mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-18 09:24:31 +00:00
a0b99536c8
The TI_FL_STUCK flag is manipulated by the watchdog and scheduler and describes the apparent life/death of a thread so it changes all the time and it makes sense to move it to the thread's context for an active thread.
983 lines
27 KiB
C
983 lines
27 KiB
C
/*
|
|
* File descriptors management functions.
|
|
*
|
|
* Copyright 2000-2014 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* There is no direct link between the FD and the updates list. There is only a
|
|
* bit in the fdtab[] to indicate than a file descriptor is already present in
|
|
* the updates list. Once an fd is present in the updates list, it will have to
|
|
* be considered even if its changes are reverted in the middle or if the fd is
|
|
* replaced.
|
|
*
|
|
* The event state for an FD, as found in fdtab[].state, is maintained for each
|
|
* direction. The state field is built this way, with R bits in the low nibble
|
|
* and W bits in the high nibble for ease of access and debugging :
|
|
*
|
|
* 7 6 5 4 3 2 1 0
|
|
* [ 0 | 0 | RW | AW | 0 | 0 | RR | AR ]
|
|
*
|
|
* A* = active *R = read
|
|
* R* = ready *W = write
|
|
*
|
|
* An FD is marked "active" when there is a desire to use it.
|
|
* An FD is marked "ready" when it has not faced a new EAGAIN since last wake-up
|
|
* (it is a cache of the last EAGAIN regardless of polling changes). Each poller
|
|
* has its own "polled" state for the same fd, as stored in the polled_mask.
|
|
*
|
|
* We have 4 possible states for each direction based on these 2 flags :
|
|
*
|
|
* +---+---+----------+---------------------------------------------+
|
|
* | R | A | State | Description |
|
|
* +---+---+----------+---------------------------------------------+
|
|
* | 0 | 0 | DISABLED | No activity desired, not ready. |
|
|
* | 0 | 1 | ACTIVE | Activity desired. |
|
|
* | 1 | 0 | STOPPED | End of activity. |
|
|
* | 1 | 1 | READY | Activity desired and reported. |
|
|
* +---+---+----------+---------------------------------------------+
|
|
*
|
|
* The transitions are pretty simple :
|
|
* - fd_want_*() : set flag A
|
|
* - fd_stop_*() : clear flag A
|
|
* - fd_cant_*() : clear flag R (when facing EAGAIN)
|
|
* - fd_may_*() : set flag R (upon return from poll())
|
|
*
|
|
* Each poller then computes its own polled state :
|
|
* if (A) { if (!R) P := 1 } else { P := 0 }
|
|
*
|
|
* The state transitions look like the diagram below.
|
|
*
|
|
* may +----------+
|
|
* ,----| DISABLED | (READY=0, ACTIVE=0)
|
|
* | +----------+
|
|
* | want | ^
|
|
* | | |
|
|
* | v | stop
|
|
* | +----------+
|
|
* | | ACTIVE | (READY=0, ACTIVE=1)
|
|
* | +----------+
|
|
* | | ^
|
|
* | may | |
|
|
* | v | EAGAIN (can't)
|
|
* | +--------+
|
|
* | | READY | (READY=1, ACTIVE=1)
|
|
* | +--------+
|
|
* | stop | ^
|
|
* | | |
|
|
* | v | want
|
|
* | +---------+
|
|
* `--->| STOPPED | (READY=1, ACTIVE=0)
|
|
* +---------+
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/uio.h>
|
|
|
|
#if defined(USE_POLL)
|
|
#include <poll.h>
|
|
#include <errno.h>
|
|
#endif
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/port_range.h>
|
|
#include <haproxy/ticks.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
struct fdtab *fdtab __read_mostly = NULL; /* array of all the file descriptors */
|
|
struct polled_mask *polled_mask __read_mostly = NULL; /* Array for the polled_mask of each fd */
|
|
struct fdinfo *fdinfo __read_mostly = NULL; /* less-often used infos for file descriptors */
|
|
int totalconn; /* total # of terminated sessions */
|
|
int actconn; /* # of active sessions */
|
|
|
|
struct poller pollers[MAX_POLLERS] __read_mostly;
|
|
struct poller cur_poller __read_mostly;
|
|
int nbpollers = 0;
|
|
|
|
volatile struct fdlist update_list; // Global update list
|
|
|
|
THREAD_LOCAL int *fd_updt = NULL; // FD updates list
