mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-11 03:31:36 +00:00
The relative_pid is always 1. In mworker mode we also have a child->relative_pid which is always equalt relative_pid, except for a master (0) or external process (-1), but these types are usually tested for, except for one place that was amended to carefully check for the PROC_O_TYPE_WORKER option. Changes were pretty limited as most usages of relative_pid were for designating a process in stats output and peers protocol.
4325 lines
130 KiB
C
4325 lines
130 KiB
C
/*
|
|
* Sample management functions.
|
|
*
|
|
* Copyright 2009-2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
|
|
* Copyright (C) 2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
#include <arpa/inet.h>
|
|
#include <stdio.h>
|
|
|
|
#include <import/mjson.h>
|
|
#include <import/sha1.h>
|
|
#include <import/xxhash.h>
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/arg.h>
|
|
#include <haproxy/auth.h>
|
|
#include <haproxy/base64.h>
|
|
#include <haproxy/buf.h>
|
|
#include <haproxy/chunk.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/fix.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/hash.h>
|
|
#include <haproxy/http.h>
|
|
#include <haproxy/istbuf.h>
|
|
#include <haproxy/mqtt.h>
|
|
#include <haproxy/net_helper.h>
|
|
#include <haproxy/protobuf.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/regex.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/sink.h>
|
|
#include <haproxy/stick_table.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/uri_auth-t.h>
|
|
#include <haproxy/vars.h>
|
|
|
|
/* sample type names */
|
|
const char *smp_to_type[SMP_TYPES] = {
|
|
[SMP_T_ANY] = "any",
|
|
[SMP_T_BOOL] = "bool",
|
|
[SMP_T_SINT] = "sint",
|
|
[SMP_T_ADDR] = "addr",
|
|
[SMP_T_IPV4] = "ipv4",
|
|
[SMP_T_IPV6] = "ipv6",
|
|
[SMP_T_STR] = "str",
|
|
[SMP_T_BIN] = "bin",
|
|
[SMP_T_METH] = "meth",
|
|
};
|
|
|
|
/* static sample used in sample_process() when <p> is NULL */
|
|
static THREAD_LOCAL struct sample temp_smp;
|
|
|
|
/* list head of all known sample fetch keywords */
|
|
static struct sample_fetch_kw_list sample_fetches = {
|
|
.list = LIST_HEAD_INIT(sample_fetches.list)
|
|
};
|
|
|
|
/* list head of all known sample format conversion keywords */
|
|
static struct sample_conv_kw_list sample_convs = {
|
|
.list = LIST_HEAD_INIT(sample_convs.list)
|
|
};
|
|
|
|
const unsigned int fetch_cap[SMP_SRC_ENTRIES] = {
|
|
[SMP_SRC_CONST] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL_CFG_PARSER |
|
|
SMP_VAL_CLI_PARSER ),
|
|
|
|
[SMP_SRC_INTRN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL_CLI_PARSER ),
|
|
|
|
[SMP_SRC_LISTN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_FTEND] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L4CLI] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L5CLI] = (SMP_VAL___________ | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_TRACK] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L6REQ] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRQHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRQHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
|
|
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRQBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_BKEND] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
|
|
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_SERVR] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L4SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L5SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_L6RES] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRSHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRSHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
