mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-17 20:45:40 +00:00
Instead we're using ns_to_sec(tv_to_ns(&now)) which allows the tv_sec part to disappear. At this point, "now" is only used as a timeval in clock.c where it is updated.
762 lines
25 KiB
C
762 lines
25 KiB
C
/*
|
|
* Queue management functions.
|
|
*
|
|
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
/* Short explanation on the locking, which is far from being trivial : a
|
|
* pendconn is a list element which necessarily is associated with an existing
|
|
* stream. It has pendconn->strm always valid. A pendconn may only be in one of
|
|
* these three states :
|
|
* - unlinked : in this case it is an empty list head ;
|
|
* - linked into the server's queue ;
|
|
* - linked into the proxy's queue.
|
|
*
|
|
* A stream does not necessarily have such a pendconn. Thus the pendconn is
|
|
* designated by the stream->pend_pos pointer. This results in some properties :
|
|
* - pendconn->strm->pend_pos is never NULL for any valid pendconn
|
|
* - if p->node.node.leaf_p is NULL, the element is unlinked,
|
|
* otherwise it necessarily belongs to one of the other lists ; this may
|
|
* not be atomically checked under threads though ;
|
|
* - pendconn->px is never NULL if pendconn->list is not empty
|
|
* - pendconn->srv is never NULL if pendconn->list is in the server's queue,
|
|
* and is always NULL if pendconn->list is in the backend's queue or empty.
|
|
* - pendconn->target is NULL while the element is queued, and points to the
|
|
* assigned server when the pendconn is picked.
|
|
*
|
|
* Threads complicate the design a little bit but rules remain simple :
|
|
* - the server's queue lock must be held at least when manipulating the
|
|
* server's queue, which is when adding a pendconn to the queue and when
|
|
* removing a pendconn from the queue. It protects the queue's integrity.
|
|
*
|
|
* - the proxy's queue lock must be held at least when manipulating the
|
|
* proxy's queue, which is when adding a pendconn to the queue and when
|
|
* removing a pendconn from the queue. It protects the queue's integrity.
|
|
*
|
|
* - both locks are compatible and may be held at the same time.
|
|
*
|
|
* - a pendconn_add() is only performed by the stream which will own the
|
|
* pendconn ; the pendconn is allocated at this moment and returned ; it is
|
|
* added to either the server or the proxy's queue while holding this
|
|
s * queue's lock.
|
|
*
|
|
* - the pendconn is then met by a thread walking over the proxy or server's
|
|
* queue with the respective lock held. This lock is exclusive and the
|
|
* pendconn can only appear in one queue so by definition a single thread
|
|
* may find this pendconn at a time.
|
|
*
|
|
* - the pendconn is unlinked either by its own stream upon success/abort/
|
|
* free, or by another one offering it its server slot. This is achieved by
|
|
* pendconn_process_next_strm() under either the server or proxy's lock,
|
|
* pendconn_redistribute() under the server's lock, pendconn_grab_from_px()
|
|
* under the proxy's lock, or pendconn_unlink() under either the proxy's or
|
|
* the server's lock depending on the queue the pendconn is attached to.
|
|
*
|
|
* - no single operation except the pendconn initialisation prior to the
|
|
* insertion are performed without eithre a queue lock held or the element
|
|
* being unlinked and visible exclusively to its stream.
|
|
*
|
|
* - pendconn_grab_from_px() and pendconn_process_next_strm() assign ->target
|
|
* so that the stream knows what server to work with (via
|
|
* pendconn_dequeue() which sets it on strm->target).
|
|
*
|
|
* - a pendconn doesn't switch between queues, it stays where it is.
|
|
*/
|
|
|
|
#include <import/eb32tree.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/backend.h>
|
|
#include <haproxy/http_rules.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/queue.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/server-t.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/tcp_rules.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/time.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
#define NOW_OFFSET_BOUNDARY() ((now_ms - (TIMER_LOOK_BACK >> 12)) & 0xfffff)
|
|
#define KEY_CLASS(key) ((u32)key & 0xfff00000)
|
|
#define KEY_OFFSET(key) ((u32)key & 0x000fffff)
|
|
#define KEY_CLASS_OFFSET_BOUNDARY(key) (KEY_CLASS(key) | NOW_OFFSET_BOUNDARY())
|
|
#define MAKE_KEY(class, offset) (((u32)(class + 0x7ff) << 20) | ((u32)(now_ms + offset) & 0xfffff))
|
|
|
|
DECLARE_POOL(pool_head_pendconn, "pendconn", sizeof(struct pendconn));
|
|
|
|
/* returns the effective dynamic maxconn for a server, considering the minconn
|
|
* and the proxy's usage relative to its dynamic connections limit. It is
|
|
* expected that 0 < s->minconn <= s->maxconn when this is called. If the
|
|
* server is currently warming up, the slowstart is also applied to the
|
|
* resulting value, which can be lower than minconn in this case, but never
|
|
* less than 1.