|
|
THREAD_LOCAL int fd_nbupdt = 0; // number of updates in the list
|
|
THREAD_LOCAL int poller_rd_pipe = -1; // Pipe to wake the thread
|
|
int poller_wr_pipe[MAX_THREADS] __read_mostly; // Pipe to wake the threads
|
|
|
|
volatile int ha_used_fds = 0; // Number of FD we're currently using
|
|
|
|
#define _GET_NEXT(fd, off) ((volatile struct fdlist_entry *)(void *)((char *)(&fdtab[fd]) + off))->next
|
|
#define _GET_PREV(fd, off) ((volatile struct fdlist_entry *)(void *)((char *)(&fdtab[fd]) + off))->prev
|
|
/* adds fd <fd> to fd list <list> if it was not yet in it */
|
|
void fd_add_to_fd_list(volatile struct fdlist *list, int fd, int off)
|
|
{
|
|
int next;
|
|
int new;
|
|
int old;
|
|
int last;
|
|
|
|
redo_next:
|
|
next = _GET_NEXT(fd, off);
|
|
/* Check that we're not already in the cache, and if not, lock us. */
|
|
if (next > -2)
|
|
goto done;
|
|
if (next == -2)
|
|
goto redo_next;
|
|
if (!_HA_ATOMIC_CAS(&_GET_NEXT(fd, off), &next, -2))
|
|
goto redo_next;
|
|
__ha_barrier_atomic_store();
|
|
|
|
new = fd;
|
|
redo_last:
|
|
/* First, insert in the linked list */
|
|
last = list->last;
|
|
old = -1;
|
|
|
|
_GET_PREV(fd, off) = -2;
|
|
/* Make sure the "prev" store is visible before we update the last entry */
|
|
__ha_barrier_store();
|
|
|
|
if (unlikely(last == -1)) {
|
|
/* list is empty, try to add ourselves alone so that list->last=fd */
|
|
if (unlikely(!_HA_ATOMIC_CAS(&list->last, &old, new)))
|
|
goto redo_last;
|
|
|
|
/* list->first was necessary -1, we're guaranteed to be alone here */
|
|
list->first = fd;
|
|
} else {
|
|
/* adding ourselves past the last element
|
|
* The CAS will only succeed if its next is -1,
|
|
* which means it's in the cache, and the last element.
|
|
*/
|
|
if (unlikely(!_HA_ATOMIC_CAS(&_GET_NEXT(last, off), &old, new)))
|
|
goto redo_last;
|
|
|
|
/* Then, update the last entry */
|
|
list->last = fd;
|
|
}
|
|
__ha_barrier_store();
|
|
/* since we're alone at the end of the list and still locked(-2),
|
|
* we know no one tried to add past us. Mark the end of list.
|
|
*/
|
|
_GET_PREV(fd, off) = last;
|
|
_GET_NEXT(fd, off) = -1;
|
|
__ha_barrier_store();
|
|
done:
|
|
return;
|
|
}
|
|
|
|
/* removes fd <fd> from fd list <list> */
|
|
void fd_rm_from_fd_list(volatile struct fdlist *list, int fd, int off)
|
|
{
|
|
#if defined(HA_HAVE_CAS_DW) || defined(HA_CAS_IS_8B)
|
|
volatile union {
|
|
struct fdlist_entry ent;
|
|
uint64_t u64;
|
|
uint32_t u32[2];
|
|
} cur_list, next_list;
|
|
#endif
|
|
int old;
|
|
int new = -2;
|
|
int prev;
|
|
int next;
|
|
int last;
|
|
lock_self:
|
|
#if (defined(HA_CAS_IS_8B) || defined(HA_HAVE_CAS_DW))
|
|
next_list.ent.next = next_list.ent.prev = -2;
|
|
cur_list.ent = *(volatile struct fdlist_entry *)(((char *)&fdtab[fd]) + off);
|
|
/* First, attempt to lock our own entries */
|
|
do {
|
|
/* The FD is not in the FD cache, give up */
|
|
if (unlikely(cur_list.ent.next <= -3))
|
|
return;
|
|
if (unlikely(cur_list.ent.prev == -2 || cur_list.ent.next == -2))
|
|
goto lock_self;
|
|
} while (
|
|
#ifdef HA_CAS_IS_8B
|
|
unlikely(!_HA_ATOMIC_CAS(((uint64_t *)&_GET_NEXT(fd, off)), (uint64_t *)&cur_list.u64, next_list.u64))
|
|
#else
|
|
unlikely(!_HA_ATOMIC_DWCAS(((long *)&_GET_NEXT(fd, off)), (uint32_t *)&cur_list.u32, &next_list.u32))
|
|
#endif
|
|
);
|
|
next = cur_list.ent.next;
|
|
prev = cur_list.ent.prev;
|
|
|
|
#else
|
|
lock_self_next:
|
|
next = _GET_NEXT(fd, off);
|
|
if (next == -2)
|
|
goto lock_self_next;
|
|
if (next <= -3)
|
|
goto done;
|
|
if (unlikely(!_HA_ATOMIC_CAS(&_GET_NEXT(fd, off), &next, -2)))
|
|
goto lock_self_next;
|
|
lock_self_prev:
|
|
prev = _GET_PREV(fd, off);
|
|
if (prev == -2)
|
|
goto lock_self_prev;
|
|
if (unlikely(!_HA_ATOMIC_CAS(&_GET_PREV(fd, off), &prev, -2)))
|
|
goto lock_self_prev;
|
|
#endif
|
|
__ha_barrier_atomic_store();
|
|
|
|
/* Now, lock the entries of our neighbours */
