mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-13 15:04:42 +00:00
379357af58
Since 1.5-dev12 and commit 3bf1b2b8
(MAJOR: channel: stop relying on
BF_FULL to take action), the HTTP parser switched to channel_full()
instead of BF_FULL to decide whether a buffer had enough room to start
parsing a request or response. The problem is that channel_full()
intentionally ignores outgoing data, so a corner case exists where a
large response might still be left in a response buffer with just a
few bytes left (much less than the reserve), enough to accept a second
response past the last data, but not enough to permit the HTTP processor
to add some headers. Since all the processing relies on this space being
available, we can get some random crashes when clients pipeline requests.
The analysis of a core from haproxy configured with 20480 bytes buffers
shows this : with enough "luck", when sending back the response for the
first request, the client is slow, the TCP window is congested, the socket
buffers are full, and haproxy's buffer fills up. We still have 20230 bytes
of response data in a 20480 response buffer. The second request is sent to
the server which returns 214 bytes which fit in the small 250 bytes left
in this buffer. And the buffer arrangement makes it possible to escape all
the controls in http_wait_for_response() :
|<------ response buffer = 20480 bytes ------>|
[ 2/2 | 3 | 4 | 1/2 ]
^ start of circular buffer
1/2 = beginning of previous response (18240)
2/2 = end of previous response (1990)
3 = current response (214)
4 = free space (36)
- channel_full() returns false (20230 bytes are going to leave)
- the response headers does not wrap at the end of the buffer
- the remaining linear room after the headers is larger than the
reserve, because it's the previous response which wraps :
=> response is processed
Header rewriting causes it to reach 260 bytes, 10 bytes larger than what
the buffer could hold. So all computations during header addition are
wrong and lead to the corruption we've observed.
All the conditions are very hard to meet (which explains why it took
almost one year for this bug to show up) and are almost impossible to
reproduce on purpose on a test platform. But the bug is clearly there.
This issue was reported by Dinko Korunic who kindly devoted a lot of
time to provide countless traces and cores, and to experiment with
troubleshooting patches to knock the bug down. Thanks Dinko!
No backport is needed, but all 1.5-dev versions between dev12 and dev18
included must be upgraded. A workaround consists in setting option
forceclose to prevent pipelined requests from being processed.
413 lines
13 KiB
C
413 lines
13 KiB
C
/*
|
|
* include/proto/channel.h
|
|
* Channel management definitions, macros and inline functions.
|
|
*
|
|
* Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, version 2.1
|
|
* exclusively.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef _PROTO_CHANNEL_H
|
|
#define _PROTO_CHANNEL_H
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <common/config.h>
|
|
#include <common/chunk.h>
|
|
#include <common/memory.h>
|
|
#include <common/ticks.h>
|
|
#include <common/time.h>
|
|
|
|
#include <types/global.h>
|
|
|
|
extern struct pool_head *pool2_channel;
|
|
|
|
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
|
|
int init_channel();
|
|
|
|
unsigned long long __channel_forward(struct channel *chn, unsigned long long bytes);
|
|
|
|
/* SI-to-channel functions working with buffers */
|
|
int bi_putblk(struct channel *chn, const char *str, int len);
|
|
int bi_putchr(struct channel *chn, char c);
|
|
int bo_inject(struct channel *chn, const char *msg, int len);
|
|
int bo_getline(struct channel *chn, char *str, int len);
|
|
int bo_getblk(struct channel *chn, char *blk, int len, int offset);
|
|
|
|
/* Initialize all fields in the channel. */
|
|
static inline void channel_init(struct channel *chn)
|
|
{
|
|
chn->buf->o = 0;
|
|
chn->buf->i = 0;
|
|
chn->buf->p = chn->buf->data;
|
|
chn->to_forward = 0;
|
|
chn->total = 0;
|
|
chn->pipe = NULL;
|
|
chn->analysers = 0;
|
|
chn->cons = NULL;
|
|
chn->flags = 0;
|
|
}
|
|
|
|
/* Schedule up to <bytes> more bytes to be forwarded via the channel without
|
|
* notifying the owner task. Any data pending in the buffer are scheduled to be
|
|
* sent as well, in the limit of the number of bytes to forward. This must be
|
|
* the only method to use to schedule bytes to be forwarded. If the requested
|
|
* number is too large, it is automatically adjusted. The number of bytes taken
|
|
* into account is returned. Directly touching ->to_forward will cause lockups
|
|
* when buf->o goes down to zero if nobody is ready to push the remaining data.
