mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-11 03:31:36 +00:00
Show the memory usage and the max memory available for zlib. The value stored is now the memory used instead of the remaining available memory.
606 lines
14 KiB
C
606 lines
14 KiB
C
/*
|
|
* HTTP compression.
|
|
*
|
|
* Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
|
|
* William Lallemand <wlallemand@exceliance.fr>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#ifdef USE_ZLIB
|
|
/* Note: the crappy zlib and openssl libs both define the "free_func" type.
|
|
* That's a very clever idea to use such a generic name in general purpose
|
|
* libraries, really... The zlib one is easier to redefine than openssl's,
|
|
* so let's only fix this one.
|
|
*/
|
|
#define free_func zlib_free_func
|
|
#include <zlib.h>
|
|
#undef free_func
|
|
#endif /* USE_ZLIB */
|
|
|
|
#include <common/compat.h>
|
|
#include <common/memory.h>
|
|
|
|
#include <types/global.h>
|
|
#include <types/compression.h>
|
|
|
|
#include <proto/compression.h>
|
|
#include <proto/freq_ctr.h>
|
|
#include <proto/proto_http.h>
|
|
|
|
|
|
#ifdef USE_ZLIB
|
|
|
|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
|
|
static void free_zlib(void *opaque, void *ptr);
|
|
|
|
/* zlib allocation */
|
|
static struct pool_head *zlib_pool_deflate_state = NULL;
|
|
static struct pool_head *zlib_pool_window = NULL;
|
|
static struct pool_head *zlib_pool_prev = NULL;
|
|
static struct pool_head *zlib_pool_head = NULL;
|
|
static struct pool_head *zlib_pool_pending_buf = NULL;
|
|
|
|
long zlib_used_memory = 0;
|
|
|
|
#endif
|
|
|
|
static struct pool_head *pool_comp_ctx = NULL;
|
|
|
|
|
|
const struct comp_algo comp_algos[] =
|
|
{
|
|
{ "identity", 8, identity_init, identity_add_data, identity_flush, identity_reset, identity_end },
|
|
#ifdef USE_ZLIB
|
|
{ "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end },
|
|
{ "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end },
|
|
#endif /* USE_ZLIB */
|
|
{ NULL, 0, NULL , NULL, NULL, NULL, NULL }
|
|
};
|
|
|
|
/*
|
|
* Add a content-type in the configuration
|
|
*/
|
|
int comp_append_type(struct comp *comp, const char *type)
|
|
{
|
|
struct comp_type *comp_type;
|
|
|
|
comp_type = calloc(1, sizeof(struct comp_type));
|
|
comp_type->name_len = strlen(type);
|
|
comp_type->name = strdup(type);
|
|
comp_type->next = comp->types;
|
|
comp->types = comp_type;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add an algorithm in the configuration
|
|
*/
|
|
int comp_append_algo(struct comp *comp, const char *algo)
|
|
{
|
|
struct comp_algo *comp_algo;
|
|
int i;
|
|
|
|
for (i = 0; comp_algos[i].name; i++) {
|
|
if (!strcmp(algo, comp_algos[i].name)) {
|
|
comp_algo = calloc(1, sizeof(struct comp_algo));
|
|
memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
|
|
comp_algo->next = comp->algos;
|
|
comp->algos = comp_algo;
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* emit the chunksize followed by a CRLF on the output and return the number of
|
|
* bytes written. Appends <add_crlf> additional CRLF after the first one. Chunk
|
|
* sizes are truncated to 6 hex digits (16 MB) and padded left. The caller is
|
|
* responsible for ensuring there is enough room left in the output buffer for
|
|
* the string (8 bytes * add_crlf*2).
|
|
*/
|
|
int http_emit_chunk_size(char *out, unsigned int chksz, int add_crlf)
|
|
{
|
|
int shift;
|
|
int pos = 0;
|
|
|
|
for (shift = 20; shift >= 0; shift -= 4)
|
|
out[pos++] = hextab[(chksz >> shift) & 0xF];
|
|
|
|
do {
|
|
out[pos++] = '\r';
|
|
out[pos++] = '\n';
|
|
} while (--add_crlf >= 0);
|
|
|
|
return pos;
|
|
}
|
|
|
|
/*
|
|
* Init HTTP compression
|
|
*/
|
|
int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out)
|
|
{
|
|
struct http_msg *msg = &s->txn.rsp;
|
|
int left;
|
|
|
|
/* not enough space */
|
|
if (in->size - buffer_len(in) < 40)
|
|
return -1;
|
|
|
|
/*
|
|
* Skip data, we don't need them in the new buffer. They are results
|
|
* of CHUNK_CRLF and CHUNK_SIZE parsing.