|
|
if (likely(prev != -1)) {
|
|
redo_prev:
|
|
old = fd;
|
|
|
|
if (unlikely(!_HA_ATOMIC_CAS(&_GET_NEXT(prev, off), &old, new))) {
|
|
if (unlikely(old == -2)) {
|
|
/* Neighbour already locked, give up and
|
|
* retry again once he's done
|
|
*/
|
|
_GET_PREV(fd, off) = prev;
|
|
__ha_barrier_store();
|
|
_GET_NEXT(fd, off) = next;
|
|
__ha_barrier_store();
|
|
goto lock_self;
|
|
}
|
|
goto redo_prev;
|
|
}
|
|
}
|
|
if (likely(next != -1)) {
|
|
redo_next:
|
|
old = fd;
|
|
if (unlikely(!_HA_ATOMIC_CAS(&_GET_PREV(next, off), &old, new))) {
|
|
if (unlikely(old == -2)) {
|
|
/* Neighbour already locked, give up and
|
|
* retry again once he's done
|
|
*/
|
|
if (prev != -1) {
|
|
_GET_NEXT(prev, off) = fd;
|
|
__ha_barrier_store();
|
|
}
|
|
_GET_PREV(fd, off) = prev;
|
|
__ha_barrier_store();
|
|
_GET_NEXT(fd, off) = next;
|
|
__ha_barrier_store();
|
|
goto lock_self;
|
|
}
|
|
goto redo_next;
|
|
}
|
|
}
|
|
if (list->first == fd)
|
|
list->first = next;
|
|
__ha_barrier_store();
|
|
last = list->last;
|
|
while (unlikely(last == fd && (!_HA_ATOMIC_CAS(&list->last, &last, prev))))
|
|
__ha_compiler_barrier();
|
|
/* Make sure we let other threads know we're no longer in cache,
|
|
* before releasing our neighbours.
|
|
*/
|
|
__ha_barrier_store();
|
|
if (likely(prev != -1))
|
|
_GET_NEXT(prev, off) = next;
|
|
__ha_barrier_store();
|
|
if (likely(next != -1))
|
|
_GET_PREV(next, off) = prev;
|
|
__ha_barrier_store();
|
|
/* Ok, now we're out of the fd cache */
|
|
_GET_NEXT(fd, off) = -(next + 4);
|
|
__ha_barrier_store();
|
|
done:
|
|
return;
|
|
}
|
|
|
|
#undef _GET_NEXT
|
|
#undef _GET_PREV
|
|
|
|
/* deletes the FD once nobody uses it anymore, as detected by the caller by its
|
|
* thread_mask being zero and its running mask turning to zero. There is no
|
|
* protection against concurrent accesses, it's up to the caller to make sure
|
|
* only the last thread will call it. This is only for internal use, please use
|
|
* fd_delete() instead.
|
|
*/
|
|
void _fd_delete_orphan(int fd)
|
|
{
|
|
if (fdtab[fd].state & FD_LINGER_RISK) {
|
|
/* this is generally set when connecting to servers */
|
|
DISGUISE(setsockopt(fd, SOL_SOCKET, SO_LINGER,
|
|
(struct linger *) &nolinger, sizeof(struct linger)));
|
|
}
|
|
if (cur_poller.clo)
|
|
cur_poller.clo(fd);
|
|
|
|
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
|
|
polled_mask[fd].poll_recv = polled_mask[fd].poll_send = 0;
|
|
|
|
fdtab[fd].state = 0;
|
|
|
|
#ifdef DEBUG_FD
|
|
fdtab[fd].event_count = 0;
|
|
#endif
|
|
fdinfo[fd].port_range = NULL;
|
|
fdtab[fd].owner = NULL;
|
|
/* perform the close() call last as it's what unlocks the instant reuse
|
|
* of this FD by any other thread.
|
|
*/
|
|
close(fd);
|
|
_HA_ATOMIC_DEC(&ha_used_fds);
|
|
}
|
|
|
|
/* Deletes an FD from the fdsets. The file descriptor is also closed, possibly
|
|
* asynchronously. Only the owning thread may do this.
|
|
*/
|
|
void fd_delete(int fd)
|
|
{
|
|
/* we must postpone removal of an FD that may currently be in use
|
|
* by another thread. This can happen in the following two situations:
|
|
* - after a takeover, the owning thread closes the connection but
|
|
* the previous one just woke up from the poller and entered
|
|
* the FD handler iocb. That thread holds an entry in running_mask
|
|
* and requires removal protection.
|
|
* - multiple threads are accepting connections on a listener, and
|
|
* one of them (or even an separate one) decides to unbind the
|
|
* listener under the listener's lock while other ones still hold
|
|
* the running bit.
|
|
* In both situations the FD is marked as unused (thread_mask = 0) and
|
|
* will not take new bits in its running_mask so we have the guarantee
|
|
* that the last thread eliminating running_mask is the one allowed to
|
|
* safely delete the FD. Most of the time it will be the current thread.
