1380 lines
43 KiB
C
1380 lines
43 KiB
C
/*
|
|
* Functions managing stream_interface structures
|
|
*
|
|
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <common/compat.h>
|
|
#include <common/config.h>
|
|
#include <common/debug.h>
|
|
#include <common/standard.h>
|
|
#include <common/ticks.h>
|
|
#include <common/time.h>
|
|
|
|
#include <proto/channel.h>
|
|
#include <proto/connection.h>
|
|
#include <proto/fd.h>
|
|
#include <proto/pipe.h>
|
|
#include <proto/stream_interface.h>
|
|
#include <proto/task.h>
|
|
|
|
#include <types/pipe.h>
|
|
|
|
/* socket functions used when running a stream interface as a task */
|
|
static void stream_int_update_embedded(struct stream_interface *si);
|
|
static void stream_int_shutr(struct stream_interface *si);
|
|
static void stream_int_shutw(struct stream_interface *si);
|
|
static void stream_int_chk_rcv(struct stream_interface *si);
|
|
static void stream_int_chk_snd(struct stream_interface *si);
|
|
static void stream_int_update_conn(struct stream_interface *si);
|
|
static void stream_int_shutr_conn(struct stream_interface *si);
|
|
static void stream_int_shutw_conn(struct stream_interface *si);
|
|
static void stream_int_chk_rcv_conn(struct stream_interface *si);
|
|
static void stream_int_chk_snd_conn(struct stream_interface *si);
|
|
static void si_conn_recv_cb(struct connection *conn);
|
|
static void si_conn_send_cb(struct connection *conn);
|
|
static int si_conn_wake_cb(struct connection *conn);
|
|
static int si_idle_conn_wake_cb(struct connection *conn);
|
|
static void si_idle_conn_null_cb(struct connection *conn);
|
|
|
|
/* stream-interface operations for embedded tasks */
|
|
struct si_ops si_embedded_ops = {
|
|
.update = stream_int_update_embedded,
|
|
.chk_rcv = stream_int_chk_rcv,
|
|
.chk_snd = stream_int_chk_snd,
|
|
.shutr = stream_int_shutr,
|
|
.shutw = stream_int_shutw,
|
|
};
|
|
|
|
/* stream-interface operations for connections */
|
|
struct si_ops si_conn_ops = {
|
|
.update = stream_int_update_conn,
|
|
.chk_rcv = stream_int_chk_rcv_conn,
|
|
.chk_snd = stream_int_chk_snd_conn,
|
|
.shutr = stream_int_shutr_conn,
|
|
.shutw = stream_int_shutw_conn,
|
|
};
|
|
|
|
struct data_cb si_conn_cb = {
|
|
.recv = si_conn_recv_cb,
|
|
.send = si_conn_send_cb,
|
|
.wake = si_conn_wake_cb,
|
|
};
|
|
|
|
struct data_cb si_idle_conn_cb = {
|
|
.recv = si_idle_conn_null_cb,
|
|
.send = si_idle_conn_null_cb,
|
|
.wake = si_idle_conn_wake_cb,
|
|
};
|
|
|
|
/*
|
|
* This function only has to be called once after a wakeup event in case of
|
|
* suspected timeout. It controls the stream interface timeouts and sets
|
|
* si->flags accordingly. It does NOT close anything, as this timeout may
|
|
* be used for any purpose. It returns 1 if the timeout fired, otherwise
|
|
* zero.
|
|
*/
|
|
int stream_int_check_timeouts(struct stream_interface *si)
|
|
{
|
|
if (tick_is_expired(si->exp, now_ms)) {
|
|
si->flags |= SI_FL_EXP;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* to be called only when in SI_ST_DIS with SI_FL_ERR */
|
|
void stream_int_report_error(struct stream_interface *si)
|
|
{
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_DATA_ERR;
|
|
|
|
si->ob->flags |= CF_WRITE_ERROR;
|
|
si->ib->flags |= CF_READ_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Returns a message to the client ; the connection is shut down for read,
|
|
* and the request is cleared so that no server connection can be initiated.
|
|
* The buffer is marked for read shutdown on the other side to protect the
|
|
* message, and the buffer write is enabled. The message is contained in a
|
|
* "chunk". If it is null, then an empty message is used. The reply buffer does
|
|
* not need to be empty before this, and its contents will not be overwritten.
|
|
* The primary goal of this function is to return error messages to a client.
|
|
*/
|
|
void stream_int_retnclose(struct stream_interface *si, const struct chunk *msg)
|
|
{
|
|
channel_auto_read(si->ib);
|
|
channel_abort(si->ib);
|
|
channel_auto_close(si->ib);
|
|
channel_erase(si->ib);
|
|
|
|
bi_erase(si->ob);
|
|
if (likely(msg && msg->len))
|
|
bo_inject(si->ob, msg->str, msg->len);
|
|
|
|
si->ob->wex = tick_add_ifset(now_ms, si->ob->wto);
|
|
channel_auto_read(si->ob);
|
|
channel_auto_close(si->ob);
|
|
channel_shutr_now(si->ob);
|
|
}
|
|
|
|
/* default update function for embedded tasks, to be used at the end of the i/o handler */
|
|
static void stream_int_update_embedded(struct stream_interface *si)
|
|
{
|
|
int old_flags = si->flags;
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si->ib->flags, si->ob->flags);
|
|
|
|
if (si->state != SI_ST_EST)
|
|
return;
|
|
|
|
if ((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(si->ob))
|
|
si_shutw(si);
|
|
|
|
if ((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && !channel_full(si->ob))
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
|
|
/* we're almost sure that we need some space if the buffer is not
|
|
* empty, even if it's not full, because the applets can't fill it.
