mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-01-12 00:39:32 +00:00
b6b3df3ed3
signal_init(), init_log(), init_stream(), and init_task() all used to only preset some values and lists. This needs to be done very early to provide a reliable interface to all other users. The calls used to be explicit in haproxy.c:init(). Now they're placed in initcalls at the STG_PREPARE stage. The functions are not exported anymore.
564 lines
18 KiB
C
564 lines
18 KiB
C
/*
|
|
* include/proto/task.h
|
|
* Functions for task management.
|
|
*
|
|
* Copyright (C) 2000-2010 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, version 2.1
|
|
* exclusively.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef _PROTO_TASK_H
|
|
#define _PROTO_TASK_H
|
|
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <common/config.h>
|
|
#include <common/memory.h>
|
|
#include <common/mini-clist.h>
|
|
#include <common/standard.h>
|
|
#include <common/ticks.h>
|
|
#include <common/hathreads.h>
|
|
|
|
#include <eb32sctree.h>
|
|
#include <eb32tree.h>
|
|
|
|
#include <types/global.h>
|
|
#include <types/task.h>
|
|
|
|
/* Principle of the wait queue.
|
|
*
|
|
* We want to be able to tell whether an expiration date is before of after the
|
|
* current time <now>. We KNOW that expiration dates are never too far apart,
|
|
* because they are measured in ticks (milliseconds). We also know that almost
|
|
* all dates will be in the future, and that a very small part of them will be
|
|
* in the past, they are the ones which have expired since last time we checked
|
|
* them. Using ticks, we know if a date is in the future or in the past, but we
|
|
* cannot use that to store sorted information because that reference changes
|
|
* all the time.
|
|
*
|
|
* We'll use the fact that the time wraps to sort timers. Timers above <now>
|
|
* are in the future, timers below <now> are in the past. Here, "above" and
|
|
* "below" are to be considered modulo 2^31.
|
|
*
|
|
* Timers are stored sorted in an ebtree. We use the new ability for ebtrees to
|
|
* lookup values starting from X to only expire tasks between <now> - 2^31 and
|
|
* <now>. If the end of the tree is reached while walking over it, we simply
|
|
* loop back to the beginning. That way, we have no problem keeping sorted
|
|
* wrapping timers in a tree, between (now - 24 days) and (now + 24 days). The
|
|
* keys in the tree always reflect their real position, none can be infinite.
|
|
* This reduces the number of checks to be performed.
|
|
*
|
|
* Another nice optimisation is to allow a timer to stay at an old place in the
|
|
* queue as long as it's not further than the real expiration date. That way,
|
|
* we use the tree as a place holder for a minorant of the real expiration
|
|
* date. Since we have a very low chance of hitting a timeout anyway, we can
|
|
* bounce the nodes to their right place when we scan the tree if we encounter
|
|
* a misplaced node once in a while. This even allows us not to remove the
|
|
* infinite timers from the wait queue.
|
|
*
|
|
* So, to summarize, we have :
|
|
* - node->key always defines current position in the wait queue
|
|
* - timer is the real expiration date (possibly infinite)
|
|
* - node->key is always before or equal to timer
|
|
*
|
|
* The run queue works similarly to the wait queue except that the current date
|
|
* is replaced by an insertion counter which can also wrap without any problem.
