haproxy/src/sock.c
Willy Tarreau b073573c10 MINOR: sock: add a function to check for SO_REUSEPORT support at runtime
The new function _sock_supports_reuseport() will be used to check if a
protocol type supports SO_REUSEPORT or not. This will be useful to verify
that shards can really work.
2023-04-23 09:46:15 +02:00

1063 lines
29 KiB
C

/*
* Generic code for native (BSD-compatible) sockets
*
* Copyright 2000-2020 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <net/if.h>
#include <haproxy/api.h>
#include <haproxy/activity.h>
#include <haproxy/connection.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/namespace.h>
#include <haproxy/proto_sockpair.h>
#include <haproxy/sock.h>
#include <haproxy/sock_inet.h>
#include <haproxy/tools.h>
#define SOCK_XFER_OPT_FOREIGN 0x000000001
#define SOCK_XFER_OPT_V6ONLY 0x000000002
#define SOCK_XFER_OPT_DGRAM 0x000000004
/* the list of remaining sockets transferred from an older process */
struct xfer_sock_list {
int fd;
int options; /* socket options as SOCK_XFER_OPT_* */
char *iface;
char *namespace;
int if_namelen;
int ns_namelen;
struct xfer_sock_list *prev;
struct xfer_sock_list *next;
struct sockaddr_storage addr;
};
static struct xfer_sock_list *xfer_sock_list;
/* Accept an incoming connection from listener <l>, and return it, as well as
* a CO_AC_* status code into <status> if not null. Null is returned on error.
* <l> must be a valid listener with a valid frontend.
*/
struct connection *sock_accept_conn(struct listener *l, int *status)
{
#ifdef USE_ACCEPT4
static int accept4_broken;
#endif
struct proxy *p = l->bind_conf->frontend;
struct connection *conn = NULL;
struct sockaddr_storage *addr = NULL;
socklen_t laddr;
int ret;
int cfd;
if (!sockaddr_alloc(&addr, NULL, 0))
goto fail_addr;
/* accept() will mark all accepted FDs O_NONBLOCK and the ones accepted
* in the master process as FD_CLOEXEC. It's not done for workers
* because 1) workers are not supposed to execute anything so there's
* no reason for uselessly slowing down everything, and 2) that would
* prevent us from implementing fd passing in the future.
*/
#ifdef USE_ACCEPT4
laddr = sizeof(*conn->src);
/* only call accept4() if it's known to be safe, otherwise fallback to
* the legacy accept() + fcntl().
*/
if (unlikely(accept4_broken) ||
(((cfd = accept4(l->rx.fd, (struct sockaddr*)addr, &laddr,
SOCK_NONBLOCK | (master ? SOCK_CLOEXEC : 0))) == -1) &&
(errno == ENOSYS || errno == EINVAL || errno == EBADF) &&
((accept4_broken = 1))))
#endif
{
laddr = sizeof(*conn->src);
if ((cfd = accept(l->rx.fd, (struct sockaddr*)addr, &laddr)) != -1) {
fd_set_nonblock(cfd);
if (master)
fd_set_cloexec(cfd);
}
}
if (likely(cfd != -1)) {
if (unlikely(cfd >= global.maxsock)) {
send_log(p, LOG_EMERG,
"Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n",
p->id);
goto fail_conn;
}
/* Perfect, the connection was accepted */
conn = conn_new(&l->obj_type);
if (!conn)
goto fail_conn;
conn->src = addr;
conn->handle.fd = cfd;
ret = CO_AC_DONE;
goto done;
}
/* error conditions below */
sockaddr_free(&addr);
switch (errno) {
#if defined(EWOULDBLOCK) && defined(EAGAIN) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
case EAGAIN:
ret = CO_AC_DONE; /* nothing more to accept */
if (fdtab[l->rx.fd].state & (FD_POLL_HUP|FD_POLL_ERR)) {
/* the listening socket might have been disabled in a shared
* process and we're a collateral victim. We'll just pause for
* a while in case it comes back. In the mean time, we need to
* clear this sticky flag.
