haproxy/src/task.c
Willy Tarreau 64e6012eb9 MINOR: task: introduce work lists
Sometimes we need to delegate some list processing to a function running
on another thread. In this case the list element will simply be queued
into a dedicated self-locked list and the task responsible for this list
will be woken up, calling the associated function which will run over the
list.

This is what work_list does. Such lists will be dedicated to a limited
type of work but will significantly ease such remote handling. A function
is provided to create these per-thread lists, their tasks and to properly
bind each task to a distinct thread, so that the caller only has to store
the resulting pointer to the start of the structure.

These structures should not be abused though as each head will consume
4 pointers per thread, hence 32 bytes per thread or 2 kB for 64 threads.
2019-07-12 09:07:48 +02:00

562 lines
16 KiB
C

/*
* Task management functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <string.h>
#include <common/config.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/time.h>
#include <eb32sctree.h>
#include <eb32tree.h>
#include <proto/fd.h>
#include <proto/freq_ctr.h>
#include <proto/proxy.h>
#include <proto/stream.h>
#include <proto/task.h>
DECLARE_POOL(pool_head_task, "task", sizeof(struct task));
DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet));
/* This is the memory pool containing all the signal structs. These
* struct are used to store each required signal between two tasks.
*/
DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification));
unsigned int nb_tasks = 0;
volatile unsigned long global_tasks_mask = 0; /* Mask of threads with tasks in the global runqueue */
unsigned int tasks_run_queue = 0;
unsigned int tasks_run_queue_cur = 0; /* copy of the run queue size */
unsigned int nb_tasks_cur = 0; /* copy of the tasks count */
unsigned int niced_tasks = 0; /* number of niced tasks in the run queue */
THREAD_LOCAL struct task *curr_task = NULL; /* task currently running or NULL */
__decl_aligned_spinlock(rq_lock); /* spin lock related to run queue */
__decl_aligned_rwlock(wq_lock); /* RW lock related to the wait queue */
#ifdef USE_THREAD
struct eb_root timers; /* sorted timers tree, global */
struct eb_root rqueue; /* tree constituting the run queue */
int global_rqueue_size; /* Number of element sin the global runqueue */
#endif
static unsigned int rqueue_ticks; /* insertion count */
struct task_per_thread task_per_thread[MAX_THREADS];
/* Puts the task <t> in run queue at a position depending on t->nice. <t> is
* returned. The nice value assigns boosts in 32th of the run queue size. A
* nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value
* of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so
* the caller will have to set its flags after this call.
* The task must not already be in the run queue. If unsure, use the safer
* task_wakeup() function.
*/
void __task_wakeup(struct task *t, struct eb_root *root)
{
#ifdef USE_THREAD
if (root == &rqueue) {
HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
}
#endif
/* Make sure if the task isn't in the runqueue, nobody inserts it
* in the meanwhile.
*/
_HA_ATOMIC_ADD(&tasks_run_queue, 1);
#ifdef USE_THREAD
if (root == &rqueue) {
global_tasks_mask |= t->thread_mask;
__ha_barrier_store();
}
#endif
t->rq.key = _HA_ATOMIC_ADD(&rqueue_ticks, 1);
if (likely(t->nice)) {
int offset;
_HA_ATOMIC_ADD(&niced_tasks, 1);
offset = t->nice * (int)global.tune.runqueue_depth;
t->rq.key += offset;
}
if (task_profiling_mask & tid_bit)
t->call_date = now_mono_time();
eb32sc_insert(root, &t->rq, t->thread_mask);
#ifdef USE_THREAD
if (root == &rqueue) {
global_rqueue_size++;
_HA_ATOMIC_OR(&t->state, TASK_GLOBAL);
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
} else
#endif
{
int nb = ((void *)root - (void *)&task_per_thread[0].rqueue) / sizeof(task_per_thread[0]);
task_per_thread[nb].rqueue_size++;
}
#ifdef USE_THREAD
/* If all threads that are supposed to handle this task are sleeping,
* wake one.
*/
if ((((t->thread_mask & all_threads_mask) & sleeping_thread_mask) ==
(t->thread_mask & all_threads_mask))) {
unsigned long m = (t->thread_mask & all_threads_mask) &~ tid_bit;
m = (m & (m - 1)) ^ m; // keep lowest bit set
_HA_ATOMIC_AND(&sleeping_thread_mask, ~m);
wake_thread(my_ffsl(m) - 1);
}
#endif
return;
}
/*
* __task_queue()
*
* Inserts a task into wait queue <wq> at the position given by its expiration
* date. It does not matter if the task was already in the wait queue or not,
* as it will be unlinked. The task must not have an infinite expiration timer.