|
|
*/
|
|
|
|
HA_ATOMIC_OR(&fdtab[fd].running_mask, tid_bit);
|
|
HA_ATOMIC_STORE(&fdtab[fd].thread_mask, 0);
|
|
if (fd_clr_running(fd) == 0)
|
|
_fd_delete_orphan(fd);
|
|
}
|
|
|
|
/*
|
|
* Take over a FD belonging to another thread.
|
|
* unexpected_conn is the expected owner of the fd.
|
|
* Returns 0 on success, and -1 on failure.
|
|
*/
|
|
int fd_takeover(int fd, void *expected_owner)
|
|
{
|
|
unsigned long old;
|
|
|
|
/* protect ourself against a delete then an insert for the same fd,
|
|
* if it happens, then the owner will no longer be the expected
|
|
* connection.
|
|
*/
|
|
if (fdtab[fd].owner != expected_owner)
|
|
return -1;
|
|
|
|
/* we must be alone to work on this idle FD. If not, it means that its
|
|
* poller is currently waking up and is about to use it, likely to
|
|
* close it on shut/error, but maybe also to process any unexpectedly
|
|
* pending data.
|
|
*/
|
|
old = 0;
|
|
if (!HA_ATOMIC_CAS(&fdtab[fd].running_mask, &old, tid_bit))
|
|
return -1;
|
|
|
|
/* success, from now on it's ours */
|
|
HA_ATOMIC_STORE(&fdtab[fd].thread_mask, tid_bit);
|
|
|
|
/* Make sure the FD doesn't have the active bit. It is possible that
|
|
* the fd is polled by the thread that used to own it, the new thread
|
|
* is supposed to call subscribe() later, to activate polling.
|
|
*/
|
|
fd_stop_recv(fd);
|
|
|
|
/* we're done with it */
|
|
HA_ATOMIC_AND(&fdtab[fd].running_mask, ~tid_bit);
|
|
return 0;
|
|
}
|
|
|
|
void updt_fd_polling(const int fd)
|
|
{
|
|
if (all_threads_mask == 1UL || (fdtab[fd].thread_mask & all_threads_mask) == tid_bit) {
|
|
if (HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid))
|
|
return;
|
|
|
|
fd_updt[fd_nbupdt++] = fd;
|
|
} else {
|
|
unsigned long update_mask = fdtab[fd].update_mask;
|
|
do {
|
|
if (update_mask == fdtab[fd].thread_mask)
|
|
return;
|
|
} while (!_HA_ATOMIC_CAS(&fdtab[fd].update_mask, &update_mask, fdtab[fd].thread_mask));
|
|
|
|
fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update));
|
|
|
|
if (fd_active(fd) &&
|
|
!(fdtab[fd].thread_mask & tid_bit) &&
|
|
(fdtab[fd].thread_mask & ~tid_bit & all_threads_mask & ~sleeping_thread_mask) == 0) {
|
|
/* we need to wake up one thread to handle it immediately */
|
|
int thr = my_ffsl(fdtab[fd].thread_mask & ~tid_bit & all_threads_mask) - 1;
|
|
|
|
_HA_ATOMIC_AND(&sleeping_thread_mask, ~(1UL << thr));
|
|
wake_thread(thr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update events seen for FD <fd> and its state if needed. This should be
|
|
* called by the poller, passing FD_EV_*_{R,W,RW} in <evts>. FD_EV_ERR_*
|
|
* doesn't need to also pass FD_EV_SHUT_*, it's implied. ERR and SHUT are
|
|
* allowed to be reported regardless of R/W readiness. Returns one of
|
|
* FD_UPDT_*.
|
|
*/
|
|
int fd_update_events(int fd, uint evts)
|
|
{
|
|
unsigned long locked;
|
|
uint old, new;
|
|
uint new_flags, must_stop;
|
|
ulong rmask, tmask;
|
|
|
|
th_ctx->flags &= ~TH_FL_STUCK; // this thread is still running
|
|
|
|
/* do nothing if the FD was taken over under us */
|
|
do {
|
|
/* make sure we read a synchronous copy of rmask and tmask
|
|
* (tmask is only up to date if it reflects all of rmask's
|
|
* bits).
|
|
*/
|
|
do {
|
|
rmask = _HA_ATOMIC_LOAD(&fdtab[fd].running_mask);
|
|
tmask = _HA_ATOMIC_LOAD(&fdtab[fd].thread_mask);
|
|
} while (rmask & ~tmask);
|
|
|
|
if (!(tmask & tid_bit)) {
|
|
/* a takeover has started */
|
|
activity[tid].poll_skip_fd++;
|
|
return FD_UPDT_MIGRATED;
|
|
}
|
|
} while (!HA_ATOMIC_CAS(&fdtab[fd].running_mask, &rmask, rmask | tid_bit));
|
|
|
|
locked = (tmask != tid_bit);
|
|
|
|
/* OK now we are guaranteed that our thread_mask was present and
|
|
* that we're allowed to update the FD.
