mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-07 17:51:45 +00:00
gcc-12 and above report a wrong warning about a negative length being passed to memcmp() on an impossible code path when built at -O0. The pattern is the same at a few places, basically: int foo(int op, const void *a, const void *b, size_t size, size_t arg) { if (op == 1) // arg is a strict multiple of size return memcmp(a, b, arg - size); return 0; } ... int bar() { return foo(0, a, b, sizeof(something), 0); } It *might* be possible to invent dummy values for the "len" argument above in the real code, but that significantly complexifies it and as usual can easily result in introducing undesired bugs. Here we take a different approach consisting in shutting the -Wstringop-overread warning on gcc>=12 at -O0 since that's the only condition that triggers it. The issue was reported to and confirmed by the gcc team here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114622 No backport needed, but this should be upstreamed into cebtree after checking that all involved macros are available.
1613 lines
58 KiB
C
1613 lines
58 KiB
C
/*
|
|
* Compact Elastic Binary Trees - internal functions and types
|
|
*
|
|
* Copyright (C) 2014-2024 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/* This file MUST NOT be included by public code, it contains macros, enums
|
|
* with short names and function definitions that may clash with user code.
|
|
* It may only be included by the respective types' C files.
|
|
*/
|
|
|
|
/*
|
|
* These trees are optimized for adding the minimalest overhead to the stored
|
|
* data. This version uses the node's pointer as the key, for the purpose of
|
|
* quickly finding its neighbours.
|
|
*
|
|
* A few properties :
|
|
* - the xor between two branches of a node cannot be zero unless the two
|
|
* branches are duplicate keys
|
|
* - the xor between two nodes has *at least* the split bit set, possibly more
|
|
* - the split bit is always strictly smaller for a node than for its parent,
|
|
* which implies that the xor between the keys of the lowest level node is
|
|
* always smaller than the xor between a higher level node. Hence the xor
|
|
* between the branches of a regular leaf is always strictly larger than the
|
|
* xor of its parent node's branches if this node is different, since the
|
|
* leaf is associated with a higher level node which has at least one higher
|
|
* level branch. The first leaf doesn't validate this but is handled by the
|
|
* rules below.
|
|
* - during the descent, the node corresponding to a leaf is always visited
|
|
* before the leaf, unless it's the first inserted, nodeless leaf.
|
|
* - the first key is the only one without any node, and it has both its
|
|
* branches pointing to itself during insertion to detect it (i.e. xor==0).
|
|
* - a leaf is always present as a node on the path from the root, except for
|
|
* the inserted first key which has no node, and is recognizable by its two
|
|
* branches pointing to itself.
|
|
* - a consequence of the rules above is that a non-first leaf appearing below
|
|
* a node will necessarily have an associated node with a split bit equal to
|
|
* or greater than the node's split bit.
|
|
* - another consequence is that below a node, the split bits are different for
|
|
* each branches since both of them are already present above the node, thus
|
|
* at different levels, so their respective XOR values will be different.
|
|
* - since all nodes in a given path have a different split bit, if a leaf has
|
|
* the same split bit as its parent node, it is necessary its associated leaf
|
|
*
|
|
* When descending along the tree, it is possible to know that a search key is
|
|
* not present, because its XOR with both of the branches is stricly higher
|
|
* than the inter-branch XOR. The reason is simple : the inter-branch XOR will
|
|
* have its highest bit set indicating the split bit. Since it's the bit that
|
|
* differs between the two branches, the key cannot have it both set and
|
|
* cleared when comparing to the branch values. So xoring the key with both
|
|
* branches will emit a higher bit only when the key's bit differs from both
|
|
* branches' similar bit. Thus, the following equation :
|
|
* (XOR(key, L) > XOR(L, R)) && (XOR(key, R) > XOR(L, R))
|
|
* is only true when the key should be placed above that node. Since the key
|
|
* has a higher bit which differs from the node, either it has it set and the
|
|
* node has it clear (same for both branches), or it has it clear and the node
|
|
* has it set for both branches. For this reason it's enough to compare the key
|
|
* with any node when the equation above is true, to know if it ought to be
|
|
* present on the left or on the right side. This is useful for insertion and
|
|
* for range lookups.
|
|
*/
|
|
|
|
#ifndef _CEBTREE_PRV_H
|
|
#define _CEBTREE_PRV_H
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include "cebtree.h"
|
|
|
|
/* If DEBUG is set, we'll print additional debugging info during the descent */
|
|
#ifdef DEBUG
|
|
#define CEBDBG(x, ...) fprintf(stderr, x, ##__VA_ARGS__)
|
|
#else
|
|
#define CEBDBG(x, ...) do { } while (0)
|
|
#endif
|
|
|
|
/* These macros are used by upper level files to create two variants of their
|
|
* exported functions:
|
|
* - one which uses sizeof(struct ceb_node) as the key offset, for nodes with
|
|
* adjacent keys ; these ones are named <pfx><sfx>(root, ...)
|
|
* - one with an explicit key offset passed by the caller right after the
|
|
* root.
|
|
* Both rely on a forced inline version with a body that immediately follows
|
|
* the declaration, so that the declaration looks like a single decorated
|
|
* function while 2 are built in practice. There are variants for the basic one
|
|
* with 0, 1 and 2 extra arguments after the root. The root and the key offset
|
|
* are always the first two arguments, and the key offset never appears in the
|
|
* first variant, it's always replaced by sizeof(struct ceb_node) in the calls
|
|
* to the inline version.