*/
_HA_ATOMIC_AND(&fdtab[l->rx.fd].state, ~(FD_POLL_HUP|FD_POLL_ERR));
ret = CO_AC_PAUSE;
}
fd_cant_recv(l->rx.fd);
break;
case EINVAL:
/* might be trying to accept on a shut fd (eg: soft stop) */
ret = CO_AC_PAUSE;
break;
case EINTR:
case ECONNABORTED:
ret = CO_AC_RETRY;
break;
case ENFILE:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n",
p->id, global.maxsock);
ret = CO_AC_PAUSE;
break;
case EMFILE:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n",
p->id, global.maxsock);
ret = CO_AC_PAUSE;
break;
case ENOBUFS:
case ENOMEM:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n",
p->id, global.maxsock);
ret = CO_AC_PAUSE;
break;
default:
/* unexpected result, let's give up and let other tasks run */
ret = CO_AC_YIELD;
}
done:
if (status)
*status = ret;
return conn;
fail_conn:
sockaddr_free(&addr);
/* The accept call already succeeded by the time we try to allocate the connection,
* we need to close it in case of failure. */
close(cfd);
fail_addr:
ret = CO_AC_PAUSE;
goto done;
}
/* Create a socket to connect to the server in conn->dst (which MUST be valid),
* using the configured namespace if needed, or the one passed by the proxy
* protocol if required to do so. It ultimately calls socket() or socketat()
* and returns the FD or error code.
*/
int sock_create_server_socket(struct connection *conn)
{
const struct netns_entry *ns = NULL;
#ifdef USE_NS
if (objt_server(conn->target)) {
if (__objt_server(conn->target)->flags & SRV_F_USE_NS_FROM_PP)
ns = conn->proxy_netns;
else
ns = __objt_server(conn->target)->netns;
}
#endif
return my_socketat(ns, conn->dst->ss_family, SOCK_STREAM, 0);
}
/* Enables receiving on receiver <rx> once already bound. */
void sock_enable(struct receiver *rx)
{
if (rx->flags & RX_F_BOUND)
fd_want_recv_safe(rx->fd);
}
/* Disables receiving on receiver <rx> once already bound. */
void sock_disable(struct receiver *rx)
{
if (rx->flags & RX_F_BOUND)
fd_stop_recv(rx->fd);
}
/* stops, unbinds and possibly closes the FD associated with receiver rx */
void sock_unbind(struct receiver *rx)
{
/* There are a number of situations where we prefer to keep the FD and
* not to close it (unless we're stopping, of course):
* - worker process unbinding from a worker's FD with socket transfer enabled => keep
* - master process unbinding from a master's inherited FD => keep
* - master process unbinding from a master's FD => close
* - master process unbinding from a worker's inherited FD => keep
* - master process unbinding from a worker's FD => close
* - worker process unbinding from a master's FD => close
* - worker process unbinding from a worker's FD => close
*/
if (rx->flags & RX_F_BOUND)
rx->proto->rx_disable(rx);
if (!stopping && !master &&
!(rx->flags & RX_F_MWORKER) &&
(global.tune.options & GTUNE_SOCKET_TRANSFER))
return;
if (!stopping && master &&
rx->flags & RX_F_INHERITED)
return;
rx->flags &= ~RX_F_BOUND;
if (rx->fd != -1)
fd_delete(rx->fd);
rx->fd = -1;
}
/*
* Retrieves the source address for the socket <fd>, with <dir> indicating
* if we're a listener (=0) or an initiator (!=0). It returns 0 in case of
* success, -1 in case of error. The socket's source address is stored in
* <sa> for <salen> bytes.
*/
int sock_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir)
{
if (dir)
return getsockname(fd, sa, &salen);
else
return getpeername(fd, sa, &salen);
}
/*
* Retrieves the original destination address for the socket <fd>, with <dir>
* indicating if we're a listener (=0) or an initiator (!=0). It returns 0 in
* case of success, -1 in case of error. The socket's source address is stored
* in <sa> for <salen> bytes.