|
|
*/
|
|
b_adv(in, msg->next);
|
|
msg->next = 0;
|
|
msg->sov = 0;
|
|
msg->sol = 0;
|
|
|
|
out->size = global.tune.bufsize;
|
|
out->i = 0;
|
|
out->o = 0;
|
|
out->p = out->data;
|
|
/* copy output data */
|
|
if (in->o > 0) {
|
|
left = in->o - bo_contig_data(in);
|
|
memcpy(out->data, bo_ptr(in), bo_contig_data(in));
|
|
out->p += bo_contig_data(in);
|
|
if (left > 0) { /* second part of the buffer */
|
|
memcpy(out->p, in->data, left);
|
|
out->p += left;
|
|
}
|
|
out->o = in->o;
|
|
}
|
|
out->i += http_emit_chunk_size(out->p, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add data to compress
|
|
*/
|
|
int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out)
|
|
{
|
|
struct http_msg *msg = &s->txn.rsp;
|
|
int consumed_data = 0;
|
|
int data_process_len;
|
|
int left;
|
|
int ret;
|
|
|
|
/*
|
|
* Skip data, we don't need them in the new buffer. They are results
|
|
* of CHUNK_CRLF and CHUNK_SIZE parsing.
|
|
*/
|
|
b_adv(in, msg->next);
|
|
msg->next = 0;
|
|
msg->sov = 0;
|
|
msg->sol = 0;
|
|
|
|
/*
|
|
* select the smallest size between the announced chunk size, the input
|
|
* data, and the available output buffer size
|
|
*/
|
|
data_process_len = MIN(in->i, msg->chunk_len);
|
|
data_process_len = MIN(out->size - buffer_len(out), data_process_len);
|
|
|
|
left = data_process_len - bi_contig_data(in);
|
|
if (left <= 0) {
|
|
consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), data_process_len, out);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
} else {
|
|
consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), bi_contig_data(in), out);
|
|
if (ret < 0)
|
|
return -1;
|
|
consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, in->data, left, out);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
|
|
b_adv(in, data_process_len);
|
|
msg->chunk_len -= data_process_len;
|
|
|
|
return consumed_data;
|
|
}
|
|
|
|
/*
|
|
* Flush data in process, and write the header and footer of the chunk. Upon
|
|
* success, in and out buffers are swapped to avoid a copy.
|
|
*/
|
|
int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end)
|
|
{
|
|
int to_forward;
|
|
int left;
|
|
struct http_msg *msg = &s->txn.rsp;
|
|
struct buffer *ib = *in, *ob = *out;
|
|
|
|
#ifdef USE_ZLIB
|
|
int ret;
|
|
|
|
/* flush data here */
|
|
|
|
if (end)
|
|
ret = s->comp_algo->flush(s->comp_ctx, ob, Z_FINISH); /* end of data */
|
|
else
|
|
ret = s->comp_algo->flush(s->comp_ctx, ob, Z_SYNC_FLUSH); /* end of buffer */
|
|
|
|
if (ret < 0)
|
|
return -1; /* flush failed */
|
|
|
|
#endif /* USE_ZLIB */
|
|
|
|
if (ob->i > 8) {
|
|
/* more than a chunk size => some data were emitted */
|
|
char *tail = ob->p + ob->i;
|
|
|
|
/* write real size at the begining of the chunk, no need of wrapping */
|
|
http_emit_chunk_size(ob->p, ob->i - 8, 0);
|
|
|
|
/* chunked encoding requires CRLF after data */
|
|
*tail++ = '\r';
|
|
*tail++ = '\n';
|
|
|
|
if (!(msg->flags & HTTP_MSGF_TE_CHNK) && msg->chunk_len == 0) {
|
|
/* End of data, 0<CRLF><CRLF> is needed but we're not
|
|
* in chunked mode on input so we must add it ourselves.
