mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-01-20 12:40:46 +00:00
bcad7e6319
There is a need for a small difference between resuming and relaxing a listener. When resuming, we expect that the listener may completely resume, this includes unpausing or rebinding if required. Resuming a listener is a best-effort operation: no matter the current state, try our best to bring the listener up to the LI_READY state. There are some cases where we only want to "relax" listeners that were previously restricted using limit_listener() or listener_full() functions. Here we don't want to ressucitate listeners, we're simply interested in cancelling out the previous restriction. To this day, listener_resume() on a unbound listener is broken, that's why the need for this wasn't felt yet. But we're trying to restore historical listener_resume() behavior, so we better prepare for this by introducing an explicit relax_listener() function that only does what is expected in such cases. This commit depends on: - "MINOR: listener/api: add lli hint to listener functions"
1929 lines
56 KiB
C
1929 lines
56 KiB
C
/*
|
|
* Listener management functions.
|
|
*
|
|
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include <haproxy/acl.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/cli-t.h>
|
|
#include <haproxy/connection.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/freq_ctr.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/list.h>
|
|
#include <haproxy/listener.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/protocol.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/quic_tp.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/ticks.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
/* List head of all known bind keywords */
|
|
struct bind_kw_list bind_keywords = {
|
|
.list = LIST_HEAD_INIT(bind_keywords.list)
|
|
};
|
|
|
|
/* list of the temporarily limited listeners because of lack of resource */
|
|
static struct mt_list global_listener_queue = MT_LIST_HEAD_INIT(global_listener_queue);
|
|
static struct task *global_listener_queue_task;
|
|
__decl_thread(static HA_RWLOCK_T global_listener_rwlock);
|
|
|
|
/* listener status for stats */
|
|
const char* li_status_st[LI_STATE_COUNT] = {
|
|
[LI_STATUS_WAITING] = "WAITING",
|
|
[LI_STATUS_OPEN] = "OPEN",
|
|
[LI_STATUS_FULL] = "FULL",
|
|
};
|
|
|
|
#if defined(USE_THREAD)
|
|
|
|
struct accept_queue_ring accept_queue_rings[MAX_THREADS] __attribute__((aligned(64))) = { };
|
|
|
|
/* dequeue and process a pending connection from the local accept queue (single
|
|
* consumer). Returns the accepted connection or NULL if none was found.
|
|
*/
|
|
struct connection *accept_queue_pop_sc(struct accept_queue_ring *ring)
|
|
{
|
|
unsigned int pos, next;
|
|
struct connection *ptr;
|
|
struct connection **e;
|
|
|
|
pos = ring->head;
|
|
|
|
if (pos == ring->tail)
|
|
return NULL;
|
|
|
|
next = pos + 1;
|
|
if (next >= ACCEPT_QUEUE_SIZE)
|
|
next = 0;
|
|
|
|
e = &ring->entry[pos];
|
|
|
|
/* wait for the producer to update the listener's pointer */
|
|
while (1) {
|
|
ptr = *e;
|
|
__ha_barrier_load();
|
|
if (ptr)
|
|
break;
|
|
pl_cpu_relax();
|
|
}
|
|
|
|
/* release the entry */
|
|
*e = NULL;
|
|
|
|
__ha_barrier_store();
|
|
ring->head = next;
|
|
return ptr;
|
|
}
|
|
|
|
|
|
/* tries to push a new accepted connection <conn> into ring <ring>. Returns
|
|
* non-zero if it succeeds, or zero if the ring is full. Supports multiple
|
|
* producers.
|
|
*/
|
|
int accept_queue_push_mp(struct accept_queue_ring *ring, struct connection *conn)
|
|
{
|
|
unsigned int pos, next;
|
|
|
|
pos = ring->tail;
|
|
do {
|
|
next = pos + 1;
|
|
if (next >= ACCEPT_QUEUE_SIZE)
|
|
next = 0;
|
|
if (next == ring->head)
|
|
return 0; // ring full
|
|
} while (unlikely(!_HA_ATOMIC_CAS(&ring->tail, &pos, next)));
|
|
|
|
ring->entry[pos] = conn;
|
|
__ha_barrier_store();
|
|
return 1;
|
|
}
|
|
|
|
/* proceed with accepting new connections. Don't mark it static so that it appears
|
|
* in task dumps.
|
|
*/
|
|
struct task *accept_queue_process(struct task *t, void *context, unsigned int state)
|
|
{
|
|
struct accept_queue_ring *ring = context;
|
|
struct connection *conn;
|
|
struct listener *li;
|
|
unsigned int max_accept;
|
|
int ret;
|
|
|
|
/* if global.tune.maxaccept is -1, then max_accept is UINT_MAX. It
|
|
* is not really illimited, but it is probably enough.
|
|
*/
|
|
max_accept = global.tune.maxaccept ? global.tune.maxaccept : MAX_ACCEPT;
|
|
for (; max_accept; max_accept--) {
|
|
conn = accept_queue_pop_sc(ring);
|
|
if (!conn)
|
|
break;
|
|
|
|
li = __objt_listener(conn->target);
|
|
_HA_ATOMIC_INC(&li->thr_conn[tid]);
|
|
ret = li->bind_conf->accept(conn);
|
|
if (ret <= 0) {
|
|
/* connection was terminated by the application */
|
|
continue;
|
|
}
|
|
|
|
/* increase the per-process number of cumulated sessions, this
|
|
* may only be done once l->bind_conf->accept() has accepted the
|
|
* connection.
|
|
*/
|
|
if (!(li->bind_conf->options & BC_O_UNLIMITED)) {
|
|
HA_ATOMIC_UPDATE_MAX(&global.sps_max,
|
|
update_freq_ctr(&global.sess_per_sec, 1));
|
|
if (li->bind_conf && li->bind_conf->options & BC_O_USE_SSL) {
|
|
HA_ATOMIC_UPDATE_MAX(&global.ssl_max,
|
|
update_freq_ctr(&global.ssl_per_sec, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ran out of budget ? Let's come here ASAP */
|
|
if (!max_accept)
|
|
tasklet_wakeup(ring->tasklet);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Initializes the accept-queues. Returns 0 on success, otherwise ERR_* flags */
|
|
static int accept_queue_init()
|
|
{
|
|
struct tasklet *t;
|
|
int i;
|
|
|
|
for (i = 0; i < global.nbthread; i++) {
|
|
t = tasklet_new();
|
|
if (!t) {
|
|
ha_alert("Out of memory while initializing accept queue for thread %d\n", i);
|
|
return ERR_FATAL|ERR_ABORT;
|
|
}
|
|
t->tid = i;
|
|
t->process = accept_queue_process;
|
|
t->context = &accept_queue_rings[i];
|
|
accept_queue_rings[i].tasklet = t;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_CONFIG_POSTPARSER("multi-threaded accept queue", accept_queue_init);
|
|
|
|
static void accept_queue_deinit()
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < global.nbthread; i++) {
|
|
if (accept_queue_rings[i].tasklet)
|
|
tasklet_free(accept_queue_rings[i].tasklet);
|
|
}
|
|
}
|
|
|
|
REGISTER_POST_DEINIT(accept_queue_deinit);
|
|
|
|
#endif // USE_THREAD
|
|
|
|
/* Memory allocation and initialization of the per_thr field.
|
|
* Returns 0 if the field has been successfully initialized, -1 on failure.
|
|
*/
|
|
int li_init_per_thr(struct listener *li)
|
|
{
|
|
int i;
|
|
|
|
/* allocate per-thread elements for listener */
|
|
li->per_thr = calloc(global.nbthread, sizeof(*li->per_thr));
|
|
if (!li->per_thr)
|
|
return -1;
|
|
|
|
for (i = 0; i < global.nbthread; ++i) {
|
|
MT_LIST_INIT(&li->per_thr[i].quic_accept.list);
|
|
MT_LIST_INIT(&li->per_thr[i].quic_accept.conns);
|
|
|
|
li->per_thr[i].li = li;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* helper to get listener status for stats */
|
|
enum li_status get_li_status(struct listener *l)
|
|
{
|
|
if (!l->bind_conf->maxconn || l->nbconn < l->bind_conf->maxconn) {
|
|
if (l->state == LI_LIMITED)
|
|
return LI_STATUS_WAITING;
|
|
else
|
|
return LI_STATUS_OPEN;
|
|
}
|
|
return LI_STATUS_FULL;
|
|
}
|
|
|
|
/* adjust the listener's state and its proxy's listener counters if needed.