* Last, tasks must not be queued further than the end of the tree, which is
* between <now_ms> and <now_ms> + 2^31 ms (now+24days in 32bit).
*
* This function should not be used directly, it is meant to be called by the
* inline version of task_queue() which performs a few cheap preliminary tests
* before deciding to call __task_queue(). Moreover this function doesn't care
* at all about locking so the caller must be careful when deciding whether to
* lock or not around this call.
*/
void __task_queue(struct task *task, struct eb_root *wq)
{
if (likely(task_in_wq(task)))
__task_unlink_wq(task);
/* the task is not in the queue now */
task->wq.key = task->expire;
#ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES
if (tick_is_lt(task->wq.key, now_ms))
/* we're queuing too far away or in the past (most likely) */
return;
#endif
eb32_insert(wq, &task->wq);
}
/*
* Extract all expired timers from the timer queue, and wakes up all
* associated tasks. Returns the date of next event (or eternity).
*/
int wake_expired_tasks()
{
struct task *task;
struct eb32_node *eb;
int ret = TICK_ETERNITY;
__decl_hathreads(int key);
while (1) {
lookup_next_local:
eb = eb32_lookup_ge(&task_per_thread[tid].timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
/* we might have reached the end of the tree, typically because
* <now_ms> is in the first half and we're first scanning the last
* half. Let's loop back to the beginning of the tree now.
*/
eb = eb32_first(&task_per_thread[tid].timers);
if (likely(!eb))
break;
}
if (tick_is_lt(now_ms, eb->key)) {
/* timer not expired yet, revisit it later */
ret = eb->key;
break;
}
/* timer looks expired, detach it from the queue */
task = eb32_entry(eb, struct task, wq);
__task_unlink_wq(task);
/* It is possible that this task was left at an earlier place in the
* tree because a recent call to task_queue() has not moved it. This
* happens when the new expiration date is later than the old one.
* Since it is very unlikely that we reach a timeout anyway, it's a
* lot cheaper to proceed like this because we almost never update
* the tree. We may also find disabled expiration dates there. Since
* we have detached the task from the tree, we simply call task_queue
* to take care of this. Note that we might occasionally requeue it at
* the same place, before <eb>, so we have to check if this happens,
* and adjust <eb>, otherwise we may skip it which is not what we want.
* We may also not requeue the task (and not point eb at it) if its
* expiration time is not set.
*/
if (!tick_is_expired(task->expire, now_ms)) {
if (tick_isset(task->expire))
__task_queue(task, &task_per_thread[tid].timers);
goto lookup_next_local;
}
task_wakeup(task, TASK_WOKEN_TIMER);
}
#ifdef USE_THREAD
if (eb_is_empty(&timers))
goto leave;
HA_RWLOCK_RDLOCK(TASK_WQ_LOCK, &wq_lock);
eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
eb = eb32_first(&timers);
if (likely(!eb)) {
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
goto leave;
}
}
key = eb->key;
HA_RWLOCK_RDUNLOCK(TASK_WQ_LOCK, &wq_lock);
if (tick_is_lt(now_ms, key)) {
/* timer not expired yet, revisit it later */
ret = tick_first(ret, key);
goto leave;
}
/* There's really something of interest here, let's visit the queue */
while (1) {
HA_RWLOCK_WRLOCK(TASK_WQ_LOCK, &wq_lock);
lookup_next:
eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK);
if (!eb) {
/* we might have reached the end of the tree, typically because
* <now_ms> is in the first half and we're first scanning the last
* half. Let's loop back to the beginning of the tree now.
*/
eb = eb32_first(&timers);
if (likely(!eb))
break;
}
if (tick_is_lt(now_ms, eb->key)) {
/* timer not expired yet, revisit it later */
ret = tick_first(ret, eb->key);
break;
}
/* timer looks expired, detach it from the queue */
task = eb32_entry(eb, struct task, wq);
__task_unlink_wq(task);
/* It is possible that this task was left at an earlier place in the
* tree because a recent call to task_queue() has not moved it. This
* happens when the new expiration date is later than the old one.
