haproxy/include/proto/fd.h
Ilya Shipitsin 77e3b4a2c4 CLEANUP: assorted typo fixes in the code and comments
These are mostly comments in the code. A few error messages were fixed
and are of low enough importance not to deserve a backport. Some regtests
were also fixed.
2020-03-14 09:42:07 +01:00

451 lines
13 KiB
C

/*
* include/proto/fd.h
* File descriptors states.
*
* Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _PROTO_FD_H
#define _PROTO_FD_H
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <common/config.h>
#include <common/ticks.h>
#include <common/time.h>
#include <types/fd.h>
#include <proto/activity.h>
/* public variables */
extern volatile struct fdlist update_list;
extern struct polled_mask {
unsigned long poll_recv;
unsigned long poll_send;
} *polled_mask;
extern THREAD_LOCAL int *fd_updt; // FD updates list
extern THREAD_LOCAL int fd_nbupdt; // number of updates in the list
extern int poller_wr_pipe[MAX_THREADS];
extern volatile int ha_used_fds; // Number of FDs we're currently using
/* Deletes an FD from the fdsets.
* The file descriptor is also closed.
*/
void fd_delete(int fd);
/* Deletes an FD from the fdsets.
* The file descriptor is kept open.
*/
void fd_remove(int fd);
ssize_t fd_write_frag_line(int fd, size_t maxlen, const struct ist pfx[], size_t npfx, const struct ist msg[], size_t nmsg, int nl);
/* close all FDs starting from <start> */
void my_closefrom(int start);
/* disable the specified poller */
void disable_poller(const char *poller_name);
void poller_pipe_io_handler(int fd);
/*
* Initialize the pollers till the best one is found.
* If none works, returns 0, otherwise 1.
* The pollers register themselves just before main() is called.
*/
int init_pollers();
/*
* Deinitialize the pollers.
*/
void deinit_pollers();
/*
* Some pollers may lose their connection after a fork(). It may be necessary
* to create initialize part of them again. Returns 0 in case of failure,
* otherwise 1. The fork() function may be NULL if unused. In case of error,
* the the current poller is destroyed and the caller is responsible for trying
* another one by calling init_pollers() again.
*/
int fork_poller();
/*
* Lists the known pollers on <out>.
* Should be performed only before initialization.
*/
int list_pollers(FILE *out);
/*
* Runs the polling loop
*/
void run_poller();
void fd_add_to_fd_list(volatile struct fdlist *list, int fd, int off);
void fd_rm_from_fd_list(volatile struct fdlist *list, int fd, int off);
void updt_fd_polling(const int fd);
/* Called from the poller to acknowledge we read an entry from the global
* update list, to remove our bit from the update_mask, and remove it from
* the list if we were the last one.
*/
static inline void done_update_polling(int fd)
{
unsigned long update_mask;
update_mask = _HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit);
while ((update_mask & all_threads_mask)== 0) {
/* If we were the last one that had to update that entry, remove it from the list */
fd_rm_from_fd_list(&update_list, fd, offsetof(struct fdtab, update));
update_mask = (volatile unsigned long)fdtab[fd].update_mask;
if ((update_mask & all_threads_mask) != 0) {
/* Maybe it's been re-updated in the meanwhile, and we
* wrongly removed it from the list, if so, re-add it
*/
fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update));
update_mask = (volatile unsigned long)(fdtab[fd].update_mask);
/* And then check again, just in case after all it
* should be removed, even if it's very unlikely, given
* the current thread wouldn't have been able to take
* care of it yet */
} else
break;
}
}
/*
* returns true if the FD is active for recv
*/
static inline int fd_recv_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_R;
}
/*
* returns true if the FD is ready for recv
*/
static inline int fd_recv_ready(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_READY_R;
}
/*
* returns true if the FD is active for send
*/
static inline int fd_send_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_W;
}
/*
* returns true if the FD is ready for send
*/
static inline int fd_send_ready(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_READY_W;
}
/*
* returns true if the FD is active for recv or send
*/
static inline int fd_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_RW;
}
/* Disable processing recv events on fd <fd> */
static inline void fd_stop_recv(int fd)
{
if (!(fdtab[fd].state & FD_EV_ACTIVE_R) ||
!HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_ACTIVE_R_BIT))
return;
}
/* Disable processing send events on fd <fd> */
static inline void fd_stop_send(int fd)
{
if (!(fdtab[fd].state & FD_EV_ACTIVE_W) ||
!HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_ACTIVE_W_BIT))
return;
}
/* Disable processing of events on fd <fd> for both directions. */
static inline void fd_stop_both(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_ACTIVE_RW))
return;
new = old & ~FD_EV_ACTIVE_RW;
} while (unlikely(!_HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
}
/* Report that FD <fd> cannot receive anymore without polling (EAGAIN detected). */
static inline void fd_cant_recv(const int fd)
{
/* marking ready never changes polled status */
if (!(fdtab[fd].state & FD_EV_READY_R) ||
!HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_READY_R_BIT))
return;
}
/* Report that FD <fd> may receive again without polling. */
static inline void fd_may_recv(const int fd)
{
/* marking ready never changes polled status */
if ((fdtab[fd].state & FD_EV_READY_R) ||
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_R_BIT))
return;
}
/* Report that FD <fd> may receive again without polling but only if its not
* active yet. This is in order to speculatively try to enable I/Os when it's
* highly likely that these will succeed, but without interfering with polling.