|
|
* It must be called under the listener's lock, but uses atomic ops to change
|
|
* the proxy's counters so that the proxy lock is not needed.
|
|
*/
|
|
void listener_set_state(struct listener *l, enum li_state st)
|
|
{
|
|
struct proxy *px = l->bind_conf->frontend;
|
|
|
|
if (px) {
|
|
/* from state */
|
|
switch (l->state) {
|
|
case LI_NEW: /* first call */
|
|
_HA_ATOMIC_INC(&px->li_all);
|
|
break;
|
|
case LI_INIT:
|
|
case LI_ASSIGNED:
|
|
break;
|
|
case LI_PAUSED:
|
|
_HA_ATOMIC_DEC(&px->li_paused);
|
|
break;
|
|
case LI_LISTEN:
|
|
_HA_ATOMIC_DEC(&px->li_bound);
|
|
break;
|
|
case LI_READY:
|
|
case LI_FULL:
|
|
case LI_LIMITED:
|
|
_HA_ATOMIC_DEC(&px->li_ready);
|
|
break;
|
|
}
|
|
|
|
/* to state */
|
|
switch (st) {
|
|
case LI_NEW:
|
|
case LI_INIT:
|
|
case LI_ASSIGNED:
|
|
break;
|
|
case LI_PAUSED:
|
|
BUG_ON(l->rx.fd == -1);
|
|
_HA_ATOMIC_INC(&px->li_paused);
|
|
break;
|
|
case LI_LISTEN:
|
|
BUG_ON(l->rx.fd == -1);
|
|
_HA_ATOMIC_INC(&px->li_bound);
|
|
break;
|
|
case LI_READY:
|
|
case LI_FULL:
|
|
case LI_LIMITED:
|
|
BUG_ON(l->rx.fd == -1);
|
|
_HA_ATOMIC_INC(&px->li_ready);
|
|
break;
|
|
}
|
|
}
|
|
l->state = st;
|
|
}
|
|
|
|
/* This function adds the specified listener's file descriptor to the polling
|
|
* lists if it is in the LI_LISTEN state. The listener enters LI_READY or
|
|
* LI_FULL state depending on its number of connections. In daemon mode, we
|
|
* also support binding only the relevant processes to their respective
|
|
* listeners. We don't do that in debug mode however.
|
|
*/
|
|
void enable_listener(struct listener *listener)
|
|
{
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &listener->lock);
|
|
|
|
/* If this listener is supposed to be only in the master, close it in
|
|
* the workers. Conversely, if it's supposed to be only in the workers
|
|
* close it in the master.
|
|
*/
|
|
if (!!master != !!(listener->rx.flags & RX_F_MWORKER))
|
|
do_unbind_listener(listener);
|
|
|
|
if (listener->state == LI_LISTEN) {
|
|
BUG_ON(listener->rx.fd == -1);
|
|
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
|
|
(!!master != !!(listener->rx.flags & RX_F_MWORKER))) {
|
|
/* we don't want to enable this listener and don't
|
|
* want any fd event to reach it.
|
|
*/
|
|
do_unbind_listener(listener);
|
|
}
|
|
else if (!listener->bind_conf->maxconn || listener->nbconn < listener->bind_conf->maxconn) {
|
|
listener->rx.proto->enable(listener);
|
|
listener_set_state(listener, LI_READY);
|
|
}
|
|
else {
|
|
listener_set_state(listener, LI_FULL);
|
|
}
|
|
}
|
|
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/*
|
|
* This function completely stops a listener.
|
|
* The proxy's listeners count is updated and the proxy is
|
|
* disabled and woken up after the last one is gone.
|
|
* It will need to operate under the proxy's lock, the protocol's lock and
|
|
* the listener's lock. The caller is responsible for indicating in lpx,
|
|
* lpr, lli whether the respective locks are already held (non-zero) or
|
|
* not (zero) so that the function picks the missing ones, in this order.
|
|
*/
|
|
void stop_listener(struct listener *l, int lpx, int lpr, int lli)
|
|
{
|
|
struct proxy *px = l->bind_conf->frontend;
|
|
|
|
if (l->bind_conf->options & BC_O_NOSTOP) {
|
|
/* master-worker sockpairs are never closed but don't count as a
|
|
* job.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRLOCK(PROXY_LOCK, &px->lock);
|
|
|
|
if (!lpr)
|
|
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
|
|
|
|
if (!lli)
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (l->state > LI_INIT) {
|
|
do_unbind_listener(l);
|
|
|
|
if (l->state >= LI_ASSIGNED)
|
|
__delete_listener(l);
|
|
|
|
if (px)
|
|
proxy_cond_disable(px);
|
|
}
|
|
|
|
if (!lli)
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (!lpr)
|
|
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &px->lock);
|
|
}
|
|
|
|
/* This function adds the specified <listener> to the protocol <proto>. It
|
|
* does nothing if the protocol was already added. The listener's state is
|
|
* automatically updated from LI_INIT to LI_ASSIGNED. The number of listeners
|
|
* for the protocol is updated. This must be called with the proto lock held.
|
|
*/
|
|
void default_add_listener(struct protocol *proto, struct listener *listener)
|
|
{
|
|
if (listener->state != LI_INIT)
|
|
return;
|
|
listener_set_state(listener, LI_ASSIGNED);
|
|
listener->rx.proto = proto;
|
|
LIST_APPEND(&proto->receivers, &listener->rx.proto_list);
|
|
proto->nb_receivers++;
|
|
}
|
|
|
|
/* default function called to suspend a listener: it simply passes the call to
|
|
* the underlying receiver. This is find for most socket-based protocols. This
|
|
* must be called under the listener's lock. It will return non-zero on success,
|
|
* 0 on failure. If no receiver-level suspend is provided, the operation is
|
|
* assumed to succeed.
|
|
*/
|
|
int default_suspend_listener(struct listener *l)
|
|
{
|
|
int ret = 1;
|
|
|
|
if (!l->rx.proto->rx_suspend)
|
|
return 1;
|
|
|
|
ret = l->rx.proto->rx_suspend(&l->rx);
|
|
return ret > 0 ? ret : 0;
|
|
}
|
|
|
|
|
|
/* Tries to resume a suspended listener, and returns non-zero on success or
|
|
* zero on failure. On certain errors, an alert or a warning might be displayed.
|
|
* It must be called with the listener's lock held. Depending on the listener's
|
|
* state and protocol, a listen() call might be used to resume operations, or a
|
|
* call to the receiver's resume() function might be used as well. This is
|
|
* suitable as a default function for TCP and UDP. This must be called with the
|
|
* listener's lock held.
|
|
*/
|
|
int default_resume_listener(struct listener *l)
|
|
{
|
|
int ret = 1;
|
|
|
|
if (l->state == LI_ASSIGNED) {
|
|
char msg[100];
|
|
int err;
|
|
|
|
err = l->rx.proto->listen(l, msg, sizeof(msg));
|
|
if (err & ERR_ALERT)
|
|
ha_alert("Resuming listener: %s\n", msg);
|
|
else if (err & ERR_WARN)
|
|
ha_warning("Resuming listener: %s\n", msg);
|
|
|
|
if (err & (ERR_FATAL | ERR_ABORT)) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (l->state < LI_PAUSED) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
|
|
if (l->state == LI_PAUSED && l->rx.proto->rx_resume &&
|
|
l->rx.proto->rx_resume(&l->rx) <= 0)
|
|
ret = 0;
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* This function tries to temporarily disable a listener, depending on the OS
|
|
* capabilities. Linux unbinds the listen socket after a SHUT_RD, and ignores
|
|
* SHUT_WR. Solaris refuses either shutdown(). OpenBSD ignores SHUT_RD but
|
|
* closes upon SHUT_WR and refuses to rebind. So a common validation path
|
|
* involves SHUT_WR && listen && SHUT_RD. In case of success, the FD's polling
|
|
* is disabled. It normally returns non-zero, unless an error is reported.
|
|
* It will need to operate under the proxy's lock and the listener's lock.
|
|
* The caller is responsible for indicating in lpx, lli whether the respective
|
|
* locks are already held (non-zero) or not (zero) so that the function pick
|
|
* the missing ones, in this order.