* Since it is very unlikely that we reach a timeout anyway, it's a
* lot cheaper to proceed like this because we almost never update
* the tree. We may also find disabled expiration dates there. Since
* we have detached the task from the tree, we simply call task_queue
* to take care of this. Note that we might occasionally requeue it at
* the same place, before <eb>, so we have to check if this happens,
* and adjust <eb>, otherwise we may skip it which is not what we want.
* We may also not requeue the task (and not point eb at it) if its
* expiration time is not set.
*/
if (!tick_is_expired(task->expire, now_ms)) {
if (tick_isset(task->expire))
__task_queue(task, &timers);
goto lookup_next;
}
task_wakeup(task, TASK_WOKEN_TIMER);
HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
}
HA_RWLOCK_WRUNLOCK(TASK_WQ_LOCK, &wq_lock);
#endif
leave:
return ret;
}
/* The run queue is chronologically sorted in a tree. An insertion counter is
* used to assign a position to each task. This counter may be combined with
* other variables (eg: nice value) to set the final position in the tree. The
* counter may wrap without a problem, of course. We then limit the number of
* tasks processed to 200 in any case, so that general latency remains low and
* so that task positions have a chance to be considered. The function scans
* both the global and local run queues and picks the most urgent task between
* the two. We need to grab the global runqueue lock to touch it so it's taken
* on the very first access to the global run queue and is released as soon as
* it reaches the end.
*
* The function adjusts <next> if a new event is closer.
*/
void process_runnable_tasks()
{
struct eb32sc_node *lrq = NULL; // next local run queue entry
struct eb32sc_node *grq = NULL; // next global run queue entry
struct task *t;
int max_processed;
ti->flags &= ~TI_FL_STUCK; // this thread is still running
if (!thread_has_tasks()) {
activity[tid].empty_rq++;
return;
}
tasks_run_queue_cur = tasks_run_queue; /* keep a copy for reporting */
nb_tasks_cur = nb_tasks;
max_processed = global.tune.runqueue_depth;
if (likely(niced_tasks))
max_processed = (max_processed + 3) / 4;
/* Note: the grq lock is always held when grq is not null */
while (task_per_thread[tid].task_list_size < max_processed) {
if ((global_tasks_mask & tid_bit) && !grq) {
#ifdef USE_THREAD
HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
grq = eb32sc_lookup_ge(&rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
if (unlikely(!grq)) {
grq = eb32sc_first(&rqueue, tid_bit);
if (!grq) {
global_tasks_mask &= ~tid_bit;
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
}
}
#endif
}
/* If a global task is available for this thread, it's in grq
* now and the global RQ is locked.
*/
if (!lrq) {
lrq = eb32sc_lookup_ge(&task_per_thread[tid].rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit);
if (unlikely(!lrq))
lrq = eb32sc_first(&task_per_thread[tid].rqueue, tid_bit);
}
if (!lrq && !grq)
break;
if (likely(!grq || (lrq && (int)(lrq->key - grq->key) <= 0))) {
t = eb32sc_entry(lrq, struct task, rq);
lrq = eb32sc_next(lrq, tid_bit);
__task_unlink_rq(t);
}
#ifdef USE_THREAD
else {
t = eb32sc_entry(grq, struct task, rq);
grq = eb32sc_next(grq, tid_bit);
__task_unlink_rq(t);
if (unlikely(!grq)) {
grq = eb32sc_first(&rqueue, tid_bit);
if (!grq) {
global_tasks_mask &= ~tid_bit;
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
}
}
}
#endif
/* And add it to the local task list */
tasklet_insert_into_tasklet_list((struct tasklet *)t);
task_per_thread[tid].task_list_size++;
activity[tid].tasksw++;
}
/* release the rqueue lock */
if (grq) {
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
grq = NULL;
}
while (max_processed > 0 && !LIST_ISEMPTY(&task_per_thread[tid].task_list)) {
struct task *t;
unsigned short state;
void *ctx;
struct task *(*process)(struct task *t, void *ctx, unsigned short state);
t = (struct task *)LIST_ELEM(task_per_thread[tid].task_list.n, struct tasklet *, list);
state = _HA_ATOMIC_XCHG(&t->state, TASK_RUNNING);
__ha_barrier_atomic_store();
__tasklet_remove_from_tasklet_list((struct tasklet *)t);
if (!TASK_IS_TASKLET(t))
task_per_thread[tid].task_list_size--;
ti->flags &= ~TI_FL_STUCK; // this thread is still running
activity[tid].ctxsw++;
ctx = t->context;
process = t->process;
t->calls++;
if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) {
uint64_t now_ns = now_mono_time();
t->lat_time += now_ns - t->call_date;
t->call_date = now_ns;
}
curr_task = (struct task *)t;
__ha_barrier_store();
if (likely(process == process_stream))
t = process_stream(t, ctx, state);
else if (process != NULL)
t = process(TASK_IS_TASKLET(t) ? NULL : t, ctx, state);
else {
__task_free(t);
curr_task = NULL;
__ha_barrier_store();
/* We don't want max_processed to be decremented if
* we're just freeing a destroyed task, we should only
* do so if we really ran a task.