*/
int sock_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir)
{
if (dir)
return getpeername(fd, sa, &salen);
else
return getsockname(fd, sa, &salen);
}
/* Try to retrieve exported sockets from worker at CLI <unixsocket>. These
* ones will be placed into the xfer_sock_list for later use by function
* sock_find_compatible_fd(). Returns 0 on success, -1 on failure.
*/
int sock_get_old_sockets(const char *unixsocket)
{
char *cmsgbuf = NULL, *tmpbuf = NULL;
int *tmpfd = NULL;
struct sockaddr_un addr;
struct cmsghdr *cmsg;
struct msghdr msghdr;
struct iovec iov;
struct xfer_sock_list *xfer_sock = NULL;
struct timeval tv = { .tv_sec = 1, .tv_usec = 0 };
int sock = -1;
int ret = -1;
int ret2 = -1;
int fd_nb;
int got_fd = 0;
int cur_fd = 0;
size_t maxoff = 0, curoff = 0;
if (strncmp("sockpair@", unixsocket, strlen("sockpair@")) == 0) {
/* sockpair for master-worker usage */
int sv[2];
int dst_fd;
dst_fd = strtoll(unixsocket + strlen("sockpair@"), NULL, 0);
if (socketpair(PF_UNIX, SOCK_STREAM, 0, sv) == -1) {
ha_warning("socketpair(): Cannot create socketpair. Giving up.\n");
}
if (send_fd_uxst(dst_fd, sv[0]) == -1) {
ha_alert("socketpair: Cannot transfer the fd %d over sockpair@%d. Giving up.\n", sv[0], dst_fd);
close(sv[0]);
close(sv[1]);
goto out;
}
close(sv[0]); /* we don't need this side anymore */
sock = sv[1];
} else {
/* Unix socket */
sock = socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket);
goto out;
}
strncpy(addr.sun_path, unixsocket, sizeof(addr.sun_path) - 1);
addr.sun_path[sizeof(addr.sun_path) - 1] = 0;
addr.sun_family = PF_UNIX;
ret = connect(sock, (struct sockaddr *)&addr, sizeof(addr));
if (ret < 0) {
ha_warning("Failed to connect to the old process socket '%s'\n", unixsocket);
goto out;
}
}
memset(&msghdr, 0, sizeof(msghdr));
cmsgbuf = malloc(CMSG_SPACE(sizeof(int)) * MAX_SEND_FD);
if (!cmsgbuf) {
ha_warning("Failed to allocate memory to send sockets\n");
goto out;
}
setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (void *)&tv, sizeof(tv));
iov.iov_base = &fd_nb;
iov.iov_len = sizeof(fd_nb);
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
if (send(sock, "_getsocks\n", strlen("_getsocks\n"), 0) != strlen("_getsocks\n")) {
ha_warning("Failed to get the number of sockets to be transferred !\n");
goto out;
}
/* First, get the number of file descriptors to be received */
if (recvmsg(sock, &msghdr, MSG_WAITALL) != sizeof(fd_nb)) {
ha_warning("Failed to get the number of sockets to be transferred !\n");
goto out;
}
if (fd_nb == 0) {
ret2 = 0;
goto out;
}
tmpbuf = malloc(fd_nb * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int)));
if (tmpbuf == NULL) {
ha_warning("Failed to allocate memory while receiving sockets\n");
goto out;
}
tmpfd = malloc(fd_nb * sizeof(int));
if (tmpfd == NULL) {
ha_warning("Failed to allocate memory while receiving sockets\n");
goto out;
}
msghdr.msg_control = cmsgbuf;
msghdr.msg_controllen = CMSG_SPACE(sizeof(int)) * MAX_SEND_FD;
iov.iov_len = MAX_SEND_FD * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int));
do {
int ret3;
iov.iov_base = tmpbuf + curoff;
ret = recvmsg(sock, &msghdr, 0);
if (ret == -1 && errno == EINTR)
continue;
if (ret <= 0)
break;
/* Send an ack to let the sender know we got the sockets
* and it can send some more
*/
do {
ret3 = send(sock, &got_fd, sizeof(got_fd), 0);
} while (ret3 == -1 && errno == EINTR);
for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg != NULL; cmsg = CMSG_NXTHDR(&msghdr, cmsg)) {
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
size_t totlen = cmsg->cmsg_len - CMSG_LEN(0);
if (totlen / sizeof(int) + got_fd > fd_nb) {
ha_warning("Got to many sockets !\n");
goto out;
}
/*
* Be paranoid and use memcpy() to avoid any
* potential alignment issue.