|
|
*/
|
|
|
|
new_flags =
|
|
((evts & FD_EV_READY_R) ? FD_POLL_IN : 0) |
|
|
((evts & FD_EV_READY_W) ? FD_POLL_OUT : 0) |
|
|
((evts & FD_EV_SHUT_R) ? FD_POLL_HUP : 0) |
|
|
((evts & FD_EV_ERR_RW) ? FD_POLL_ERR : 0);
|
|
|
|
/* SHUTW reported while FD was active for writes is an error */
|
|
if ((fdtab[fd].state & FD_EV_ACTIVE_W) && (evts & FD_EV_SHUT_W))
|
|
new_flags |= FD_POLL_ERR;
|
|
|
|
/* compute the inactive events reported late that must be stopped */
|
|
must_stop = 0;
|
|
if (unlikely(!fd_active(fd))) {
|
|
/* both sides stopped */
|
|
must_stop = FD_POLL_IN | FD_POLL_OUT;
|
|
}
|
|
else if (unlikely(!fd_recv_active(fd) && (evts & (FD_EV_READY_R | FD_EV_SHUT_R | FD_EV_ERR_RW)))) {
|
|
/* only send remains */
|
|
must_stop = FD_POLL_IN;
|
|
}
|
|
else if (unlikely(!fd_send_active(fd) && (evts & (FD_EV_READY_W | FD_EV_SHUT_W | FD_EV_ERR_RW)))) {
|
|
/* only recv remains */
|
|
must_stop = FD_POLL_OUT;
|
|
}
|
|
|
|
if (new_flags & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR))
|
|
new_flags |= FD_EV_READY_R;
|
|
|
|
if (new_flags & (FD_POLL_OUT | FD_POLL_ERR))
|
|
new_flags |= FD_EV_READY_W;
|
|
|
|
old = fdtab[fd].state;
|
|
new = (old & ~FD_POLL_UPDT_MASK) | new_flags;
|
|
|
|
if (unlikely(locked)) {
|
|
/* Locked FDs (those with more than 2 threads) are atomically updated */
|
|
while (unlikely(new != old && !_HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)))
|
|
new = (old & ~FD_POLL_UPDT_MASK) | new_flags;
|
|
} else {
|
|
if (new != old)
|
|
fdtab[fd].state = new;
|
|
}
|
|
|
|
if (fdtab[fd].iocb && fd_active(fd)) {
|
|
fdtab[fd].iocb(fd);
|
|
}
|
|
|
|
/* another thread might have attempted to close this FD in the mean
|
|
* time (e.g. timeout task) striking on a previous thread and closing.
|
|
* This is detected by both thread_mask and running_mask being 0 after
|
|
* we remove ourselves last.
|
|
*/
|
|
if ((fdtab[fd].running_mask & tid_bit) &&
|
|
fd_clr_running(fd) == 0 && !fdtab[fd].thread_mask) {
|
|
_fd_delete_orphan(fd);
|
|
return FD_UPDT_CLOSED;
|
|
}
|
|
|
|
/* we had to stop this FD and it still must be stopped after the I/O
|
|
* cb's changes, so let's program an update for this.
|
|
*/
|
|
if (must_stop && !(fdtab[fd].update_mask & tid_bit)) {
|
|
if (((must_stop & FD_POLL_IN) && !fd_recv_active(fd)) ||
|
|
((must_stop & FD_POLL_OUT) && !fd_send_active(fd)))
|
|
if (!HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid))
|
|
fd_updt[fd_nbupdt++] = fd;
|
|
}
|
|
|
|
return FD_UPDT_DONE;
|
|
}
|
|
|
|
/* Tries to send <npfx> parts from <prefix> followed by <nmsg> parts from <msg>
|
|
* optionally followed by a newline if <nl> is non-null, to file descriptor
|
|
* <fd>. The message is sent atomically using writev(). It may be truncated to
|
|
* <maxlen> bytes if <maxlen> is non-null. There is no distinction between the
|
|
* two lists, it's just a convenience to help the caller prepend some prefixes
|
|
* when necessary. It takes the fd's lock to make sure no other thread will
|
|
* write to the same fd in parallel. Returns the number of bytes sent, or <=0
|
|
* on failure. A limit to 31 total non-empty segments is enforced. The caller
|
|
* is responsible for taking care of making the fd non-blocking.
|
|
*/
|
|
ssize_t fd_write_frag_line(int fd, size_t maxlen, const struct ist pfx[], size_t npfx, const struct ist msg[], size_t nmsg, int nl)
|
|
{
|
|
struct iovec iovec[32];
|
|
size_t sent = 0;
|
|
int vec = 0;
|
|
int attempts = 0;
|
|
|
|
if (!maxlen)
|
|
maxlen = ~0;
|
|
|
|
/* keep one char for a possible trailing '\n' in any case */
|
|
maxlen--;
|
|
|
|
/* make an iovec from the concatenation of all parts of the original
|
|
* message. Skip empty fields and truncate the whole message to maxlen,
|
|
* leaving one spare iovec for the '\n'.