|
|
*/
|
|
int pause_listener(struct listener *l, int lpx, int lli)
|
|
{
|
|
struct proxy *px = l->bind_conf->frontend;
|
|
int ret = 1;
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRLOCK(PROXY_LOCK, &px->lock);
|
|
|
|
if (!lli)
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (l->state <= LI_PAUSED)
|
|
goto end;
|
|
|
|
if (l->rx.proto->suspend)
|
|
ret = l->rx.proto->suspend(l);
|
|
|
|
MT_LIST_DELETE(&l->wait_queue);
|
|
|
|
listener_set_state(l, LI_PAUSED);
|
|
|
|
if (px && !px->li_ready) {
|
|
/* PROXY_LOCK is required */
|
|
proxy_cond_pause(px);
|
|
ha_warning("Paused %s %s.\n", proxy_cap_str(px->cap), px->id);
|
|
send_log(px, LOG_WARNING, "Paused %s %s.\n", proxy_cap_str(px->cap), px->id);
|
|
}
|
|
end:
|
|
if (!lli)
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &px->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This function tries to resume a temporarily disabled listener. Paused, full,
|
|
* limited and disabled listeners are handled, which means that this function
|
|
* may replace enable_listener(). The resulting state will either be LI_READY
|
|
* or LI_FULL. 0 is returned in case of failure to resume (eg: dead socket).
|
|
* Listeners bound to a different process are not woken up unless we're in
|
|
* foreground mode, and are ignored. If the listener was only in the assigned
|
|
* state, it's totally rebound. This can happen if a pause() has completely
|
|
* stopped it. If the resume fails, 0 is returned and an error might be
|
|
* displayed.
|
|
* It will need to operate under the proxy's lock and the listener's lock.
|
|
* The caller is responsible for indicating in lpx, lli whether the respective
|
|
* locks are already held (non-zero) or not (zero) so that the function pick
|
|
* the missing ones, in this order.
|
|
*/
|
|
int resume_listener(struct listener *l, int lpx, int lli)
|
|
{
|
|
struct proxy *px = l->bind_conf->frontend;
|
|
int was_paused = px && px->li_paused;
|
|
int ret = 1;
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRLOCK(PROXY_LOCK, &px->lock);
|
|
|
|
if (!lli)
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
/* check that another thread didn't to the job in parallel (e.g. at the
|
|
* end of listen_accept() while we'd come from dequeue_all_listeners().
|
|
*/
|
|
if (MT_LIST_INLIST(&l->wait_queue))
|
|
goto end;
|
|
|
|
if (l->state == LI_READY)
|
|
goto end;
|
|
|
|
/* the listener might have been stopped in parallel */
|
|
if (l->state < LI_PAUSED)
|
|
goto end;
|
|
|
|
if (l->rx.proto->resume)
|
|
ret = l->rx.proto->resume(l);
|
|
|
|
if (l->bind_conf->maxconn && l->nbconn >= l->bind_conf->maxconn) {
|
|
l->rx.proto->disable(l);
|
|
listener_set_state(l, LI_FULL);
|
|
goto done;
|
|
}
|
|
|
|
l->rx.proto->enable(l);
|
|
listener_set_state(l, LI_READY);
|
|
|
|
done:
|
|
if (was_paused && !px->li_paused) {
|
|
/* PROXY_LOCK is required */
|
|
proxy_cond_resume(px);
|
|
ha_warning("Resumed %s %s.\n", proxy_cap_str(px->cap), px->id);
|
|
send_log(px, LOG_WARNING, "Resumed %s %s.\n", proxy_cap_str(px->cap), px->id);
|
|
}
|
|
end:
|
|
if (!lli)
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (!lpx && px)
|
|
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &px->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Same as resume_listener(), but will only work to resume from
|
|
* LI_FULL or LI_LIMITED states because we try to relax listeners that
|
|
* were temporarily restricted and not to resume inactive listeners that
|
|
* may have been paused or completely stopped in the meantime.
|
|
* Returns positive value for success and 0 for failure.
|
|
* It will need to operate under the proxy's lock and the listener's lock.
|
|
* The caller is responsible for indicating in lpx, lli whether the respective
|
|
* locks are already held (non-zero) or not (zero) so that the function pick
|
|
* the missing ones, in this order.
|
|
*/
|
|
int relax_listener(struct listener *l, int lpx, int lli)
|
|
{
|
|
int ret = 1;
|
|
|
|
if (!lli)
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (l->state != LI_FULL && l->state != LI_LIMITED)
|
|
goto end; /* listener may be suspended or even stopped */
|
|
ret = resume_listener(l, lpx, 1);
|
|
|
|
end:
|
|
if (!lli)
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Marks a ready listener as full so that the stream code tries to re-enable
|
|
* it upon next close() using resume_listener().
|
|
*/
|
|
static void listener_full(struct listener *l)
|
|
{
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->state >= LI_READY) {
|
|
MT_LIST_DELETE(&l->wait_queue);
|
|
if (l->state != LI_FULL) {
|
|
l->rx.proto->disable(l);
|
|
listener_set_state(l, LI_FULL);
|
|
}
|
|
}
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
}
|
|
|
|
/* Marks a ready listener as limited so that we only try to re-enable it when
|
|
* resources are free again. It will be queued into the specified queue.
|
|
*/
|
|
static void limit_listener(struct listener *l, struct mt_list *list)
|
|
{
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->state == LI_READY) {
|
|
MT_LIST_TRY_APPEND(list, &l->wait_queue);
|
|
l->rx.proto->disable(l);
|
|
listener_set_state(l, LI_LIMITED);
|
|
}
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &l->lock);
|
|
}
|
|
|
|
/* Dequeues all listeners waiting for a resource the global wait queue */
|
|
void dequeue_all_listeners()
|
|
{
|
|
struct listener *listener;
|
|
|
|
while ((listener = MT_LIST_POP(&global_listener_queue, struct listener *, wait_queue))) {
|
|
/* This cannot fail because the listeners are by definition in
|
|
* the LI_LIMITED state.
|
|
*/
|
|
resume_listener(listener, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* Dequeues all listeners waiting for a resource in proxy <px>'s queue */
|
|
void dequeue_proxy_listeners(struct proxy *px)
|
|
{
|
|
struct listener *listener;
|
|
|
|
while ((listener = MT_LIST_POP(&px->listener_queue, struct listener *, wait_queue))) {
|
|
/* This cannot fail because the listeners are by definition in
|
|
* the LI_LIMITED state.
|
|
*/
|
|
resume_listener(listener, 0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
/* default function used to unbind a listener. This is for use by standard
|
|
* protocols working on top of accepted sockets. The receiver's rx_unbind()
|
|
* will automatically be used after the listener is disabled if the socket is
|
|
* still bound. This must be used under the listener's lock.
|
|
*/
|
|
void default_unbind_listener(struct listener *listener)
|
|
{
|
|
if (listener->state <= LI_ASSIGNED)
|
|
goto out_close;
|
|
|
|
if (listener->rx.fd == -1) {
|
|
listener_set_state(listener, LI_ASSIGNED);
|
|
goto out_close;
|
|
}
|
|
|
|
if (listener->state >= LI_READY) {
|
|
listener->rx.proto->disable(listener);
|
|
if (listener->rx.flags & RX_F_BOUND)
|
|
listener_set_state(listener, LI_LISTEN);
|
|
}
|
|
|
|
out_close:
|
|
if (listener->rx.flags & RX_F_BOUND)
|
|
listener->rx.proto->rx_unbind(&listener->rx);
|
|
}
|
|
|
|
/* This function closes the listening socket for the specified listener,
|
|
* provided that it's already in a listening state. The protocol's unbind()
|
|
* is called to put the listener into LI_ASSIGNED or LI_LISTEN and handle
|
|
* the unbinding tasks. The listener enters then the LI_ASSIGNED state if
|
|
* the receiver is unbound. Must be called with the lock held.
|
|
*/
|
|
void do_unbind_listener(struct listener *listener)
|
|
{
|
|
MT_LIST_DELETE(&listener->wait_queue);
|
|
|
|
if (listener->rx.proto->unbind)
|
|
listener->rx.proto->unbind(listener);
|
|
|
|
/* we may have to downgrade the listener if the rx was closed */
|
|
if (!(listener->rx.flags & RX_F_BOUND) && listener->state > LI_ASSIGNED)
|
|
listener_set_state(listener, LI_ASSIGNED);
|
|
}
|
|
|
|
/* This function closes the listening socket for the specified listener,
|
|
* provided that it's already in a listening state. The listener enters the
|
|
* LI_ASSIGNED state, except if the FD is not closed, in which case it may
|
|
* remain in LI_LISTEN. This function is intended to be used as a generic
|
|
* function for standard protocols.
