mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-16 16:34:42 +00:00
041751c13a
When run in daemon mode (i.e. with at least one forked process) and using the epoll poller, sending USR1 (graceful shutdown) to the worker processes can cause some workers to start running at 100% CPU. Precondition is having an established HTTP keep-alive connection when the signal is received. The cloned (during fork) listening sockets do not get closed in the parent process, thus they do not get removed from the epoll set automatically (see man 7 epoll). This can lead to the process receiving epoll events that it doesn't feel responsible for, resulting in an endless loop around epoll_wait() delivering these events. The solution is to explicitly remove these file descriptors from the epoll set. To not degrade performance, care was taken to only do this when neccessary, i.e. when the file descriptor was cloned during fork. Signed-off-by: Conrad Hoffmann <conrad@soundcloud.com> [wt: a backport to 1.4 could be studied though chances to catch the bug are low]
352 lines
9.1 KiB
C
352 lines
9.1 KiB
C
/*
|
|
* include/proto/fd.h
|
|
* File descriptors states.
|
|
*
|
|
* Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, version 2.1
|
|
* exclusively.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef _PROTO_FD_H
|
|
#define _PROTO_FD_H
|
|
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include <common/config.h>
|
|
#include <types/fd.h>
|
|
|
|
/* public variables */
|
|
extern unsigned int *fd_cache; // FD events cache
|
|
extern unsigned int *fd_updt; // FD updates list
|
|
extern int fd_cache_num; // number of events in the cache
|
|
extern int fd_nbupdt; // number of updates in the list
|
|
|
|
/* Deletes an FD from the fdsets, and recomputes the maxfd limit.
|
|
* The file descriptor is also closed.
|
|
*/
|
|
void fd_delete(int fd);
|
|
|
|
/* disable the specified poller */
|
|
void disable_poller(const char *poller_name);
|
|
|
|
/*
|
|
* Initialize the pollers till the best one is found.
|
|
* If none works, returns 0, otherwise 1.
|
|
* The pollers register themselves just before main() is called.
|
|
*/
|
|
int init_pollers();
|
|
|
|
/*
|
|
* Deinitialize the pollers.
|
|
*/
|
|
void deinit_pollers();
|
|
|
|
/*
|
|
* Some pollers may lose their connection after a fork(). It may be necessary
|
|
* to create initialize part of them again. Returns 0 in case of failure,
|
|
* otherwise 1. The fork() function may be NULL if unused. In case of error,
|
|
* the the current poller is destroyed and the caller is responsible for trying
|
|
* another one by calling init_pollers() again.
|
|
*/
|
|
int fork_poller();
|
|
|
|
/*
|
|
* Lists the known pollers on <out>.
|
|
* Should be performed only before initialization.
|
|
*/
|
|
int list_pollers(FILE *out);
|
|
|
|
/*
|
|
* Runs the polling loop
|
|
*/
|
|
void run_poller();
|
|
|
|
/* Scan and process the cached events. This should be called right after
|
|
* the poller.
|
|
*/
|
|
void fd_process_cached_events();
|
|
|
|
/* Check the events attached to a file descriptor, update its cache
|
|
* accordingly, and call the associated I/O callback. If new updates are
|
|
* detected, the function tries to process them as well in order to save
|
|
* wakeups after accept().
|
|
*/
|
|
void fd_process_polled_events(int fd);
|
|
|
|
|
|
/* Mark fd <fd> as updated and allocate an entry in the update list for this if
|
|
* it was not already there. This can be done at any time.
|
|
*/
|
|
static inline void updt_fd(const int fd)
|
|
{
|
|
if (fdtab[fd].updated)
|
|
/* already scheduled for update */
|
|
return;
|
|
fdtab[fd].updated = 1;
|
|
fd_updt[fd_nbupdt++] = fd;
|
|
}
|
|
|
|
|
|
/* Allocates a cache entry for a file descriptor if it does not yet have one.
|
|
* This can be done at any time.
|
|
*/
|
|
static inline void fd_alloc_cache_entry(const int fd)
|
|
{
|
|
if (fdtab[fd].cache)
|
|
return;
|
|
fd_cache_num++;
|
|
fdtab[fd].cache = fd_cache_num;
|
|
fd_cache[fd_cache_num-1] = fd;
|
|
}
|
|
|
|
/* Removes entry used by fd <fd> from the FD cache and replaces it with the
|
|
* last one. The fdtab.cache is adjusted to match the back reference if needed.