|
|
*/
|
|
#define CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2); \
|
|
type pfx##sfx(type1 arg1) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node)); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2) { \
|
|
return _##pfx##sfx(arg1, arg2); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3); \
|
|
type pfx##sfx(type1 arg1, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4); \
|
|
type pfx##sfx(type1 arg1, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3, arg4); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4)
|
|
/* function body follows */
|
|
|
|
/* tree walk method: key, left, right */
|
|
enum ceb_walk_meth {
|
|
CEB_WM_FST, /* look up "first" (walk left only) */
|
|
CEB_WM_NXT, /* look up "next" (walk right once then left) */
|
|
CEB_WM_PRV, /* look up "prev" (walk left once then right) */
|
|
CEB_WM_LST, /* look up "last" (walk right only) */
|
|
/* all methods from CEB_WM_KEQ and above do have a key */
|
|
CEB_WM_KEQ, /* look up the node equal to the key */
|
|
CEB_WM_KGE, /* look up the node greater than or equal to the key */
|
|
CEB_WM_KGT, /* look up the node greater than the key */
|
|
CEB_WM_KLE, /* look up the node lower than or equal to the key */
|
|
CEB_WM_KLT, /* look up the node lower than the key */
|
|
CEB_WM_KNX, /* look up the node's key first, then find the next */
|
|
CEB_WM_KPR, /* look up the node's key first, then find the prev */
|
|
};
|
|
|
|
enum ceb_key_type {
|
|
CEB_KT_ADDR, /* the key is the node's address */
|
|
CEB_KT_U32, /* 32-bit unsigned word in key_u32 */
|
|
CEB_KT_U64, /* 64-bit unsigned word in key_u64 */
|
|
CEB_KT_MB, /* fixed size memory block in (key_u64,key_ptr), direct storage */
|
|
CEB_KT_IM, /* fixed size memory block in (key_u64,key_ptr), indirect storage */
|
|
CEB_KT_ST, /* NUL-terminated string in key_ptr, direct storage */
|
|
CEB_KT_IS, /* NUL-terminated string in key_ptr, indirect storage */
|
|
};
|
|
|
|
union ceb_key_storage {
|
|
uint32_t u32;
|
|
uint64_t u64;
|
|
unsigned long ul;
|
|
unsigned char mb[0];
|
|
unsigned char str[0];
|
|
unsigned char *ptr; /* for CEB_KT_IS */
|
|
};
|
|
|
|
/* returns the ceb_key_storage pointer for node <n> and offset <o> */
|
|
#define NODEK(n, o) ((union ceb_key_storage*)(((char *)(n)) + (o)))
|
|
|
|
/* Returns the xor (or common length) between the two sides <l> and <r> if both
|
|
* are non-null, otherwise between the first non-null one and the value in the
|
|
* associate key. As a reminder, memory blocks place their length in key_u64.
|
|
* This is only intended for internal use, essentially for debugging.
|
|
*
|
|
* <kofs> contains the offset between the key and the node's base. When simply
|
|
* adjacent, this would just be sizeof(ceb_node).
|
|
*/
|
|
__attribute__((unused))
|
|
static inline uint64_t _xor_branches(ptrdiff_t kofs, enum ceb_key_type key_type, uint32_t key_u32,
|
|
uint64_t key_u64, const void *key_ptr,
|
|
const struct ceb_node *l,
|
|
const struct ceb_node *r)
|
|
{
|
|
if (l && r) {
|
|
if (key_type == CEB_KT_MB)
|
|
return equal_bits(NODEK(l, kofs)->mb, NODEK(r, kofs)->mb, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_IM)
|
|
return equal_bits(NODEK(l, kofs)->mb, NODEK(r, kofs)->ptr, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_ST)
|
|
return string_equal_bits(NODEK(l, kofs)->str, NODEK(r, kofs)->str, 0);
|
|
else if (key_type == CEB_KT_IS)
|
|
return string_equal_bits(NODEK(l, kofs)->ptr, NODEK(r, kofs)->ptr, 0);
|
|
else if (key_type == CEB_KT_U64)
|
|
return NODEK(l, kofs)->u64 ^ NODEK(r, kofs)->u64;
|
|
else if (key_type == CEB_KT_U32)
|
|
return NODEK(l, kofs)->u32 ^ NODEK(r, kofs)->u32;
|
|
else if (key_type == CEB_KT_ADDR)
|
|
return ((uintptr_t)l ^ (uintptr_t)r);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if (!l)
|
|
l = r;
|
|
|
|
if (key_type == CEB_KT_MB)
|
|
return equal_bits(key_ptr, NODEK(l, kofs)->mb, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_IM)
|
|
return equal_bits(key_ptr, NODEK(l, kofs)->ptr, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_ST)
|
|
return string_equal_bits(key_ptr, NODEK(l, kofs)->str, 0);
|
|
else if (key_type == CEB_KT_IS)
|
|
return string_equal_bits(key_ptr, NODEK(l, kofs)->ptr, 0);
|
|
else if (key_type == CEB_KT_U64)
|
|
return key_u64 ^ NODEK(l, kofs)->u64;
|
|
else if (key_type == CEB_KT_U32)
|
|
return key_u32 ^ NODEK(l, kofs)->u32;
|
|
else if (key_type == CEB_KT_ADDR)
|
|
return ((uintptr_t)key_ptr ^ (uintptr_t)r);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
__attribute__((unused))
|
|
static void dbg(int line,
|
|
const char *pfx,
|
|
enum ceb_walk_meth meth,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
struct ceb_node * const *root,
|
|
const struct ceb_node *p,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