|
|
*/
|
|
while (vec < (sizeof(iovec) / sizeof(iovec[0]) - 1)) {
|
|
if (!npfx) {
|
|
pfx = msg;
|
|
npfx = nmsg;
|
|
nmsg = 0;
|
|
if (!npfx)
|
|
break;
|
|
}
|
|
|
|
iovec[vec].iov_base = pfx->ptr;
|
|
iovec[vec].iov_len = MIN(maxlen, pfx->len);
|
|
maxlen -= iovec[vec].iov_len;
|
|
if (iovec[vec].iov_len)
|
|
vec++;
|
|
pfx++; npfx--;
|
|
};
|
|
|
|
if (nl) {
|
|
iovec[vec].iov_base = "\n";
|
|
iovec[vec].iov_len = 1;
|
|
vec++;
|
|
}
|
|
|
|
/* make sure we never interleave writes and we never block. This means
|
|
* we prefer to fail on collision than to block. But we don't want to
|
|
* lose too many logs so we just perform a few lock attempts then give
|
|
* up.
|
|
*/
|
|
|
|
while (HA_ATOMIC_BTS(&fdtab[fd].state, FD_EXCL_SYSCALL_BIT)) {
|
|
if (++attempts >= 200) {
|
|
/* so that the caller knows the message couldn't be delivered */
|
|
sent = -1;
|
|
errno = EAGAIN;
|
|
goto leave;
|
|
}
|
|
ha_thread_relax();
|
|
}
|
|
|
|
if (unlikely(!(fdtab[fd].state & FD_INITIALIZED))) {
|
|
HA_ATOMIC_OR(&fdtab[fd].state, FD_INITIALIZED);
|
|
if (!isatty(fd))
|
|
fcntl(fd, F_SETFL, O_NONBLOCK);
|
|
}
|
|
sent = writev(fd, iovec, vec);
|
|
HA_ATOMIC_BTR(&fdtab[fd].state, FD_EXCL_SYSCALL_BIT);
|
|
|
|
leave:
|
|
/* sent > 0 if the message was delivered */
|
|
return sent;
|
|
}
|
|
|
|
#if defined(USE_CLOSEFROM)
|
|
void my_closefrom(int start)
|
|
{
|
|
closefrom(start);
|
|
}
|
|
|
|
#elif defined(USE_POLL)
|
|
/* This is a portable implementation of closefrom(). It closes all open file
|
|
* descriptors starting at <start> and above. It relies on the fact that poll()
|
|
* will return POLLNVAL for each invalid (hence close) file descriptor passed
|
|
* in argument in order to skip them. It acts with batches of FDs and will
|
|
* typically perform one poll() call per 1024 FDs so the overhead is low in
|
|
* case all FDs have to be closed.
|
|
*/
|
|
void my_closefrom(int start)
|
|
{
|
|
struct pollfd poll_events[1024];
|
|
struct rlimit limit;
|
|
int nbfds, fd, ret, idx;
|
|
int step, next;
|
|
|
|
if (getrlimit(RLIMIT_NOFILE, &limit) == 0)
|
|
step = nbfds = limit.rlim_cur;
|
|
else
|
|
step = nbfds = 0;
|
|
|
|
if (nbfds <= 0) {
|
|
/* set safe limit */
|
|
nbfds = 1024;
|
|
step = 256;
|
|
}
|
|
|
|
if (step > sizeof(poll_events) / sizeof(poll_events[0]))
|
|
step = sizeof(poll_events) / sizeof(poll_events[0]);
|
|
|
|
while (start < nbfds) {
|
|
next = (start / step + 1) * step;
|
|
|
|
for (fd = start; fd < next && fd < nbfds; fd++) {
|
|
poll_events[fd - start].fd = fd;
|
|
poll_events[fd - start].events = 0;
|
|
}
|
|
|
|
do {
|
|
ret = poll(poll_events, fd - start, 0);
|
|
if (ret >= 0)
|
|
break;
|
|
} while (errno == EAGAIN || errno == EINTR || errno == ENOMEM);
|
|
|
|
if (ret)
|
|
ret = fd - start;
|
|
|
|
for (idx = 0; idx < ret; idx++) {
|
|
if (poll_events[idx].revents & POLLNVAL)
|
|
continue; /* already closed */
|
|
|
|
fd = poll_events[idx].fd;
|
|
close(fd);
|
|
}
|
|
start = next;
|
|
}
|
|
}
|
|
|
|
#else // defined(USE_POLL)
|
|
|
|
/* This is a portable implementation of closefrom(). It closes all open file
|
|
* descriptors starting at <start> and above. This is a naive version for use
|
|
* when the operating system provides no alternative.