*/
memcpy(&tmpfd[got_fd], CMSG_DATA(cmsg), totlen);
got_fd += totlen / sizeof(int);
}
}
curoff += ret;
} while (got_fd < fd_nb);
if (got_fd != fd_nb) {
ha_warning("We didn't get the expected number of sockets (expecting %d got %d)\n",
fd_nb, got_fd);
goto out;
}
maxoff = curoff;
curoff = 0;
for (cur_fd = 0; cur_fd < got_fd; cur_fd++) {
int fd = tmpfd[cur_fd];
socklen_t socklen;
int val;
int len;
xfer_sock = calloc(1, sizeof(*xfer_sock));
if (!xfer_sock) {
ha_warning("Failed to allocate memory in get_old_sockets() !\n");
break;
}
xfer_sock->fd = -1;
socklen = sizeof(xfer_sock->addr);
if (getsockname(fd, (struct sockaddr *)&xfer_sock->addr, &socklen) != 0) {
ha_warning("Failed to get socket address\n");
ha_free(&xfer_sock);
continue;
}
if (curoff >= maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
len = tmpbuf[curoff++];
if (len > 0) {
/* We have a namespace */
if (curoff + len > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
xfer_sock->namespace = malloc(len + 1);
if (!xfer_sock->namespace) {
ha_warning("Failed to allocate memory while transferring sockets\n");
goto out;
}
memcpy(xfer_sock->namespace, &tmpbuf[curoff], len);
xfer_sock->namespace[len] = 0;
xfer_sock->ns_namelen = len;
curoff += len;
}
if (curoff >= maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
len = tmpbuf[curoff++];
if (len > 0) {
/* We have an interface */
if (curoff + len > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
xfer_sock->iface = malloc(len + 1);
if (!xfer_sock->iface) {
ha_warning("Failed to allocate memory while transferring sockets\n");
goto out;
}
memcpy(xfer_sock->iface, &tmpbuf[curoff], len);
xfer_sock->iface[len] = 0;
xfer_sock->if_namelen = len;
curoff += len;
}
if (curoff + sizeof(int) > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
/* we used to have 32 bits of listener options here but we don't
* use them anymore.
*/
curoff += sizeof(int);
/* determine the foreign status directly from the socket itself */
if (sock_inet_is_foreign(fd, xfer_sock->addr.ss_family))
xfer_sock->options |= SOCK_XFER_OPT_FOREIGN;
socklen = sizeof(val);
if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &val, &socklen) == 0 && val == SOCK_DGRAM)
xfer_sock->options |= SOCK_XFER_OPT_DGRAM;
#if defined(IPV6_V6ONLY)
/* keep only the v6only flag depending on what's currently
* active on the socket, and always drop the v4v6 one.