uint32_t px32,
|
|
uint64_t px64,
|
|
size_t plen)
|
|
{
|
|
const char *meths[] = {
|
|
[CEB_WM_FST] = "FST",
|
|
[CEB_WM_NXT] = "NXT",
|
|
[CEB_WM_PRV] = "PRV",
|
|
[CEB_WM_LST] = "LST",
|
|
[CEB_WM_KEQ] = "KEQ",
|
|
[CEB_WM_KGE] = "KGE",
|
|
[CEB_WM_KGT] = "KGT",
|
|
[CEB_WM_KLE] = "KLE",
|
|
[CEB_WM_KLT] = "KLT",
|
|
[CEB_WM_KNX] = "KNX",
|
|
[CEB_WM_KPR] = "KPR",
|
|
};
|
|
const char *ktypes[] = {
|
|
[CEB_KT_ADDR] = "ADDR",
|
|
[CEB_KT_U32] = "U32",
|
|
[CEB_KT_U64] = "U64",
|
|
[CEB_KT_MB] = "MB",
|
|
[CEB_KT_IM] = "IM",
|
|
[CEB_KT_ST] = "ST",
|
|
[CEB_KT_IS] = "IS",
|
|
};
|
|
const char *kstr __attribute__((unused)) = ktypes[key_type];
|
|
const char *mstr __attribute__((unused)) = meths[meth];
|
|
long long nlen __attribute__((unused)) = 0;
|
|
long long llen __attribute__((unused)) = 0;
|
|
long long rlen __attribute__((unused)) = 0;
|
|
long long xlen __attribute__((unused)) = 0;
|
|
|
|
if (p)
|
|
nlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p, NULL);
|
|
|
|
if (p && p->b[0])
|
|
llen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p->b[0], NULL);
|
|
|
|
if (p && p->b[1])
|
|
rlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, NULL, p->b[1]);
|
|
|
|
if (p && p->b[0] && p->b[1])
|
|
xlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p->b[0], p->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_U32:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#x root=%p pxor=%#x p=%p,%#x(^%#llx) l=%p,%#x(^%#llx) r=%p,%#x(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, key_u32, root, px32,
|
|
p, p ? NODEK(p, kofs)->u32 : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->u32 : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->u32 : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_U64:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#llx root=%p pxor=%#llx p=%p,%#llx(^%#llx) l=%p,%#llx(^%#llx) r=%p,%#llx(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, (long long)key_u64, root, (long long)px64,
|
|
p, (long long)(p ? NODEK(p, kofs)->u64 : 0), nlen,
|
|
p ? p->b[0] : NULL, (long long)(p ? NODEK(p->b[0], kofs)->u64 : 0), llen,
|
|
p ? p->b[1] : NULL, (long long)(p ? NODEK(p->b[1], kofs)->u64 : 0), rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_MB:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%p root=%p plen=%ld p=%p,%p(^%llu) l=%p,%p(^%llu) r=%p,%p(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr, root, (long)plen,
|
|
p, p ? NODEK(p, kofs)->mb : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->mb : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->mb : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_IM:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%p root=%p plen=%ld p=%p,%p(^%llu) l=%p,%p(^%llu) r=%p,%p(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr, root, (long)plen,
|
|
p, p ? NODEK(p, kofs)->ptr : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->ptr : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->ptr : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_ST:
|
|
CEBDBG("%04d (%8s) m=%s.%s key='%s' root=%p plen=%ld p=%p,%s(^%llu) l=%p,%s(^%llu) r=%p,%s(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr ? (const char *)key_ptr : "", root, (long)plen,
|
|
p, p ? (const char *)NODEK(p, kofs)->str : "-", nlen,
|
|
p ? p->b[0] : NULL, p ? (const char *)NODEK(p->b[0], kofs)->str : "-", llen,
|
|
p ? p->b[1] : NULL, p ? (const char *)NODEK(p->b[1], kofs)->str : "-", rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_IS:
|
|
CEBDBG("%04d (%8s) m=%s.%s key='%s' root=%p plen=%ld p=%p,%s(^%llu) l=%p,%s(^%llu) r=%p,%s(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr ? (const char *)key_ptr : "", root, (long)plen,
|
|
p, p ? (const char *)NODEK(p, kofs)->ptr : "-", nlen,
|
|
p ? p->b[0] : NULL, p ? (const char *)NODEK(p->b[0], kofs)->ptr : "-", llen,
|
|
p ? p->b[1] : NULL, p ? (const char *)NODEK(p->b[1], kofs)->ptr : "-", rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_ADDR:
|
|
/* key type is the node's address */
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#llx root=%p pxor=%#llx p=%p,%#llx(^%#llx) l=%p,%#llx(^%#llx) r=%p,%#llx(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, (long long)(uintptr_t)key_ptr, root, (long long)px64,
|
|
p, (long long)(uintptr_t)p, nlen,
|
|
p ? p->b[0] : NULL, p ? (long long)(uintptr_t)p->b[0] : 0, llen,
|
|
p ? p->b[1] : NULL, p ? (long long)(uintptr_t)p->b[1] : 0, rlen,
|
|
xlen);
|
|
}
|
|
}
|
|
#else
|
|
#define dbg(...) do { } while (0)
|
|
#endif
|
|
|
|
/* Generic tree descent function. It must absolutely be inlined so that the
|
|
* compiler can eliminate the tests related to the various return pointers,
|
|
* which must either point to a local variable in the caller, or be NULL.