|
|
*/
|
|
void unbind_listener(struct listener *listener)
|
|
{
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &listener->lock);
|
|
do_unbind_listener(listener);
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/* creates one or multiple listeners for bind_conf <bc> on sockaddr <ss> on port
|
|
* range <portl> to <porth>, and possibly attached to fd <fd> (or -1 for auto
|
|
* allocation). The address family is taken from ss->ss_family, and the protocol
|
|
* passed in <proto> must be usable on this family. The protocol's default iocb
|
|
* is automatically preset as the receivers' iocb. The number of jobs and
|
|
* listeners is automatically increased by the number of listeners created. It
|
|
* returns non-zero on success, zero on error with the error message set in <err>.
|
|
*/
|
|
int create_listeners(struct bind_conf *bc, const struct sockaddr_storage *ss,
|
|
int portl, int porth, int fd, struct protocol *proto, char **err)
|
|
{
|
|
struct listener *l;
|
|
int port;
|
|
|
|
for (port = portl; port <= porth; port++) {
|
|
l = calloc(1, sizeof(*l));
|
|
if (!l) {
|
|
memprintf(err, "out of memory");
|
|
return 0;
|
|
}
|
|
l->obj_type = OBJ_TYPE_LISTENER;
|
|
LIST_APPEND(&bc->frontend->conf.listeners, &l->by_fe);
|
|
LIST_APPEND(&bc->listeners, &l->by_bind);
|
|
l->bind_conf = bc;
|
|
l->rx.settings = &bc->settings;
|
|
l->rx.owner = l;
|
|
l->rx.iocb = proto->default_iocb;
|
|
l->rx.fd = fd;
|
|
|
|
memcpy(&l->rx.addr, ss, sizeof(*ss));
|
|
if (proto->fam->set_port)
|
|
proto->fam->set_port(&l->rx.addr, port);
|
|
|
|
MT_LIST_INIT(&l->wait_queue);
|
|
listener_set_state(l, LI_INIT);
|
|
|
|
proto->add(proto, l);
|
|
|
|
if (fd != -1)
|
|
l->rx.flags |= RX_F_INHERITED;
|
|
|
|
l->extra_counters = NULL;
|
|
|
|
HA_RWLOCK_INIT(&l->lock);
|
|
_HA_ATOMIC_INC(&jobs);
|
|
_HA_ATOMIC_INC(&listeners);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* clones listener <src> and returns the new one. All dynamically allocated
|
|
* fields are reallocated (name for now). The new listener is inserted before
|
|
* the original one in the bind_conf and frontend lists. This allows it to be
|
|
* duplicated while iterating over the current list. The original listener must
|
|
* only be in the INIT or ASSIGNED states, and the new listener will only be
|
|
* placed into the INIT state. The counters are always set to NULL. Maxsock is
|
|
* updated. Returns NULL on allocation error.
|
|
*/
|
|
struct listener *clone_listener(struct listener *src)
|
|
{
|
|
struct listener *l;
|
|
|
|
l = calloc(1, sizeof(*l));
|
|
if (!l)
|
|
goto oom1;
|
|
memcpy(l, src, sizeof(*l));
|
|
|
|
if (l->name) {
|
|
l->name = strdup(l->name);
|
|
if (!l->name)
|
|
goto oom2;
|
|
}
|
|
|
|
l->rx.owner = l;
|
|
l->state = LI_INIT;
|
|
l->counters = NULL;
|
|
l->extra_counters = NULL;
|
|
|
|
LIST_APPEND(&src->by_fe, &l->by_fe);
|
|
LIST_APPEND(&src->by_bind, &l->by_bind);
|
|
|
|
MT_LIST_INIT(&l->wait_queue);
|
|
|
|
l->rx.proto->add(l->rx.proto, l);
|
|
|
|
HA_RWLOCK_INIT(&l->lock);
|
|
_HA_ATOMIC_INC(&jobs);
|
|
_HA_ATOMIC_INC(&listeners);
|
|
global.maxsock++;
|
|
return l;
|
|
|
|
oom2:
|
|
free(l);
|
|
oom1:
|
|
return NULL;
|
|
}
|
|
|
|
/* Delete a listener from its protocol's list of listeners. The listener's
|
|
* state is automatically updated from LI_ASSIGNED to LI_INIT. The protocol's
|
|
* number of listeners is updated, as well as the global number of listeners
|
|
* and jobs. Note that the listener must have previously been unbound. This
|
|
* is a low-level function expected to be called with the proto_lock and the
|
|
* listener's lock held.
|
|
*/
|
|
void __delete_listener(struct listener *listener)
|
|
{
|
|
if (listener->state == LI_ASSIGNED) {
|
|
listener_set_state(listener, LI_INIT);
|
|
LIST_DELETE(&listener->rx.proto_list);
|
|
listener->rx.proto->nb_receivers--;
|
|
_HA_ATOMIC_DEC(&jobs);
|
|
_HA_ATOMIC_DEC(&listeners);
|
|
}
|
|
}
|
|
|
|
/* Delete a listener from its protocol's list of listeners (please check
|
|
* __delete_listener() above). The proto_lock and the listener's lock will
|
|
* be grabbed in this order.
|
|
*/
|
|
void delete_listener(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &listener->lock);
|
|
__delete_listener(listener);
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &listener->lock);
|
|
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
|
|
}
|
|
|
|
/* Returns a suitable value for a listener's backlog. It uses the listener's,
|
|
* otherwise the frontend's backlog, otherwise the listener's maxconn,
|
|
* otherwise the frontend's maxconn, otherwise 1024.
|
|
*/
|
|
int listener_backlog(const struct listener *l)
|
|
{
|
|
if (l->bind_conf->backlog)
|
|
return l->bind_conf->backlog;
|
|
|
|
if (l->bind_conf->frontend->backlog)
|
|
return l->bind_conf->frontend->backlog;
|
|
|
|
if (l->bind_conf->maxconn)
|
|
return l->bind_conf->maxconn;
|
|
|
|
if (l->bind_conf->frontend->maxconn)
|
|
return l->bind_conf->frontend->maxconn;
|
|
|
|
return 1024;
|
|
}
|
|
|
|
/* This function is called on a read event from a listening socket, corresponding
|
|
* to an accept. It tries to accept as many connections as possible, and for each
|
|
* calls the listener's accept handler (generally the frontend's accept handler).
|
|
*/
|
|
void listener_accept(struct listener *l)
|
|
{
|
|
struct connection *cli_conn;
|
|
struct proxy *p;
|
|
unsigned int max_accept;
|
|
int next_conn = 0;
|
|
int next_feconn = 0;
|
|
int next_actconn = 0;
|
|
int expire;
|
|
int ret;
|
|
|
|
p = l->bind_conf->frontend;
|
|
|
|
/* if l->bind_conf->maxaccept is -1, then max_accept is UINT_MAX. It is
|
|
* not really illimited, but it is probably enough.
|
|
*/
|
|
max_accept = l->bind_conf->maxaccept ? l->bind_conf->maxaccept : 1;
|
|
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED) && global.sps_lim) {
|
|
int max = freq_ctr_remain(&global.sess_per_sec, global.sps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.sess_per_sec, global.sps_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED) && global.cps_lim) {
|
|
int max = freq_ctr_remain(&global.conn_per_sec, global.cps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.conn_per_sec, global.cps_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
#ifdef USE_OPENSSL
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED) && global.ssl_lim &&
|
|
l->bind_conf && l->bind_conf->options & BC_O_USE_SSL) {
|
|
int max = freq_ctr_remain(&global.ssl_per_sec, global.ssl_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.ssl_per_sec, global.ssl_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
#endif
|
|
if (p && p->fe_sps_lim) {
|
|
int max = freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&p->fe_sess_per_sec, p->fe_sps_lim, 0));
|
|
goto limit_proxy;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
|
|
/* Note: if we fail to allocate a connection because of configured
|
|
* limits, we'll schedule a new attempt worst 1 second later in the
|
|
* worst case. If we fail due to system limits or temporary resource
|
|
* shortage, we try again 100ms later in the worst case.