|
|
*/
|
|
|
|
/* The farthest we can look back in a timer tree */
|
|
#define TIMER_LOOK_BACK (1U << 31)
|
|
|
|
/* a few exported variables */
|
|
extern unsigned int nb_tasks; /* total number of tasks */
|
|
extern volatile unsigned long active_tasks_mask; /* Mask of threads with active tasks */
|
|
extern unsigned int tasks_run_queue; /* run queue size */
|
|
extern unsigned int tasks_run_queue_cur;
|
|
extern unsigned int nb_tasks_cur;
|
|
extern unsigned int niced_tasks; /* number of niced tasks in the run queue */
|
|
extern struct pool_head *pool_head_task;
|
|
extern struct pool_head *pool_head_tasklet;
|
|
extern struct pool_head *pool_head_notification;
|
|
extern THREAD_LOCAL struct task *curr_task; /* task currently running or NULL */
|
|
extern THREAD_LOCAL struct eb32sc_node *rq_next; /* Next task to be potentially run */
|
|
#ifdef USE_THREAD
|
|
extern struct eb_root timers; /* sorted timers tree, global */
|
|
extern struct eb_root rqueue; /* tree constituting the run queue */
|
|
extern int global_rqueue_size; /* Number of element sin the global runqueue */
|
|
#endif
|
|
|
|
/* force to split per-thread stuff into separate cache lines */
|
|
struct task_per_thread {
|
|
struct eb_root timers; /* tree constituting the per-thread wait queue */
|
|
struct eb_root rqueue; /* tree constituting the per-thread run queue */
|
|
struct list task_list; /* List of tasks to be run, mixing tasks and tasklets */
|
|
int task_list_size; /* Number of tasks in the task_list */
|
|
int rqueue_size; /* Number of elements in the per-thread run queue */
|
|
__attribute__((aligned(64))) char end[0];
|
|
};
|
|
|
|
extern struct task_per_thread task_per_thread[MAX_THREADS];
|
|
|
|
__decl_hathreads(extern HA_SPINLOCK_T rq_lock); /* spin lock related to run queue */
|
|
__decl_hathreads(extern HA_SPINLOCK_T wq_lock); /* spin lock related to wait queue */
|
|
|
|
|
|
static inline void task_insert_into_tasklet_list(struct task *t);
|
|
|
|
/* return 0 if task is in run queue, otherwise non-zero */
|
|
static inline int task_in_rq(struct task *t)
|
|
{
|
|
/* Check if leaf_p is NULL, in case he's not in the runqueue, and if
|
|
* it's not 0x1, which would mean it's in the tasklet list.
|
|
*/
|
|
return t->rq.node.leaf_p != NULL && t->rq.node.leaf_p != (void *)0x1;
|
|
}
|
|
|
|
/* return 0 if task is in wait queue, otherwise non-zero */
|
|
static inline int task_in_wq(struct task *t)
|
|
{
|
|
return t->wq.node.leaf_p != NULL;
|
|
}
|
|
|
|
/* puts the task <t> in run queue with reason flags <f>, and returns <t> */
|
|
/* This will put the task in the local runqueue if the task is only runnable
|
|
* by the current thread, in the global runqueue otherwies.
|
|
*/
|
|
void __task_wakeup(struct task *t, struct eb_root *);
|
|
static inline void task_wakeup(struct task *t, unsigned int f)
|
|
{
|
|
unsigned short state;
|
|
|
|
#ifdef USE_THREAD
|
|
struct eb_root *root;
|
|
|
|
if (t->thread_mask == tid_bit || global.nbthread == 1)
|
|
root = &task_per_thread[tid].rqueue;
|
|
else
|
|
root = &rqueue;
|
|
#else
|
|
struct eb_root *root = &task_per_thread[tid].rqueue;
|
|
#endif
|
|
|
|
state = HA_ATOMIC_OR(&t->state, f);
|
|
if (!(state & TASK_RUNNING))
|
|
__task_wakeup(t, root);
|
|
}
|
|
|
|
/* change the thread affinity of a task to <thread_mask> */
|
|
static inline void task_set_affinity(struct task *t, unsigned long thread_mask)
|
|
{
|
|
t->thread_mask = thread_mask;
|
|
}
|
|
|
|
/*
|
|
* Unlink the task from the wait queue, and possibly update the last_timer
|
|
* pointer. A pointer to the task itself is returned. The task *must* already
|
|
* be in the wait queue before calling this function. If unsure, use the safer
|
|
* task_unlink_wq() function.