|
|
*/
|
|
unsigned int srv_dynamic_maxconn(const struct server *s)
|
|
{
|
|
unsigned int max;
|
|
|
|
if (s->proxy->beconn >= s->proxy->fullconn)
|
|
/* no fullconn or proxy is full */
|
|
max = s->maxconn;
|
|
else if (s->minconn == s->maxconn)
|
|
/* static limit */
|
|
max = s->maxconn;
|
|
else max = MAX(s->minconn,
|
|
s->proxy->beconn * s->maxconn / s->proxy->fullconn);
|
|
|
|
if ((s->cur_state == SRV_ST_STARTING) &&
|
|
ns_to_sec(tv_to_ns(&now)) < s->last_change + s->slowstart &&
|
|
ns_to_sec(tv_to_ns(&now)) >= s->last_change) {
|
|
unsigned int ratio;
|
|
ratio = 100 * (ns_to_sec(tv_to_ns(&now)) - s->last_change) / s->slowstart;
|
|
max = MAX(1, max * ratio / 100);
|
|
}
|
|
return max;
|
|
}
|
|
|
|
/* Remove the pendconn from the server's queue. At this stage, the connection
|
|
* is not really dequeued. It will be done during the process_stream. It is
|
|
* up to the caller to atomically decrement the pending counts.
|
|
*
|
|
* The caller must own the lock on the server queue. The pendconn must still be
|
|
* queued (p->node.leaf_p != NULL) and must be in a server (p->srv != NULL).
|
|
*/
|
|
static void __pendconn_unlink_srv(struct pendconn *p)
|
|
{
|
|
p->strm->logs.srv_queue_pos += _HA_ATOMIC_LOAD(&p->queue->idx) - p->queue_idx;
|
|
eb32_delete(&p->node);
|
|
}
|
|
|
|
/* Remove the pendconn from the proxy's queue. At this stage, the connection
|
|
* is not really dequeued. It will be done during the process_stream. It is
|
|
* up to the caller to atomically decrement the pending counts.
|
|
*
|
|
* The caller must own the lock on the proxy queue. The pendconn must still be
|
|
* queued (p->node.leaf_p != NULL) and must be in the proxy (p->srv == NULL).
|
|
*/
|
|
static void __pendconn_unlink_prx(struct pendconn *p)
|
|
{
|
|
p->strm->logs.prx_queue_pos += _HA_ATOMIC_LOAD(&p->queue->idx) - p->queue_idx;
|
|
eb32_delete(&p->node);
|
|
}
|
|
|
|
/* Locks the queue the pendconn element belongs to. This relies on both p->px
|
|
* and p->srv to be properly initialized (which is always the case once the
|
|
* element has been added).
|
|
*/
|
|
static inline void pendconn_queue_lock(struct pendconn *p)
|
|
{
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &p->queue->lock);
|
|
}
|
|
|
|
/* Unlocks the queue the pendconn element belongs to. This relies on both p->px
|
|
* and p->srv to be properly initialized (which is always the case once the
|
|
* element has been added).
|
|
*/
|
|
static inline void pendconn_queue_unlock(struct pendconn *p)
|
|
{
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &p->queue->lock);
|
|
}
|
|
|
|
/* Removes the pendconn from the server/proxy queue. At this stage, the
|
|
* connection is not really dequeued. It will be done during process_stream().
|
|
* This function takes all the required locks for the operation. The pendconn
|
|
* must be valid, though it doesn't matter if it was already unlinked. Prefer
|
|
* pendconn_cond_unlink() to first check <p>. It also forces a serialization
|
|
* on p->del_lock to make sure another thread currently waking it up finishes
|
|
* first.