|
|
* It must not be called with an empty tree, it's the caller business to
|
|
* deal with this special case. It returns in ret_root the location of the
|
|
* pointer to the leaf (i.e. where we have to insert ourselves). The integer
|
|
* pointed to by ret_nside will contain the side the leaf should occupy at
|
|
* its own node, with the sibling being *ret_root. Note that keys for fixed-
|
|
* size arrays are passed in key_ptr with their length in key_u64. For keyless
|
|
* nodes whose address serves as the key, the pointer needs to be passed in
|
|
* key_ptr, and pxor64 will be used internally.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_descend(struct ceb_node **root,
|
|
enum ceb_walk_meth meth,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *ret_nside,
|
|
struct ceb_node ***ret_root,
|
|
struct ceb_node **ret_lparent,
|
|
int *ret_lpside,
|
|
struct ceb_node **ret_nparent,
|
|
int *ret_npside,
|
|
struct ceb_node **ret_gparent,
|
|
int *ret_gpside,
|
|
struct ceb_node **ret_back)
|
|
{
|
|
#if !defined(__OPTIMIZE__) && __GNUC_PREREQ__(12, 0)
|
|
/* Avoid a bogus warning with gcc 12 and above: it warns about negative
|
|
* memcmp() length in non-existing code paths at -O0, as reported here:
|
|
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114622
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wstringop-overread"
|
|
#endif
|
|
struct ceb_node *p;
|
|
union ceb_key_storage *l, *r, *k;
|
|
struct ceb_node *gparent = NULL;
|
|
struct ceb_node *nparent = NULL;
|
|
struct ceb_node *bnode = NULL;
|
|
struct ceb_node *lparent;
|
|
uint32_t pxor32 = ~0U; // previous xor between branches
|
|
uint64_t pxor64 = ~0ULL; // previous xor between branches
|
|
int gpside = 0; // side on the grand parent
|
|
int npside = 0; // side on the node's parent
|
|
long lpside = 0; // side on the leaf's parent
|
|
long brside = 0; // branch side when descending
|
|
size_t llen = 0; // left vs key matching length
|
|
size_t rlen = 0; // right vs key matching length
|
|
size_t plen = 0; // previous common len between branches
|
|
int found = 0; // key was found (saves an extra strcmp for arrays)
|
|
|
|
dbg(__LINE__, "_enter__", meth, kofs, key_type, root, NULL, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
/* the parent will be the (possibly virtual) node so that
|
|
* &lparent->l == root.
|
|
*/
|
|
lparent = container_of(root, struct ceb_node, b[0]);
|
|
gparent = nparent = lparent;
|
|
|
|
/* for key-less descents we need to set the initial branch to take */
|
|
switch (meth) {
|
|
case CEB_WM_NXT:
|
|
case CEB_WM_LST:
|
|
brside = 1; // start right for next/last
|
|
break;
|
|
case CEB_WM_FST:
|
|
case CEB_WM_PRV:
|
|
default:
|
|
brside = 0; // start left for first/prev
|
|
break;
|
|
}
|
|
|
|
/* the previous xor is initialized to the largest possible inter-branch
|
|
* value so that it can never match on the first test as we want to use
|
|
* it to detect a leaf vs node. That's achieved with plen==0 for arrays
|
|
* and pxorXX==~0 for scalars.
|
|
*/
|
|
while (1) {
|
|
p = *root;
|
|
|
|
/* Tests have shown that for write-intensive workloads (many
|
|
* insertions/deletion), prefetching for reads is counter
|
|
* productive (-10% perf) but that prefetching only the next
|
|
* nodes for writes when deleting can yield around 3% extra
|
|
* boost.
|
|
*/
|
|
if (ret_lpside) {
|
|
/* this is a deletion, prefetch for writes */
|
|
__builtin_prefetch(p->b[0], 1);
|
|
__builtin_prefetch(p->b[1], 1);
|
|
}
|
|
|
|
/* neither pointer is tagged */
|
|
k = NODEK(p, kofs);
|
|
l = NODEK(p->b[0], kofs);
|
|
r = NODEK(p->b[1], kofs);
|
|
|
|
dbg(__LINE__, "newp", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
/* two equal pointers identifies the nodeless leaf. */
|
|
if (l == r) {
|
|
dbg(__LINE__, "l==r", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
/* In the following block, we're dealing with type-specific
|
|
* operations which follow the same construct for each type:
|
|
* 1) calculate the new side for key lookups (otherwise keep
|
|
* the current side, e.g. for first/last). Doing it early
|
|
* allows the CPU to more easily predict next branches and
|
|
* is faster by ~10%. For complex bits we keep the length
|
|
* of identical bits instead of xor. We can also xor lkey
|
|
* and rkey with key and use it everywhere later but it
|
|
* doesn't seem to bring anything.