|
|
* If the fd has no entry assigned, return immediately.
|
|
*/
|
|
static inline void fd_release_cache_entry(int fd)
|
|
{
|
|
unsigned int pos;
|
|
|
|
pos = fdtab[fd].cache;
|
|
if (!pos)
|
|
return;
|
|
fdtab[fd].cache = 0;
|
|
fd_cache_num--;
|
|
if (likely(pos <= fd_cache_num)) {
|
|
/* was not the last entry */
|
|
fd = fd_cache[fd_cache_num];
|
|
fd_cache[pos - 1] = fd;
|
|
fdtab[fd].cache = pos;
|
|
}
|
|
}
|
|
|
|
/* Computes the new polled status based on the active and ready statuses, for
|
|
* each direction. This is meant to be used by pollers while processing updates.
|
|
*/
|
|
static inline int fd_compute_new_polled_status(int state)
|
|
{
|
|
if (state & FD_EV_ACTIVE_R) {
|
|
if (!(state & FD_EV_READY_R))
|
|
state |= FD_EV_POLLED_R;
|
|
}
|
|
else
|
|
state &= ~FD_EV_POLLED_R;
|
|
|
|
if (state & FD_EV_ACTIVE_W) {
|
|
if (!(state & FD_EV_READY_W))
|
|
state |= FD_EV_POLLED_W;
|
|
}
|
|
else
|
|
state &= ~FD_EV_POLLED_W;
|
|
|
|
return state;
|
|
}
|
|
|
|
/* Automatically allocates or releases a cache entry for fd <fd> depending on
|
|
* its new state. This is meant to be used by pollers while processing updates.
|
|
*/
|
|
static inline void fd_alloc_or_release_cache_entry(int fd, int new_state)
|
|
{
|
|
/* READY and ACTIVE states (the two with both flags set) require a cache entry */
|
|
|
|
if (((new_state & (FD_EV_READY_R | FD_EV_ACTIVE_R)) == (FD_EV_READY_R | FD_EV_ACTIVE_R)) ||
|
|
((new_state & (FD_EV_READY_W | FD_EV_ACTIVE_W)) == (FD_EV_READY_W | FD_EV_ACTIVE_W))) {
|
|
fd_alloc_cache_entry(fd);
|
|
}
|
|
else {
|
|
fd_release_cache_entry(fd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* returns the FD's recv state (FD_EV_*)
|
|
*/
|
|
static inline int fd_recv_state(const int fd)
|
|
{
|
|
return ((unsigned)fdtab[fd].state >> (4 * DIR_RD)) & FD_EV_STATUS;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is active for recv
|
|
*/
|
|
static inline int fd_recv_active(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_R;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is ready for recv
|
|
*/
|
|
static inline int fd_recv_ready(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_READY_R;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is polled for recv
|
|
*/
|
|
static inline int fd_recv_polled(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_POLLED_R;
|
|
}
|
|
|
|
/*
|
|
* returns the FD's send state (FD_EV_*)
|
|
*/
|
|
static inline int fd_send_state(const int fd)
|
|
{
|
|
return ((unsigned)fdtab[fd].state >> (4 * DIR_WR)) & FD_EV_STATUS;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is active for send
|
|
*/
|
|
static inline int fd_send_active(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_W;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is ready for send
|
|
*/
|
|
static inline int fd_send_ready(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_READY_W;
|
|
}
|
|
|
|
/*
|
|
* returns true if the FD is polled for send
|
|
*/
|
|
static inline int fd_send_polled(const int fd)
|
|
{
|
|
return (unsigned)fdtab[fd].state & FD_EV_POLLED_W;
|
|
}
|
|
|
|
/* Disable processing recv events on fd <fd> */
|
|
static inline void fd_stop_recv(int fd)
|
|
{
|
|
if (!((unsigned int)fdtab[fd].state & FD_EV_ACTIVE_R))
|
|
return; /* already disabled */
|
|
fdtab[fd].state &= ~FD_EV_ACTIVE_R;