|
|
*/
|
|
if ((si->ib->flags & (CF_SHUTR|CF_DONT_READ)) == 0 && !channel_is_empty(si->ib))
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
|
|
if (si->ob->flags & CF_WRITE_ACTIVITY) {
|
|
if (tick_isset(si->ob->wex))
|
|
si->ob->wex = tick_add_ifset(now_ms, si->ob->wto);
|
|
}
|
|
|
|
if (si->ib->flags & CF_READ_ACTIVITY ||
|
|
(si->ob->flags & CF_WRITE_ACTIVITY && !(si->flags & SI_FL_INDEP_STR))) {
|
|
if (tick_isset(si->ib->rex))
|
|
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
|
|
}
|
|
|
|
/* save flags to detect changes */
|
|
old_flags = si->flags;
|
|
if (likely((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL &&
|
|
!channel_full(si->ob) &&
|
|
(si->ob->prod->flags & SI_FL_WAIT_ROOM)))
|
|
si_chk_rcv(si->ob->prod);
|
|
|
|
if (((si->ib->flags & CF_READ_PARTIAL) && !channel_is_empty(si->ib)) &&
|
|
(si->ib->cons->flags & SI_FL_WAIT_DATA)) {
|
|
si_chk_snd(si->ib->cons);
|
|
/* check if the consumer has freed some space */
|
|
if (!channel_full(si->ib))
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
}
|
|
|
|
/* Note that we're trying to wake up in two conditions here :
|
|
* - special event, which needs the holder task attention
|
|
* - status indicating that the applet can go on working. This
|
|
* is rather hard because we might be blocking on output and
|
|
* don't want to wake up on input and vice-versa. The idea is
|
|
* to only rely on the changes the chk_* might have performed.
|
|
*/
|
|
if (/* check stream interface changes */
|
|
((old_flags & ~si->flags) & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) ||
|
|
|
|
/* changes on the production side */
|
|
(si->ib->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
|
|
si->state != SI_ST_EST ||
|
|
(si->flags & SI_FL_ERR) ||
|
|
((si->ib->flags & CF_READ_PARTIAL) &&
|
|
(!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) ||
|
|
|
|
/* changes on the consumption side */
|
|
(si->ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
|
|
((si->ob->flags & CF_WRITE_ACTIVITY) &&
|
|
((si->ob->flags & CF_SHUTW) ||
|
|
((si->ob->flags & CF_WAKE_WRITE) &&
|
|
(si->ob->prod->state != SI_ST_EST ||
|
|
(channel_is_empty(si->ob) && !si->ob->to_forward)))))) {
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
if (si->ib->flags & CF_READ_ACTIVITY)
|
|
si->ib->flags &= ~CF_READ_DONTWAIT;
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-read on a stream interface attached to an
|
|
* applet in a connected or init state (it does nothing for other states). It
|
|
* either shuts the read side or marks itself as closed. The buffer flags are
|
|
* updated to reflect the new state. If the stream interface has SI_FL_NOHALF,
|
|
* we also forward the close to the write side. The owner task is woken up if
|
|
* it exists.
|
|
*/
|
|
static void stream_int_shutr(struct stream_interface *si)
|
|
{
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
if (si->ib->flags & CF_SHUTR)
|
|
return;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si->ob->flags & CF_SHUTW) {
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
si_applet_release(si);
|
|
}
|
|
else if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
return stream_int_shutw(si);
|
|
}
|
|
|
|
/* note that if the task exists, it must unregister itself once it runs */
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-write on a stream interface attached to an
|
|
* applet in a connected or init state (it does nothing for other states). It
|
|
* either shuts the write side or marks itself as closed. The buffer flags are
|
|
* updated to reflect the new state. It does also close everything if the SI
|
|
* was marked as being in error state. The owner task is woken up if it exists.
|
|
*/
|
|
static void stream_int_shutw(struct stream_interface *si)
|
|
{
|
|
si->ob->flags &= ~CF_SHUTW_NOW;
|
|
if (si->ob->flags & CF_SHUTW)
|
|
return;
|
|
si->ob->flags |= CF_SHUTW;
|
|
si->ob->wex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
|
|
switch (si->state) {
|
|
case SI_ST_EST:
|
|
/* we have to shut before closing, otherwise some short messages
|
|
* may never leave the system, especially when there are remaining
|
|
* unread data in the socket input buffer, or when nolinger is set.
|
|
* However, if SI_FL_NOLINGER is explicitly set, we know there is
|
|
* no risk so we close both sides immediately.
|
|
*/
|
|
if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) &&
|
|
!(si->ib->flags & (CF_SHUTR|CF_DONT_READ)))
|
|
return;
|
|
|
|
/* fall through */
|
|
case SI_ST_CON:
|
|
case SI_ST_CER:
|
|
case SI_ST_QUE:
|
|
case SI_ST_TAR:
|
|
/* Note that none of these states may happen with applets */
|
|
si->state = SI_ST_DIS;
|
|
si_applet_release(si);
|
|
default:
|
|
si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER);
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
|
|
/* note that if the task exists, it must unregister itself once it runs */
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* default chk_rcv function for scheduled tasks */
|
|
static void stream_int_chk_rcv(struct stream_interface *si)
|
|
{
|
|
struct channel *ib = si->ib;
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si->ib->flags, si->ob->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (ib->flags & (CF_SHUTR|CF_DONT_READ))))
|
|
return;
|
|
|
|
if (channel_full(ib)) {
|
|
/* stop reading */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
}
|
|
else {
|
|
/* (re)start reading */
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
}
|
|
|
|
/* default chk_snd function for scheduled tasks */
|
|
static void stream_int_chk_snd(struct stream_interface *si)
|
|
{
|
|
struct channel *ob = si->ob;
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si->ib->flags, si->ob->flags);
|
|
|
|
if (unlikely(si->state != SI_ST_EST || (si->ob->flags & CF_SHUTW)))
|
|
return;
|
|
|
|
if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */
|
|
channel_is_empty(ob)) /* called with nothing to send ! */
|
|
return;
|
|
|
|
/* Otherwise there are remaining data to be sent in the buffer,
|
|
* so we tell the handler.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
if (!tick_isset(ob->wex))
|
|
ob->wex = tick_add_ifset(now_ms, ob->wto);
|
|
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* Register an applet to handle a stream_interface as part of the
|
|
* stream interface's owner task. The SI will wake it up everytime it
|
|
* is solicited. The task's processing function must call the applet's
|
|
* function before returning. It must be deleted by the task handler
|
|
* using stream_int_unregister_handler(), possibly from within the
|
|
* function itself. It also pre-initializes the applet's context and
|
|
* returns it (or NULL in case it could not be allocated).