|
|
*/
|
|
static inline unsigned long long channel_forward(struct channel *chn, unsigned long long bytes)
|
|
{
|
|
/* hint: avoid comparisons on long long for the fast case, since if the
|
|
* length does not fit in an unsigned it, it will never be forwarded at
|
|
* once anyway.
|
|
*/
|
|
if (bytes <= ~0U) {
|
|
unsigned int bytes32 = bytes;
|
|
|
|
if (bytes32 <= chn->buf->i) {
|
|
/* OK this amount of bytes might be forwarded at once */
|
|
b_adv(chn->buf, bytes32);
|
|
return bytes;
|
|
}
|
|
}
|
|
return __channel_forward(chn, bytes);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/* These functions are used to compute various channel content sizes */
|
|
/*********************************************************************/
|
|
|
|
/* Reports non-zero if the channel is empty, which means both its
|
|
* buffer and pipe are empty. The construct looks strange but is
|
|
* jump-less and much more efficient on both 32 and 64-bit than
|
|
* the boolean test.
|
|
*/
|
|
static inline unsigned int channel_is_empty(struct channel *c)
|
|
{
|
|
return !(c->buf->o | (long)c->pipe);
|
|
}
|
|
|
|
/* Returns non-zero if the buffer input has all of its reserve available. This
|
|
* is used to decide when a request or response may be parsed when some data
|
|
* from a previous exchange might still be present.
|
|
*/
|
|
static inline int channel_reserved(const struct channel *chn)
|
|
{
|
|
int rem = chn->buf->size;
|
|
|
|
rem -= chn->buf->o;
|
|
rem -= chn->buf->i;
|
|
rem -= global.tune.maxrewrite;
|
|
return rem >= 0;
|
|
}
|
|
|
|
/* Returns non-zero if the buffer input is considered full. This is used to
|
|
* decide when to stop reading into a buffer when we want to ensure that we
|
|
* leave the reserve untouched after all pending outgoing data are forwarded.
|
|
* The reserved space is taken into account if ->to_forward indicates that an
|
|
* end of transfer is close to happen. Note that both ->buf->o and ->to_forward
|
|
* are considered as available since they're supposed to leave the buffer. The
|
|
* test is optimized to avoid as many operations as possible for the fast case
|
|
* and to be used as an "if" condition.
|
|
*/
|
|
static inline int channel_full(const struct channel *chn)
|
|
{
|
|
int rem = chn->buf->size;
|
|
|
|
rem -= chn->buf->o;
|
|
rem -= chn->buf->i;
|
|
if (!rem)
|
|
return 1; /* buffer already full */
|
|
|
|
if (chn->to_forward >= chn->buf->size ||
|
|
(CHN_INFINITE_FORWARD < MAX_RANGE(typeof(chn->buf->size)) && // just there to ensure gcc
|
|
chn->to_forward == CHN_INFINITE_FORWARD)) // avoids the useless second
|
|
return 0; // test whenever possible
|
|
|
|
rem -= global.tune.maxrewrite;
|
|
rem += chn->buf->o;
|
|
rem += chn->to_forward;
|
|
return rem <= 0;
|
|
}
|
|
|
|
/* Returns true if the channel's input is already closed */
|
|
static inline int channel_input_closed(struct channel *chn)
|
|
{
|
|
return ((chn->flags & CF_SHUTR) != 0);
|
|
}
|
|
|
|
/* Returns true if the channel's output is already closed */
|
|
static inline int channel_output_closed(struct channel *chn)
|
|
{
|
|
return ((chn->flags & CF_SHUTW) != 0);
|
|
}
|
|
|
|
/* Check channel timeouts, and set the corresponding flags. The likely/unlikely
|
|
* have been optimized for fastest normal path. The read/write timeouts are not
|
|
* set if there was activity on the channel. That way, we don't have to update
|
|
* the timeout on every I/O. Note that the analyser timeout is always checked.
|
|
*/
|
|
static inline void channel_check_timeouts(struct channel *chn)
|
|
{
|
|
if (likely(!(chn->flags & (CF_SHUTR|CF_READ_TIMEOUT|CF_READ_ACTIVITY|CF_READ_NOEXP))) &&
|
|
unlikely(tick_is_expired(chn->rex, now_ms)))
|
|
chn->flags |= CF_READ_TIMEOUT;
|
|
|
|
if (likely(!(chn->flags & (CF_SHUTW|CF_WRITE_TIMEOUT|CF_WRITE_ACTIVITY))) &&
|
|
unlikely(tick_is_expired(chn->wex, now_ms)))
|
|
chn->flags |= CF_WRITE_TIMEOUT;
|
|
|
|
if (likely(!(chn->flags & CF_ANA_TIMEOUT)) &&
|
|
unlikely(tick_is_expired(chn->analyse_exp, now_ms)))
|
|
chn->flags |= CF_ANA_TIMEOUT;
|
|
}
|
|
|
|
/* Erase any content from channel <buf> and adjusts flags accordingly. Note
|
|
* that any spliced data is not affected since we may not have any access to
|
|
* it.