|
|
*/
|
|
void pendconn_unlink(struct pendconn *p)
|
|
{
|
|
struct queue *q = p->queue;
|
|
struct proxy *px = q->px;
|
|
struct server *sv = q->sv;
|
|
uint oldidx;
|
|
int done = 0;
|
|
|
|
oldidx = _HA_ATOMIC_LOAD(&p->queue->idx);
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &q->lock);
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &p->del_lock);
|
|
|
|
if (p->node.node.leaf_p) {
|
|
eb32_delete(&p->node);
|
|
done = 1;
|
|
}
|
|
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &p->del_lock);
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &q->lock);
|
|
|
|
if (done) {
|
|
oldidx -= p->queue_idx;
|
|
if (sv)
|
|
p->strm->logs.srv_queue_pos += oldidx;
|
|
else
|
|
p->strm->logs.prx_queue_pos += oldidx;
|
|
|
|
_HA_ATOMIC_DEC(&q->length);
|
|
_HA_ATOMIC_DEC(&px->totpend);
|
|
}
|
|
}
|
|
|
|
/* Retrieve the first pendconn from tree <pendconns>. Classes are always
|
|
* considered first, then the time offset. The time does wrap, so the
|
|
* lookup is performed twice, one to retrieve the first class and a second
|
|
* time to retrieve the earliest time in this class.
|
|
*/
|
|
static struct pendconn *pendconn_first(struct eb_root *pendconns)
|
|
{
|
|
struct eb32_node *node, *node2 = NULL;
|
|
u32 key;
|
|
|
|
node = eb32_first(pendconns);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
key = KEY_CLASS_OFFSET_BOUNDARY(node->key);
|
|
node2 = eb32_lookup_ge(pendconns, key);
|
|
|
|
if (!node2 ||
|
|
KEY_CLASS(node2->key) != KEY_CLASS(node->key)) {
|
|
/* no other key in the tree, or in this class */
|
|
return eb32_entry(node, struct pendconn, node);
|
|
}
|
|
|
|
/* found a better key */
|
|
return eb32_entry(node2, struct pendconn, node);
|
|
}
|
|
|
|
/* Process the next pending connection from either a server or a proxy, and
|
|
* returns a strictly positive value on success (see below). If no pending
|
|
* connection is found, 0 is returned. Note that neither <srv> nor <px> may be
|
|
* NULL. Priority is given to the oldest request in the queue if both <srv> and
|
|
* <px> have pending requests. This ensures that no request will be left
|
|
* unserved. The <px> queue is not considered if the server (or a tracked
|
|
* server) is not RUNNING, is disabled, or has a null weight (server going
|
|
* down). The <srv> queue is still considered in this case, because if some
|
|
* connections remain there, it means that some requests have been forced there
|
|
* after it was seen down (eg: due to option persist). The stream is
|
|
* immediately marked as "assigned", and both its <srv> and <srv_conn> are set
|
|
* to <srv>.
|
|
*
|
|
* The proxy's queue will be consulted only if px_ok is non-zero.
|
|
*
|
|
* This function must only be called if the server queue is locked _AND_ the
|
|
* proxy queue is not. Today it is only called by process_srv_queue.
|
|
* When a pending connection is dequeued, this function returns 1 if a pendconn
|
|
* is dequeued, otherwise 0.
|
|
*/
|
|
static int pendconn_process_next_strm(struct server *srv, struct proxy *px, int px_ok)
|
|
{
|
|
struct pendconn *p = NULL;
|
|
struct pendconn *pp = NULL;
|
|
u32 pkey, ppkey;
|
|
|
|
p = NULL;
|
|
if (srv->queue.length)
|
|
p = pendconn_first(&srv->queue.head);
|
|
|
|
pp = NULL;
|
|
if (px_ok && px->queue.length) {
|
|
/* the lock only remains held as long as the pp is
|
|
* in the proxy's queue.