|
|
*/
|
|
static inline struct task *__task_unlink_wq(struct task *t)
|
|
{
|
|
eb32_delete(&t->wq);
|
|
return t;
|
|
}
|
|
|
|
/* remove a task from its wait queue. It may either be the local wait queue if
|
|
* the task is bound to a single thread (in which case there's no locking
|
|
* involved) or the global queue, with locking.
|
|
*/
|
|
static inline struct task *task_unlink_wq(struct task *t)
|
|
{
|
|
if (likely(task_in_wq(t))) {
|
|
if (atleast2(t->thread_mask))
|
|
HA_SPIN_LOCK(TASK_WQ_LOCK, &wq_lock);
|
|
__task_unlink_wq(t);
|
|
if (atleast2(t->thread_mask))
|
|
HA_SPIN_UNLOCK(TASK_WQ_LOCK, &wq_lock);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Unlink the task from the run queue. The tasks_run_queue size and number of
|
|
* niced tasks are updated too. A pointer to the task itself is returned. The
|
|
* task *must* already be in the run queue before calling this function. If
|
|
* unsure, use the safer task_unlink_rq() function. Note that the pointer to the
|
|
* next run queue entry is neither checked nor updated.
|
|
*/
|
|
static inline struct task *__task_unlink_rq(struct task *t)
|
|
{
|
|
HA_ATOMIC_SUB(&tasks_run_queue, 1);
|
|
#ifdef USE_THREAD
|
|
if (t->state & TASK_GLOBAL) {
|
|
HA_ATOMIC_AND(&t->state, ~TASK_GLOBAL);
|
|
global_rqueue_size--;
|
|
} else
|
|
#endif
|
|
task_per_thread[tid].rqueue_size--;
|
|
eb32sc_delete(&t->rq);
|
|
if (likely(t->nice))
|
|
HA_ATOMIC_SUB(&niced_tasks, 1);
|
|
return t;
|
|
}
|
|
|
|
/* This function unlinks task <t> from the run queue if it is in it. It also
|
|
* takes care of updating the next run queue task if it was this task.
|
|
*/
|
|
static inline struct task *task_unlink_rq(struct task *t)
|
|
{
|
|
if (t->thread_mask != tid_bit)
|
|
HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock);
|
|
if (likely(task_in_rq(t))) {
|
|
if (&t->rq == rq_next)
|
|
rq_next = eb32sc_next(rq_next, tid_bit);
|
|
__task_unlink_rq(t);
|
|
}
|
|
if (t->thread_mask != tid_bit)
|
|
HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock);
|
|
return t;
|
|
}
|
|
|
|
static inline void tasklet_wakeup(struct tasklet *tl)
|
|
{
|
|
if (!TASK_IS_TASKLET(tl)) {
|
|
task_insert_into_tasklet_list((struct task *)tl);
|
|
return;
|
|
}
|
|
if (!LIST_ISEMPTY(&tl->list))
|
|
return;
|
|
LIST_ADDQ(&task_per_thread[tid].task_list, &tl->list);
|
|
task_per_thread[tid].task_list_size++;
|
|
HA_ATOMIC_OR(&active_tasks_mask, tid_bit);
|
|
HA_ATOMIC_ADD(&tasks_run_queue, 1);
|
|
|
|
}
|
|
|
|
static inline void task_insert_into_tasklet_list(struct task *t)
|
|
{
|
|
struct tasklet *tl;
|
|
void *expected = NULL;
|
|
|
|
/* Protect ourself against anybody trying to insert the task into
|
|
* another runqueue. We set leaf_p to 0x1 to indicate that the node is
|
|
* not in a tree but that it's in the tasklet list. See task_in_rq().
