: - point it to where the patch modules and corresponding debug symbols live on the file system **Q: Is it possible to register a function that gets called atomically with `stop_machine` when the patch module loads and unloads?** We do have plans to implement something like that. **Q. What kernels are supported?** kpatch needs gcc >= 4.8 and Linux >= 3.9. **Q. Is it possible to remove a patch?** Yes. Just run `kpatch unload` which will disable and unload the patch module and restore the function to its original state. **Q. Can you apply multiple patches?** Yes, but to prevent any unexpected interactions between multiple patch modules, it's recommended that you only have a single patch loaded at any given time. This can be achieved by combining the new patch with the previous patch using `combinediff` before running `kpatch-build`. You can then the `kpatch replace` command to atomically replace the old patch module with the new cumulative one. **Q. Why did kpatch-build detect a changed function that wasn't touched by the source patch?** There could be a variety of reasons for this, such as: - The patch changed an inline function. - The compiler decided to inline a changed function, resulting in the outer function getting recompiled. This is common in the case where the inner function is static and is only called once. - The function uses a WARN() or WARN_ON() macro. These macros embed the source code line number (`__LINE__`) into an instruction. If a function was changed higher up in the file, it will affect the line numbers for all subsequent WARN calls in the file, resulting in recompilation of their functions. If this happens to you, you can usually just ignore it, as patching a few extra functions isn't typically a problem. If it becomes a problem for whatever reason, you can change the source patch to redefine the WARN macro for the affected files, such that it hard codes the old line number instead of using `__LINE__`, for example. Get involved ------------ If you have questions or feedback, join the #kpatch IRC channel on freenode and say hi. We also have a [mailing list](https://www.redhat.com/mailman/listinfo/kpatch). Contributions are very welcome. Feel free to open issues or PRs on github. For big PRs, it's a good idea to discuss them first in github issues or on the [mailing list](https://www.redhat.com/mailman/listinfo/kpatch) before you write a lot of code. License ------- kpatch is under the GPLv2 license. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.