*/
continue;
}
curr_task = NULL;
__ha_barrier_store();
/* If there is a pending state we have to wake up the task
* immediately, else we defer it into wait queue
*/
if (t != NULL) {
if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) {
t->cpu_time += now_mono_time() - t->call_date;
t->call_date = 0;
}
state = _HA_ATOMIC_AND(&t->state, ~TASK_RUNNING);
if (state)
task_wakeup(t, 0);
else
task_queue(t);
}
max_processed--;
}
if (!LIST_ISEMPTY(&task_per_thread[tid].task_list))
activity[tid].long_rq++;
}
/* create a work list array for <nbthread> threads, using tasks made of
* function <fct>. The context passed to the function will be the pointer to
* the thread's work list, which will contain a copy of argument <arg>. The
* wake up reason will be TASK_WOKEN_OTHER. The pointer to the work_list array
* is returned on success, otherwise NULL on failure.
*/
struct work_list *work_list_create(int nbthread,
struct task *(*fct)(struct task *, void *, unsigned short),
void *arg)
{
struct work_list *wl;
int i;
wl = calloc(nbthread, sizeof(*wl));
if (!wl)
goto fail;
for (i = 0; i < nbthread; i++) {
LIST_INIT(&wl[i].head);
wl[i].task = task_new(1UL << i);
if (!wl[i].task)
goto fail;
wl[i].task->process = fct;
wl[i].task->context = &wl[i];
wl[i].arg = arg;
}
return wl;
fail:
work_list_destroy(wl, nbthread);
return NULL;
}
/* destroy work list <work> */
void work_list_destroy(struct work_list *work, int nbthread)
{
int t;
if (!work)
return;
for (t = 0; t < nbthread; t++)
task_destroy(work[t].task);
free(work);
}
/*
* Delete every tasks before running the master polling loop
*/
void mworker_cleantasks()
{
struct task *t;
int i;
struct eb32_node *tmp_wq = NULL;
struct eb32sc_node *tmp_rq = NULL;
#ifdef USE_THREAD
/* cleanup the global run queue */
tmp_rq = eb32sc_first(&rqueue, MAX_THREADS_MASK);
while (tmp_rq) {
t = eb32sc_entry(tmp_rq, struct task, rq);
tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
task_destroy(t);
}
/* cleanup the timers queue */
tmp_wq = eb32_first(&timers);
while (tmp_wq) {
t = eb32_entry(tmp_wq, struct task, wq);
tmp_wq = eb32_next(tmp_wq);
task_destroy(t);
}
#endif
/* clean the per thread run queue */
for (i = 0; i < global.nbthread; i++) {
tmp_rq = eb32sc_first(&task_per_thread[i].rqueue, MAX_THREADS_MASK);
while (tmp_rq) {
t = eb32sc_entry(tmp_rq, struct task, rq);
tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK);
task_destroy(t);
}
/* cleanup the per thread timers queue */
tmp_wq = eb32_first(&task_per_thread[i].timers);
while (tmp_wq) {
t = eb32_entry(tmp_wq, struct task, wq);
tmp_wq = eb32_next(tmp_wq);
task_destroy(t);
}
}
}
/* perform minimal intializations */
static void init_task()
{
int i;
#ifdef USE_THREAD
memset(&timers, 0, sizeof(timers));
memset(&rqueue, 0, sizeof(rqueue));
#endif
memset(&task_per_thread, 0, sizeof(task_per_thread));
for (i = 0; i < MAX_THREADS; i++) {
LIST_INIT(&task_per_thread[i].task_list);
}
}
INITCALL0(STG_PREPARE, init_task);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/