|
|
*/
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &px->queue.lock);
|
|
pp = pendconn_first(&px->queue.head);
|
|
if (!pp)
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &px->queue.lock);
|
|
}
|
|
|
|
if (!p && !pp)
|
|
return 0;
|
|
else if (!pp)
|
|
goto use_p; /* p != NULL */
|
|
else if (!p)
|
|
goto use_pp; /* pp != NULL */
|
|
|
|
/* p != NULL && pp != NULL*/
|
|
|
|
if (KEY_CLASS(p->node.key) < KEY_CLASS(pp->node.key))
|
|
goto use_p;
|
|
|
|
if (KEY_CLASS(pp->node.key) < KEY_CLASS(p->node.key))
|
|
goto use_pp;
|
|
|
|
pkey = KEY_OFFSET(p->node.key);
|
|
ppkey = KEY_OFFSET(pp->node.key);
|
|
|
|
if (pkey < NOW_OFFSET_BOUNDARY())
|
|
pkey += 0x100000; // key in the future
|
|
|
|
if (ppkey < NOW_OFFSET_BOUNDARY())
|
|
ppkey += 0x100000; // key in the future
|
|
|
|
if (pkey <= ppkey)
|
|
goto use_p;
|
|
|
|
use_pp:
|
|
/* we'd like to release the proxy lock ASAP to let other threads
|
|
* work with other servers. But for this we must first hold the
|
|
* pendconn alive to prevent a removal from its owning stream.
|
|
*/
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &pp->del_lock);
|
|
|
|
/* now the element won't go, we can release the proxy */
|
|
__pendconn_unlink_prx(pp);
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &px->queue.lock);
|
|
|
|
pp->strm_flags |= SF_ASSIGNED;
|
|
pp->target = srv;
|
|
stream_add_srv_conn(pp->strm, srv);
|
|
|
|
/* we must wake the task up before releasing the lock as it's the only
|
|
* way to make sure the task still exists. The pendconn cannot vanish
|
|
* under us since the task will need to take the lock anyway and to wait
|
|
* if it wakes up on a different thread.
|
|
*/
|
|
task_wakeup(pp->strm->task, TASK_WOKEN_RES);
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &pp->del_lock);
|
|
|
|
_HA_ATOMIC_DEC(&px->queue.length);
|
|
_HA_ATOMIC_INC(&px->queue.idx);
|
|
return 1;
|
|
|
|
use_p:
|
|
/* we don't need the px queue lock anymore, we have the server's lock */
|
|
if (pp)
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &px->queue.lock);
|
|
|
|
p->strm_flags |= SF_ASSIGNED;
|
|
p->target = srv;
|
|
stream_add_srv_conn(p->strm, srv);
|
|
|
|
/* we must wake the task up before releasing the lock as it's the only
|
|
* way to make sure the task still exists. The pendconn cannot vanish
|
|
* under us since the task will need to take the lock anyway and to wait
|
|
* if it wakes up on a different thread.
|
|
*/
|
|
task_wakeup(p->strm->task, TASK_WOKEN_RES);
|
|
__pendconn_unlink_srv(p);
|
|
|
|
_HA_ATOMIC_DEC(&srv->queue.length);
|
|
_HA_ATOMIC_INC(&srv->queue.idx);
|
|
return 1;
|
|
}
|
|
|
|
/* Manages a server's connection queue. This function will try to dequeue as
|
|
* many pending streams as possible, and wake them up.
|
|
*/
|
|
void process_srv_queue(struct server *s)
|
|
{
|
|
struct server *ref = s->track ? s->track : s;
|
|
struct proxy *p = s->proxy;
|
|
int maxconn;
|
|
int stop = 0;
|
|
int done = 0;
|
|
int px_ok;
|
|
|
|
/* if a server is not usable or backup and must not be used
|
|
* to dequeue backend requests.
|
|
*/
|
|
px_ok = srv_currently_usable(ref) &&
|
|
(!(s->flags & SRV_F_BACKUP) ||
|
|
(!p->srv_act &&
|
|
(s == p->lbprm.fbck || (p->options & PR_O_USE_ALL_BK))));
|
|
|
|
/* let's repeat that under the lock on each round. Threads competing
|
|
* for the same server will give up, knowing that at least one of
|
|
* them will check the conditions again before quitting. In order
|
|
* to avoid the deadly situation where one thread spends its time
|
|
* dequeueing for others, we limit the number of rounds it does.
|
|
* However we still re-enter the loop for one pass if there's no
|
|
* more served, otherwise we could end up with no other thread
|
|
* trying to dequeue them.