|
|
*
|
|
* 2) calculate the xor between the two sides to figure the
|
|
* split bit position. If the new split bit is before the
|
|
* previous one, we've reached a leaf: each leaf we visit
|
|
* had its node part already visited. The only way to
|
|
* distinguish them is that the inter-branch xor of the
|
|
* leaf will be the node's one, and will necessarily be
|
|
* larger than the previous node's xor if the node is
|
|
* above (we've already checked for direct descendent
|
|
* below). Said differently, if an inter-branch xor is
|
|
* strictly larger than the previous one, it necessarily
|
|
* is the one of an upper node, so what we're seeing
|
|
* cannot be the node, hence it's the leaf. The case where
|
|
* they're equal was already dealt with by the test at the
|
|
* end of the loop (node points to self). For scalar keys,
|
|
* we directly store the last xor value in pxorXX. For
|
|
* arrays and strings, instead we store the previous equal
|
|
* length.
|
|
*
|
|
* 3) for lookups, check if the looked key still has a chance
|
|
* to be below: if it has a xor with both branches that is
|
|
* larger than the xor between them, it cannot be there,
|
|
* since it means that it differs from these branches by
|
|
* at least one bit that's higher than the split bit,
|
|
* hence not common to these branches. In such cases:
|
|
* - if we're just doing a lookup, the key is not found
|
|
* and we fail.
|
|
* - if we are inserting, we must stop here and we have
|
|
* the guarantee to be above a node.
|
|
* - if we're deleting, it could be the key we were
|
|
* looking for so we have to check for it as long as
|
|
* it's still possible to keep a copy of the node's
|
|
* parent. <found> is set int this case for expensive
|
|
* types.
|
|
*/
|
|
|
|
if (key_type == CEB_KT_U32) {
|
|
uint32_t xor32; // left vs right branch xor
|
|
uint32_t kl, kr;
|
|
|
|
kl = l->u32; kr = r->u32;
|
|
xor32 = kl ^ kr;
|
|
|
|
if (xor32 > pxor32) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= key_u32; kr ^= key_u32;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xor32 && kr > xor32) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if (key_u32 == k->u32) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor32 = xor32;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
uint64_t xor64; // left vs right branch xor
|
|
uint64_t kl, kr;
|
|
|
|
kl = l->u64; kr = r->u64;
|
|
xor64 = kl ^ kr;
|
|
|
|
if (xor64 > pxor64) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= key_u64; kr ^= key_u64;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xor64 && kr > xor64) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if (key_u64 == k->u64) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor64 = xor64;
|
|
}
|
|
else if (key_type == CEB_KT_MB) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* measure identical lengths */
|
|
llen = equal_bits(key_ptr, l->mb, 0, key_u64 << 3);
|
|
rlen = equal_bits(key_ptr, r->mb, 0, key_u64 << 3);
|
|
brside = llen <= rlen;
|
|
if (llen == rlen && (uint64_t)llen == key_u64 << 3)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = equal_bits(l->mb, r->mb, 0, key_u64 << 3);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if (llen < xlen && rlen < xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if ((uint64_t)xlen / 8 == key_u64 || memcmp(key_ptr + mlen / 8, k->mb + mlen / 8, key_u64 - mlen / 8) == 0) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_IM) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* measure identical lengths */
|
|
llen = equal_bits(key_ptr, l->ptr, 0, key_u64 << 3);
|
|
rlen = equal_bits(key_ptr, r->ptr, 0, key_u64 << 3);
|
|
brside = llen <= rlen;
|
|
if (llen == rlen && (uint64_t)llen == key_u64 << 3)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = equal_bits(l->ptr, r->ptr, 0, key_u64 << 3);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if (llen < xlen && rlen < xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if ((uint64_t)xlen / 8 == key_u64 || memcmp(key_ptr + mlen / 8, k->ptr + mlen / 8, key_u64 - mlen / 8) == 0) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_ST) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* Note that a negative length indicates an
|
|
* equal value with the final zero reached, but
|
|
* it is still needed to descend to find the
|
|
* leaf. We take that negative length for an
|
|
* infinite one, hence the uint cast.
|
|
*/
|
|
llen = string_equal_bits(key_ptr, l->str, 0);
|
|
rlen = string_equal_bits(key_ptr, r->str, 0);
|
|
brside = (size_t)llen <= (size_t)rlen;
|
|
if ((ssize_t)llen < 0 || (ssize_t)rlen < 0)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = string_equal_bits(l->str, r->str, 0);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if ((unsigned)llen < (unsigned)xlen && (unsigned)rlen < (unsigned)xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if (strcmp(key_ptr + mlen / 8, (const void *)k->str + mlen / 8) == 0) {
|
|
/* strcmp() still needed. E.g. 1 2 3 4 10 11 4 3 2 1 10 11 fails otherwise */
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_IS) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* Note that a negative length indicates an
|
|
* equal value with the final zero reached, but
|
|
* it is still needed to descend to find the
|
|
* leaf. We take that negative length for an
|
|
* infinite one, hence the uint cast.
