hydrus/include/ClientImageHandling.py

241 lines
7.3 KiB
Python

import numpy.core.multiarray # important this comes before cv!
import ClientConstants as CC
import cv2
import HydrusImageHandling
import HydrusGlobals
if cv2.__version__.startswith( '2' ):
IMREAD_UNCHANGED = cv2.CV_LOAD_IMAGE_UNCHANGED
else:
IMREAD_UNCHANGED = cv2.IMREAD_UNCHANGED
cv_interpolation_enum_lookup = {}
cv_interpolation_enum_lookup[ CC.ZOOM_NEAREST ] = cv2.INTER_NEAREST
cv_interpolation_enum_lookup[ CC.ZOOM_LINEAR ] = cv2.INTER_LINEAR
cv_interpolation_enum_lookup[ CC.ZOOM_AREA ] = cv2.INTER_AREA
cv_interpolation_enum_lookup[ CC.ZOOM_CUBIC ] = cv2.INTER_CUBIC
cv_interpolation_enum_lookup[ CC.ZOOM_LANCZOS4 ] = cv2.INTER_LANCZOS4
def EfficientlyResizeNumpyImage( numpy_image, ( target_x, target_y ) ):
( im_y, im_x, depth ) = numpy_image.shape
if target_x >= im_x and target_y >= im_y: return numpy_image
# this seems to slow things down a lot, at least for cv!
#if im_x > 2 * target_x and im_y > 2 * target_y: result = cv2.resize( numpy_image, ( 2 * target_x, 2 * target_y ), interpolation = cv2.INTER_NEAREST )
return cv2.resize( numpy_image, ( target_x, target_y ), interpolation = cv2.INTER_AREA )
def EfficientlyThumbnailNumpyImage( numpy_image, ( target_x, target_y ) ):
( im_y, im_x, depth ) = numpy_image.shape
if target_x >= im_x and target_y >= im_y: return numpy_image
( target_x, target_y ) = HydrusImageHandling.GetThumbnailResolution( ( im_x, im_y ), ( target_x, target_y ) )
return cv2.resize( numpy_image, ( target_x, target_y ), interpolation = cv2.INTER_AREA )
def GenerateNumpyImage( path ):
if HydrusGlobals.client_controller.GetNewOptions().GetBoolean( 'load_images_with_pil' ):
# a regular cv.imread call, can crash the whole process on random thumbs, hooray, so have this as backup
# it was just the read that was the problem, so this seems to work fine, even if pil is only about half as fast
pil_image = HydrusImageHandling.GeneratePILImage( path )
numpy_image = GenerateNumPyImageFromPILImage( pil_image )
else:
numpy_image = cv2.imread( path, flags = IMREAD_UNCHANGED )
if numpy_image is None: # doesn't support static gifs and some random other stuff
pil_image = HydrusImageHandling.GeneratePILImage( path )
numpy_image = GenerateNumPyImageFromPILImage( pil_image )
else:
if numpy_image.dtype == 'uint16':
numpy_image /= 256
numpy_image = numpy.array( numpy_image, dtype = 'uint8' )
shape = numpy_image.shape
if len( shape ) == 2:
# monochrome image
convert = cv2.COLOR_GRAY2RGB
else:
( im_y, im_x, depth ) = shape
if depth == 4:
convert = cv2.COLOR_BGRA2RGBA
else:
convert = cv2.COLOR_BGR2RGB
numpy_image = cv2.cvtColor( numpy_image, convert )
return numpy_image
def GenerateNumPyImageFromPILImage( pil_image ):
pil_image = HydrusImageHandling.Dequantize( pil_image )
( w, h ) = pil_image.size
s = pil_image.tobytes()
return numpy.fromstring( s, dtype = 'uint8' ).reshape( ( h, w, len( s ) // ( w * h ) ) )
def GenerateShapePerceptualHashes( path ):
numpy_image = GenerateNumpyImage( path )
( y, x, depth ) = numpy_image.shape
if depth == 4:
# create weight and transform numpy_image to greyscale
numpy_alpha = numpy_image[ :, :, 3 ]
numpy_alpha_float = numpy_alpha / 255.0
numpy_image_bgr = numpy_image[ :, :, :3 ]
numpy_image_gray_bare = cv2.cvtColor( numpy_image_bgr, cv2.COLOR_RGB2GRAY )
# create a white greyscale canvas
white = numpy.ones( ( y, x ) ) * 255.0
# paste the grayscale image onto the white canvas using: pixel * alpha + white * ( 1 - alpha )
numpy_image_gray = numpy.uint8( ( numpy_image_gray_bare * numpy_alpha_float ) + ( white * ( numpy.ones( ( y, x ) ) - numpy_alpha_float ) ) )
else:
numpy_image_gray = cv2.cvtColor( numpy_image, cv2.COLOR_RGB2GRAY )
numpy_image_tiny = cv2.resize( numpy_image_gray, ( 32, 32 ), interpolation = cv2.INTER_AREA )
# convert to float and calc dct
numpy_image_tiny_float = numpy.float32( numpy_image_tiny )
dct = cv2.dct( numpy_image_tiny_float )
# take top left 8x8 of dct
dct_88 = dct[:8,:8]
# get median of dct
# exclude [0,0], which represents flat colour
# this [0,0] exclusion is apparently important for mean, but maybe it ain't so important for median--w/e
# old mean code
# mask = numpy.ones( ( 8, 8 ) )
# mask[0,0] = 0
# average = numpy.average( dct_88, weights = mask )
median = numpy.median( dct_88.reshape( 64 )[1:] )
# make a monochromatic, 64-bit hash of whether the entry is above or below the median
dct_88_boolean = dct_88 > median
# convert TTTFTFTF to 11101010 by repeatedly shifting answer and adding 0 or 1
# you can even go ( a << 1 ) + b and leave out the initial param on the latel reduce call as bools act like ints for this
# but let's not go crazy for another two nanoseconds
collapse_bools_to_binary_uint = lambda a, b: ( a << 1 ) + int( b )
bytes = []
for i in range( 8 ):
'''
# old way of doing it, which compared value to median every time
byte = 0
for j in range( 8 ):
byte <<= 1 # shift byte one left
value = dct_88[i,j]
if value > median:
byte |= 1
'''
byte = reduce( collapse_bools_to_binary_uint, dct_88_boolean[i], 0 )
bytes.append( byte )
phash = str( bytearray( bytes ) )
# now discard the blank hash, which is 1000000... and not useful
phashes = set()
phashes.add( phash )
phashes.discard( CC.BLANK_PHASH )
# we good
return phashes
def ResizeNumpyImage( mime, numpy_image, ( target_x, target_y ) ):
new_options = HydrusGlobals.client_controller.GetNewOptions()
( scale_up_quality, scale_down_quality ) = new_options.GetMediaZoomQuality( mime )
( im_y, im_x, depth ) = numpy_image.shape
if ( target_x, target_y ) == ( im_x, im_y ):
return numpy_image
else:
if target_x > im_x or target_y > im_y:
interpolation = cv_interpolation_enum_lookup[ scale_up_quality ]
else:
interpolation = cv_interpolation_enum_lookup[ scale_down_quality ]
return cv2.resize( numpy_image, ( target_x, target_y ), interpolation = interpolation )