Merge pull request #692 from joe-lawrence/author_guide2

Author guide fixups
This commit is contained in:
Jessica Yu 2017-03-27 11:30:32 -07:00 committed by GitHub
commit 253b0e30b7
1 changed files with 115 additions and 5 deletions

View File

@ -113,8 +113,16 @@ patch module is loaded.
`kpatch-macros.h` provides `KPATCH_LOAD_HOOK` and `KPATCH_UNLOAD_HOOK` macros
to define such functions. The signature of both hook functions is `void
foo(void)` and and they may run in `stop_machine` context (so they must not
sleep).
foo(void)`. Their execution context is as follows:
* For patches to vmlinux or already loaded kernel modules, hook functions
will be run by `stop_machine` as part of applying or removing a patch.
(Therefore the hooks must not block or sleep.)
* For patches to kernel modules which haven't been loaded yet, a
module-notifier will execute load hooks when the associated module is loaded
into the `MODULE_STATE_COMING` state. The load hook is called before any
module_init code.
Example: a kpatch fix for CVE-2016-5389 utilized the `KPATCH_LOAD_HOOK` and
`KPATCH_UNLOAD_HOOK` macros to modify variable `sysctl_tcp_challenge_ack_limit`
@ -210,10 +218,112 @@ safe to access:
Data semantic changes
---------------------
Sometimes, the data itself remains the same, but how it's used is changed. A
common example is locking semantic changes.
Part of the stable-tree [backport](https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/commit/fs/aio.c?h=linux-3.10.y&id=6745cb91b5ec93a1b34221279863926fba43d0d7)
to fix CVE-2014-0206 changed the reference count semantic of `struct
kioctx.reqs_active`. Associating a shadow variable to new instances of this
structure can be used by patched code to handle both new (post-patch) and
existing (pre-patch) instances.
Example needed.
(This example is trimmed to highlight this use-case. Boilerplate code is also
required to allocate/free a shadow variable called "reqs_active_v2" whenever a
new `struct kioctx` is created/released. No values are ever assigned to the
shadow variable.)
Shadow variable existence can be verified before applying the new data
semantic of the associated object:
```
@@ -678,6 +688,9 @@ void aio_complete(struct kiocb *iocb, lo
put_rq:
/* everything turned out well, dispose of the aiocb. */
aio_put_req(iocb);
+ reqs_active_v2 = kpatch_shadow_get(ctx, "reqs_active_v2");
+ if (reqs_active_v2)
+ atomic_dec(&ctx->reqs_active);
/*
* We have to order our ring_info tail store above and test
```
Likewise, shadow variable non-existence can be tested to continue applying the
old data semantic:
```
@@ -705,6 +718,7 @@ static long aio_read_events_ring(struct
unsigned head, pos;
long ret = 0;
int copy_ret;
+ int *reqs_active_v2;
mutex_lock(&ctx->ring_lock);
@@ -756,7 +770,9 @@ static long aio_read_events_ring(struct
pr_debug("%li h%u t%u\n", ret, head, ctx->tail);
- atomic_sub(ret, &ctx->reqs_active);
+ reqs_active_v2 = kpatch_shadow_get(ctx, "reqs_active_v2");
+ if (!reqs_active_v2)
+ atomic_sub(ret, &ctx->reqs_active);
out:
mutex_unlock(&ctx->ring_lock);
```
The previous example can be extended to use shadow variable storage to handle
locking semantic changes. Consider the [upstream fix](https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1d147bfa64293b2723c4fec50922168658e613ba)
for CVE-2014-2706, which added a `ps_lock` to `struct sta_info` to protect
critical sections throughout `net/mac80211/sta_info.c`.
When allocating a new `struct sta_info`, allocate a corresponding "ps_lock"
shadow variable large enough to hold a `spinlock_t` instance, then initialize
the spinlock:
```
@@ -333,12 +336,16 @@ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta;
struct timespec uptime;
int i;
+ spinlock_t *ps_lock;
sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
if (!sta)
return NULL;
spin_lock_init(&sta->lock);
+ ps_lock = kpatch_shadow_alloc(sta, "ps_lock", sizeof(*ps_lock), gfp);
+ if (ps_lock)
+ spin_lock_init(ps_lock);
INIT_WORK(&sta->drv_unblock_wk, sta_unblock);
INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
mutex_init(&sta->ampdu_mlme.mtx);
```
Patched code can reference the "ps_lock" shadow variable associated with a
given `struct sta_info` to determine and apply the correct locking semantic
for that instance:
```
@@ -471,6 +475,23 @@ ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
sta->sta.addr, sta->sta.aid, ac);
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
+
+ /* sync with ieee80211_sta_ps_deliver_wakeup */
+ ps_lock = kpatch_shadow_get(sta, "ps_lock");
+ if (ps_lock) {
+ spin_lock(ps_lock);
+ /*
+ * STA woke up the meantime and all the frames on ps_tx_buf have
+ * been queued to pending queue. No reordering can happen, go
+ * ahead and Tx the packet.
+ */
+ if (!test_sta_flag(sta, WLAN_STA_PS_STA) &&
+ !test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
+ spin_unlock(ps_lock);
+ return TX_CONTINUE;
+ }
+ }
+
if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) {
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]);
ps_dbg(tx->sdata,
```
Init code changes
-----------------