|
|
updt_fd(fd); /* need an update entry to change the state */
|
|
}
|
|
|
|
/* Disable processing send events on fd <fd> */
|
|
static inline void fd_stop_send(int fd)
|
|
{
|
|
if (!((unsigned int)fdtab[fd].state & FD_EV_ACTIVE_W))
|
|
return; /* already disabled */
|
|
fdtab[fd].state &= ~FD_EV_ACTIVE_W;
|
|
updt_fd(fd); /* need an update entry to change the state */
|
|
}
|
|
|
|
/* Disable processing of events on fd <fd> for both directions. */
|
|
static inline void fd_stop_both(int fd)
|
|
{
|
|
if (!((unsigned int)fdtab[fd].state & FD_EV_ACTIVE_RW))
|
|
return; /* already disabled */
|
|
fdtab[fd].state &= ~FD_EV_ACTIVE_RW;
|
|
updt_fd(fd); /* need an update entry to change the state */
|
|
}
|
|
|
|
/* Report that FD <fd> cannot receive anymore without polling (EAGAIN detected). */
|
|
static inline void fd_cant_recv(const int fd)
|
|
{
|
|
if (!(((unsigned int)fdtab[fd].state) & FD_EV_READY_R))
|
|
return; /* already marked as blocked */
|
|
fdtab[fd].state &= ~FD_EV_READY_R;
|
|
updt_fd(fd);
|
|
}
|
|
|
|
/* Report that FD <fd> can receive anymore without polling. */
|
|
static inline void fd_may_recv(const int fd)
|
|
{
|
|
if (((unsigned int)fdtab[fd].state) & FD_EV_READY_R)
|
|
return; /* already marked as blocked */
|
|
fdtab[fd].state |= FD_EV_READY_R;
|
|
updt_fd(fd);
|
|
}
|
|
|
|
/* Disable readiness when polled. This is useful to interrupt reading when it
|
|
* is suspected that the end of data might have been reached (eg: short read).
|
|
* This can only be done using level-triggered pollers, so if any edge-triggered
|
|
* is ever implemented, a test will have to be added here.
|
|
*/
|
|
static inline void fd_done_recv(const int fd)
|
|
{
|
|
if (fd_recv_polled(fd))
|
|
fd_cant_recv(fd);
|
|
}
|
|
|
|
/* Report that FD <fd> cannot send anymore without polling (EAGAIN detected). */
|
|
static inline void fd_cant_send(const int fd)
|
|
{
|
|
if (!(((unsigned int)fdtab[fd].state) & FD_EV_READY_W))
|
|
return; /* already marked as blocked */
|
|
fdtab[fd].state &= ~FD_EV_READY_W;
|
|
updt_fd(fd);
|
|
}
|
|
|
|
/* Report that FD <fd> can send anymore without polling (EAGAIN detected). */
|
|
static inline void fd_may_send(const int fd)
|
|
{
|
|
if (((unsigned int)fdtab[fd].state) & FD_EV_READY_W)
|
|
return; /* already marked as blocked */
|
|
fdtab[fd].state |= FD_EV_READY_W;
|
|
updt_fd(fd);
|
|
}
|
|
|
|
/* Prepare FD <fd> to try to receive */
|
|
static inline void fd_want_recv(int fd)
|
|
{
|
|
if (((unsigned int)fdtab[fd].state & FD_EV_ACTIVE_R))
|
|
return; /* already enabled */
|
|
fdtab[fd].state |= FD_EV_ACTIVE_R;
|
|
updt_fd(fd); /* need an update entry to change the state */
|
|
}
|
|
|
|
/* Prepare FD <fd> to try to send */
|
|
static inline void fd_want_send(int fd)
|
|
{
|
|
if (((unsigned int)fdtab[fd].state & FD_EV_ACTIVE_W))
|
|
return; /* already enabled */
|
|
fdtab[fd].state |= FD_EV_ACTIVE_W;
|
|
updt_fd(fd); /* need an update entry to change the state */
|
|
}
|
|
|
|
/* Prepares <fd> for being polled */
|
|
static inline void fd_insert(int fd)
|
|
{
|
|
fdtab[fd].ev = 0;
|
|
fdtab[fd].new = 1;
|
|
fdtab[fd].linger_risk = 0;
|
|
fdtab[fd].cloned = 0;
|
|
if (fd + 1 > maxfd)
|
|
maxfd = fd + 1;
|
|
}
|
|
|
|
|
|
#endif /* _PROTO_FD_H */
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|