|
|
*/
|
|
struct appctx *stream_int_register_handler(struct stream_interface *si, struct si_applet *app)
|
|
{
|
|
struct appctx *appctx;
|
|
|
|
DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si->owner);
|
|
|
|
appctx = si_alloc_appctx(si);
|
|
if (!si)
|
|
return NULL;
|
|
|
|
appctx_set_applet(appctx, app);
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
return si_appctx(si);
|
|
}
|
|
|
|
/* Unregister a stream interface handler. This must be called by the handler task
|
|
* itself when it detects that it is in the SI_ST_DIS state.
|
|
*/
|
|
void stream_int_unregister_handler(struct stream_interface *si)
|
|
{
|
|
si_detach(si);
|
|
}
|
|
|
|
/* This callback is used to send a valid PROXY protocol line to a socket being
|
|
* established. It returns 0 if it fails in a fatal way or needs to poll to go
|
|
* further, otherwise it returns non-zero and removes itself from the connection's
|
|
* flags (the bit is provided in <flag> by the caller). It is designed to be
|
|
* called by the connection handler and relies on it to commit polling changes.
|
|
* Note that it can emit a PROXY line by relying on the other end's address
|
|
* when the connection is attached to a stream interface, or by resolving the
|
|
* local address otherwise (also called a LOCAL line).
|
|
*/
|
|
int conn_si_send_proxy(struct connection *conn, unsigned int flag)
|
|
{
|
|
/* we might have been called just after an asynchronous shutw */
|
|
if (conn->flags & CO_FL_SOCK_WR_SH)
|
|
goto out_error;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
goto out_error;
|
|
|
|
if (!fd_send_ready(conn->t.sock.fd))
|
|
goto out_wait;
|
|
|
|
/* If we have a PROXY line to send, we'll use this to validate the
|
|
* connection, in which case the connection is validated only once
|
|
* we've sent the whole proxy line. Otherwise we use connect().
|
|
*/
|
|
while (conn->send_proxy_ofs) {
|
|
int ret;
|
|
|
|
/* The target server expects a PROXY line to be sent first.
|
|
* If the send_proxy_ofs is negative, it corresponds to the
|
|
* offset to start sending from then end of the proxy string
|
|
* (which is recomputed every time since it's constant). If
|
|
* it is positive, it means we have to send from the start.
|
|
* We can only send a "normal" PROXY line when the connection
|
|
* is attached to a stream interface. Otherwise we can only
|
|
* send a LOCAL line (eg: for use with health checks).
|
|
*/
|
|
if (conn->data == &si_conn_cb) {
|
|
struct stream_interface *si = conn->owner;
|
|
struct connection *remote = objt_conn(si->ob->prod->end);
|
|
ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), remote);
|
|
}
|
|
else {
|
|
/* The target server expects a LOCAL line to be sent first. Retrieving
|
|
* local or remote addresses may fail until the connection is established.
|
|
*/
|
|
conn_get_from_addr(conn);
|
|
if (!(conn->flags & CO_FL_ADDR_FROM_SET))
|
|
goto out_wait;
|
|
|
|
conn_get_to_addr(conn);
|
|
if (!(conn->flags & CO_FL_ADDR_TO_SET))
|
|
goto out_wait;
|
|
|
|
ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), conn);
|
|
}
|
|
|
|
if (!ret)
|
|
goto out_error;
|
|
|
|
if (conn->send_proxy_ofs > 0)
|
|
conn->send_proxy_ofs = -ret; /* first call */
|
|
|
|
/* we have to send trash from (ret+sp for -sp bytes). If the
|
|
* data layer has a pending write, we'll also set MSG_MORE.
|
|
*/
|
|
ret = send(conn->t.sock.fd, trash.str + ret + conn->send_proxy_ofs, -conn->send_proxy_ofs,
|
|
(conn->flags & CO_FL_DATA_WR_ENA) ? MSG_MORE : 0);
|
|
|
|
if (ret == 0)
|
|
goto out_wait;
|
|
|
|
if (ret < 0) {
|
|
if (errno == EAGAIN || errno == ENOTCONN)
|
|
goto out_wait;
|
|
if (errno == EINTR)
|
|
continue;
|
|
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
|
|
goto out_error;
|
|
}
|
|
|
|
conn->send_proxy_ofs += ret; /* becomes zero once complete */
|
|
if (conn->send_proxy_ofs != 0)
|
|
goto out_wait;
|
|
|
|
/* OK we've sent the whole line, we're connected */
|
|
break;
|
|
}
|
|
|
|
/* The connection is ready now, simply return and let the connection
|
|
* handler notify upper layers if needed.
|
|
*/
|
|
if (conn->flags & CO_FL_WAIT_L4_CONN)
|
|
conn->flags &= ~CO_FL_WAIT_L4_CONN;
|
|
conn->flags &= ~flag;
|
|
return 1;
|
|
|
|
out_error:
|
|
/* Write error on the file descriptor */
|
|
conn->flags |= CO_FL_ERROR;
|
|
return 0;
|
|
|
|
out_wait:
|
|
__conn_sock_stop_recv(conn);
|
|
fd_cant_send(conn->t.sock.fd);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Tiny I/O callback called on recv/send I/O events on idle connections.
|
|
* It simply sets the CO_FL_SOCK_RD_SH flag so that si_idle_conn_wake_cb()
|
|
* is notified and can kill the connection.
|
|
*/
|
|
static void si_idle_conn_null_cb(struct connection *conn)
|
|
{
|
|
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))
|
|
return;
|
|
|
|
if (fdtab[conn->t.sock.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) {
|
|
fdtab[conn->t.sock.fd].linger_risk = 0;
|
|
conn->flags |= CO_FL_SOCK_RD_SH;
|
|
}
|
|
else {
|
|
conn_drain(conn);
|
|
}
|
|
|
|
/* disable draining if we were called and have no drain function */
|
|
if (!conn->ctrl->drain)
|
|
__conn_data_stop_recv(conn);
|
|
}
|
|
|
|
/* Callback to be used by connection I/O handlers when some activity is detected
|
|
* on an idle server connection. Its main purpose is to kill the connection once
|
|
* a close was detected on it. It returns 0 if it did nothing serious, or -1 if
|
|
* it killed the connection.