|
|
*/
|
|
llen = string_equal_bits(key_ptr, l->ptr, 0);
|
|
rlen = string_equal_bits(key_ptr, r->ptr, 0);
|
|
brside = (size_t)llen <= (size_t)rlen;
|
|
if ((ssize_t)llen < 0 || (ssize_t)rlen < 0)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = string_equal_bits(l->ptr, r->ptr, 0);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if ((unsigned)llen < (unsigned)xlen && (unsigned)rlen < (unsigned)xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if (strcmp(key_ptr + mlen / 8, (const void *)k->ptr + mlen / 8) == 0) {
|
|
/* strcmp() still needed. E.g. 1 2 3 4 10 11 4 3 2 1 10 11 fails otherwise */
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
uintptr_t xoraddr; // left vs right branch xor
|
|
uintptr_t kl, kr;
|
|
|
|
kl = (uintptr_t)l; kr = (uintptr_t)r;
|
|
xoraddr = kl ^ kr;
|
|
|
|
if (xoraddr > (uintptr_t)pxor64) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= (uintptr_t)key_ptr; kr ^= (uintptr_t)key_ptr;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xoraddr && kr > xoraddr) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if ((uintptr_t)key_ptr == (uintptr_t)p) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor64 = xoraddr;
|
|
}
|
|
|
|
/* shift all copies by one */
|
|
gparent = lparent;
|
|
gpside = lpside;
|
|
lparent = p;
|
|
lpside = brside;
|
|
if (brside) {
|
|
if (meth == CEB_WM_KPR || meth == CEB_WM_KLE || meth == CEB_WM_KLT)
|
|
bnode = p;
|
|
root = &p->b[1];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_NXT)
|
|
brside = 0;
|
|
|
|
dbg(__LINE__, "side1", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
}
|
|
else {
|
|
if (meth == CEB_WM_KNX || meth == CEB_WM_KGE || meth == CEB_WM_KGT)
|
|
bnode = p;
|
|
root = &p->b[0];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_PRV)
|
|
brside = 1;
|
|
|
|
dbg(__LINE__, "side0", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
}
|
|
|
|
if (p == *root) {
|
|
/* loops over itself, it's a leaf */
|
|
dbg(__LINE__, "loop", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* here we're on the closest node from the requested value. It may be
|
|
* slightly lower (has a zero where we expected a one) or slightly
|
|
* larger has a one where we expected a zero). Thus another check is
|
|
* still deserved, depending on the matching method.
|
|
*/
|
|
|
|
/* if we've exited on an exact match after visiting a regular node
|
|
* (i.e. not the nodeless leaf), we'll avoid checking the string again.
|
|
* However if it doesn't match, we must make sure to compare from
|
|
* within the key (which can be shorter than the ones already there),
|
|
* so we restart the check from the longest of the two lengths, which
|
|
* guarantees these bits exist. Test with "100", "10", "1" to see where
|
|
* this is needed.
|
|
*/
|
|
if ((key_type == CEB_KT_ST || key_type == CEB_KT_IS) && meth >= CEB_WM_KEQ && !found)
|
|
plen = (llen > rlen) ? llen : rlen;
|
|
|
|
/* update the pointers needed for modifications (insert, delete) */
|
|
if (ret_nside && meth >= CEB_WM_KEQ) {
|
|
switch (key_type) {
|
|
case CEB_KT_U32:
|
|
*ret_nside = key_u32 >= k->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
*ret_nside = key_u64 >= k->u64;
|
|
break;
|
|
case CEB_KT_MB:
|
|
*ret_nside = (uint64_t)plen / 8 == key_u64 || memcmp(key_ptr + plen / 8, k->mb + plen / 8, key_u64 - plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_IM:
|
|
*ret_nside = (uint64_t)plen / 8 == key_u64 || memcmp(key_ptr + plen / 8, k->ptr + plen / 8, key_u64 - plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_ST:
|
|
*ret_nside = found || strcmp(key_ptr + plen / 8, (const void *)k->str + plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_IS:
|
|
*ret_nside = found || strcmp(key_ptr + plen / 8, (const void *)k->ptr + plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_ADDR:
|
|
*ret_nside = (uintptr_t)key_ptr >= (uintptr_t)p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret_root)
|
|
*ret_root = root;
|
|
|
|
/* info needed by delete */
|
|
if (ret_lpside)
|
|
*ret_lpside = lpside;
|
|
|
|
if (ret_lparent)
|
|
*ret_lparent = lparent;
|
|
|
|
if (ret_npside)
|
|
*ret_npside = npside;
|
|
|
|
if (ret_nparent)
|
|
*ret_nparent = nparent;
|
|
|
|
if (ret_gpside)
|
|
*ret_gpside = gpside;
|
|
|
|
if (ret_gparent)
|
|
*ret_gparent = gparent;
|
|
|
|
if (ret_back)
|
|
*ret_back = bnode;
|
|
|
|
dbg(__LINE__, "_ret____", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* For lookups, an equal value means an instant return. For insertions,
|
|
* it is the same, we want to return the previously existing value so
|
|
* that the caller can decide what to do. For deletion, we also want to
|
|
* return the pointer that's about to be deleted.