|
|
*/
|
|
static inline void channel_erase(struct channel *chn)
|
|
{
|
|
chn->buf->o = 0;
|
|
chn->buf->i = 0;
|
|
chn->to_forward = 0;
|
|
chn->buf->p = chn->buf->data;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP for reads */
|
|
static inline void channel_shutr_now(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_SHUTR_NOW;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP for writes */
|
|
static inline void channel_shutw_now(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_SHUTW_NOW;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP in both directions */
|
|
static inline void channel_abort(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_SHUTR_NOW | CF_SHUTW_NOW;
|
|
chn->flags &= ~CF_AUTO_CONNECT;
|
|
}
|
|
|
|
/* allow the consumer to try to establish a new connection. */
|
|
static inline void channel_auto_connect(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_AUTO_CONNECT;
|
|
}
|
|
|
|
/* prevent the consumer from trying to establish a new connection, and also
|
|
* disable auto shutdown forwarding.
|
|
*/
|
|
static inline void channel_dont_connect(struct channel *chn)
|
|
{
|
|
chn->flags &= ~(CF_AUTO_CONNECT|CF_AUTO_CLOSE);
|
|
}
|
|
|
|
/* allow the producer to forward shutdown requests */
|
|
static inline void channel_auto_close(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_AUTO_CLOSE;
|
|
}
|
|
|
|
/* prevent the producer from forwarding shutdown requests */
|
|
static inline void channel_dont_close(struct channel *chn)
|
|
{
|
|
chn->flags &= ~CF_AUTO_CLOSE;
|
|
}
|
|
|
|
/* allow the producer to read / poll the input */
|
|
static inline void channel_auto_read(struct channel *chn)
|
|
{
|
|
chn->flags &= ~CF_DONT_READ;
|
|
}
|
|
|
|
/* prevent the producer from read / poll the input */
|
|
static inline void channel_dont_read(struct channel *chn)
|
|
{
|
|
chn->flags |= CF_DONT_READ;
|
|
}
|
|
|
|
|
|
/*************************************************/
|
|
/* Buffer operations in the context of a channel */
|
|
/*************************************************/
|
|
|
|
|
|
/* Return the number of reserved bytes in the channel's visible
|
|
* buffer, which ensures that once all pending data are forwarded, the
|
|
* buffer still has global.tune.maxrewrite bytes free. The result is
|
|
* between 0 and global.tune.maxrewrite, which is itself smaller than
|
|
* any chn->size.
|
|
*/
|
|
static inline int buffer_reserved(const struct channel *chn)
|
|
{
|
|
int ret = global.tune.maxrewrite - chn->to_forward - chn->buf->o;
|
|
|
|
if (chn->to_forward == CHN_INFINITE_FORWARD)
|
|
return 0;
|
|
if (ret <= 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
/* Return the max number of bytes the buffer can contain so that once all the
|
|
* pending bytes are forwarded, the buffer still has global.tune.maxrewrite
|
|
* bytes free. The result sits between chn->size - maxrewrite and chn->size.
|
|
*/
|
|
static inline int buffer_max_len(const struct channel *chn)
|
|
{
|
|
return chn->buf->size - buffer_reserved(chn);
|
|
}
|
|
|
|
/* Return the amount of bytes that can be written into the buffer at once,
|
|
* excluding reserved space, which is preserved.
|
|
*/
|
|
static inline int buffer_contig_space_res(const struct channel *chn)
|
|
{
|
|
return buffer_contig_space_with_res(chn->buf, buffer_reserved(chn));
|
|
}
|
|
|
|
/* Returns the amount of space available at the input of the buffer, taking the
|
|
* reserved space into account if ->to_forward indicates that an end of transfer
|
|
* is close to happen. The test is optimized to avoid as many operations as
|
|
* possible for the fast case.