|
|
*/
|
|
static int si_idle_conn_wake_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
return 0;
|
|
|
|
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) {
|
|
/* warning, we can't do anything on <conn> after this call ! */
|
|
conn_force_close(conn);
|
|
conn_free(conn);
|
|
si->end = NULL;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Callback to be used by connection I/O handlers upon completion. It differs from
|
|
* the update function in that it is designed to be called by lower layers after I/O
|
|
* events have been completed. It will also try to wake the associated task up if
|
|
* an important event requires special handling. It relies on the connection handler
|
|
* to commit any polling updates. The function always returns 0.
|
|
*/
|
|
static int si_conn_wake_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
|
|
DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n",
|
|
__FUNCTION__,
|
|
si, si->state, si->ib->flags, si->ob->flags);
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
si->flags |= SI_FL_ERR;
|
|
|
|
/* check for recent connection establishment */
|
|
if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) {
|
|
si->exp = TICK_ETERNITY;
|
|
si->ob->flags |= CF_WRITE_NULL;
|
|
}
|
|
|
|
/* process consumer side */
|
|
if (channel_is_empty(si->ob)) {
|
|
if (((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) &&
|
|
(si->state == SI_ST_EST))
|
|
stream_int_shutw_conn(si);
|
|
__conn_data_stop_send(conn);
|
|
si->ob->wex = TICK_ETERNITY;
|
|
}
|
|
|
|
if ((si->ob->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && !channel_full(si->ob))
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
|
|
if (si->ob->flags & CF_WRITE_ACTIVITY) {
|
|
/* update timeouts if we have written something */
|
|
if ((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
|
|
!channel_is_empty(si->ob))
|
|
if (tick_isset(si->ob->wex))
|
|
si->ob->wex = tick_add_ifset(now_ms, si->ob->wto);
|
|
|
|
if (!(si->flags & SI_FL_INDEP_STR))
|
|
if (tick_isset(si->ib->rex))
|
|
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
|
|
|
|
if (likely((si->ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL &&
|
|
!channel_full(si->ob) &&
|
|
(si->ob->prod->flags & SI_FL_WAIT_ROOM)))
|
|
si_chk_rcv(si->ob->prod);
|
|
}
|
|
|
|
/* process producer side.
|
|
* We might have some data the consumer is waiting for.
|
|
* We can do fast-forwarding, but we avoid doing this for partial
|
|
* buffers, because it is very likely that it will be done again
|
|
* immediately afterwards once the following data is parsed (eg:
|
|
* HTTP chunking).
|
|
*/
|
|
if (((si->ib->flags & CF_READ_PARTIAL) && !channel_is_empty(si->ib)) &&
|
|
(si->ib->pipe /* always try to send spliced data */ ||
|
|
(si->ib->buf->i == 0 && (si->ib->cons->flags & SI_FL_WAIT_DATA)))) {
|
|
int last_len = si->ib->pipe ? si->ib->pipe->data : 0;
|
|
|
|
si_chk_snd(si->ib->cons);
|
|
|
|
/* check if the consumer has freed some space either in the
|
|
* buffer or in the pipe.
|
|
*/
|
|
if (!channel_full(si->ib) &&
|
|
(!last_len || !si->ib->pipe || si->ib->pipe->data < last_len))
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
}
|
|
|
|
if (si->flags & SI_FL_WAIT_ROOM) {
|
|
__conn_data_stop_recv(conn);
|
|
si->ib->rex = TICK_ETERNITY;
|
|
}
|
|
else if ((si->ib->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ)) == CF_READ_PARTIAL &&
|
|
!channel_full(si->ib)) {
|
|
/* we must re-enable reading if si_chk_snd() has freed some space */
|
|
__conn_data_want_recv(conn);
|
|
if (!(si->ib->flags & CF_READ_NOEXP) && tick_isset(si->ib->rex))
|
|
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
|
|
}
|
|
|
|
/* wake the task up only when needed */
|
|
if (/* changes on the production side */
|
|
(si->ib->flags & (CF_READ_NULL|CF_READ_ERROR)) ||
|
|
si->state != SI_ST_EST ||
|
|
(si->flags & SI_FL_ERR) ||
|
|
((si->ib->flags & CF_READ_PARTIAL) &&
|
|
(!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) ||
|
|
|
|
/* changes on the consumption side */
|
|
(si->ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) ||
|
|
((si->ob->flags & CF_WRITE_ACTIVITY) &&
|
|
((si->ob->flags & CF_SHUTW) ||
|
|
((si->ob->flags & CF_WAKE_WRITE) &&
|
|
(si->ob->prod->state != SI_ST_EST ||
|
|
(channel_is_empty(si->ob) && !si->ob->to_forward)))))) {
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
if (si->ib->flags & CF_READ_ACTIVITY)
|
|
si->ib->flags &= ~CF_READ_DONTWAIT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called to send buffer data to a stream socket.
|
|
* It calls the transport layer's snd_buf function. It relies on the
|
|
* caller to commit polling changes. The caller should check conn->flags
|
|
* for errors.
|
|
*/
|
|
static void si_conn_send(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *chn = si->ob;
|
|
int ret;
|
|
|
|
if (chn->pipe && conn->xprt->snd_pipe) {
|
|
ret = conn->xprt->snd_pipe(conn, chn->pipe);
|
|
if (ret > 0)
|
|
chn->flags |= CF_WRITE_PARTIAL;
|
|
|
|
if (!chn->pipe->data) {
|
|
put_pipe(chn->pipe);
|
|
chn->pipe = NULL;
|
|
}
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
}
|
|
|
|
/* At this point, the pipe is empty, but we may still have data pending
|
|
* in the normal buffer.
|
|
*/
|
|
if (!chn->buf->o)
|
|
return;
|
|
|
|
/* when we're here, we already know that there is no spliced
|
|
* data left, and that there are sendable buffered data.
|
|
*/
|
|
if (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_DATA_WR_SH | CO_FL_WAIT_DATA | CO_FL_HANDSHAKE))) {
|
|
/* check if we want to inform the kernel that we're interested in
|
|
* sending more data after this call. We want this if :
|
|
* - we're about to close after this last send and want to merge
|
|
* the ongoing FIN with the last segment.