|
|
*/
|
|
for (; max_accept; next_conn = next_feconn = next_actconn = 0, max_accept--) {
|
|
unsigned int count;
|
|
int status;
|
|
__decl_thread(unsigned long mask);
|
|
|
|
/* pre-increase the number of connections without going too far.
|
|
* We process the listener, then the proxy, then the process.
|
|
* We know which ones to unroll based on the next_xxx value.
|
|
*/
|
|
do {
|
|
count = l->nbconn;
|
|
if (unlikely(l->bind_conf->maxconn && count >= l->bind_conf->maxconn)) {
|
|
/* the listener was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_conn = 0;
|
|
listener_full(l);
|
|
goto end;
|
|
}
|
|
next_conn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&l->nbconn, (int *)(&count), next_conn));
|
|
|
|
if (p) {
|
|
do {
|
|
count = p->feconn;
|
|
if (unlikely(count >= p->maxconn)) {
|
|
/* the frontend was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_feconn = 0;
|
|
expire = TICK_ETERNITY;
|
|
goto limit_proxy;
|
|
}
|
|
next_feconn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&p->feconn, &count, next_feconn));
|
|
}
|
|
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED)) {
|
|
do {
|
|
count = actconn;
|
|
if (unlikely(count >= global.maxconn)) {
|
|
/* the process was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_actconn = 0;
|
|
expire = tick_add(now_ms, 1000); /* try again in 1 second */
|
|
goto limit_global;
|
|
}
|
|
next_actconn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&actconn, (int *)(&count), next_actconn));
|
|
}
|
|
|
|
/* be careful below, the listener might be shutting down in
|
|
* another thread on error and we must not dereference its
|
|
* FD without a bit of protection.
|
|
*/
|
|
cli_conn = NULL;
|
|
status = CO_AC_PERMERR;
|
|
|
|
HA_RWLOCK_RDLOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->rx.flags & RX_F_BOUND)
|
|
cli_conn = l->rx.proto->accept_conn(l, &status);
|
|
HA_RWLOCK_RDUNLOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (!cli_conn) {
|
|
switch (status) {
|
|
case CO_AC_DONE:
|
|
goto end;
|
|
|
|
case CO_AC_RETRY: /* likely a signal */
|
|
_HA_ATOMIC_DEC(&l->nbconn);
|
|
if (p)
|
|
_HA_ATOMIC_DEC(&p->feconn);
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED))
|
|
_HA_ATOMIC_DEC(&actconn);
|
|
continue;
|
|
|
|
case CO_AC_YIELD:
|
|
max_accept = 0;
|
|
goto end;
|
|
|
|
default:
|
|
goto transient_error;
|
|
}
|
|
}
|
|
|
|
/* The connection was accepted, it must be counted as such */
|
|
if (l->counters)
|
|
HA_ATOMIC_UPDATE_MAX(&l->counters->conn_max, next_conn);
|
|
|
|
if (p) {
|
|
HA_ATOMIC_UPDATE_MAX(&p->fe_counters.conn_max, next_feconn);
|
|
proxy_inc_fe_conn_ctr(l, p);
|
|
}
|
|
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED)) {
|
|
count = update_freq_ctr(&global.conn_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.cps_max, count);
|
|
}
|
|
|
|
_HA_ATOMIC_INC(&activity[tid].accepted);
|
|
|
|
/* past this point, l->bind_conf->accept() will automatically decrement
|
|
* l->nbconn, feconn and actconn once done. Setting next_*conn=0
|
|
* allows the error path not to rollback on nbconn. It's more
|
|
* convenient than duplicating all exit labels.
|
|
*/
|
|
next_conn = 0;
|
|
next_feconn = 0;
|
|
next_actconn = 0;
|
|
|
|
|
|
#if defined(USE_THREAD)
|
|
if (l->rx.flags & RX_F_LOCAL_ACCEPT)
|
|
goto local_accept;
|
|
|
|
mask = l->rx.bind_thread & _HA_ATOMIC_LOAD(&tg->threads_enabled);
|
|
if (atleast2(mask) && (global.tune.options & GTUNE_LISTENER_MQ) && !stopping) {
|
|
struct accept_queue_ring *ring;
|
|
unsigned int t, t0, t1, t2;
|
|
int base = tg->base;
|
|
|
|
/* The principle is that we have two running indexes,
|
|
* each visiting in turn all threads bound to this
|
|
* listener. The connection will be assigned to the one
|
|
* with the least connections, and the other one will
|
|
* be updated. This provides a good fairness on short
|
|
* connections (round robin) and on long ones (conn
|
|
* count), without ever missing any idle thread.
|
|
*/
|
|
|
|
/* keep a copy for the final update. thr_idx is composite
|
|
* and made of (t2<<16) + t1.
|
|
*/
|
|
t0 = l->thr_idx;
|
|
do {
|
|
unsigned long m1, m2;
|
|
int q1, q2;
|
|
|
|
t2 = t1 = t0;
|
|
t2 >>= 16;
|
|
t1 &= 0xFFFF;
|
|
|
|
/* t1 walks low to high bits ;
|
|
* t2 walks high to low.
|
|
*/
|
|
m1 = mask >> t1;
|
|
m2 = mask & (t2 ? nbits(t2 + 1) : ~0UL);
|
|
|
|
if (unlikely(!(m1 & 1))) {
|
|
m1 &= ~1UL;
|
|
if (!m1) {
|
|
m1 = mask;
|
|
t1 = 0;
|
|
}
|
|
t1 += my_ffsl(m1) - 1;
|
|
}
|
|
|
|
if (unlikely(!(m2 & (1UL << t2)) || t1 == t2)) {
|
|
/* highest bit not set */
|
|
if (!m2)
|
|
m2 = mask;
|
|
|
|
t2 = my_flsl(m2) - 1;
|
|
}
|
|
|
|
/* now we have two distinct thread IDs belonging to the mask */
|
|
q1 = accept_queue_rings[base + t1].tail - accept_queue_rings[base + t1].head + ACCEPT_QUEUE_SIZE;
|
|
if (q1 >= ACCEPT_QUEUE_SIZE)
|
|
q1 -= ACCEPT_QUEUE_SIZE;
|
|
|
|
q2 = accept_queue_rings[base + t2].tail - accept_queue_rings[base + t2].head + ACCEPT_QUEUE_SIZE;
|
|
if (q2 >= ACCEPT_QUEUE_SIZE)
|
|
q2 -= ACCEPT_QUEUE_SIZE;
|
|
|
|
/* we have 3 possibilities now :
|
|
* q1 < q2 : t1 is less loaded than t2, so we pick it
|
|
* and update t2 (since t1 might still be
|
|
* lower than another thread)
|
|
* q1 > q2 : t2 is less loaded than t1, so we pick it
|
|
* and update t1 (since t2 might still be
|
|
* lower than another thread)
|
|
* q1 = q2 : both are equally loaded, thus we pick t1
|
|
* and update t1 as it will become more loaded
|
|
* than t2.
|
|
*/
|
|
|
|
q1 += l->thr_conn[base + t1];
|
|
q2 += l->thr_conn[base + t2];
|
|
|
|
if (q1 - q2 < 0) {
|
|
t = t1;
|
|
t2 = t2 ? t2 - 1 : LONGBITS - 1;
|
|
}
|
|
else if (q1 - q2 > 0) {
|
|
t = t2;
|
|
t1++;
|
|
if (t1 >= LONGBITS)
|
|
t1 = 0;
|
|
}
|
|
else {
|
|
t = t1;
|
|
t1++;
|
|
if (t1 >= LONGBITS)
|
|
t1 = 0;
|
|
}
|
|
|
|
/* new value for thr_idx */
|
|
t1 += (t2 << 16);
|
|
} while (unlikely(!_HA_ATOMIC_CAS(&l->thr_idx, &t0, t1)));
|
|
|
|
/* We successfully selected the best thread "t" for this
|
|
* connection. We use deferred accepts even if it's the
|
|
* local thread because tests show that it's the best
|
|
* performing model, likely due to better cache locality
|
|
* when processing this loop.
|
|
*/
|
|
ring = &accept_queue_rings[base + t];
|
|
if (accept_queue_push_mp(ring, cli_conn)) {
|
|
_HA_ATOMIC_INC(&activity[base + t].accq_pushed);
|
|
tasklet_wakeup(ring->tasklet);
|
|
continue;
|
|
}
|
|
/* If the ring is full we do a synchronous accept on
|
|
* the local thread here.