|
|
*/
|
|
if (unlikely(!HA_ATOMIC_CAS(&t->rq.node.leaf_p, &expected, (void *)0x1)))
|
|
return;
|
|
HA_ATOMIC_ADD(&tasks_run_queue, 1);
|
|
task_per_thread[tid].task_list_size++;
|
|
tl = (struct tasklet *)t;
|
|
LIST_ADDQ(&task_per_thread[tid].task_list, &tl->list);
|
|
}
|
|
|
|
static inline void task_remove_from_task_list(struct task *t)
|
|
{
|
|
LIST_DEL(&((struct tasklet *)t)->list);
|
|
LIST_INIT(&((struct tasklet *)t)->list);
|
|
task_per_thread[tid].task_list_size--;
|
|
HA_ATOMIC_SUB(&tasks_run_queue, 1);
|
|
if (!TASK_IS_TASKLET(t)) {
|
|
t->rq.node.leaf_p = NULL; // was 0x1
|
|
__ha_barrier_store();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlinks the task and adjusts run queue stats.
|
|
* A pointer to the task itself is returned.
|
|
*/
|
|
static inline struct task *task_delete(struct task *t)
|
|
{
|
|
task_unlink_wq(t);
|
|
task_unlink_rq(t);
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Initialize a new task. The bare minimum is performed (queue pointers and
|
|
* state). The task is returned. This function should not be used outside of
|
|
* task_new().
|
|
*/
|
|
static inline struct task *task_init(struct task *t, unsigned long thread_mask)
|
|
{
|
|
t->wq.node.leaf_p = NULL;
|
|
t->rq.node.leaf_p = NULL;
|
|
t->state = TASK_SLEEPING;
|
|
t->thread_mask = thread_mask;
|
|
t->nice = 0;
|
|
t->calls = 0;
|
|
t->call_date = 0;
|
|
t->cpu_time = 0;
|
|
t->lat_time = 0;
|
|
t->expire = TICK_ETERNITY;
|
|
return t;
|
|
}
|
|
|
|
static inline void tasklet_init(struct tasklet *t)
|
|
{
|
|
t->nice = -32768;
|
|
t->calls = 0;
|
|
t->state = 0;
|
|
t->process = NULL;
|
|
LIST_INIT(&t->list);
|
|
}
|
|
|
|
static inline struct tasklet *tasklet_new(void)
|
|
{
|
|
struct tasklet *t = pool_alloc(pool_head_tasklet);
|
|
|
|
if (t) {
|
|
tasklet_init(t);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialise a new task. The new task is returned, or NULL in
|
|
* case of lack of memory. The task count is incremented. Tasks should only
|
|
* be allocated this way, and must be freed using task_free().
|
|
*/
|
|
static inline struct task *task_new(unsigned long thread_mask)
|
|
{
|
|
struct task *t = pool_alloc(pool_head_task);
|
|
if (t) {
|
|
HA_ATOMIC_ADD(&nb_tasks, 1);
|
|
task_init(t, thread_mask);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Free a task. Its context must have been freed since it will be lost.
|
|
* The task count is decremented.
|
|
*/
|
|
static inline void __task_free(struct task *t)
|
|
{
|
|
pool_free(pool_head_task, t);
|
|
if (unlikely(stopping))
|
|
pool_flush(pool_head_task);
|
|
HA_ATOMIC_SUB(&nb_tasks, 1);
|
|
}
|
|
|
|
static inline void task_free(struct task *t)
|
|
{
|
|
/* There's no need to protect t->state with a lock, as the task
|
|
* has to run on the current thread.
|
|
*/
|
|
if (t == curr_task || !(t->state & TASK_RUNNING))
|
|
__task_free(t);
|
|
else
|
|
t->process = NULL;
|
|
}
|
|
|
|
static inline void tasklet_free(struct tasklet *tl)
|
|
{
|
|
if (!LIST_ISEMPTY(&tl->list))
|
|
task_per_thread[tid].task_list_size--;
|
|
LIST_DEL(&tl->list);
|
|
|
|
pool_free(pool_head_tasklet, tl);
|
|
if (unlikely(stopping))
|
|
pool_flush(pool_head_tasklet);
|
|
}
|
|
|
|
void __task_queue(struct task *task, struct eb_root *wq);
|
|
|
|
/* Place <task> into the wait queue, where it may already be. If the expiration
|
|
* timer is infinite, do nothing and rely on wake_expired_task to clean up.