|
|
* - we know we can't send everything at once and must get back
|
|
* here because of unaligned data
|
|
* - there is still a finite amount of data to forward
|
|
* The test is arranged so that the most common case does only 2
|
|
* tests.
|
|
*/
|
|
unsigned int send_flag = 0;
|
|
|
|
if ((!(chn->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) &&
|
|
((chn->to_forward && chn->to_forward != CHN_INFINITE_FORWARD) ||
|
|
(chn->flags & CF_EXPECT_MORE))) ||
|
|
((chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW))
|
|
send_flag |= CO_SFL_MSG_MORE;
|
|
|
|
if (chn->flags & CF_STREAMER)
|
|
send_flag |= CO_SFL_STREAMER;
|
|
|
|
ret = conn->xprt->snd_buf(conn, chn->buf, send_flag);
|
|
if (ret > 0) {
|
|
chn->flags |= CF_WRITE_PARTIAL;
|
|
|
|
if (!chn->buf->o) {
|
|
/* Always clear both flags once everything has been sent, they're one-shot */
|
|
chn->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT);
|
|
}
|
|
|
|
/* if some data remain in the buffer, it's only because the
|
|
* system buffers are full, we will try next time.
|
|
*/
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Updates the timers and flags of a stream interface attached to a connection,
|
|
* depending on the buffers' flags. It should only be called once after the
|
|
* buffer flags have settled down, and before they are cleared. It doesn't
|
|
* harm to call it as often as desired (it just slightly hurts performance).
|
|
* It is only meant to be called by upper layers after buffer flags have been
|
|
* manipulated by analysers.
|
|
*/
|
|
void stream_int_update_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *ib = si->ib;
|
|
struct channel *ob = si->ob;
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
/* Check if we need to close the read side */
|
|
if (!(ib->flags & CF_SHUTR)) {
|
|
/* Read not closed, update FD status and timeout for reads */
|
|
if ((ib->flags & CF_DONT_READ) || channel_full(ib)) {
|
|
/* stop reading */
|
|
if (!(si->flags & SI_FL_WAIT_ROOM)) {
|
|
if (!(ib->flags & CF_DONT_READ)) /* full */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
conn_data_stop_recv(conn);
|
|
ib->rex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start reading and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
conn_data_want_recv(conn);
|
|
if (!(ib->flags & (CF_READ_NOEXP|CF_DONT_READ)) && !tick_isset(ib->rex))
|
|
ib->rex = tick_add_ifset(now_ms, ib->rto);
|
|
}
|
|
}
|
|
|
|
/* Check if we need to close the write side */
|
|
if (!(ob->flags & CF_SHUTW)) {
|
|
/* Write not closed, update FD status and timeout for writes */
|
|
if (channel_is_empty(ob)) {
|
|
/* stop writing */
|
|
if (!(si->flags & SI_FL_WAIT_DATA)) {
|
|
if ((ob->flags & CF_SHUTW_NOW) == 0)
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
conn_data_stop_send(conn);
|
|
ob->wex = TICK_ETERNITY;
|
|
}
|
|
}
|
|
else {
|
|
/* (re)start writing and update timeout. Note: we don't recompute the timeout
|
|
* everytime we get here, otherwise it would risk never to expire. We only
|
|
* update it if is was not yet set. The stream socket handler will already
|
|
* have updated it if there has been a completed I/O.
|
|
*/
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
conn_data_want_send(conn);
|
|
if (!tick_isset(ob->wex)) {
|
|
ob->wex = tick_add_ifset(now_ms, ob->wto);
|
|
if (tick_isset(ib->rex) && !(si->flags & SI_FL_INDEP_STR)) {
|
|
/* Note: depending on the protocol, we don't know if we're waiting
|
|
* for incoming data or not. So in order to prevent the socket from
|
|
* expiring read timeouts during writes, we refresh the read timeout,
|
|
* except if it was already infinite or if we have explicitly setup
|
|
* independent streams.
|
|
*/
|
|
ib->rex = tick_add_ifset(now_ms, ib->rto);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-read on a stream interface attached to
|
|
* a connection in a connected or init state (it does nothing for other
|
|
* states). It either shuts the read side or marks itself as closed. The buffer
|
|
* flags are updated to reflect the new state. If the stream interface has
|
|
* SI_FL_NOHALF, we also forward the close to the write side. If a control
|
|
* layer is defined, then it is supposed to be a socket layer and file
|
|
* descriptors are then shutdown or closed accordingly. The function
|
|
* automatically disables polling if needed.
|
|
*/
|
|
static void stream_int_shutr_conn(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
if (si->ib->flags & CF_SHUTR)
|
|
return;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si->ob->flags & CF_SHUTW) {
|
|
conn_full_close(conn);
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
else if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
return stream_int_shutw_conn(si);
|
|
}
|
|
else if (conn->ctrl) {
|
|
/* we want the caller to disable polling on this FD */
|
|
conn_data_stop_recv(conn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function performs a shutdown-write on a stream interface attached to
|
|
* a connection in a connected or init state (it does nothing for other
|
|
* states). It either shuts the write side or marks itself as closed. The
|
|
* buffer flags are updated to reflect the new state. It does also close
|
|
* everything if the SI was marked as being in error state. If there is a
|
|
* data-layer shutdown, it is called. If a control layer is defined, then it is
|
|
* supposed to be a socket layer and file descriptors are then shutdown or
|
|
* closed accordingly. The function automatically disables polling if needed.
|
|
* Note: at the moment, we continue to check conn->ctrl eventhough we *know* it
|
|
* is valid. This will help selecting the proper shutdown() and setsockopt()
|
|
* calls if/when we implement remote sockets later.
|
|
*/
|
|
static void stream_int_shutw_conn(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
si->ob->flags &= ~CF_SHUTW_NOW;
|
|
if (si->ob->flags & CF_SHUTW)
|
|
return;
|
|
si->ob->flags |= CF_SHUTW;
|
|
si->ob->wex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
|
|
switch (si->state) {
|
|
case SI_ST_EST:
|
|
/* we have to shut before closing, otherwise some short messages
|
|
* may never leave the system, especially when there are remaining
|
|
* unread data in the socket input buffer, or when nolinger is set.