*/
static inline void fd_cond_recv(const int fd)
{
if ((fdtab[fd].state & (FD_EV_ACTIVE_R|FD_EV_READY_R)) == 0)
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_R_BIT);
}
/* Report that FD <fd> may send again without polling but only if its not
* active yet. This is in order to speculatively try to enable I/Os when it's
* highly likely that these will succeed, but without interfering with polling.
*/
static inline void fd_cond_send(const int fd)
{
if ((fdtab[fd].state & (FD_EV_ACTIVE_W|FD_EV_READY_W)) == 0)
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_W_BIT);
}
/* Report that FD <fd> may receive and send without polling. Used at FD
* initialization.
*/
static inline void fd_may_both(const int fd)
{
HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_RW);
}
/* Disable readiness when active. This is useful to interrupt reading when it
* is suspected that the end of data might have been reached (eg: short read).
* This can only be done using level-triggered pollers, so if any edge-triggered
* is ever implemented, a test will have to be added here.
*/
static inline void fd_done_recv(const int fd)
{
/* removing ready never changes polled status */
if ((fdtab[fd].state & (FD_EV_ACTIVE_R|FD_EV_READY_R)) != (FD_EV_ACTIVE_R|FD_EV_READY_R) ||
!HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_READY_R_BIT))
return;
}
/* Report that FD <fd> cannot send anymore without polling (EAGAIN detected). */
static inline void fd_cant_send(const int fd)
{
/* removing ready never changes polled status */
if (!(fdtab[fd].state & FD_EV_READY_W) ||
!HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_READY_W_BIT))
return;
}
/* Report that FD <fd> may send again without polling (EAGAIN not detected). */
static inline void fd_may_send(const int fd)
{
/* marking ready never changes polled status */
if ((fdtab[fd].state & FD_EV_READY_W) ||
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_W_BIT))
return;
}
/* Prepare FD <fd> to try to receive */
static inline void fd_want_recv(int fd)
{
if ((fdtab[fd].state & FD_EV_ACTIVE_R) ||
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_ACTIVE_R_BIT))
return;
updt_fd_polling(fd);
}
/* Prepare FD <fd> to try to send */
static inline void fd_want_send(int fd)
{
if ((fdtab[fd].state & FD_EV_ACTIVE_W) ||
HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_ACTIVE_W_BIT))
return;
updt_fd_polling(fd);
}
/* Update events seen for FD <fd> and its state if needed. This should be
* called by the poller, passing FD_EV_*_{R,W,RW} in <evts>. FD_EV_ERR_*
* doesn't need to also pass FD_EV_SHUT_*, it's implied. ERR and SHUT are
* allowed to be reported regardless of R/W readiness.