|
|
*/
|
|
while (!stop && (done < global.tune.maxpollevents || !s->served) &&
|
|
s->served < (maxconn = srv_dynamic_maxconn(s))) {
|
|
if (HA_SPIN_TRYLOCK(QUEUE_LOCK, &s->queue.lock) != 0)
|
|
break;
|
|
|
|
while (s->served < maxconn) {
|
|
stop = !pendconn_process_next_strm(s, p, px_ok);
|
|
if (stop)
|
|
break;
|
|
_HA_ATOMIC_INC(&s->served);
|
|
done++;
|
|
if (done >= global.tune.maxpollevents)
|
|
break;
|
|
}
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &s->queue.lock);
|
|
}
|
|
|
|
if (done) {
|
|
_HA_ATOMIC_SUB(&p->totpend, done);
|
|
_HA_ATOMIC_ADD(&p->served, done);
|
|
__ha_barrier_atomic_store();
|
|
if (p->lbprm.server_take_conn)
|
|
p->lbprm.server_take_conn(s);
|
|
}
|
|
}
|
|
|
|
/* Adds the stream <strm> to the pending connection queue of server <strm>->srv
|
|
* or to the one of <strm>->proxy if srv is NULL. All counters and back pointers
|
|
* are updated accordingly. Returns NULL if no memory is available, otherwise the
|
|
* pendconn itself. If the stream was already marked as served, its flag is
|
|
* cleared. It is illegal to call this function with a non-NULL strm->srv_conn.
|
|
* The stream's queue position is counted with an offset of -1 because we want
|
|
* to make sure that being at the first position in the queue reports 1.
|
|
*
|
|
* The queue is sorted by the composition of the priority_class, and the current
|
|
* timestamp offset by strm->priority_offset. The timestamp is in milliseconds
|
|
* and truncated to 20 bits, so will wrap every 17m28s575ms.
|
|
* The offset can be positive or negative, and an offset of 0 puts it in the
|
|
* middle of this range (~ 8 min). Note that this also means if the adjusted
|
|
* timestamp wraps around, the request will be misinterpreted as being of
|
|
* the highest priority for that priority class.
|
|
*
|
|
* This function must be called by the stream itself, so in the context of
|
|
* process_stream.
|
|
*/
|
|
struct pendconn *pendconn_add(struct stream *strm)
|
|
{
|
|
struct pendconn *p;
|
|
struct proxy *px;
|
|
struct server *srv;
|
|
struct queue *q;
|
|
unsigned int *max_ptr;
|
|
unsigned int old_max, new_max;
|
|
|
|
p = pool_alloc(pool_head_pendconn);
|
|
if (!p)
|
|
return NULL;
|
|
|
|
p->target = NULL;
|
|
p->node.key = MAKE_KEY(strm->priority_class, strm->priority_offset);
|
|
p->strm = strm;
|
|
p->strm_flags = strm->flags;
|
|
HA_SPIN_INIT(&p->del_lock);
|
|
strm->pend_pos = p;
|
|
|
|
px = strm->be;
|
|
if (strm->flags & SF_ASSIGNED)
|
|
srv = objt_server(strm->target);
|
|
else
|
|
srv = NULL;
|
|
|
|
if (srv) {
|
|
q = &srv->queue;
|
|
max_ptr = &srv->counters.nbpend_max;
|
|
}
|
|
else {
|
|
q = &px->queue;
|
|
max_ptr = &px->be_counters.nbpend_max;
|
|
}
|
|
|
|
p->queue = q;
|
|
p->queue_idx = _HA_ATOMIC_LOAD(&q->idx) - 1; // for logging only
|
|
new_max = _HA_ATOMIC_ADD_FETCH(&q->length, 1);
|
|
old_max = _HA_ATOMIC_LOAD(max_ptr);
|
|
while (new_max > old_max) {
|
|
if (likely(_HA_ATOMIC_CAS(max_ptr, &old_max, new_max)))
|
|
break;
|
|
}
|
|
__ha_barrier_atomic_store();
|
|
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &q->lock);
|
|
eb32_insert(&q->head, &p->node);
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &q->lock);
|
|
|
|
_HA_ATOMIC_INC(&px->totpend);
|
|
return p;
|
|
}
|
|
|
|
/* Redistribute pending connections when a server goes down. The number of
|
|
* connections redistributed is returned. It will take the server queue lock
|
|
* and does not use nor depend on other locks.