|
|
*/
|
|
memcpy(tail, "0\r\n\r\n", 5);
|
|
tail += 5;
|
|
}
|
|
ob->i = tail - ob->p;
|
|
} else {
|
|
/* no data were sent, cancel the chunk size */
|
|
ob->i = 0;
|
|
}
|
|
|
|
to_forward = ob->i;
|
|
/* update input rate */
|
|
if (s->comp_ctx && s->comp_ctx->cur_lvl > 0)
|
|
update_freq_ctr(&global.comp_bps_in, ib->o - ob->o);
|
|
|
|
/* copy the remaining data in the tmp buffer. */
|
|
if (ib->i > 0) {
|
|
left = ib->i - bi_contig_data(ib);
|
|
memcpy(bi_end(ob), bi_ptr(ib), bi_contig_data(ib));
|
|
ob->i += bi_contig_data(ib);
|
|
if (left > 0) {
|
|
memcpy(bi_end(ob), ib->data, left);
|
|
ob->i += left;
|
|
}
|
|
}
|
|
|
|
/* swap the buffers */
|
|
*in = ob;
|
|
*out = ib;
|
|
|
|
if (s->comp_ctx && s->comp_ctx->cur_lvl > 0)
|
|
update_freq_ctr(&global.comp_bps_out, to_forward);
|
|
|
|
/* forward the new chunk without remaining data */
|
|
b_adv(ob, to_forward);
|
|
|
|
/* if there are data between p and next, there are trailers, must forward them */
|
|
b_adv(ob, msg->next);
|
|
msg->next = 0;
|
|
|
|
return to_forward;
|
|
}
|
|
|
|
/*
|
|
* Alloc the comp_ctx
|
|
*/
|
|
static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
|
|
{
|
|
#ifdef USE_ZLIB
|
|
z_stream *strm;
|
|
|
|
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
|
|
return -1;
|
|
#endif
|
|
|
|
if (unlikely(pool_comp_ctx == NULL))
|
|
pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED);
|
|
|
|
*comp_ctx = pool_alloc2(pool_comp_ctx);
|
|
if (*comp_ctx == NULL)
|
|
return -1;
|
|
#ifdef USE_ZLIB
|
|
zlib_used_memory += sizeof(struct comp_ctx);
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
strm->zalloc = alloc_zlib;
|
|
strm->zfree = free_zlib;
|
|
strm->opaque = *comp_ctx;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dealloc the comp_ctx
|
|
*/
|
|
static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
|
|
{
|
|
if (!*comp_ctx)
|
|
return 0;
|
|
|
|
pool_free2(pool_comp_ctx, *comp_ctx);
|
|
*comp_ctx = NULL;
|
|
|
|
#ifdef USE_ZLIB
|
|
zlib_used_memory -= sizeof(struct comp_ctx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************
|
|
**** Identity algorithm ****
|
|
****************************/
|
|
|
|
/*
|
|
* Init the identity algorithm
|
|
*/
|
|
int identity_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process data
|
|
* Return size of consumed data or -1 on error
|
|
*/
|
|
int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
|
|
{
|
|
char *out_data = bi_end(out);
|
|
int out_len = out->size - buffer_len(out);
|
|
|
|
if (out_len < in_len)
|
|
return -1;
|
|
|
|
memcpy(out_data, in_data, in_len);
|
|
|
|
out->i += in_len;
|
|
|
|
return in_len;
|
|
}
|
|
|
|
int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int identity_reset(struct comp_ctx *comp_ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deinit the algorithm
|
|
*/
|
|
int identity_end(struct comp_ctx **comp_ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef USE_ZLIB
|
|
/*
|
|
* This is a tricky allocation function using the zlib.
|
|
* This is based on the allocation order in deflateInit2.
|
|
*/
|
|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
|
|
{
|
|
struct comp_ctx *ctx = opaque;
|
|
static char round = 0; /* order in deflateInit2 */
|
|
void *buf = NULL;
|
|
|
|
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
|
|
goto end;
|
|
|
|
switch (round) {
|
|
case 0:
|
|
if (zlib_pool_deflate_state == NULL)
|
|
zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
|
|
ctx->zlib_deflate_state = buf = pool_alloc2(zlib_pool_deflate_state);
|
|
break;
|
|
|
|
case 1:
|
|
if (zlib_pool_window == NULL)
|
|
zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
|
|
ctx->zlib_window = buf = pool_alloc2(zlib_pool_window);
|
|
break;
|
|
|
|
case 2:
|
|
if (zlib_pool_prev == NULL)
|
|
zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
|
|
ctx->zlib_prev = buf = pool_alloc2(zlib_pool_prev);
|
|
break;
|
|
|
|
case 3:
|
|
if (zlib_pool_head == NULL)
|
|
zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
|
|
ctx->zlib_head = buf = pool_alloc2(zlib_pool_head);
|
|
break;
|
|
|
|
case 4:
|
|
if (zlib_pool_pending_buf == NULL)
|
|
zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
|
|
ctx->zlib_pending_buf = buf = pool_alloc2(zlib_pool_pending_buf);
|
|
break;
|
|
}
|
|
if (buf != NULL)
|
|
zlib_used_memory += items * size;
|
|
|
|
end:
|
|
|
|
/* deflateInit2() first allocates and checks the deflate_state, then if
|
|
* it succeeds, it allocates all other 4 areas at ones and checks them
|
|
* at the end. So we want to correctly count the rounds depending on when
|
|
* zlib is supposed to abort.