|
|
*/
|
|
if (key_type == CEB_KT_U32) {
|
|
if ((meth == CEB_WM_KEQ && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KNX && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KPR && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KGE && k->u32 >= key_u32) ||
|
|
(meth == CEB_WM_KGT && k->u32 > key_u32) ||
|
|
(meth == CEB_WM_KLE && k->u32 <= key_u32) ||
|
|
(meth == CEB_WM_KLT && k->u32 < key_u32))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
if ((meth == CEB_WM_KEQ && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KNX && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KPR && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KGE && k->u64 >= key_u64) ||
|
|
(meth == CEB_WM_KGT && k->u64 > key_u64) ||
|
|
(meth == CEB_WM_KLE && k->u64 <= key_u64) ||
|
|
(meth == CEB_WM_KLT && k->u64 < key_u64))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_MB) {
|
|
int diff;
|
|
|
|
if ((uint64_t)plen / 8 == key_u64)
|
|
diff = 0;
|
|
else
|
|
diff = memcmp(k->mb + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_IM) {
|
|
int diff;
|
|
|
|
if ((uint64_t)plen / 8 == key_u64)
|
|
diff = 0;
|
|
else
|
|
diff = memcmp(k->ptr + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_ST) {
|
|
int diff;
|
|
|
|
if (found)
|
|
diff = 0;
|
|
else
|
|
diff = strcmp((const void *)k->str + plen / 8, key_ptr + plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_IS) {
|
|
int diff;
|
|
|
|
if (found)
|
|
diff = 0;
|
|
else
|
|
diff = strcmp((const void *)k->ptr + plen / 8, key_ptr + plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
if ((meth == CEB_WM_KEQ && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KNX && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KPR && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGE && (uintptr_t)p >= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGT && (uintptr_t)p > (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLE && (uintptr_t)p <= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLT && (uintptr_t)p < (uintptr_t)key_ptr))
|
|
return p;
|
|
}
|
|
} else if (meth == CEB_WM_FST || meth == CEB_WM_LST) {
|
|
return p;
|
|
} else if (meth == CEB_WM_PRV || meth == CEB_WM_NXT) {
|
|
return p;
|
|
}
|
|
|
|
/* lookups and deletes fail here */
|
|
|
|
/* let's return NULL to indicate the key was not found. For a lookup or
|
|
* a delete, it's a failure. For an insert, it's an invitation to the
|
|
* caller to proceed since the element is not there.
|
|
*/
|
|
return NULL;
|
|
#if __GNUC_PREREQ__(12, 0)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Generic tree insertion function for trees with unique keys. Inserts node
|
|
* <node> into tree <tree>, with key type <key_type> and key <key_*>.
|
|
* Returns the inserted node or the one that already contains the same key.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_insert(struct ceb_node **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node **parent;
|
|
struct ceb_node *ret;
|
|
int nside;
|
|
|
|
if (!*root) {
|
|
/* empty tree, insert a leaf only */
|
|
node->b[0] = node->b[1] = node;
|
|
*root = node;
|
|
return node;
|
|
}
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, &nside, &parent, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
|
|
if (!ret) {
|
|
/* The key was not in the tree, we can insert it. Better use an
|
|
* "if" like this because the inline function above already has
|
|
* quite identifiable code paths. This reduces the code and
|
|
* optimizes it a bit.
|
|
*/
|
|
if (nside) {
|
|
node->b[1] = node;
|
|
node->b[0] = *parent;
|
|
} else {
|
|
node->b[0] = node;
|
|
node->b[1] = *parent;
|
|
}
|
|
*parent = node;
|
|
ret = node;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Returns the first node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_first(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_FST, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Returns the last node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_last(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_LST, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the next
|
|
* node after the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* left turn was made, and returning the first node along the right branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_next(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_cebu_descend(root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
|
|
* node before the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* right turn was made, and returning the last node along the left branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_prev(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_cebu_descend(root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*>. Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*> or the highest one that's lower than it. Returns
|
|
* NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_le(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KLE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the greatest key that is strictly lower than <key_*>. Returns
|
|
* NULL if not found. It's very similar to next() except that the looked up
|
|
* value doesn't need to exist.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_lt(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KLT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*> or the smallest one that's greater than it.
|
|
* Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_ge(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KGE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the lowest key that is strictly greater than <key_*>. Returns
|
|
* NULL if not found. It's very similar to prev() except that the looked up
|
|
* value doesn't need to exist.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_gt(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KGT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* that contains the key <key_*>, and deletes it. If <node> is non-NULL, a
|
|
* check is performed and the node found is deleted only if it matches. The
|
|
* found node is returned in any case, otherwise NULL if not found. A deleted
|
|
* node is detected since it has b[0]==NULL, which this functions also clears
|
|
* after operation. The function is idempotent, so it's safe to attempt to
|
|
* delete an already deleted node (NULL is returned in this case since the node
|
|
* was not in the tree).
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_delete(struct ceb_node **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *lparent, *nparent, *gparent;
|
|
int lpside, npside, gpside;
|
|
struct ceb_node *ret = NULL;
|
|
|
|
if (node && !node->b[0]) {
|
|
/* NULL on a branch means the node is not in the tree */
|
|
return NULL;
|
|
}
|
|
|
|
if (!*root) {
|
|
/* empty tree, the node cannot be there */
|
|
goto done;
|
|
}
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL,
|
|
&lparent, &lpside, &nparent, &npside, &gparent, &gpside, NULL);
|
|
|
|
if (!ret) {
|
|
/* key not found */
|
|
goto done;
|
|
}
|
|
|
|
if (ret == node || !node) {
|
|
if (&lparent->b[0] == root) {
|
|
/* there was a single entry, this one, so we're just
|
|
* deleting the nodeless leaf.