*/
socklen = sizeof(val);
if (xfer_sock->addr.ss_family == AF_INET6 &&
getsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &val, &socklen) == 0 && val > 0)
xfer_sock->options |= SOCK_XFER_OPT_V6ONLY;
#endif
xfer_sock->fd = fd;
if (xfer_sock_list)
xfer_sock_list->prev = xfer_sock;
xfer_sock->next = xfer_sock_list;
xfer_sock->prev = NULL;
xfer_sock_list = xfer_sock;
xfer_sock = NULL;
}
ret2 = 0;
out:
/* If we failed midway make sure to close the remaining
* file descriptors
*/
if (tmpfd != NULL && cur_fd < got_fd) {
for (; cur_fd < got_fd; cur_fd++) {
close(tmpfd[cur_fd]);
}
}
free(tmpbuf);
free(tmpfd);
free(cmsgbuf);
if (sock != -1)
close(sock);
if (xfer_sock) {
free(xfer_sock->namespace);
free(xfer_sock->iface);
if (xfer_sock->fd != -1)
close(xfer_sock->fd);
free(xfer_sock);
}
return (ret2);
}
/* When binding the receivers, check if a socket has been sent to us by the
* previous process that we could reuse, instead of creating a new one. Note
* that some address family-specific options are checked on the listener and
* on the socket. Typically for AF_INET and AF_INET6, we check for transparent
* mode, and for AF_INET6 we also check for "v4v6" or "v6only". The reused
* socket is automatically removed from the list so that it's not proposed
* anymore.
*/
int sock_find_compatible_fd(const struct receiver *rx)
{
struct xfer_sock_list *xfer_sock = xfer_sock_list;
int options = 0;
int if_namelen = 0;
int ns_namelen = 0;
int ret = -1;
if (!rx->proto->fam->addrcmp)
return -1;
if (rx->proto->proto_type == PROTO_TYPE_DGRAM)
options |= SOCK_XFER_OPT_DGRAM;
if (rx->settings->options & RX_O_FOREIGN)
options |= SOCK_XFER_OPT_FOREIGN;
if (rx->addr.ss_family == AF_INET6) {
/* Prepare to match the v6only option against what we really want. Note
* that sadly the two options are not exclusive to each other and that
* v6only is stronger than v4v6.
*/
if ((rx->settings->options & RX_O_V6ONLY) ||
(sock_inet6_v6only_default && !(rx->settings->options & RX_O_V4V6)))
options |= SOCK_XFER_OPT_V6ONLY;
}
if (rx->settings->interface)
if_namelen = strlen(rx->settings->interface);
#ifdef USE_NS
if (rx->settings->netns)
ns_namelen = rx->settings->netns->name_len;
#endif
while (xfer_sock) {
if ((options == xfer_sock->options) &&
(if_namelen == xfer_sock->if_namelen) &&
(ns_namelen == xfer_sock->ns_namelen) &&
(!if_namelen || strcmp(rx->settings->interface, xfer_sock->iface) == 0) &&
#ifdef USE_NS
(!ns_namelen || strcmp(rx->settings->netns->node.key, xfer_sock->namespace) == 0) &&
#endif
rx->proto->fam->addrcmp(&xfer_sock->addr, &rx->addr) == 0)
break;
xfer_sock = xfer_sock->next;
}
if (xfer_sock != NULL) {
ret = xfer_sock->fd;
if (xfer_sock == xfer_sock_list)
xfer_sock_list = xfer_sock->next;
if (xfer_sock->prev)
xfer_sock->prev->next = xfer_sock->next;
if (xfer_sock->next)
xfer_sock->next->prev = xfer_sock->prev;
free(xfer_sock->iface);
free(xfer_sock->namespace);
free(xfer_sock);
}
return ret;
}
/* After all protocols are bound, there may remain some old sockets that have
* been removed between the previous config and the new one. These ones must
* be dropped, otherwise they will remain open and may prevent a service from
* restarting.
*/
void sock_drop_unused_old_sockets()
{
while (xfer_sock_list != NULL) {
struct xfer_sock_list *tmpxfer = xfer_sock_list->next;
close(xfer_sock_list->fd);
free(xfer_sock_list->iface);
free(xfer_sock_list->namespace);
free(xfer_sock_list);
xfer_sock_list = tmpxfer;
}
}
/* Tests if the receiver supports accepting connections. Returns positive on
* success, 0 if not possible, negative if the socket is non-recoverable. The
* rationale behind this is that inherited FDs may be broken and that shared
* FDs might have been paused by another process.