|
|
*/
|
|
void my_closefrom(int start)
|
|
{
|
|
struct rlimit limit;
|
|
int nbfds;
|
|
|
|
if (getrlimit(RLIMIT_NOFILE, &limit) == 0)
|
|
nbfds = limit.rlim_cur;
|
|
else
|
|
nbfds = 0;
|
|
|
|
if (nbfds <= 0)
|
|
nbfds = 1024; /* safe limit */
|
|
|
|
while (start < nbfds)
|
|
close(start++);
|
|
}
|
|
#endif // defined(USE_POLL)
|
|
|
|
/* Computes the bounded poll() timeout based on the next expiration timer <next>
|
|
* by bounding it to MAX_DELAY_MS. <next> may equal TICK_ETERNITY. The pollers
|
|
* just needs to call this function right before polling to get their timeout
|
|
* value. Timeouts that are already expired (possibly due to a pending event)
|
|
* are accounted for in activity.poll_exp.
|
|
*/
|
|
int compute_poll_timeout(int next)
|
|
{
|
|
int wait_time;
|
|
|
|
if (!tick_isset(next))
|
|
wait_time = MAX_DELAY_MS;
|
|
else if (tick_is_expired(next, now_ms)) {
|
|
activity[tid].poll_exp++;
|
|
wait_time = 0;
|
|
}
|
|
else {
|
|
wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1;
|
|
if (wait_time > MAX_DELAY_MS)
|
|
wait_time = MAX_DELAY_MS;
|
|
}
|
|
return wait_time;
|
|
}
|
|
|
|
/* disable the specified poller */
|
|
void disable_poller(const char *poller_name)
|
|
{
|
|
int p;
|
|
|
|
for (p = 0; p < nbpollers; p++)
|
|
if (strcmp(pollers[p].name, poller_name) == 0)
|
|
pollers[p].pref = 0;
|
|
}
|
|
|
|
void poller_pipe_io_handler(int fd)
|
|
{
|
|
char buf[1024];
|
|
/* Flush the pipe */
|
|
while (read(fd, buf, sizeof(buf)) > 0);
|
|
fd_cant_recv(fd);
|
|
}
|
|
|
|
/* allocate the per-thread fd_updt thus needs to be called early after
|
|
* thread creation.
|
|
*/
|
|
static int alloc_pollers_per_thread()
|
|
{
|
|
fd_updt = calloc(global.maxsock, sizeof(*fd_updt));
|
|
return fd_updt != NULL;
|
|
}
|
|
|
|
/* Initialize the pollers per thread.*/
|
|
static int init_pollers_per_thread()
|
|
{
|
|
int mypipe[2];
|
|
|
|
if (pipe(mypipe) < 0)
|
|
return 0;
|
|
|
|
poller_rd_pipe = mypipe[0];
|
|
poller_wr_pipe[tid] = mypipe[1];
|
|
fcntl(poller_rd_pipe, F_SETFL, O_NONBLOCK);
|
|
fd_insert(poller_rd_pipe, poller_pipe_io_handler, poller_pipe_io_handler,
|
|
tid_bit);
|
|
fd_want_recv(poller_rd_pipe);
|
|
return 1;
|
|
}
|
|
|
|
/* Deinitialize the pollers per thread */
|
|
static void deinit_pollers_per_thread()
|
|
{
|
|
/* rd and wr are init at the same place, but only rd is init to -1, so
|
|
we rely to rd to close. */
|
|
if (poller_rd_pipe > -1) {
|
|
close(poller_rd_pipe);
|
|
poller_rd_pipe = -1;
|
|
close(poller_wr_pipe[tid]);
|
|
poller_wr_pipe[tid] = -1;
|
|
}
|
|
}
|
|
|
|
/* Release the pollers per thread, to be called late */
|
|
static void free_pollers_per_thread()
|
|
{
|
|
ha_free(&fd_updt);
|
|
}
|
|
|
|
/*
|
|
* Initialize the pollers till the best one is found.
|
|
* If none works, returns 0, otherwise 1.
|
|
*/
|
|
int init_pollers()
|
|
{
|
|
int p;
|
|
struct poller *bp;
|
|
|
|
if ((fdtab = calloc(global.maxsock, sizeof(*fdtab))) == NULL) {
|
|
ha_alert("Not enough memory to allocate %d entries for fdtab!\n", global.maxsock);
|
|
goto fail_tab;
|
|
}
|
|
|
|
if ((polled_mask = calloc(global.maxsock, sizeof(*polled_mask))) == NULL) {
|
|
ha_alert("Not enough memory to allocate %d entries for polled_mask!\n", global.maxsock);
|
|
goto fail_polledmask;
|
|
}
|
|
|
|
if ((fdinfo = calloc(global.maxsock, sizeof(*fdinfo))) == NULL) {
|
|
ha_alert("Not enough memory to allocate %d entries for fdinfo!\n", global.maxsock);
|
|
goto fail_info;
|
|
}
|
|
|
|
update_list.first = update_list.last = -1;
|
|
|
|
for (p = 0; p < global.maxsock; p++) {
|
|
/* Mark the fd as out of the fd cache */
|
|
fdtab[p].update.next = -3;
|
|
}
|
|
|
|
do {
|
|
bp = NULL;
|
|
for (p = 0; p < nbpollers; p++)
|
|
if (!bp || (pollers[p].pref > bp->pref))
|
|
bp = &pollers[p];
|
|
|
|
if (!bp || bp->pref == 0)
|
|
break;
|
|
|
|
if (bp->init(bp)) {
|
|
memcpy(&cur_poller, bp, sizeof(*bp));
|
|
return 1;
|
|
}
|
|
} while (!bp || bp->pref == 0);
|
|
|
|
free(fdinfo);
|
|
fail_info:
|
|
free(polled_mask);
|
|
fail_polledmask:
|
|
free(fdtab);
|
|
fail_tab:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deinitialize the pollers.