|
|
*/
|
|
static inline int bi_avail(const struct channel *chn)
|
|
{
|
|
int rem = chn->buf->size;
|
|
int rem2;
|
|
|
|
rem -= chn->buf->o;
|
|
rem -= chn->buf->i;
|
|
if (!rem)
|
|
return rem; /* buffer already full */
|
|
|
|
if (chn->to_forward >= chn->buf->size ||
|
|
(CHN_INFINITE_FORWARD < MAX_RANGE(typeof(chn->buf->size)) && // just there to ensure gcc
|
|
chn->to_forward == CHN_INFINITE_FORWARD)) // avoids the useless second
|
|
return rem; // test whenever possible
|
|
|
|
rem2 = rem - global.tune.maxrewrite;
|
|
rem2 += chn->buf->o;
|
|
rem2 += chn->to_forward;
|
|
|
|
if (rem > rem2)
|
|
rem = rem2;
|
|
if (rem > 0)
|
|
return rem;
|
|
return 0;
|
|
}
|
|
|
|
/* Cut the "tail" of the channel's buffer, which means strip it to the length
|
|
* of unsent data only, and kill any remaining unsent data. Any scheduled
|
|
* forwarding is stopped. This is mainly to be used to send error messages
|
|
* after existing data.
|
|
*/
|
|
static inline void bi_erase(struct channel *chn)
|
|
{
|
|
if (!chn->buf->o)
|
|
return channel_erase(chn);
|
|
|
|
chn->to_forward = 0;
|
|
if (!chn->buf->i)
|
|
return;
|
|
|
|
chn->buf->i = 0;
|
|
}
|
|
|
|
/*
|
|
* Advance the channel buffer's read pointer by <len> bytes. This is useful
|
|
* when data have been read directly from the buffer. It is illegal to call
|
|
* this function with <len> causing a wrapping at the end of the buffer. It's
|
|
* the caller's responsibility to ensure that <len> is never larger than
|
|
* chn->o. Channel flag WRITE_PARTIAL is set.
|
|
*/
|
|
static inline void bo_skip(struct channel *chn, int len)
|
|
{
|
|
chn->buf->o -= len;
|
|
|
|
if (buffer_empty(chn->buf))
|
|
chn->buf->p = chn->buf->data;
|
|
|
|
/* notify that some data was written to the SI from the buffer */
|
|
chn->flags |= CF_WRITE_PARTIAL;
|
|
}
|
|
|
|
/* Tries to copy chunk <chunk> into the channel's buffer after length controls.
|
|
* The chn->o and to_forward pointers are updated. If the channel's input is
|
|
* closed, -2 is returned. If the block is too large for this buffer, -3 is
|
|
* returned. If there is not enough room left in the buffer, -1 is returned.
|
|
* Otherwise the number of bytes copied is returned (0 being a valid number).
|
|
* Channel flag READ_PARTIAL is updated if some data can be transferred. The
|
|
* chunk's length is updated with the number of bytes sent.
|
|
*/
|
|
static inline int bi_putchk(struct channel *chn, struct chunk *chunk)
|
|
{
|
|
int ret;
|
|
|
|
ret = bi_putblk(chn, chunk->str, chunk->len);
|
|
if (ret > 0)
|
|
chunk->len -= ret;
|
|
return ret;
|
|
}
|
|
|
|
/* Tries to copy string <str> at once into the channel's buffer after length
|
|
* controls. The chn->o and to_forward pointers are updated. If the channel's
|
|
* input is closed, -2 is returned. If the block is too large for this buffer,
|
|
* -3 is returned. If there is not enough room left in the buffer, -1 is
|
|
* returned. Otherwise the number of bytes copied is returned (0 being a valid
|
|
* number). Channel flag READ_PARTIAL is updated if some data can be
|
|
* transferred.
|
|
*/
|
|
static inline int bi_putstr(struct channel *chn, const char *str)
|
|
{
|
|
return bi_putblk(chn, str, strlen(str));
|
|
}
|
|
|
|
/*
|
|
* Return one char from the channel's buffer. If the buffer is empty and the
|
|
* channel is closed, return -2. If the buffer is just empty, return -1. The
|
|
* buffer's pointer is not advanced, it's up to the caller to call bo_skip(buf,
|
|
* 1) when it has consumed the char. Also note that this function respects the
|
|
* chn->o limit.
|
|
*/
|
|
static inline int bo_getchr(struct channel *chn)
|
|
{
|
|
/* closed or empty + imminent close = -2; empty = -1 */
|
|
if (unlikely((chn->flags & CF_SHUTW) || channel_is_empty(chn))) {
|
|
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW))
|
|
return -2;
|
|
return -1;
|
|
}
|
|
return *buffer_wrap_sub(chn->buf, chn->buf->p - chn->buf->o);
|
|
}
|
|
|
|
|
|
#endif /* _PROTO_CHANNEL_H */
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|