|
|
* However, if SI_FL_NOLINGER is explicitly set, we know there is
|
|
* no risk so we close both sides immediately.
|
|
*/
|
|
if (si->flags & SI_FL_ERR) {
|
|
/* quick close, the socket is alredy shut anyway */
|
|
}
|
|
else if (si->flags & SI_FL_NOLINGER) {
|
|
/* unclean data-layer shutdown */
|
|
if (conn->xprt && conn->xprt->shutw)
|
|
conn->xprt->shutw(conn, 0);
|
|
}
|
|
else {
|
|
/* clean data-layer shutdown */
|
|
if (conn->xprt && conn->xprt->shutw)
|
|
conn->xprt->shutw(conn, 1);
|
|
|
|
/* If the stream interface is configured to disable half-open
|
|
* connections, we'll skip the shutdown(), but only if the
|
|
* read size is already closed. Otherwise we can't support
|
|
* closed write with pending read (eg: abortonclose while
|
|
* waiting for the server).
|
|
*/
|
|
if (!(si->flags & SI_FL_NOHALF) || !(si->ib->flags & (CF_SHUTR|CF_DONT_READ))) {
|
|
/* We shutdown transport layer */
|
|
if (conn_ctrl_ready(conn))
|
|
shutdown(conn->t.sock.fd, SHUT_WR);
|
|
|
|
if (!(si->ib->flags & (CF_SHUTR|CF_DONT_READ))) {
|
|
/* OK just a shutw, but we want the caller
|
|
* to disable polling on this FD if exists.
|
|
*/
|
|
if (conn->ctrl)
|
|
conn_data_stop_send(conn);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* fall through */
|
|
case SI_ST_CON:
|
|
/* we may have to close a pending connection, and mark the
|
|
* response buffer as shutr
|
|
*/
|
|
conn_full_close(conn);
|
|
/* fall through */
|
|
case SI_ST_CER:
|
|
case SI_ST_QUE:
|
|
case SI_ST_TAR:
|
|
si->state = SI_ST_DIS;
|
|
/* fall through */
|
|
default:
|
|
si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER);
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
si->exp = TICK_ETERNITY;
|
|
}
|
|
}
|
|
|
|
/* This function is used for inter-stream-interface calls. It is called by the
|
|
* consumer to inform the producer side that it may be interested in checking
|
|
* for free space in the buffer. Note that it intentionally does not update
|
|
* timeouts, so that we can still check them later at wake-up. This function is
|
|
* dedicated to connection-based stream interfaces.
|
|
*/
|
|
static void stream_int_chk_rcv_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *ib = si->ib;
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
if (unlikely(si->state > SI_ST_EST || (ib->flags & CF_SHUTR)))
|
|
return;
|
|
|
|
conn_refresh_polling_flags(conn);
|
|
|
|
if ((ib->flags & CF_DONT_READ) || channel_full(ib)) {
|
|
/* stop reading */
|
|
if (!(ib->flags & CF_DONT_READ)) /* full */
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
}
|
|
else {
|
|
/* (re)start reading */
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
__conn_data_want_recv(conn);
|
|
}
|
|
conn_cond_update_data_polling(conn);
|
|
}
|
|
|
|
|
|
/* This function is used for inter-stream-interface calls. It is called by the
|
|
* producer to inform the consumer side that it may be interested in checking
|
|
* for data in the buffer. Note that it intentionally does not update timeouts,
|
|
* so that we can still check them later at wake-up.
|
|
*/
|
|
static void stream_int_chk_snd_conn(struct stream_interface *si)
|
|
{
|
|
struct channel *ob = si->ob;
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
if (unlikely(si->state > SI_ST_EST || (ob->flags & CF_SHUTW)))
|
|
return;
|
|
|
|
if (unlikely(channel_is_empty(ob))) /* called with nothing to send ! */
|
|
return;
|
|
|
|
if (!ob->pipe && /* spliced data wants to be forwarded ASAP */
|
|
!(si->flags & SI_FL_WAIT_DATA)) /* not waiting for data */
|
|
return;
|
|
|
|
if (conn->flags & (CO_FL_DATA_WR_ENA|CO_FL_CURR_WR_ENA)) {
|
|
/* already subscribed to write notifications, will be called
|
|
* anyway, so let's avoid calling it especially if the reader
|
|
* is not ready.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Before calling the data-level operations, we have to prepare
|
|
* the polling flags to ensure we properly detect changes.
|
|
*/
|
|
conn_refresh_polling_flags(conn);
|
|
__conn_data_want_send(conn);
|
|
|
|
if (!(conn->flags & (CO_FL_HANDSHAKE|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN))) {
|
|
si_conn_send(conn);
|
|
if (conn->flags & CO_FL_ERROR) {
|
|
/* Write error on the file descriptor */
|
|
__conn_data_stop_both(conn);
|
|
si->flags |= SI_FL_ERR;
|
|
goto out_wakeup;
|
|
}
|
|
}
|
|
|
|
/* OK, so now we know that some data might have been sent, and that we may
|
|
* have to poll first. We have to do that too if the buffer is not empty.
|
|
*/
|
|
if (channel_is_empty(ob)) {
|
|
/* the connection is established but we can't write. Either the
|
|
* buffer is empty, or we just refrain from sending because the
|
|
* ->o limit was reached. Maybe we just wrote the last
|
|
* chunk and need to close.
|
|
*/
|
|
__conn_data_stop_send(conn);
|
|
if (((ob->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTW_NOW)) &&
|
|
(si->state == SI_ST_EST)) {
|
|
si_shutw(si);
|
|
goto out_wakeup;
|
|
}
|
|
|
|
if ((ob->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0)
|
|
si->flags |= SI_FL_WAIT_DATA;
|
|
ob->wex = TICK_ETERNITY;
|
|
}
|
|
else {
|
|
/* Otherwise there are remaining data to be sent in the buffer,
|
|
* which means we have to poll before doing so.