|
|
* If the task is bound to a single thread, it's assumed to be bound to the
|
|
* current thread's queue and is queued without locking. Otherwise it's queued
|
|
* into the global wait queue, protected by locks.
|
|
*/
|
|
static inline void task_queue(struct task *task)
|
|
{
|
|
/* If we already have a place in the wait queue no later than the
|
|
* timeout we're trying to set, we'll stay there, because it is very
|
|
* unlikely that we will reach the timeout anyway. If the timeout
|
|
* has been disabled, it's useless to leave the queue as well. We'll
|
|
* rely on wake_expired_tasks() to catch the node and move it to the
|
|
* proper place should it ever happen. Finally we only add the task
|
|
* to the queue if it was not there or if it was further than what
|
|
* we want.
|
|
*/
|
|
if (!tick_isset(task->expire))
|
|
return;
|
|
|
|
#ifdef USE_THREAD
|
|
if (atleast2(task->thread_mask)) {
|
|
HA_SPIN_LOCK(TASK_WQ_LOCK, &wq_lock);
|
|
if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key))
|
|
__task_queue(task, &timers);
|
|
HA_SPIN_UNLOCK(TASK_WQ_LOCK, &wq_lock);
|
|
} else
|
|
#endif
|
|
{
|
|
if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key))
|
|
__task_queue(task, &task_per_thread[tid].timers);
|
|
}
|
|
}
|
|
|
|
/* Ensure <task> will be woken up at most at <when>. If the task is already in
|
|
* the run queue (but not running), nothing is done. It may be used that way
|
|
* with a delay : task_schedule(task, tick_add(now_ms, delay));
|
|
*/
|
|
static inline void task_schedule(struct task *task, int when)
|
|
{
|
|
/* TODO: mthread, check if there is no tisk with this test */
|
|
if (task_in_rq(task))
|
|
return;
|
|
|
|
#ifdef USE_THREAD
|
|
if (atleast2(task->thread_mask)) {
|
|
HA_SPIN_LOCK(TASK_WQ_LOCK, &wq_lock);
|
|
if (task_in_wq(task))
|
|
when = tick_first(when, task->expire);
|
|
|
|
task->expire = when;
|
|
if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key))
|
|
__task_queue(task, &timers);
|
|
HA_SPIN_UNLOCK(TASK_WQ_LOCK, &wq_lock);
|
|
} else
|
|
#endif
|
|
{
|
|
if (task_in_wq(task))
|
|
when = tick_first(when, task->expire);
|
|
|
|
task->expire = when;
|
|
if (!task_in_wq(task) || tick_is_lt(task->expire, task->wq.key))
|
|
__task_queue(task, &task_per_thread[tid].timers);
|
|
}
|
|
}
|
|
|
|
/* This function register a new signal. "lua" is the current lua
|
|
* execution context. It contains a pointer to the associated task.
|
|
* "link" is a list head attached to an other task that must be wake
|
|
* the lua task if an event occurs. This is useful with external
|
|
* events like TCP I/O or sleep functions. This funcion allocate
|
|
* memory for the signal.
|
|
*/
|
|
static inline struct notification *notification_new(struct list *purge, struct list *event, struct task *wakeup)
|
|
{
|
|
struct notification *com = pool_alloc(pool_head_notification);
|
|
if (!com)
|
|
return NULL;
|
|
LIST_ADDQ(purge, &com->purge_me);
|
|
LIST_ADDQ(event, &com->wake_me);
|
|
HA_SPIN_INIT(&com->lock);
|
|
com->task = wakeup;
|
|
return com;
|
|
}
|
|
|
|
/* This function purge all the pending signals when the LUA execution
|
|
* is finished. This prevent than a coprocess try to wake a deleted
|
|
* task. This function remove the memory associated to the signal.