*/
static inline void fd_update_events(int fd, unsigned char evts)
{
unsigned long locked = atleast2(fdtab[fd].thread_mask);
unsigned char old, new;
int new_flags, must_stop;
new_flags =
((evts & FD_EV_READY_R) ? FD_POLL_IN : 0) |
((evts & FD_EV_READY_W) ? FD_POLL_OUT : 0) |
((evts & FD_EV_SHUT_R) ? FD_POLL_HUP : 0) |
((evts & FD_EV_ERR_RW) ? FD_POLL_ERR : 0);
/* SHUTW reported while FD was active for writes is an error */
if ((fdtab[fd].ev & FD_EV_ACTIVE_W) && (evts & FD_EV_SHUT_W))
new_flags |= FD_POLL_ERR;
/* compute the inactive events reported late that must be stopped */
must_stop = 0;
if (unlikely(!fd_active(fd))) {
/* both sides stopped */
must_stop = FD_POLL_IN | FD_POLL_OUT;
}
else if (unlikely(!fd_recv_active(fd) && (evts & (FD_EV_READY_R | FD_EV_SHUT_R | FD_EV_ERR_RW)))) {
/* only send remains */
must_stop = FD_POLL_IN;
}
else if (unlikely(!fd_send_active(fd) && (evts & (FD_EV_READY_W | FD_EV_SHUT_W | FD_EV_ERR_RW)))) {
/* only recv remains */
must_stop = FD_POLL_OUT;
}
old = fdtab[fd].ev;
new = (old & FD_POLL_STICKY) | new_flags;
if (unlikely(locked)) {
/* Locked FDs (those with more than 2 threads) are atomically updated */
while (unlikely(new != old && !_HA_ATOMIC_CAS(&fdtab[fd].ev, &old, new)))
new = (old & FD_POLL_STICKY) | new_flags;
} else {
if (new != old)
fdtab[fd].ev = new;
}
if (fdtab[fd].ev & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR))
fd_may_recv(fd);
if (fdtab[fd].ev & (FD_POLL_OUT | FD_POLL_ERR))
fd_may_send(fd);
if (fdtab[fd].iocb && fd_active(fd))
fdtab[fd].iocb(fd);
/* we had to stop this FD and it still must be stopped after the I/O
* cb's changes, so let's program an update for this.
*/
if (must_stop && !(fdtab[fd].update_mask & tid_bit)) {
if (((must_stop & FD_POLL_IN) && !fd_recv_active(fd)) ||
((must_stop & FD_POLL_OUT) && !fd_send_active(fd)))
if (!HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid))
fd_updt[fd_nbupdt++] = fd;
}
ti->flags &= ~TI_FL_STUCK; // this thread is still running
}
/* Prepares <fd> for being polled */
static inline void fd_insert(int fd, void *owner, void (*iocb)(int fd), unsigned long thread_mask)
{
unsigned long locked = atleast2(thread_mask);
if (locked)
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fdtab[fd].owner = owner;
fdtab[fd].iocb = iocb;
fdtab[fd].ev = 0;
fdtab[fd].linger_risk = 0;
fdtab[fd].cloned = 0;
fdtab[fd].thread_mask = thread_mask;
/* note: do not reset polled_mask here as it indicates which poller
* still knows this FD from a possible previous round.
*/
if (locked)
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
/* the two directions are ready until proven otherwise */
fd_may_both(fd);
_HA_ATOMIC_ADD(&ha_used_fds, 1);
}
/* Computes the bounded poll() timeout based on the next expiration timer <next>
* by bounding it to MAX_DELAY_MS. <next> may equal TICK_ETERNITY. The pollers
* just needs to call this function right before polling to get their timeout
* value. Timeouts that are already expired (possibly due to a pending event)
* are accounted for in activity.poll_exp.
*/
static inline int compute_poll_timeout(int next)
{
int wait_time;
if (!tick_isset(next))
wait_time = MAX_DELAY_MS;
else if (tick_is_expired(next, now_ms)) {
activity[tid].poll_exp++;
wait_time = 0;
}
else {
wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1;
if (wait_time > MAX_DELAY_MS)
wait_time = MAX_DELAY_MS;
}
return wait_time;
}
/* These are replacements for FD_SET, FD_CLR, FD_ISSET, working on uints */
static inline void hap_fd_set(int fd, unsigned int *evts)
{
_HA_ATOMIC_OR(&evts[fd / (8*sizeof(*evts))], 1U << (fd & (8*sizeof(*evts) - 1)));
}
static inline void hap_fd_clr(int fd, unsigned int *evts)
{
_HA_ATOMIC_AND(&evts[fd / (8*sizeof(*evts))], ~(1U << (fd & (8*sizeof(*evts) - 1))));
}
static inline unsigned int hap_fd_isset(int fd, unsigned int *evts)
{
return evts[fd / (8*sizeof(*evts))] & (1U << (fd & (8*sizeof(*evts) - 1)));
}
static inline void wake_thread(int tid)
{
char c = 'c';
shut_your_big_mouth_gcc(write(poller_wr_pipe[tid], &c, 1));
}
#endif /* _PROTO_FD_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/