|
|
*/
|
|
void deinit_pollers() {
|
|
|
|
struct poller *bp;
|
|
int p;
|
|
|
|
for (p = 0; p < nbpollers; p++) {
|
|
bp = &pollers[p];
|
|
|
|
if (bp && bp->pref)
|
|
bp->term(bp);
|
|
}
|
|
|
|
ha_free(&fdinfo);
|
|
ha_free(&fdtab);
|
|
ha_free(&polled_mask);
|
|
}
|
|
|
|
/*
|
|
* Lists the known pollers on <out>.
|
|
* Should be performed only before initialization.
|
|
*/
|
|
int list_pollers(FILE *out)
|
|
{
|
|
int p;
|
|
int last, next;
|
|
int usable;
|
|
struct poller *bp;
|
|
|
|
fprintf(out, "Available polling systems :\n");
|
|
|
|
usable = 0;
|
|
bp = NULL;
|
|
last = next = -1;
|
|
while (1) {
|
|
for (p = 0; p < nbpollers; p++) {
|
|
if ((next < 0 || pollers[p].pref > next)
|
|
&& (last < 0 || pollers[p].pref < last)) {
|
|
next = pollers[p].pref;
|
|
if (!bp || (pollers[p].pref > bp->pref))
|
|
bp = &pollers[p];
|
|
}
|
|
}
|
|
|
|
if (next == -1)
|
|
break;
|
|
|
|
for (p = 0; p < nbpollers; p++) {
|
|
if (pollers[p].pref == next) {
|
|
fprintf(out, " %10s : ", pollers[p].name);
|
|
if (pollers[p].pref == 0)
|
|
fprintf(out, "disabled, ");
|
|
else
|
|
fprintf(out, "pref=%3d, ", pollers[p].pref);
|
|
if (pollers[p].test(&pollers[p])) {
|
|
fprintf(out, " test result OK");
|
|
if (next > 0)
|
|
usable++;
|
|
} else {
|
|
fprintf(out, " test result FAILED");
|
|
if (bp == &pollers[p])
|
|
bp = NULL;
|
|
}
|
|
fprintf(out, "\n");
|
|
}
|
|
}
|
|
last = next;
|
|
next = -1;
|
|
};
|
|
fprintf(out, "Total: %d (%d usable), will use %s.\n", nbpollers, usable, bp ? bp->name : "none");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some pollers may lose their connection after a fork(). It may be necessary
|
|
* to create initialize part of them again. Returns 0 in case of failure,
|
|
* otherwise 1. The fork() function may be NULL if unused. In case of error,
|
|
* the the current poller is destroyed and the caller is responsible for trying
|
|
* another one by calling init_pollers() again.
|
|
*/
|
|
int fork_poller()
|
|
{
|
|
int fd;
|
|
for (fd = 0; fd < global.maxsock; fd++) {
|
|
if (fdtab[fd].owner) {
|
|
HA_ATOMIC_OR(&fdtab[fd].state, FD_CLONED);
|
|
}
|
|
}
|
|
|
|
if (cur_poller.fork) {
|
|
if (cur_poller.fork(&cur_poller))
|
|
return 1;
|
|
cur_poller.term(&cur_poller);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* config parser for global "tune.fd.edge-triggered", accepts "on" or "off" */
|
|
static int cfg_parse_tune_fd_edge_triggered(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (strcmp(args[1], "on") == 0)
|
|
global.tune.options |= GTUNE_FD_ET;
|
|
else if (strcmp(args[1], "off") == 0)
|
|
global.tune.options &= ~GTUNE_FD_ET;
|
|
else {
|
|
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* config keyword parsers */
|
|
static struct cfg_kw_list cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.fd.edge-triggered", cfg_parse_tune_fd_edge_triggered, KWF_EXPERIMENTAL },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
|
|
|
|
REGISTER_PER_THREAD_ALLOC(alloc_pollers_per_thread);
|
|
REGISTER_PER_THREAD_INIT(init_pollers_per_thread);
|
|
REGISTER_PER_THREAD_DEINIT(deinit_pollers_per_thread);
|
|
REGISTER_PER_THREAD_FREE(free_pollers_per_thread);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|