|
|
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_HRSBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
|
|
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
|
|
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_RQFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_RSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_TXFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
|
|
[SMP_SRC_SSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
|
|
SMP_VAL___________ ),
|
|
};
|
|
|
|
static const char *fetch_src_names[SMP_SRC_ENTRIES] = {
|
|
[SMP_SRC_INTRN] = "internal state",
|
|
[SMP_SRC_LISTN] = "listener",
|
|
[SMP_SRC_FTEND] = "frontend",
|
|
[SMP_SRC_L4CLI] = "client address",
|
|
[SMP_SRC_L5CLI] = "client-side connection",
|
|
[SMP_SRC_TRACK] = "track counters",
|
|
[SMP_SRC_L6REQ] = "request buffer",
|
|
[SMP_SRC_HRQHV] = "HTTP request headers",
|
|
[SMP_SRC_HRQHP] = "HTTP request",
|
|
[SMP_SRC_HRQBO] = "HTTP request body",
|
|
[SMP_SRC_BKEND] = "backend",
|
|
[SMP_SRC_SERVR] = "server",
|
|
[SMP_SRC_L4SRV] = "server address",
|
|
[SMP_SRC_L5SRV] = "server-side connection",
|
|
[SMP_SRC_L6RES] = "response buffer",
|
|
[SMP_SRC_HRSHV] = "HTTP response headers",
|
|
[SMP_SRC_HRSHP] = "HTTP response",
|
|
[SMP_SRC_HRSBO] = "HTTP response body",
|
|
[SMP_SRC_RQFIN] = "request buffer statistics",
|
|
[SMP_SRC_RSFIN] = "response buffer statistics",
|
|
[SMP_SRC_TXFIN] = "transaction statistics",
|
|
[SMP_SRC_SSFIN] = "session statistics",
|
|
};
|
|
|
|
static const char *fetch_ckp_names[SMP_CKP_ENTRIES] = {
|
|
[SMP_CKP_FE_CON_ACC] = "frontend tcp-request connection rule",
|
|
[SMP_CKP_FE_SES_ACC] = "frontend tcp-request session rule",
|
|
[SMP_CKP_FE_REQ_CNT] = "frontend tcp-request content rule",
|
|
[SMP_CKP_FE_HRQ_HDR] = "frontend http-request header rule",
|
|
[SMP_CKP_FE_HRQ_BDY] = "frontend http-request body rule",
|
|
[SMP_CKP_FE_SET_BCK] = "frontend use-backend rule",
|
|
[SMP_CKP_BE_REQ_CNT] = "backend tcp-request content rule",
|
|
[SMP_CKP_BE_HRQ_HDR] = "backend http-request header rule",
|
|
[SMP_CKP_BE_HRQ_BDY] = "backend http-request body rule",
|
|
[SMP_CKP_BE_SET_SRV] = "backend use-server, balance or stick-match rule",
|
|
[SMP_CKP_BE_SRV_CON] = "server source selection",
|
|
[SMP_CKP_BE_RES_CNT] = "backend tcp-response content rule",
|
|
[SMP_CKP_BE_HRS_HDR] = "backend http-response header rule",
|
|
[SMP_CKP_BE_HRS_BDY] = "backend http-response body rule",
|
|
[SMP_CKP_BE_STO_RUL] = "backend stick-store rule",
|
|
[SMP_CKP_FE_RES_CNT] = "frontend tcp-response content rule",
|
|
[SMP_CKP_FE_HRS_HDR] = "frontend http-response header rule",
|
|
[SMP_CKP_FE_HRS_BDY] = "frontend http-response body rule",
|
|
[SMP_CKP_FE_LOG_END] = "logs",
|
|
[SMP_CKP_BE_CHK_RUL] = "backend tcp-check rule",
|
|
};
|
|
|
|
/* This function returns the type of the data returned by the sample_expr.
|
|
* It assumes that the <expr> and all of its converters are properly
|
|
* initialized.
|
|
*/
|
|
inline
|
|
int smp_expr_output_type(struct sample_expr *expr)
|
|
{
|
|
struct sample_conv_expr *smp_expr;
|
|
|
|
if (!LIST_ISEMPTY(&expr->conv_exprs)) {
|
|
smp_expr = LIST_PREV(&expr->conv_exprs, struct sample_conv_expr *, list);
|
|
return smp_expr->conv->out_type;
|
|
}
|
|
return expr->fetch->out_type;
|
|
}
|
|
|
|
|
|
/* fill the trash with a comma-delimited list of source names for the <use> bit
|
|
* field which must be composed of a non-null set of SMP_USE_* flags. The return
|
|
* value is the pointer to the string in the trash buffer.