|
|
*/
|
|
int pendconn_redistribute(struct server *s)
|
|
{
|
|
struct pendconn *p;
|
|
struct eb32_node *node, *nodeb;
|
|
int xferred = 0;
|
|
|
|
/* The REDISP option was specified. We will ignore cookie and force to
|
|
* balance or use the dispatcher. */
|
|
if ((s->proxy->options & (PR_O_REDISP|PR_O_PERSIST)) != PR_O_REDISP)
|
|
return 0;
|
|
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &s->queue.lock);
|
|
for (node = eb32_first(&s->queue.head); node; node = nodeb) {
|
|
nodeb = eb32_next(node);
|
|
|
|
p = eb32_entry(node, struct pendconn, node);
|
|
if (p->strm_flags & SF_FORCE_PRST)
|
|
continue;
|
|
|
|
/* it's left to the dispatcher to choose a server */
|
|
__pendconn_unlink_srv(p);
|
|
p->strm_flags &= ~(SF_DIRECT | SF_ASSIGNED);
|
|
|
|
task_wakeup(p->strm->task, TASK_WOKEN_RES);
|
|
xferred++;
|
|
}
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &s->queue.lock);
|
|
|
|
if (xferred) {
|
|
_HA_ATOMIC_SUB(&s->queue.length, xferred);
|
|
_HA_ATOMIC_SUB(&s->proxy->totpend, xferred);
|
|
}
|
|
return xferred;
|
|
}
|
|
|
|
/* Check for pending connections at the backend, and assign some of them to
|
|
* the server coming up. The server's weight is checked before being assigned
|
|
* connections it may not be able to handle. The total number of transferred
|
|
* connections is returned. It will take the proxy's queue lock and will not
|
|
* use nor depend on other locks.
|
|
*/
|
|
int pendconn_grab_from_px(struct server *s)
|
|
{
|
|
struct pendconn *p;
|
|
int maxconn, xferred = 0;
|
|
|
|
if (!srv_currently_usable(s))
|
|
return 0;
|
|
|
|
/* if this is a backup server and there are active servers or at
|
|
* least another backup server was elected, then this one must
|
|
* not dequeue requests from the proxy.
|
|
*/
|
|
if ((s->flags & SRV_F_BACKUP) &&
|
|
(s->proxy->srv_act ||
|
|
((s != s->proxy->lbprm.fbck) && !(s->proxy->options & PR_O_USE_ALL_BK))))
|
|
return 0;
|
|
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &s->proxy->queue.lock);
|
|
maxconn = srv_dynamic_maxconn(s);
|
|
while ((p = pendconn_first(&s->proxy->queue.head))) {
|
|
if (s->maxconn && s->served + xferred >= maxconn)
|
|
break;
|
|
|
|
__pendconn_unlink_prx(p);
|
|
p->target = s;
|
|
|
|
task_wakeup(p->strm->task, TASK_WOKEN_RES);
|
|
xferred++;
|
|
}
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &s->proxy->queue.lock);
|
|
if (xferred) {
|
|
_HA_ATOMIC_SUB(&s->proxy->queue.length, xferred);
|
|
_HA_ATOMIC_SUB(&s->proxy->totpend, xferred);
|
|
}
|
|
return xferred;
|
|
}
|
|
|
|
/* Try to dequeue pending connection attached to the stream <strm>. It must
|
|
* always exists here. If the pendconn is still linked to the server or the
|
|
* proxy queue, nothing is done and the function returns 1. Otherwise,
|
|
* <strm>->flags and <strm>->target are updated, the pendconn is released and 0
|
|
* is returned.
|
|
*
|
|
* This function must be called by the stream itself, so in the context of
|
|
* process_stream.
|
|
*/
|
|
int pendconn_dequeue(struct stream *strm)
|
|
{
|
|
struct pendconn *p;
|
|
int is_unlinked;
|
|
|
|
/* unexpected case because it is called by the stream itself and
|
|
* only the stream can release a pendconn. So it is only
|
|
* possible if a pendconn is released by someone else or if the
|
|
* stream is supposed to be queued but without its associated
|
|
* pendconn. In both cases it is a bug! */
|
|
BUG_ON(!strm->pend_pos);
|
|
|
|
p = strm->pend_pos;
|
|
|
|
/* note below : we need to grab the queue's lock to check for emptiness
|
|
* because we don't want a partial _grab_from_px() or _redistribute()
|
|
* to be called in parallel and show an empty list without having the
|
|
* time to finish. With this we know that if we see the element
|
|
* unlinked, these functions were completely done.