|
|
*/
|
|
_HA_ATOMIC_INC(&activity[base + t].accq_full);
|
|
}
|
|
#endif // USE_THREAD
|
|
|
|
local_accept:
|
|
_HA_ATOMIC_INC(&l->thr_conn[tid]);
|
|
ret = l->bind_conf->accept(cli_conn);
|
|
if (unlikely(ret <= 0)) {
|
|
/* The connection was closed by stream_accept(). Either
|
|
* we just have to ignore it (ret == 0) or it's a critical
|
|
* error due to a resource shortage, and we must stop the
|
|
* listener (ret < 0).
|
|
*/
|
|
if (ret == 0) /* successful termination */
|
|
continue;
|
|
|
|
goto transient_error;
|
|
}
|
|
|
|
/* increase the per-process number of cumulated sessions, this
|
|
* may only be done once l->bind_conf->accept() has accepted the
|
|
* connection.
|
|
*/
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED)) {
|
|
count = update_freq_ctr(&global.sess_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.sps_max, count);
|
|
}
|
|
#ifdef USE_OPENSSL
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED) &&
|
|
l->bind_conf && l->bind_conf->options & BC_O_USE_SSL) {
|
|
count = update_freq_ctr(&global.ssl_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.ssl_max, count);
|
|
}
|
|
#endif
|
|
|
|
_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_STUCK); // this thread is still running
|
|
} /* end of for (max_accept--) */
|
|
|
|
end:
|
|
if (next_conn)
|
|
_HA_ATOMIC_DEC(&l->nbconn);
|
|
|
|
if (p && next_feconn)
|
|
_HA_ATOMIC_DEC(&p->feconn);
|
|
|
|
if (next_actconn)
|
|
_HA_ATOMIC_DEC(&actconn);
|
|
|
|
if ((l->state == LI_FULL && (!l->bind_conf->maxconn || l->nbconn < l->bind_conf->maxconn)) ||
|
|
(l->state == LI_LIMITED &&
|
|
((!p || p->feconn < p->maxconn) && (actconn < global.maxconn) &&
|
|
(!tick_isset(global_listener_queue_task->expire) ||
|
|
tick_is_expired(global_listener_queue_task->expire, now_ms))))) {
|
|
/* at least one thread has to this when quitting */
|
|
resume_listener(l, 0, 0);
|
|
|
|
/* Dequeues all of the listeners waiting for a resource */
|
|
dequeue_all_listeners();
|
|
|
|
if (p && !MT_LIST_ISEMPTY(&p->listener_queue) &&
|
|
(!p->fe_sps_lim || freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0) > 0))
|
|
dequeue_proxy_listeners(p);
|
|
}
|
|
return;
|
|
|
|
transient_error:
|
|
/* pause the listener for up to 100 ms */
|
|
expire = tick_add(now_ms, 100);
|
|
|
|
/* This may be a shared socket that was paused by another process.
|
|
* Let's put it to pause in this case.
|
|
*/
|
|
if (l->rx.proto && l->rx.proto->rx_listening(&l->rx) == 0) {
|
|
pause_listener(l, 0, 0);
|
|
goto end;
|
|
}
|
|
|
|
limit_global:
|
|
/* (re-)queue the listener to the global queue and set it to expire no
|
|
* later than <expire> ahead. The listener turns to LI_LIMITED.
|
|
*/
|
|
limit_listener(l, &global_listener_queue);
|
|
HA_RWLOCK_RDLOCK(LISTENER_LOCK, &global_listener_rwlock);
|
|
task_schedule(global_listener_queue_task, expire);
|
|
HA_RWLOCK_RDUNLOCK(LISTENER_LOCK, &global_listener_rwlock);
|
|
goto end;
|
|
|
|
limit_proxy:
|
|
/* (re-)queue the listener to the proxy's queue and set it to expire no
|
|
* later than <expire> ahead. The listener turns to LI_LIMITED.
|
|
*/
|
|
limit_listener(l, &p->listener_queue);
|
|
if (p->task && tick_isset(expire))
|
|
task_schedule(p->task, expire);
|
|
goto end;
|
|
}
|
|
|
|
/* Notify the listener that a connection initiated from it was released. This
|
|
* is used to keep the connection count consistent and to possibly re-open
|
|
* listening when it was limited.
|
|
*/
|
|
void listener_release(struct listener *l)
|
|
{
|
|
struct proxy *fe = l->bind_conf->frontend;
|
|
|
|
if (!(l->bind_conf->options & BC_O_UNLIMITED))
|
|
_HA_ATOMIC_DEC(&actconn);
|
|
if (fe)
|
|
_HA_ATOMIC_DEC(&fe->feconn);
|
|
_HA_ATOMIC_DEC(&l->nbconn);
|
|
_HA_ATOMIC_DEC(&l->thr_conn[tid]);
|
|
|
|
if (l->state == LI_FULL || l->state == LI_LIMITED)
|
|
resume_listener(l, 0, 0);
|
|
|
|
/* Dequeues all of the listeners waiting for a resource */
|
|
dequeue_all_listeners();
|
|
|
|
if (fe && !MT_LIST_ISEMPTY(&fe->listener_queue) &&
|
|
(!fe->fe_sps_lim || freq_ctr_remain(&fe->fe_sess_per_sec, fe->fe_sps_lim, 0) > 0))
|
|
dequeue_proxy_listeners(fe);
|
|
}
|
|
|
|
/* Initializes the listener queues. Returns 0 on success, otherwise ERR_* flags */
|
|
static int listener_queue_init()
|
|
{
|
|
global_listener_queue_task = task_new_anywhere();
|
|
if (!global_listener_queue_task) {
|
|
ha_alert("Out of memory when initializing global listener queue\n");
|
|
return ERR_FATAL|ERR_ABORT;
|
|
}
|
|
/* very simple initialization, users will queue the task if needed */
|
|
global_listener_queue_task->context = NULL; /* not even a context! */
|
|
global_listener_queue_task->process = manage_global_listener_queue;
|
|
HA_RWLOCK_INIT(&global_listener_rwlock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void listener_queue_deinit()
|
|
{
|
|
task_destroy(global_listener_queue_task);
|
|
global_listener_queue_task = NULL;
|
|
}
|
|
|
|
REGISTER_CONFIG_POSTPARSER("multi-threaded listener queue", listener_queue_init);
|
|
REGISTER_POST_DEINIT(listener_queue_deinit);
|
|
|
|
|
|
/* This is the global management task for listeners. It enables listeners waiting
|
|
* for global resources when there are enough free resource, or at least once in
|
|
* a while. It is designed to be called as a task. It's exported so that it's easy
|
|
* to spot in "show tasks" or "show profiling".
|
|
*/
|
|
struct task *manage_global_listener_queue(struct task *t, void *context, unsigned int state)
|
|
{
|
|
/* If there are still too many concurrent connections, let's wait for
|
|
* some of them to go away. We don't need to re-arm the timer because
|
|
* each of them will scan the queue anyway.
|
|
*/
|
|
if (unlikely(actconn >= global.maxconn))
|
|
goto out;
|
|
|
|
/* We should periodically try to enable listeners waiting for a global
|
|
* resource here, because it is possible, though very unlikely, that
|
|
* they have been blocked by a temporary lack of global resource such
|
|
* as a file descriptor or memory and that the temporary condition has
|
|
* disappeared.
|
|
*/
|
|
dequeue_all_listeners();
|
|
|
|
out:
|
|
HA_RWLOCK_WRLOCK(LISTENER_LOCK, &global_listener_rwlock);
|
|
t->expire = TICK_ETERNITY;
|
|
HA_RWLOCK_WRUNLOCK(LISTENER_LOCK, &global_listener_rwlock);
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Registers the bind keyword list <kwl> as a list of valid keywords for next
|
|
* parsing sessions.
|
|
*/
|
|
void bind_register_keywords(struct bind_kw_list *kwl)
|
|
{
|
|
LIST_APPEND(&bind_keywords.list, &kwl->list);
|
|
}
|
|
|
|
/* Return a pointer to the bind keyword <kw>, or NULL if not found. If the
|
|
* keyword is found with a NULL ->parse() function, then an attempt is made to
|
|
* find one with a valid ->parse() function. This way it is possible to declare
|
|
* platform-dependant, known keywords as NULL, then only declare them as valid
|
|
* if some options are met. Note that if the requested keyword contains an
|
|
* opening parenthesis, everything from this point is ignored.