*/
int sock_accepting_conn(const struct receiver *rx)
{
int opt_val = 0;
socklen_t opt_len = sizeof(opt_val);
if (getsockopt(rx->fd, SOL_SOCKET, SO_ACCEPTCONN, &opt_val, &opt_len) == -1)
return -1;
return opt_val;
}
/* This is the FD handler IO callback for stream sockets configured for
* accepting incoming connections. It's a pass-through to listener_accept()
* which will iterate over the listener protocol's accept_conn() function.
* The FD's owner must be a listener.
*/
void sock_accept_iocb(int fd)
{
struct listener *l = fdtab[fd].owner;
if (!l)
return;
BUG_ON(!!master != !!(l->rx.flags & RX_F_MWORKER));
listener_accept(l);
}
/* This completes the initialization of connection <conn> by inserting its FD
* into the fdtab, associating it with the regular connection handler. It will
* be bound to the current thread only. This call cannot fail.
*/
void sock_conn_ctrl_init(struct connection *conn)
{
BUG_ON(conn->flags & CO_FL_FDLESS);
fd_insert(conn->handle.fd, conn, sock_conn_iocb, tgid, ti->ltid_bit);
}
/* This completes the release of connection <conn> by removing its FD from the
* fdtab and deleting it. The connection must not use the FD anymore past this
* point. The FD may be modified in the connection.
*/
void sock_conn_ctrl_close(struct connection *conn)
{
BUG_ON(conn->flags & CO_FL_FDLESS);
fd_delete(conn->handle.fd);
conn->handle.fd = DEAD_FD_MAGIC;
}
/* This is the callback which is set when a connection establishment is pending
* and we have nothing to send. It may update the FD polling status to indicate
* !READY. It returns 0 if it fails in a fatal way or needs to poll to go
* further, otherwise it returns non-zero and removes the CO_FL_WAIT_L4_CONN
* flag from the connection's flags. In case of error, it sets CO_FL_ERROR and
* leaves the error code in errno.
*/
int sock_conn_check(struct connection *conn)
{
struct sockaddr_storage *addr;
int fd = conn->handle.fd;
if (conn->flags & CO_FL_ERROR)
return 0;
if (!conn_ctrl_ready(conn))
return 0;
if (!(conn->flags & CO_FL_WAIT_L4_CONN))
return 1; /* strange we were called while ready */
BUG_ON(conn->flags & CO_FL_FDLESS);
if (!fd_send_ready(fd) && !(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP)))
return 0;
/* Here we have 2 cases :
* - modern pollers, able to report ERR/HUP. If these ones return any
* of these flags then it's likely a failure, otherwise it possibly
* is a success (i.e. there may have been data received just before
* the error was reported).
* - select, which doesn't report these and with which it's always
* necessary either to try connect() again or to check for SO_ERROR.
* In order to simplify everything, we double-check using connect() as
* soon as we meet either of these delicate situations. Note that
* SO_ERROR would clear the error after reporting it!
*/
if (cur_poller.flags & HAP_POLL_F_ERRHUP) {
/* modern poller, able to report ERR/HUP */
if ((fdtab[fd].state & (FD_POLL_IN|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_IN)
goto done;
if ((fdtab[fd].state & (FD_POLL_OUT|FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_OUT)
goto done;
if (!(fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP)))
goto wait;
/* error present, fall through common error check path */
}
/* Use connect() to check the state of the socket. This has the double
* advantage of *not* clearing the error (so that health checks can
* still use getsockopt(SO_ERROR)) and giving us the following info :
* - error
* - connecting (EALREADY, EINPROGRESS)
* - connected (EISCONN, 0)
*/
addr = conn->dst;
if ((conn->flags & CO_FL_SOCKS4) && obj_type(conn->target) == OBJ_TYPE_SERVER)
addr = &objt_server(conn->target)->socks4_addr;
if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) {
if (errno == EALREADY || errno == EINPROGRESS)
goto wait;
if (errno && errno != EISCONN)
goto out_error;
}
done:
/* The FD is ready now, we'll mark the connection as complete and
* forward the event to the transport layer which will notify the
* data layer.
