mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-18 09:24:31 +00:00
f734ebfac4
Commit 77b98220e
("BUG/MINOR: threads: work around a libgcc_s issue with
chrooting") tried to address an issue with libgcc_s being loaded too late.
But it turns out that the symbol used there isn't present on armhf, thus
it breaks the build.
Given that the issue manifests itself during pthread_exit(), the safest
and most portable way to test this is to call pthread_exit(). For this
we create a dummy thread which exits, during the early boot. This results
in the relevant library to be loaded if needed, making sure that a later
call to pthread_exit() will still work. It was tested to work fine under
linux on the following platforms:
glibc:
- armhf
- aarch64
- x86_64
- sparc64
- ppc64le
musl:
- mipsel
Just running the code under strace easily shows the call in the dummy
thread, for example here on armhf:
$ strace -fe trace=file ./haproxy -v 2>&1 | grep gcc_s
[pid 23055] open("/lib/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = 3
The code was isolated so that it's easy to #ifdef it out if needed.
This should be backported where the patch above is backported (likely
2.0).
275 lines
7.7 KiB
C
275 lines
7.7 KiB
C
/*
|
|
* functions about threads.
|
|
*
|
|
* Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <fcntl.h>
|
|
|
|
#ifdef USE_CPU_AFFINITY
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cpuset.h>
|
|
#endif
|
|
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
struct thread_info ha_thread_info[MAX_THREADS] = { };
|
|
THREAD_LOCAL struct thread_info *ti = &ha_thread_info[0];
|
|
|
|
#ifdef USE_THREAD
|
|
|
|
volatile unsigned long threads_want_rdv_mask = 0;
|
|
volatile unsigned long threads_harmless_mask = 0;
|
|
volatile unsigned long threads_sync_mask = 0;
|
|
volatile unsigned long all_threads_mask = 1; // nbthread 1 assumed by default
|
|
THREAD_LOCAL unsigned int tid = 0;
|
|
THREAD_LOCAL unsigned long tid_bit = (1UL << 0);
|
|
int thread_cpus_enabled_at_boot = 1;
|
|
|
|
|
|
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
struct lock_stat lock_stats[LOCK_LABELS];
|
|
#endif
|
|
|
|
/* Marks the thread as harmless until the last thread using the rendez-vous
|
|
* point quits. Given that we can wait for a long time, sched_yield() is used
|
|
* when available to offer the CPU resources to competing threads if needed.
|
|
*/
|
|
void thread_harmless_till_end()
|
|
{
|
|
_HA_ATOMIC_OR(&threads_harmless_mask, tid_bit);
|
|
while (threads_want_rdv_mask & all_threads_mask) {
|
|
ha_thread_relax();
|
|
}
|
|
}
|
|
|
|
/* Isolates the current thread : request the ability to work while all other
|
|
* threads are harmless. Only returns once all of them are harmless, with the
|
|
* current thread's bit in threads_harmless_mask cleared. Needs to be completed
|
|
* using thread_release().
|
|
*/
|
|
void thread_isolate()
|
|
{
|
|
unsigned long old;
|
|
|
|
_HA_ATOMIC_OR(&threads_harmless_mask, tid_bit);
|
|
__ha_barrier_atomic_store();
|
|
_HA_ATOMIC_OR(&threads_want_rdv_mask, tid_bit);
|
|
|
|
/* wait for all threads to become harmless */
|
|
old = threads_harmless_mask;
|
|
while (1) {
|
|
if (unlikely((old & all_threads_mask) != all_threads_mask))
|
|
old = threads_harmless_mask;
|
|
else if (_HA_ATOMIC_CAS(&threads_harmless_mask, &old, old & ~tid_bit))
|
|
break;
|
|
|
|
ha_thread_relax();
|
|
}
|
|
/* one thread gets released at a time here, with its harmess bit off.
|
|
* The loss of this bit makes the other one continue to spin while the
|
|
* thread is working alone.
|
|
*/
|
|
}
|
|
|
|
/* Cancels the effect of thread_isolate() by releasing the current thread's bit
|
|
* in threads_want_rdv_mask and by marking this thread as harmless until the
|
|
* last worker finishes.
|
|
*/
|
|
void thread_release()
|
|
{
|
|
_HA_ATOMIC_AND(&threads_want_rdv_mask, ~tid_bit);
|
|
while (threads_want_rdv_mask & all_threads_mask) {
|
|
_HA_ATOMIC_OR(&threads_harmless_mask, tid_bit);
|
|
while (threads_want_rdv_mask & all_threads_mask)
|
|
ha_thread_relax();
|
|
HA_ATOMIC_AND(&threads_harmless_mask, ~tid_bit);
|
|
}
|
|
}
|
|
|
|
/* Cancels the effect of thread_isolate() by releasing the current thread's bit
|
|
* in threads_want_rdv_mask and by marking this thread as harmless until the
|
|
* last worker finishes. The difference with thread_release() is that this one
|
|
* will not leave the function before others are notified to do the same, so it
|
|
* guarantees that the current thread will not pass through a subsequent call
|
|
* to thread_isolate() before others finish.
|
|
*/
|
|
void thread_sync_release()
|
|
{
|
|
_HA_ATOMIC_OR(&threads_sync_mask, tid_bit);
|
|
__ha_barrier_atomic_store();
|
|
_HA_ATOMIC_AND(&threads_want_rdv_mask, ~tid_bit);
|
|
|
|
while (threads_want_rdv_mask & all_threads_mask) {
|
|
_HA_ATOMIC_OR(&threads_harmless_mask, tid_bit);
|
|
while (threads_want_rdv_mask & all_threads_mask)
|
|
ha_thread_relax();
|
|
HA_ATOMIC_AND(&threads_harmless_mask, ~tid_bit);
|
|
}
|
|
|
|
/* the current thread is not harmless anymore, thread_isolate()
|
|
* is forced to wait till all waiters finish.