|
|
*/
|
|
__conn_data_want_send(conn);
|
|
si->flags &= ~SI_FL_WAIT_DATA;
|
|
if (!tick_isset(ob->wex))
|
|
ob->wex = tick_add_ifset(now_ms, ob->wto);
|
|
}
|
|
|
|
if (likely(ob->flags & CF_WRITE_ACTIVITY)) {
|
|
/* update timeout if we have written something */
|
|
if ((ob->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL &&
|
|
!channel_is_empty(ob))
|
|
ob->wex = tick_add_ifset(now_ms, ob->wto);
|
|
|
|
if (tick_isset(si->ib->rex) && !(si->flags & SI_FL_INDEP_STR)) {
|
|
/* Note: to prevent the client from expiring read timeouts
|
|
* during writes, we refresh it. We only do this if the
|
|
* interface is not configured for "independent streams",
|
|
* because for some applications it's better not to do this,
|
|
* for instance when continuously exchanging small amounts
|
|
* of data which can full the socket buffers long before a
|
|
* write timeout is detected.
|
|
*/
|
|
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
|
|
}
|
|
}
|
|
|
|
/* in case of special condition (error, shutdown, end of write...), we
|
|
* have to notify the task.
|
|
*/
|
|
if (likely((ob->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) ||
|
|
((ob->flags & CF_WAKE_WRITE) &&
|
|
((channel_is_empty(si->ob) && !ob->to_forward) ||
|
|
si->state != SI_ST_EST)))) {
|
|
out_wakeup:
|
|
if (!(si->flags & SI_FL_DONT_WAKE) && si->owner)
|
|
task_wakeup(si->owner, TASK_WOKEN_IO);
|
|
}
|
|
|
|
/* commit possible polling changes */
|
|
conn_cond_update_polling(conn);
|
|
}
|
|
|
|
/*
|
|
* This is the callback which is called by the connection layer to receive data
|
|
* into the buffer from the connection. It iterates over the transport layer's
|
|
* rcv_buf function.
|
|
*/
|
|
static void si_conn_recv_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *chn = si->ib;
|
|
int ret, max, cur_read;
|
|
int read_poll = MAX_READ_POLL_LOOPS;
|
|
|
|
/* stop immediately on errors. Note that we DON'T want to stop on
|
|
* POLL_ERR, as the poller might report a write error while there
|
|
* are still data available in the recv buffer. This typically
|
|
* happens when we send too large a request to a backend server
|
|
* which rejects it before reading it all.
|
|
*/
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
/* stop here if we reached the end of data */
|
|
if (conn_data_read0_pending(conn))
|
|
goto out_shutdown_r;
|
|
|
|
/* maybe we were called immediately after an asynchronous shutr */
|
|
if (chn->flags & CF_SHUTR)
|
|
return;
|
|
|
|
cur_read = 0;
|
|
|
|
if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !chn->buf->o &&
|
|
global.tune.idle_timer &&
|
|
(unsigned short)(now_ms - chn->last_read) >= global.tune.idle_timer) {
|
|
/* The buffer was empty and nothing was transferred for more
|
|
* than one second. This was caused by a pause and not by
|
|
* congestion. Reset any streaming mode to reduce latency.
|
|
*/
|
|
chn->xfer_small = 0;
|
|
chn->xfer_large = 0;
|
|
chn->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
|
|
/* First, let's see if we may splice data across the channel without
|
|
* using a buffer.
|
|
*/
|
|
if (conn->xprt->rcv_pipe &&
|
|
(chn->pipe || chn->to_forward >= MIN_SPLICE_FORWARD) &&
|
|
chn->flags & CF_KERN_SPLICING) {
|
|
if (buffer_not_empty(chn->buf)) {
|
|
/* We're embarrassed, there are already data pending in
|
|
* the buffer and we don't want to have them at two
|
|
* locations at a time. Let's indicate we need some
|
|
* place and ask the consumer to hurry.
|
|
*/
|
|
goto abort_splice;
|
|
}
|
|
|
|
if (unlikely(chn->pipe == NULL)) {
|
|
if (pipes_used >= global.maxpipes || !(chn->pipe = get_pipe())) {
|
|
chn->flags &= ~CF_KERN_SPLICING;
|
|
goto abort_splice;
|
|
}
|
|
}
|
|
|
|
ret = conn->xprt->rcv_pipe(conn, chn->pipe, chn->to_forward);
|
|
if (ret < 0) {
|
|
/* splice not supported on this end, let's disable it */
|
|
chn->flags &= ~CF_KERN_SPLICING;
|
|
goto abort_splice;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
if (chn->to_forward != CHN_INFINITE_FORWARD)
|
|
chn->to_forward -= ret;
|
|
chn->total += ret;
|
|
cur_read += ret;
|
|
chn->flags |= CF_READ_PARTIAL;
|
|
}
|
|
|
|
if (conn_data_read0_pending(conn))
|
|
goto out_shutdown_r;
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (conn->flags & CO_FL_WAIT_ROOM) {
|
|
/* the pipe is full or we have read enough data that it
|
|
* could soon be full. Let's stop before needing to poll.
|
|
*/
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
}
|
|
|
|
/* splice not possible (anymore), let's go on on standard copy */
|
|
}
|
|
|
|
abort_splice:
|
|
if (chn->pipe && unlikely(!chn->pipe->data)) {
|
|
put_pipe(chn->pipe);
|
|
chn->pipe = NULL;
|
|
}
|
|
|
|
/* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling
|
|
* was enabled, which implies that the recv buffer was not full. So we have a guarantee
|
|
* that if such an event is not handled above in splice, it will be handled here by
|
|
* recv().