|
|
*/
|
|
struct bind_kw *bind_find_kw(const char *kw)
|
|
{
|
|
int index;
|
|
const char *kwend;
|
|
struct bind_kw_list *kwl;
|
|
struct bind_kw *ret = NULL;
|
|
|
|
kwend = strchr(kw, '(');
|
|
if (!kwend)
|
|
kwend = kw + strlen(kw);
|
|
|
|
list_for_each_entry(kwl, &bind_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
|
|
kwl->kw[index].kw[kwend-kw] == 0) {
|
|
if (kwl->kw[index].parse)
|
|
return &kwl->kw[index]; /* found it !*/
|
|
else
|
|
ret = &kwl->kw[index]; /* may be OK */
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Dumps all registered "bind" keywords to the <out> string pointer. The
|
|
* unsupported keywords are only dumped if their supported form was not
|
|
* found.
|
|
*/
|
|
void bind_dump_kws(char **out)
|
|
{
|
|
struct bind_kw_list *kwl;
|
|
int index;
|
|
|
|
if (!out)
|
|
return;
|
|
|
|
*out = NULL;
|
|
list_for_each_entry(kwl, &bind_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if (kwl->kw[index].parse ||
|
|
bind_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) {
|
|
memprintf(out, "%s[%4s] %s%s%s\n", *out ? *out : "",
|
|
kwl->scope,
|
|
kwl->kw[index].kw,
|
|
kwl->kw[index].skip ? " <arg>" : "",
|
|
kwl->kw[index].parse ? "" : " (not supported)");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Try to find in srv_keyword the word that looks closest to <word> by counting
|
|
* transitions between letters, digits and other characters. Will return the
|
|
* best matching word if found, otherwise NULL.
|
|
*/
|
|
const char *bind_find_best_kw(const char *word)
|
|
{
|
|
uint8_t word_sig[1024];
|
|
uint8_t list_sig[1024];
|
|
const struct bind_kw_list *kwl;
|
|
const char *best_ptr = NULL;
|
|
int dist, best_dist = INT_MAX;
|
|
int index;
|
|
|
|
make_word_fingerprint(word_sig, word);
|
|
list_for_each_entry(kwl, &bind_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
make_word_fingerprint(list_sig, kwl->kw[index].kw);
|
|
dist = word_fingerprint_distance(word_sig, list_sig);
|
|
if (dist < best_dist) {
|
|
best_dist = dist;
|
|
best_ptr = kwl->kw[index].kw;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_dist > 2 * strlen(word) || (best_ptr && best_dist > 2 * strlen(best_ptr)))
|
|
best_ptr = NULL;
|
|
|
|
return best_ptr;
|
|
}
|
|
|
|
/* allocate an bind_conf struct for a bind line, and chain it to the frontend <fe>.
|
|
* If <arg> is not NULL, it is duplicated into ->arg to store useful config
|
|
* information for error reporting. NULL is returned on error.
|
|
*/
|
|
struct bind_conf *bind_conf_alloc(struct proxy *fe, const char *file,
|
|
int line, const char *arg, struct xprt_ops *xprt)
|
|
{
|
|
struct bind_conf *bind_conf = calloc(1, sizeof(*bind_conf));
|
|
|
|
if (!bind_conf)
|
|
goto err;
|
|
|
|
bind_conf->file = strdup(file);
|
|
if (!bind_conf->file)
|
|
goto err;
|
|
bind_conf->line = line;
|
|
if (arg) {
|
|
bind_conf->arg = strdup(arg);
|
|
if (!bind_conf->arg)
|
|
goto err;
|
|
}
|
|
|
|
LIST_APPEND(&fe->conf.bind, &bind_conf->by_fe);
|
|
bind_conf->settings.ux.uid = -1;
|
|
bind_conf->settings.ux.gid = -1;
|
|
bind_conf->settings.ux.mode = 0;
|
|
bind_conf->settings.shards = 1;
|
|
bind_conf->xprt = xprt;
|
|
bind_conf->frontend = fe;
|
|
bind_conf->analysers = fe->fe_req_ana;
|
|
bind_conf->severity_output = CLI_SEVERITY_NONE;
|
|
#ifdef USE_OPENSSL
|
|
HA_RWLOCK_INIT(&bind_conf->sni_lock);
|
|
bind_conf->sni_ctx = EB_ROOT;
|
|
bind_conf->sni_w_ctx = EB_ROOT;
|
|
#endif
|
|
LIST_INIT(&bind_conf->listeners);
|
|
return bind_conf;
|
|
|
|
err:
|
|
if (bind_conf) {
|
|
ha_free(&bind_conf->file);
|
|
ha_free(&bind_conf->arg);
|
|
}
|
|
ha_free(&bind_conf);
|
|
return NULL;
|
|
}
|
|
|
|
const char *listener_state_str(const struct listener *l)
|
|
{
|
|
static const char *states[8] = {
|
|
"NEW", "INI", "ASS", "PAU", "LIS", "RDY", "FUL", "LIM",
|
|
};
|
|
unsigned int st = l->state;
|
|
|
|
if (st >= sizeof(states) / sizeof(*states))
|
|
return "INVALID";
|
|
return states[st];
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported sample and ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* set temp integer to the number of connexions to the same listening socket */
|
|
static int
|
|
smp_fetch_dconn(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->sess->listener->nbconn;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the id of the socket (listener) */
|
|
static int
|
|
smp_fetch_so_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->sess->listener->luid;
|
|
return 1;
|
|
}
|
|
static int
|
|
smp_fetch_so_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.u.str.area = smp->sess->listener->name;
|
|
if (!smp->data.u.str.area)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.data = strlen(smp->data.u.str.area);
|
|
return 1;
|
|
}
|
|
|
|
/* parse the "accept-proxy" bind keyword */
|
|
static int bind_parse_accept_proxy(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
conf->options |= BC_O_ACC_PROXY;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "accept-netscaler-cip" bind keyword */
|
|
static int bind_parse_accept_netscaler_cip(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val <= 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
conf->options |= BC_O_ACC_CIP;
|
|
conf->ns_cip_magic = val;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "backlog" bind keyword */
|
|
static int bind_parse_backlog(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be > 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
conf->backlog = val;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "id" bind keyword */
|
|
static int bind_parse_id(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct eb32_node *node;
|
|
struct listener *l, *new;
|
|
char *error;
|
|
|
|
if (conf->listeners.n != conf->listeners.p) {
|
|
memprintf(err, "'%s' can only be used with a single socket", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : expects an integer argument", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
new = LIST_NEXT(&conf->listeners, struct listener *, by_bind);
|
|
new->luid = strtol(args[cur_arg + 1], &error, 10);
|
|
if (*error != '\0') {
|
|
memprintf(err, "'%s' : expects an integer argument, found '%s'", args[cur_arg], args[cur_arg + 1]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
new->conf.id.key = new->luid;
|
|
|
|
if (new->luid <= 0) {
|
|
memprintf(err, "'%s' : custom id has to be > 0", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
node = eb32_lookup(&px->conf.used_listener_id, new->luid);
|
|
if (node) {
|
|
l = container_of(node, struct listener, conf.id);
|
|
memprintf(err, "'%s' : custom id %d already used at %s:%d ('bind %s')",
|
|
args[cur_arg], l->luid, l->bind_conf->file, l->bind_conf->line,
|
|
l->bind_conf->arg);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
eb32_insert(&px->conf.used_listener_id, &new->conf.id);
|
|
return 0;
|
|
}
|
|
|
|
/* Complete a bind_conf by parsing the args after the address. <args> is the
|
|
* arguments array, <cur_arg> is the first one to be considered. <section> is
|
|
* the section name to report in error messages, and <file> and <linenum> are
|
|
* the file name and line number respectively. Note that args[0..1] are used
|
|
* in error messages to provide some context. The return value is an error
|
|
* code, zero on success or an OR of ERR_{FATAL,ABORT,ALERT,WARN}.