|
|
*/
|
|
pendconn_queue_lock(p);
|
|
is_unlinked = !p->node.node.leaf_p;
|
|
pendconn_queue_unlock(p);
|
|
|
|
/* serialize to make sure the element was finished processing */
|
|
HA_SPIN_LOCK(QUEUE_LOCK, &p->del_lock);
|
|
HA_SPIN_UNLOCK(QUEUE_LOCK, &p->del_lock);
|
|
|
|
if (!is_unlinked)
|
|
return 1;
|
|
|
|
/* the pendconn is not queued anymore and will not be so we're safe
|
|
* to proceed.
|
|
*/
|
|
strm->flags &= ~(SF_DIRECT | SF_ASSIGNED);
|
|
strm->flags |= p->strm_flags & (SF_DIRECT | SF_ASSIGNED);
|
|
|
|
/* the entry might have been redistributed to another server */
|
|
if (!(strm->flags & SF_ASSIGNED))
|
|
sockaddr_free(&strm->scb->dst);
|
|
|
|
if (p->target) {
|
|
/* a server picked this pendconn, it must skip LB */
|
|
strm->target = &p->target->obj_type;
|
|
strm->flags |= SF_ASSIGNED;
|
|
}
|
|
|
|
strm->pend_pos = NULL;
|
|
pool_free(pool_head_pendconn, p);
|
|
return 0;
|
|
}
|
|
|
|
static enum act_return action_set_priority_class(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
struct sample *smp;
|
|
|
|
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
|
|
if (!smp)
|
|
return ACT_RET_CONT;
|
|
|
|
s->priority_class = queue_limit_class(smp->data.u.sint);
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
static enum act_return action_set_priority_offset(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
struct sample *smp;
|
|
|
|
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
|
|
if (!smp)
|
|
return ACT_RET_CONT;
|
|
|
|
s->priority_offset = queue_limit_offset(smp->data.u.sint);
|
|
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
static enum act_parse_ret parse_set_priority_class(const char **args, int *arg, struct proxy *px,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
unsigned int where = 0;
|
|
|
|
rule->arg.expr = sample_parse_expr((char **)args, arg, px->conf.args.file,
|
|
px->conf.args.line, err, &px->conf.args, NULL);
|
|
if (!rule->arg.expr)
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
if (px->cap & PR_CAP_FE)
|
|
where |= SMP_VAL_FE_HRQ_HDR;
|
|
if (px->cap & PR_CAP_BE)
|
|
where |= SMP_VAL_BE_HRQ_HDR;
|
|
|
|
if (!(rule->arg.expr->fetch->val & where)) {
|
|
memprintf(err,
|
|
"fetch method '%s' extracts information from '%s', none of which is available here",
|
|
args[0], sample_src_names(rule->arg.expr->fetch->use));
|
|
free(rule->arg.expr);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
rule->action = ACT_CUSTOM;
|
|
rule->action_ptr = action_set_priority_class;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
static enum act_parse_ret parse_set_priority_offset(const char **args, int *arg, struct proxy *px,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
unsigned int where = 0;
|
|
|
|
rule->arg.expr = sample_parse_expr((char **)args, arg, px->conf.args.file,
|
|
px->conf.args.line, err, &px->conf.args, NULL);
|
|
if (!rule->arg.expr)
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
if (px->cap & PR_CAP_FE)
|
|
where |= SMP_VAL_FE_HRQ_HDR;
|
|
if (px->cap & PR_CAP_BE)
|
|
where |= SMP_VAL_BE_HRQ_HDR;
|
|
|
|
if (!(rule->arg.expr->fetch->val & where)) {
|
|
memprintf(err,
|
|
"fetch method '%s' extracts information from '%s', none of which is available here",
|
|
args[0], sample_src_names(rule->arg.expr->fetch->use));
|
|
free(rule->arg.expr);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
rule->action = ACT_CUSTOM;
|
|
rule->action_ptr = action_set_priority_offset;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
static struct action_kw_list tcp_cont_kws = {ILH, {
|
|
{ "set-priority-class", parse_set_priority_class },
|
|
{ "set-priority-offset", parse_set_priority_offset },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &tcp_cont_kws);
|
|
|
|
static struct action_kw_list http_req_kws = {ILH, {
|
|
{ "set-priority-class", parse_set_priority_class },
|
|
{ "set-priority-offset", parse_set_priority_offset },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_kws);
|
|
|
|
static int
|
|
smp_fetch_priority_class(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->priority_class;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
smp_fetch_priority_offset(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->priority_offset;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "prio_class", smp_fetch_priority_class, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "prio_offset", smp_fetch_priority_offset, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ /* END */},
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|