|
|
*/
|
|
while (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_DATA_RD_SH | CO_FL_WAIT_ROOM | CO_FL_HANDSHAKE))) {
|
|
max = bi_avail(chn);
|
|
|
|
if (!max) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
break;
|
|
}
|
|
|
|
ret = conn->xprt->rcv_buf(conn, chn->buf, max);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
cur_read += ret;
|
|
|
|
/* if we're allowed to directly forward data, we must update ->o */
|
|
if (chn->to_forward && !(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
|
|
unsigned long fwd = ret;
|
|
if (chn->to_forward != CHN_INFINITE_FORWARD) {
|
|
if (fwd > chn->to_forward)
|
|
fwd = chn->to_forward;
|
|
chn->to_forward -= fwd;
|
|
}
|
|
b_adv(chn->buf, fwd);
|
|
}
|
|
|
|
chn->flags |= CF_READ_PARTIAL;
|
|
chn->total += ret;
|
|
|
|
if (channel_full(chn)) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
break;
|
|
}
|
|
|
|
if ((chn->flags & CF_READ_DONTWAIT) || --read_poll <= 0) {
|
|
si->flags |= SI_FL_WAIT_ROOM;
|
|
__conn_data_stop_recv(conn);
|
|
break;
|
|
}
|
|
|
|
/* if too many bytes were missing from last read, it means that
|
|
* it's pointless trying to read again because the system does
|
|
* not have them in buffers.
|
|
*/
|
|
if (ret < max) {
|
|
/* if a streamer has read few data, it may be because we
|
|
* have exhausted system buffers. It's not worth trying
|
|
* again.
|
|
*/
|
|
if (chn->flags & CF_STREAMER)
|
|
break;
|
|
|
|
/* if we read a large block smaller than what we requested,
|
|
* it's almost certain we'll never get anything more.
|
|
*/
|
|
if (ret >= global.tune.recv_enough)
|
|
break;
|
|
}
|
|
} /* while !flags */
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (cur_read) {
|
|
if ((chn->flags & (CF_STREAMER | CF_STREAMER_FAST)) &&
|
|
(cur_read <= chn->buf->size / 2)) {
|
|
chn->xfer_large = 0;
|
|
chn->xfer_small++;
|
|
if (chn->xfer_small >= 3) {
|
|
/* we have read less than half of the buffer in
|
|
* one pass, and this happened at least 3 times.
|
|
* This is definitely not a streamer.
|
|
*/
|
|
chn->flags &= ~(CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
else if (chn->xfer_small >= 2) {
|
|
/* if the buffer has been at least half full twice,
|
|
* we receive faster than we send, so at least it
|
|
* is not a "fast streamer".
|
|
*/
|
|
chn->flags &= ~CF_STREAMER_FAST;
|
|
}
|
|
}
|
|
else if (!(chn->flags & CF_STREAMER_FAST) &&
|
|
(cur_read >= chn->buf->size - global.tune.maxrewrite)) {
|
|
/* we read a full buffer at once */
|
|
chn->xfer_small = 0;
|
|
chn->xfer_large++;
|
|
if (chn->xfer_large >= 3) {
|
|
/* we call this buffer a fast streamer if it manages
|
|
* to be filled in one call 3 consecutive times.
|
|
*/
|
|
chn->flags |= (CF_STREAMER | CF_STREAMER_FAST);
|
|
}
|
|
}
|
|
else {
|
|
chn->xfer_small = 0;
|
|
chn->xfer_large = 0;
|
|
}
|
|
chn->last_read = now_ms;
|
|
}
|
|
|
|
if (conn_data_read0_pending(conn))
|
|
/* connection closed */
|
|
goto out_shutdown_r;
|
|
|
|
return;
|
|
|
|
out_shutdown_r:
|
|
/* we received a shutdown */
|
|
chn->flags |= CF_READ_NULL;
|
|
if (chn->flags & CF_AUTO_CLOSE)
|
|
channel_shutw_now(chn);
|
|
stream_sock_read0(si);
|
|
conn_data_read0(conn);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is the callback which is called by the connection layer to send data
|
|
* from the buffer to the connection. It iterates over the transport layer's
|
|
* snd_buf function.
|
|
*/
|
|
static void si_conn_send_cb(struct connection *conn)
|
|
{
|
|
struct stream_interface *si = conn->owner;
|
|
struct channel *chn = si->ob;
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return;
|
|
|
|
if (conn->flags & CO_FL_HANDSHAKE)
|
|
/* a handshake was requested */
|
|
return;
|
|
|
|
/* we might have been called just after an asynchronous shutw */
|
|
if (chn->flags & CF_SHUTW)
|
|
return;
|
|
|
|
/* OK there are data waiting to be sent */
|
|
si_conn_send(conn);
|
|
|
|
/* OK all done */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This function propagates a null read received on a socket-based connection.
|
|
* It updates the stream interface. If the stream interface has SI_FL_NOHALF,
|
|
* the close is also forwarded to the write side as an abort. This function is
|
|
* still socket-specific as it handles a setsockopt() call to set the SO_LINGER
|
|
* state on the socket.
|
|
*/
|
|
void stream_sock_read0(struct stream_interface *si)
|
|
{
|
|
struct connection *conn = __objt_conn(si->end);
|
|
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
if (si->ib->flags & CF_SHUTR)
|
|
return;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_WAIT_ROOM;
|
|
|
|
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
|
|
return;
|
|
|
|
if (si->ob->flags & CF_SHUTW)
|
|
goto do_close;
|
|
|
|
if (si->flags & SI_FL_NOHALF) {
|
|
/* we want to immediately forward this close to the write side */
|
|
/* force flag on ssl to keep session in cache */
|
|
if (conn->xprt->shutw)
|
|
conn->xprt->shutw(conn, 0);
|
|
goto do_close;
|
|
}
|
|
|
|
/* otherwise that's just a normal read shutdown */
|
|
if (conn_ctrl_ready(conn))
|
|
fdtab[conn->t.sock.fd].linger_risk = 0;
|
|
__conn_data_stop_recv(conn);
|
|
return;
|
|
|
|
do_close:
|
|
/* OK we completely close the socket here just as if we went through si_shut[rw]() */
|
|
conn_full_close(conn);
|
|
|
|
si->ib->flags &= ~CF_SHUTR_NOW;
|
|
si->ib->flags |= CF_SHUTR;
|
|
si->ib->rex = TICK_ETERNITY;
|
|
|
|
si->ob->flags &= ~CF_SHUTW_NOW;
|
|
si->ob->flags |= CF_SHUTW;
|
|
si->ob->wex = TICK_ETERNITY;
|
|
|
|
si->flags &= ~(SI_FL_WAIT_DATA | SI_FL_WAIT_ROOM);
|
|
|
|
si->state = SI_ST_DIS;
|
|
si->exp = TICK_ETERNITY;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|