|
|
* The purge list is not locked because it is owned by only one
|
|
* process. before browsing this list, the caller must ensure to be
|
|
* the only one browser.
|
|
*/
|
|
static inline void notification_purge(struct list *purge)
|
|
{
|
|
struct notification *com, *back;
|
|
|
|
/* Delete all pending communication signals. */
|
|
list_for_each_entry_safe(com, back, purge, purge_me) {
|
|
HA_SPIN_LOCK(NOTIF_LOCK, &com->lock);
|
|
LIST_DEL(&com->purge_me);
|
|
if (!com->task) {
|
|
HA_SPIN_UNLOCK(NOTIF_LOCK, &com->lock);
|
|
pool_free(pool_head_notification, com);
|
|
continue;
|
|
}
|
|
com->task = NULL;
|
|
HA_SPIN_UNLOCK(NOTIF_LOCK, &com->lock);
|
|
}
|
|
}
|
|
|
|
/* In some cases, the disconnected notifications must be cleared.
|
|
* This function just release memory blocs. The purge list is not
|
|
* locked because it is owned by only one process. Before browsing
|
|
* this list, the caller must ensure to be the only one browser.
|
|
* The "com" is not locked because when com->task is NULL, the
|
|
* notification is no longer used.
|
|
*/
|
|
static inline void notification_gc(struct list *purge)
|
|
{
|
|
struct notification *com, *back;
|
|
|
|
/* Delete all pending communication signals. */
|
|
list_for_each_entry_safe (com, back, purge, purge_me) {
|
|
if (com->task)
|
|
continue;
|
|
LIST_DEL(&com->purge_me);
|
|
pool_free(pool_head_notification, com);
|
|
}
|
|
}
|
|
|
|
/* This function sends signals. It wakes all the tasks attached
|
|
* to a list head, and remove the signal, and free the used
|
|
* memory. The wake list is not locked because it is owned by
|
|
* only one process. before browsing this list, the caller must
|
|
* ensure to be the only one browser.
|
|
*/
|
|
static inline void notification_wake(struct list *wake)
|
|
{
|
|
struct notification *com, *back;
|
|
|
|
/* Wake task and delete all pending communication signals. */
|
|
list_for_each_entry_safe(com, back, wake, wake_me) {
|
|
HA_SPIN_LOCK(NOTIF_LOCK, &com->lock);
|
|
LIST_DEL(&com->wake_me);
|
|
if (!com->task) {
|
|
HA_SPIN_UNLOCK(NOTIF_LOCK, &com->lock);
|
|
pool_free(pool_head_notification, com);
|
|
continue;
|
|
}
|
|
task_wakeup(com->task, TASK_WOKEN_MSG);
|
|
com->task = NULL;
|
|
HA_SPIN_UNLOCK(NOTIF_LOCK, &com->lock);
|
|
}
|
|
}
|
|
|
|
/* This function returns true is some notification are pending
|
|
*/
|
|
static inline int notification_registered(struct list *wake)
|
|
{
|
|
return !LIST_ISEMPTY(wake);
|
|
}
|
|
|
|
/*
|
|
* This does 3 things :
|
|
* - wake up all expired tasks
|
|
* - call all runnable tasks
|
|
* - return the date of next event in <next> or eternity.
|
|
*/
|
|
|
|
void process_runnable_tasks();
|
|
|
|
/*
|
|
* Extract all expired timers from the timer queue, and wakes up all
|
|
* associated tasks. Returns the date of next event (or eternity).
|
|
*/
|
|
int wake_expired_tasks();
|
|
|
|
#endif /* _PROTO_TASK_H */
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|