|
|
*/
|
|
const char *sample_src_names(unsigned int use)
|
|
{
|
|
int bit;
|
|
|
|
trash.data = 0;
|
|
trash.area[0] = '\0';
|
|
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) {
|
|
if (!(use & ~((1 << bit) - 1)))
|
|
break; /* no more bits */
|
|
|
|
if (!(use & (1 << bit)))
|
|
continue; /* bit not set */
|
|
|
|
trash.data += snprintf(trash.area + trash.data,
|
|
trash.size - trash.data, "%s%s",
|
|
(use & ((1 << bit) - 1)) ? "," : "",
|
|
fetch_src_names[bit]);
|
|
}
|
|
return trash.area;
|
|
}
|
|
|
|
/* return a pointer to the correct sample checkpoint name, or "unknown" when
|
|
* the flags are invalid. Only the lowest bit is used, higher bits are ignored
|
|
* if set.
|
|
*/
|
|
const char *sample_ckp_names(unsigned int use)
|
|
{
|
|
int bit;
|
|
|
|
for (bit = 0; bit < SMP_CKP_ENTRIES; bit++)
|
|
if (use & (1 << bit))
|
|
return fetch_ckp_names[bit];
|
|
return "unknown sample check place, please report this bug";
|
|
}
|
|
|
|
/*
|
|
* Registers the sample fetch keyword list <kwl> as a list of valid keywords
|
|
* for next parsing sessions. The fetch keywords capabilities are also computed
|
|
* from their ->use field.
|
|
*/
|
|
void sample_register_fetches(struct sample_fetch_kw_list *kwl)
|
|
{
|
|
struct sample_fetch *sf;
|
|
int bit;
|
|
|
|
for (sf = kwl->kw; sf->kw != NULL; sf++) {
|
|
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++)
|
|
if (sf->use & (1 << bit))
|
|
sf->val |= fetch_cap[bit];
|
|
}
|
|
LIST_APPEND(&sample_fetches.list, &kwl->list);
|
|
}
|
|
|
|
/*
|
|
* Registers the sample format coverstion keyword list <pckl> as a list of valid keywords for next
|
|
* parsing sessions.
|
|
*/
|
|
void sample_register_convs(struct sample_conv_kw_list *pckl)
|
|
{
|
|
LIST_APPEND(&sample_convs.list, &pckl->list);
|
|
}
|
|
|
|
/*
|
|
* Returns the pointer on sample fetch keyword structure identified by
|
|
* string of <len> in buffer <kw>.
|
|
*
|
|
*/
|
|
struct sample_fetch *find_sample_fetch(const char *kw, int len)
|
|
{
|
|
int index;
|
|
struct sample_fetch_kw_list *kwl;
|
|
|
|
list_for_each_entry(kwl, &sample_fetches.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
|
|
kwl->kw[index].kw[len] == '\0')
|
|
return &kwl->kw[index];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This function browses the list of available sample fetches. <current> is
|
|
* the last used sample fetch. If it is the first call, it must set to NULL.
|
|
* <idx> is the index of the next sample fetch entry. It is used as private
|
|
* value. It is useless to initiate it.
|
|
*
|
|
* It returns always the new fetch_sample entry, and NULL when the end of
|
|
* the list is reached.