|
|
*/
|
|
*root = NULL;
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* then we necessarily have a gparent */
|
|
gparent->b[gpside] = lparent->b[!lpside];
|
|
|
|
if (lparent == ret) {
|
|
/* we're removing the leaf and node together, nothing
|
|
* more to do.
|
|
*/
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
if (ret->b[0] == ret->b[1]) {
|
|
/* we're removing the node-less item, the parent will
|
|
* take this role.
|
|
*/
|
|
lparent->b[0] = lparent->b[1] = lparent;
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* more complicated, the node was split from the leaf, we have
|
|
* to find a spare one to switch it. The parent node is not
|
|
* needed anymore so we can reuse it.
|
|
*/
|
|
lparent->b[0] = ret->b[0];
|
|
lparent->b[1] = ret->b[1];
|
|
nparent->b[npside] = lparent;
|
|
|
|
mark_and_leave:
|
|
/* now mark the node as deleted */
|
|
ret->b[0] = NULL;
|
|
}
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Functions used to dump trees in Dot format.
|
|
*/
|
|
|
|
/* dump the root and its link to the first node or leaf */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_root(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root, const void *ctx)
|
|
{
|
|
const struct ceb_node *node;
|
|
|
|
printf(" \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)root, (long)root);
|
|
|
|
node = *root;
|
|
if (node) {
|
|
/* under the root we've either a node or the first leaf */
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"B\" arrowsize=0.66];\n",
|
|
(long)root, (long)node,
|
|
(node->b[0] == node->b[1]) ? 'l' : 'n');
|
|
}
|
|
}
|
|
|
|
/* dump a node */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_node(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx)
|
|
{
|
|
unsigned long long int_key = 0;
|
|
uint64_t pxor, lxor, rxor;
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
int_key = (uintptr_t)node;
|
|
break;
|
|
case CEB_KT_U32:
|
|
int_key = NODEK(node, kofs)->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
int_key = NODEK(node, kofs)->u64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* xor of the keys of the two lower branches */
|
|
pxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
/* xor of the keys of the left branch's lower branches */
|
|
lxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
(((struct ceb_node*)node->b[0])->b[0]),
|
|
(((struct ceb_node*)node->b[0])->b[1]));
|
|
|
|
/* xor of the keys of the right branch's lower branches */
|
|
rxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
(((struct ceb_node*)node->b[1])->b[0]),
|
|
(((struct ceb_node*)node->b[1])->b[1]));
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%d\\nkey=%llu\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, flsnz(pxor) - 1, int_key, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor < pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor < pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
case CEB_KT_MB:
|
|
break;
|
|
case CEB_KT_IM:
|
|
break;
|
|
case CEB_KT_ST:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor > pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor > pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
case CEB_KT_IS:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor > pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor > pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* dump a leaf */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_leaf(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx)
|
|
{
|
|
unsigned long long int_key = 0;
|
|
uint64_t pxor;
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
int_key = (uintptr_t)node;
|
|
break;
|
|
case CEB_KT_U32:
|
|
int_key = NODEK(node, kofs)->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
int_key = NODEK(node, kofs)->u64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* xor of the keys of the two lower branches */
|
|
pxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=%llu\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, int_key, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%d\\nkey=%llu\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, flsnz(pxor) - 1, int_key, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
case CEB_KT_MB:
|
|
break;
|
|
case CEB_KT_IM:
|
|
break;
|
|
case CEB_KT_ST:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=\\\"%s\\\"\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
case CEB_KT_IS:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=\\\"%s\\\"\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Dumps a tree through the specified callbacks, falling back to the default
|
|
* callbacks above if left NULL.
|
|
*/
|
|
__attribute__((unused))
|
|
static const struct ceb_node *cebu_default_dump_tree(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root,
|
|
uint64_t pxor, const void *last, int level, const void *ctx,
|
|
void (*root_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root, const void *ctx),
|
|
void (*node_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx),
|
|
void (*leaf_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx))
|
|
{
|
|
const struct ceb_node *node = *root;
|
|
uint64_t xor;
|
|
|
|
if (!node) /* empty tree */
|
|
return node;
|
|
|
|
if (!root_dump)
|
|
root_dump = cebu_default_dump_root;
|
|
|
|
if (!node_dump)
|
|
node_dump = cebu_default_dump_node;
|
|
|
|
if (!leaf_dump)
|
|
leaf_dump = cebu_default_dump_leaf;
|
|
|
|
if (!level) {
|
|
/* dump the first arrow */
|
|
root_dump(kofs, key_type, root, ctx);
|
|
}
|
|
|
|
/* regular nodes, all branches are canonical */
|
|
|
|
if (node->b[0] == node->b[1]) {
|
|
/* first inserted leaf */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
|
|
xor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
if (pxor && xor >= pxor) {
|
|
/* that's a leaf for a scalar type */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
break;
|
|
default:
|
|
if (pxor && xor <= pxor) {
|
|
/* that's a leaf for a non-scalar type */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* that's a regular node */
|
|
node_dump(kofs, key_type, node, level, ctx);
|
|
|
|
last = cebu_default_dump_tree(kofs, key_type, &node->b[0], xor, last, level + 1, ctx, root_dump, node_dump, leaf_dump);
|
|
return cebu_default_dump_tree(kofs, key_type, &node->b[1], xor, last, level + 1, ctx, root_dump, node_dump, leaf_dump);
|
|
}
|
|
|
|
|
|
#endif /* _CEBTREE_PRV_H */
|