|
|
*/
|
|
if (buf || round)
|
|
round = (round + 1) % 5;
|
|
return buf;
|
|
}
|
|
|
|
static void free_zlib(void *opaque, void *ptr)
|
|
{
|
|
struct comp_ctx *ctx = opaque;
|
|
struct pool_head *pool = NULL;
|
|
|
|
if (ptr == ctx->zlib_window)
|
|
pool = zlib_pool_window;
|
|
else if (ptr == ctx->zlib_deflate_state)
|
|
pool = zlib_pool_deflate_state;
|
|
else if (ptr == ctx->zlib_prev)
|
|
pool = zlib_pool_prev;
|
|
else if (ptr == ctx->zlib_head)
|
|
pool = zlib_pool_head;
|
|
else if (ptr == ctx->zlib_pending_buf)
|
|
pool = zlib_pool_pending_buf;
|
|
|
|
pool_free2(pool, ptr);
|
|
zlib_used_memory -= pool->size;
|
|
}
|
|
|
|
/**************************
|
|
**** gzip algorithm ****
|
|
***************************/
|
|
int gzip_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
z_stream *strm;
|
|
|
|
if (init_comp_ctx(comp_ctx) < 0)
|
|
return -1;
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
|
|
if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
|
|
deinit_comp_ctx(comp_ctx);
|
|
return -1;
|
|
}
|
|
|
|
(*comp_ctx)->cur_lvl = level;
|
|
|
|
return 0;
|
|
}
|
|
/**************************
|
|
**** Deflate algorithm ****
|
|
***************************/
|
|
|
|
int deflate_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
z_stream *strm;
|
|
|
|
if (init_comp_ctx(comp_ctx) < 0)
|
|
return -1;
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
|
|
if (deflateInit(strm, level) != Z_OK) {
|
|
deinit_comp_ctx(comp_ctx);
|
|
return -1;
|
|
}
|
|
|
|
(*comp_ctx)->cur_lvl = level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the size of consumed data or -1 */
|
|
int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
|
|
{
|
|
int ret;
|
|
z_stream *strm = &comp_ctx->strm;
|
|
char *out_data = bi_end(out);
|
|
int out_len = out->size - buffer_len(out);
|
|
|
|
if (in_len <= 0)
|
|
return 0;
|
|
|
|
|
|
if (out_len <= 0)
|
|
return -1;
|
|
|
|
strm->next_in = (unsigned char *)in_data;
|
|
strm->avail_in = in_len;
|
|
strm->next_out = (unsigned char *)out_data;
|
|
strm->avail_out = out_len;
|
|
|
|
ret = deflate(strm, Z_NO_FLUSH);
|
|
if (ret != Z_OK)
|
|
return -1;
|
|
|
|
/* deflate update the available data out */
|
|
out->i += out_len - strm->avail_out;
|
|
|
|
return in_len - strm->avail_in;
|
|
}
|
|
|
|
int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
|
|
{
|
|
int ret;
|
|
int out_len = 0;
|
|
z_stream *strm = &comp_ctx->strm;
|
|
|
|
strm->next_out = (unsigned char *)bi_end(out);
|
|
strm->avail_out = out->size - buffer_len(out);
|
|
|
|
ret = deflate(strm, flag);
|
|
if (ret != Z_OK && ret != Z_STREAM_END)
|
|
return -1;
|
|
|
|
out_len = (out->size - buffer_len(out)) - strm->avail_out;
|
|
out->i += out_len;
|
|
|
|
/* compression rate limit */
|
|
if (global.comp_rate_lim > 0) {
|
|
|
|
if (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim) {
|
|
/* decrease level */
|
|
if (comp_ctx->cur_lvl > 0) {
|
|
comp_ctx->cur_lvl--;
|
|
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
|
|
}
|
|
|
|
} else if (comp_ctx->cur_lvl < global.comp_rate_lim) {
|
|
/* increase level */
|
|
comp_ctx->cur_lvl++ ;
|
|
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
|
|
}
|
|
}
|
|
|
|
return out_len;
|
|
}
|
|
|
|
int deflate_reset(struct comp_ctx *comp_ctx)
|
|
{
|
|
z_stream *strm = &comp_ctx->strm;
|
|
|
|
if (deflateReset(strm) == Z_OK)
|
|
return 0;
|
|
return -1;
|
|
}
|
|
|
|
int deflate_end(struct comp_ctx **comp_ctx)
|
|
{
|
|
z_stream *strm = &(*comp_ctx)->strm;
|
|
int ret;
|
|
|
|
ret = deflateEnd(strm);
|
|
|
|
deinit_comp_ctx(comp_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* USE_ZLIB */
|
|
|