|
|
*/
|
|
_HA_ATOMIC_AND(&threads_sync_mask, ~tid_bit);
|
|
while (threads_sync_mask & all_threads_mask)
|
|
ha_thread_relax();
|
|
}
|
|
|
|
/* send signal <sig> to thread <thr> */
|
|
void ha_tkill(unsigned int thr, int sig)
|
|
{
|
|
pthread_kill(ha_thread_info[thr].pthread, sig);
|
|
}
|
|
|
|
/* send signal <sig> to all threads. The calling thread is signaled last in
|
|
* order to allow all threads to synchronize in the handler.
|
|
*/
|
|
void ha_tkillall(int sig)
|
|
{
|
|
unsigned int thr;
|
|
|
|
for (thr = 0; thr < global.nbthread; thr++) {
|
|
if (!(all_threads_mask & (1UL << thr)))
|
|
continue;
|
|
if (thr == tid)
|
|
continue;
|
|
pthread_kill(ha_thread_info[thr].pthread, sig);
|
|
}
|
|
raise(sig);
|
|
}
|
|
|
|
/* these calls are used as callbacks at init time */
|
|
void ha_spin_init(HA_SPINLOCK_T *l)
|
|
{
|
|
HA_SPIN_INIT(l);
|
|
}
|
|
|
|
/* these calls are used as callbacks at init time */
|
|
void ha_rwlock_init(HA_RWLOCK_T *l)
|
|
{
|
|
HA_RWLOCK_INIT(l);
|
|
}
|
|
|
|
/* returns the number of CPUs the current process is enabled to run on */
|
|
static int thread_cpus_enabled()
|
|
{
|
|
int ret = 1;
|
|
|
|
#ifdef USE_CPU_AFFINITY
|
|
#if defined(__linux__) && defined(CPU_COUNT)
|
|
cpu_set_t mask;
|
|
|
|
if (sched_getaffinity(0, sizeof(mask), &mask) == 0)
|
|
ret = CPU_COUNT(&mask);
|
|
#elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY)
|
|
cpuset_t cpuset;
|
|
if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1,
|
|
sizeof(cpuset), &cpuset) == 0)
|
|
ret = CPU_COUNT(&cpuset);
|
|
#endif
|
|
#endif
|
|
ret = MAX(ret, 1);
|
|
ret = MIN(ret, MAX_THREADS);
|
|
return ret;
|
|
}
|
|
|
|
/* Depending on the platform and how libpthread was built, pthread_exit() may
|
|
* involve some code in libgcc_s that would be loaded on exit for the first
|
|
* time, causing aborts if the process is chrooted. It's harmless bit very
|
|
* dirty. There isn't much we can do to make sure libgcc_s is loaded only if
|
|
* needed, so what we do here is that during early boot we create a dummy
|
|
* thread that immediately exits. This will lead to libgcc_s being loaded
|
|
* during boot on the platforms where it's required.
|
|
*/
|
|
static void *dummy_thread_function(void *data)
|
|
{
|
|
pthread_exit(NULL);
|
|
return NULL;
|
|
}
|
|
|
|
static inline void preload_libgcc_s(void)
|
|
{
|
|
pthread_t dummy_thread;
|
|
pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL);
|
|
pthread_join(dummy_thread, NULL);
|
|
}
|
|
|
|
__attribute__((constructor))
|
|
static void __thread_init(void)
|
|
{
|
|
char *ptr = NULL;
|
|
|
|
if (MAX_THREADS < 1 || MAX_THREADS > LONGBITS) {
|
|
ha_alert("MAX_THREADS value must be between 1 and %d inclusive; "
|
|
"HAProxy was built with value %d, please fix it and rebuild.\n",
|
|
LONGBITS, MAX_THREADS);
|
|
exit(1);
|
|
}
|
|
|
|
preload_libgcc_s();
|
|
|
|
thread_cpus_enabled_at_boot = thread_cpus_enabled();
|
|
|
|
memprintf(&ptr, "Built with multi-threading support (MAX_THREADS=%d, default=%d).",
|
|
MAX_THREADS, thread_cpus_enabled_at_boot);
|
|
hap_register_build_opts(ptr, 1);
|
|
|
|
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
memset(lock_stats, 0, sizeof(lock_stats));
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set).");
|
|
|
|
#endif // USE_THREAD
|
|
|
|
|
|
/* Parse the number of threads in argument <arg>, returns it and adjusts a few
|
|
* internal variables accordingly, or fails and returns zero with an error
|
|
* reason in <errmsg>. May be called multiple times while parsing.
|
|
*/
|
|
int parse_nbthread(const char *arg, char **err)
|
|
{
|
|
long nbthread;
|
|
char *errptr;
|
|
|
|
nbthread = strtol(arg, &errptr, 10);
|
|
if (!*arg || *errptr) {
|
|
memprintf(err, "passed a missing or unparsable integer value in '%s'", arg);
|
|
return 0;
|
|
}
|
|
|
|
#ifndef USE_THREAD
|
|
if (nbthread != 1) {
|
|
memprintf(err, "specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD");
|
|
return 0;
|
|
}
|
|
#else
|
|
if (nbthread < 1 || nbthread > MAX_THREADS) {
|
|
memprintf(err, "value must be between 1 and %d (was %ld)", MAX_THREADS, nbthread);
|
|
return 0;
|
|
}
|
|
|
|
all_threads_mask = nbits(nbthread);
|
|
#endif
|
|
return nbthread;
|
|
}
|