|
|
*/
|
|
int bind_parse_args_list(struct bind_conf *bind_conf, char **args, int cur_arg, const char *section, const char *file, int linenum)
|
|
{
|
|
int err_code = 0;
|
|
|
|
while (*(args[cur_arg])) {
|
|
struct bind_kw *kw;
|
|
const char *best;
|
|
|
|
kw = bind_find_kw(args[cur_arg]);
|
|
if (kw) {
|
|
char *err = NULL;
|
|
int code;
|
|
|
|
if (!kw->parse) {
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s' : '%s' option is not implemented in this version (check build options).\n",
|
|
file, linenum, args[0], args[1], section, args[cur_arg]);
|
|
cur_arg += 1 + kw->skip ;
|
|
err_code |= ERR_ALERT | ERR_FATAL;
|
|
goto out;
|
|
}
|
|
|
|
code = kw->parse(args, cur_arg, bind_conf->frontend, bind_conf, &err);
|
|
err_code |= code;
|
|
|
|
if (code) {
|
|
if (err && *err) {
|
|
indent_msg(&err, 2);
|
|
if (((code & (ERR_WARN|ERR_ALERT)) == ERR_WARN))
|
|
ha_warning("parsing [%s:%d] : '%s %s' in section '%s' : %s\n", file, linenum, args[0], args[1], section, err);
|
|
else
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s' : %s\n", file, linenum, args[0], args[1], section, err);
|
|
}
|
|
else
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s' : error encountered while processing '%s'.\n",
|
|
file, linenum, args[0], args[1], section, args[cur_arg]);
|
|
if (code & ERR_FATAL) {
|
|
free(err);
|
|
cur_arg += 1 + kw->skip;
|
|
goto out;
|
|
}
|
|
}
|
|
free(err);
|
|
cur_arg += 1 + kw->skip;
|
|
continue;
|
|
}
|
|
|
|
best = bind_find_best_kw(args[cur_arg]);
|
|
if (best)
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s': unknown keyword '%s'; did you mean '%s' maybe ?\n",
|
|
file, linenum, args[0], args[1], section, args[cur_arg], best);
|
|
else
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s': unknown keyword '%s'.\n",
|
|
file, linenum, args[0], args[1], section, args[cur_arg]);
|
|
|
|
err_code |= ERR_ALERT | ERR_FATAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((bind_conf->options & (BC_O_USE_SOCK_DGRAM|BC_O_USE_SOCK_STREAM)) == (BC_O_USE_SOCK_DGRAM|BC_O_USE_SOCK_STREAM) ||
|
|
(bind_conf->options & (BC_O_USE_XPRT_DGRAM|BC_O_USE_XPRT_STREAM)) == (BC_O_USE_XPRT_DGRAM|BC_O_USE_XPRT_STREAM)) {
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s' : cannot mix datagram and stream protocols.\n",
|
|
file, linenum, args[0], args[1], section);
|
|
err_code |= ERR_ALERT | ERR_FATAL;
|
|
goto out;
|
|
}
|
|
|
|
/* The transport layer automatically switches to QUIC when QUIC is
|
|
* selected, regardless of bind_conf settings. We then need to
|
|
* initialize QUIC params.
|
|
*/
|
|
if ((bind_conf->options & (BC_O_USE_SOCK_DGRAM|BC_O_USE_XPRT_STREAM)) == (BC_O_USE_SOCK_DGRAM|BC_O_USE_XPRT_STREAM)) {
|
|
#ifdef USE_QUIC
|
|
bind_conf->xprt = xprt_get(XPRT_QUIC);
|
|
if (!(bind_conf->options & BC_O_USE_SSL)) {
|
|
bind_conf->options |= BC_O_USE_SSL;
|
|
ha_warning("parsing [%s:%d] : '%s %s' in section '%s' : QUIC protocol detected, enabling ssl. Use 'ssl' to shut this warning.\n",
|
|
file, linenum, args[0], args[1], section);
|
|
}
|
|
quic_transport_params_init(&bind_conf->quic_params, 1);
|
|
#else
|
|
ha_alert("parsing [%s:%d] : '%s %s' in section '%s' : QUIC protocol selected but support not compiled in (check build options).\n",
|
|
file, linenum, args[0], args[1], section);
|
|
err_code |= ERR_ALERT | ERR_FATAL;
|
|
goto out;
|
|
#endif
|
|
}
|
|
else if (bind_conf->options & BC_O_USE_SSL) {
|
|
bind_conf->xprt = xprt_get(XPRT_SSL);
|
|
}
|
|
|
|
out:
|
|
return err_code;
|
|
}
|
|
|
|
/* parse the "maxconn" bind keyword */
|
|
static int bind_parse_maxconn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
conf->maxconn = val;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "name" bind keyword */
|
|
static int bind_parse_name(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing name", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->name = strdup(args[cur_arg + 1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "nice" bind keyword */
|
|
static int bind_parse_nice(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < -1024 || val > 1024) {
|
|
memprintf(err, "'%s' : invalid value %d, allowed range is -1024..1024", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
conf->nice = val;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "process" bind keyword */
|
|
static int bind_parse_process(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
memprintf(err, "'process %s' on 'bind' lines is not supported anymore, please use 'thread' instead.", args[cur_arg+1]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
/* parse the "proto" bind keyword */
|
|
static int bind_parse_proto(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct ist proto;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
proto = ist(args[cur_arg + 1]);
|
|
conf->mux_proto = get_mux_proto(proto);
|
|
if (!conf->mux_proto) {
|
|
memprintf(err, "'%s' : unknown MUX protocol '%s'", args[cur_arg], args[cur_arg+1]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "shards" bind keyword. Takes an integer or "by-thread" */
|
|
static int bind_parse_shards(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
if (strcmp(args[cur_arg + 1], "by-thread") == 0) {
|
|
val = MAX_THREADS; /* will be trimmed later anyway */
|
|
} else {
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < 1 || val > MAX_THREADS) {
|
|
memprintf(err, "'%s' : invalid value %d, allowed range is %d..%d or 'by-thread'", args[cur_arg], val, 1, MAX_THREADS);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
}
|
|
|
|
conf->settings.shards = val;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "thread" bind keyword. This will replace any preset thread_set */
|
|
static int bind_parse_thread(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
/* note that the thread set is zeroed before first call, and we don't
|
|
* want to reset it so that it remains possible to chain multiple
|
|
* "thread" directives.
|
|
*/
|
|
if (parse_thread_set(args[cur_arg+1], &conf->thread_set, err) < 0)
|
|
return ERR_ALERT | ERR_FATAL;
|
|
return 0;
|
|
}
|
|
|
|
/* config parser for global "tune.listener.multi-queue", accepts "on" or "off" */
|
|
static int cfg_parse_tune_listener_mq(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (strcmp(args[1], "on") == 0)
|
|
global.tune.options |= GTUNE_LISTENER_MQ;
|
|
else if (strcmp(args[1], "off") == 0)
|
|
global.tune.options &= ~GTUNE_LISTENER_MQ;
|
|
else {
|
|
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "dst_conn", smp_fetch_dconn, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
|
|
{ "so_id", smp_fetch_so_id, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
|
|
{ "so_name", smp_fetch_so_name, 0, NULL, SMP_T_STR, SMP_USE_FTEND, },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted, doing so helps
|
|
* all code contributors.
|
|
* Optional keywords are also declared with a NULL ->parse() function so that
|
|
* the config parser can report an appropriate error when a known keyword was
|
|
* not enabled.
|
|
*/
|
|
static struct bind_kw_list bind_kws = { "ALL", { }, {
|
|
{ "accept-netscaler-cip", bind_parse_accept_netscaler_cip, 1 }, /* enable NetScaler Client IP insertion protocol */
|
|
{ "accept-proxy", bind_parse_accept_proxy, 0 }, /* enable PROXY protocol */
|
|
{ "backlog", bind_parse_backlog, 1 }, /* set backlog of listening socket */
|
|
{ "id", bind_parse_id, 1 }, /* set id of listening socket */
|
|
{ "maxconn", bind_parse_maxconn, 1 }, /* set maxconn of listening socket */
|
|
{ "name", bind_parse_name, 1 }, /* set name of listening socket */
|
|
{ "nice", bind_parse_nice, 1 }, /* set nice of listening socket */
|
|
{ "process", bind_parse_process, 1 }, /* set list of allowed process for this socket */
|
|
{ "proto", bind_parse_proto, 1 }, /* set the proto to use for all incoming connections */
|
|
{ "shards", bind_parse_shards, 1 }, /* set number of shards */
|
|
{ "thread", bind_parse_thread, 1 }, /* set list of allowed threads for this socket */
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
|
|
|
|
/* config keyword parsers */
|
|
static struct cfg_kw_list cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.listener.multi-queue", cfg_parse_tune_listener_mq },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|