*/
conn->flags &= ~CO_FL_WAIT_L4_CONN;
fd_may_send(fd);
fd_cond_recv(fd);
errno = 0; // make health checks happy
return 1;
out_error:
/* Write error on the file descriptor. Report it to the connection
* and disable polling on this FD.
*/
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK);
fd_stop_both(fd);
return 0;
wait:
fd_cant_send(fd);
fd_want_send(fd);
return 0;
}
/* I/O callback for fd-based connections. It calls the read/write handlers
* provided by the connection's sock_ops, which must be valid.
*/
void sock_conn_iocb(int fd)
{
struct connection *conn = fdtab[fd].owner;
unsigned int flags;
int need_wake = 0;
struct tasklet *t;
if (unlikely(!conn)) {
activity[tid].conn_dead++;
return;
}
flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) &&
((fd_send_ready(fd) && fd_send_active(fd)) ||
(fd_recv_ready(fd) && fd_recv_active(fd)))) {
/* Still waiting for a connection to establish and nothing was
* attempted yet to probe the connection. this will clear the
* CO_FL_WAIT_L4_CONN flag on success.
*/
if (!sock_conn_check(conn))
goto leave;
need_wake = 1;
}
if (fd_send_ready(fd) && fd_send_active(fd)) {
/* force reporting of activity by clearing the previous flags :
* we'll have at least ERROR or CONNECTED at the end of an I/O,
* both of which will be detected below.
*/
flags = 0;
if (conn->subs && conn->subs->events & SUB_RETRY_SEND) {
t = conn->subs->tasklet;
need_wake = 0; // wake will be called after this I/O
conn->subs->events &= ~SUB_RETRY_SEND;
if (!conn->subs->events)
conn->subs = NULL;
tasklet_wakeup(t);
}
fd_stop_send(fd);
}
/* The data transfer starts here and stops on error and handshakes. Note
* that we must absolutely test conn->xprt at each step in case it suddenly
* changes due to a quick unexpected close().
*/
if (fd_recv_ready(fd) && fd_recv_active(fd)) {
/* force reporting of activity by clearing the previous flags :
* we'll have at least ERROR or CONNECTED at the end of an I/O,
* both of which will be detected below.
*/
flags = 0;
if (conn->subs && conn->subs->events & SUB_RETRY_RECV) {
t = conn->subs->tasklet;
need_wake = 0; // wake will be called after this I/O
conn->subs->events &= ~SUB_RETRY_RECV;
if (!conn->subs->events)
conn->subs = NULL;
tasklet_wakeup(t);
}
fd_stop_recv(fd);
}
leave:
/* we may have to finish to install a mux or to wake it up based on
* what was just done above. It may kill the connection so we have to
* be prpared not to use it anymore.
*/
if (conn_notify_mux(conn, flags, need_wake) < 0)
return;
/* commit polling changes in case of error.
* WT: it seems that the last case where this could still be relevant
* is if a mux wake function above report a connection error but does
* not stop polling. Shouldn't we enforce this into the mux instead of
* having to deal with this ?
*/
if (unlikely(conn->flags & CO_FL_ERROR)) {
if (conn_ctrl_ready(conn))
fd_stop_both(fd);
}
}
/* Drains possibly pending incoming data on the file descriptor attached to the
* connection. This is used to know whether we need to disable lingering on
* close. Returns non-zero if it is safe to close without disabling lingering,
* otherwise zero.
*/
int sock_drain(struct connection *conn)
{
int turns = 2;
int fd = conn->handle.fd;
int len;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (fdtab[fd].state & (FD_POLL_ERR|FD_POLL_HUP))
goto shut;
if (!(conn->flags & CO_FL_WANT_DRAIN) && !fd_recv_ready(fd))
return 0;
/* no drain function defined, use the generic one */
while (turns) {
#ifdef MSG_TRUNC_CLEARS_INPUT
len = recv(fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC);
if (len == -1 && errno == EFAULT)
#endif
len = recv(fd, trash.area, trash.size, MSG_DONTWAIT | MSG_NOSIGNAL);
if (len == 0)
goto shut;
if (len < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
/* connection not closed yet */
fd_cant_recv(fd);
break;
}
if (errno == EINTR) /* oops, try again */
continue;
/* other errors indicate a dead connection, fine. */
goto shut;
}
/* OK we read some data, let's try again once */
turns--;
}
/* some data are still present, give up */
return 0;
shut:
/* we're certain the connection was shut down */
HA_ATOMIC_AND(&fdtab[fd].state, ~FD_LINGER_RISK);
return 1;
}
/* Checks the connection's FD for readiness of events <event_type>, which may
* only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. Those which are
* ready are returned. The ones that are not ready are enabled. The caller is
* expected to do what is needed to handle ready events and to deal with
* subsequent wakeups caused by the requested events' readiness.
*/
int sock_check_events(struct connection *conn, int event_type)
{
int ret = 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (event_type & SUB_RETRY_RECV) {
if (fd_recv_ready(conn->handle.fd))
ret |= SUB_RETRY_RECV;
else
fd_want_recv(conn->handle.fd);
}
if (event_type & SUB_RETRY_SEND) {
if (fd_send_ready(conn->handle.fd))
ret |= SUB_RETRY_SEND;
else
fd_want_send(conn->handle.fd);
}
return ret;
}
/* Ignore readiness events from connection's FD for events of types <event_type>
* which may only be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND.
*/
void sock_ignore_events(struct connection *conn, int event_type)
{
BUG_ON(conn->flags & CO_FL_FDLESS);
if (event_type & SUB_RETRY_RECV)
fd_stop_recv(conn->handle.fd);
if (event_type & SUB_RETRY_SEND)
fd_stop_send(conn->handle.fd);
}
/* Live check to see if a socket type supports SO_REUSEPORT for the specified
* family and socket() settings. Returns non-zero on success, 0 on failure. Use
* protocol_supports_flag() instead, which checks cached flags.
*/
int _sock_supports_reuseport(const struct proto_fam *fam, int type, int protocol)
{
int ret = 0;
#ifdef SO_REUSEPORT
struct sockaddr_storage ss;
socklen_t sl = sizeof(ss);
int fd1, fd2;
/* for the check, we'll need two sockets */
fd1 = fd2 = -1;
/* ignore custom sockets */
if (!fam || fam->sock_domain >= AF_MAX)
goto leave;
fd1 = socket(fam->sock_domain, type, protocol);
if (fd1 < 0)
goto leave;
if (setsockopt(fd1, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0)
goto leave;
/* bind to any address assigned by the kernel, we'll then try to do it twice */
memset(&ss, 0, sizeof(ss));
ss.ss_family = fam->sock_family;
if (bind(fd1, (struct sockaddr *)&ss, fam->sock_addrlen) < 0)
goto leave;
if (getsockname(fd1, (struct sockaddr *)&ss, &sl) < 0)
goto leave;
fd2 = socket(fam->sock_domain, type, protocol);
if (fd2 < 0)
goto leave;
if (setsockopt(fd2, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)) < 0)
goto leave;
if (bind(fd2, (struct sockaddr *)&ss, sl) < 0)
goto leave;
/* OK we could bind twice to the same address:port, REUSEPORT
* is supported for this protocol.
*/
ret = 1;
leave:
if (fd2 >= 0)
close(fd2);
if (fd1 >= 0)
close(fd1);
#endif
return ret;
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/