|
|
*/
|
|
struct sample_fetch *sample_fetch_getnext(struct sample_fetch *current, int *idx)
|
|
{
|
|
struct sample_fetch_kw_list *kwl;
|
|
struct sample_fetch *base;
|
|
|
|
if (!current) {
|
|
/* Get first kwl entry. */
|
|
kwl = LIST_NEXT(&sample_fetches.list, struct sample_fetch_kw_list *, list);
|
|
(*idx) = 0;
|
|
} else {
|
|
/* Get kwl corresponding to the curret entry. */
|
|
base = current + 1 - (*idx);
|
|
kwl = container_of(base, struct sample_fetch_kw_list, kw);
|
|
}
|
|
|
|
while (1) {
|
|
|
|
/* Check if kwl is the last entry. */
|
|
if (&kwl->list == &sample_fetches.list)
|
|
return NULL;
|
|
|
|
/* idx contain the next keyword. If it is available, return it. */
|
|
if (kwl->kw[*idx].kw) {
|
|
(*idx)++;
|
|
return &kwl->kw[(*idx)-1];
|
|
}
|
|
|
|
/* get next entry in the main list, and return NULL if the end is reached. */
|
|
kwl = LIST_NEXT(&kwl->list, struct sample_fetch_kw_list *, list);
|
|
|
|
/* Set index to 0, ans do one other loop. */
|
|
(*idx) = 0;
|
|
}
|
|
}
|
|
|
|
/* This function browses the list of available converters. <current> is
|
|
* the last used converter. If it is the first call, it must set to NULL.
|
|
* <idx> is the index of the next converter entry. It is used as private
|
|
* value. It is useless to initiate it.
|
|
*
|
|
* It returns always the next sample_conv entry, and NULL when the end of
|
|
* the list is reached.
|
|
*/
|
|
struct sample_conv *sample_conv_getnext(struct sample_conv *current, int *idx)
|
|
{
|
|
struct sample_conv_kw_list *kwl;
|
|
struct sample_conv *base;
|
|
|
|
if (!current) {
|
|
/* Get first kwl entry. */
|
|
kwl = LIST_NEXT(&sample_convs.list, struct sample_conv_kw_list *, list);
|
|
(*idx) = 0;
|
|
} else {
|
|
/* Get kwl corresponding to the curret entry. */
|
|
base = current + 1 - (*idx);
|
|
kwl = container_of(base, struct sample_conv_kw_list, kw);
|
|
}
|
|
|
|
while (1) {
|
|
/* Check if kwl is the last entry. */
|
|
if (&kwl->list == &sample_convs.list)
|
|
return NULL;
|
|
|
|
/* idx contain the next keyword. If it is available, return it. */
|
|
if (kwl->kw[*idx].kw) {
|
|
(*idx)++;
|
|
return &kwl->kw[(*idx)-1];
|
|
}
|
|
|
|
/* get next entry in the main list, and return NULL if the end is reached. */
|
|
kwl = LIST_NEXT(&kwl->list, struct sample_conv_kw_list *, list);
|
|
|
|
/* Set index to 0, ans do one other loop. */
|
|
(*idx) = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the pointer on sample format conversion keyword structure identified by
|
|
* string of <len> in buffer <kw>.
|
|
*
|
|
*/
|
|
struct sample_conv *find_sample_conv(const char *kw, int len)
|
|
{
|
|
int index;
|
|
struct sample_conv_kw_list *kwl;
|
|
|
|
list_for_each_entry(kwl, &sample_convs.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
|
|
kwl->kw[index].kw[len] == '\0')
|
|
return &kwl->kw[index];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/******************************************************************/
|
|
/* Sample casts functions */
|
|
/******************************************************************/
|
|
|
|
static int c_ip2int(struct sample *smp)
|
|
{
|
|
smp->data.u.sint = ntohl(smp->data.u.ipv4.s_addr);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
static int c_ip2str(struct sample *smp)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
|
|
if (!inet_ntop(AF_INET, (void *)&smp->data.u.ipv4, trash->area, trash->size))
|
|
return 0;
|
|
|
|
trash->data = strlen(trash->area);
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int c_ip2ipv6(struct sample *smp)
|
|
{
|
|
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
|
|
smp->data.type = SMP_T_IPV6;
|
|
return 1;
|
|
}
|
|
|
|
static int c_ipv62ip(struct sample *smp)
|
|
{
|
|
if (!v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6))
|
|
return 0;
|
|
smp->data.type = SMP_T_IPV4;
|
|
return 1;
|
|
}
|
|
|
|
static int c_ipv62str(struct sample *smp)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
|
|
if (!inet_ntop(AF_INET6, (void *)&smp->data.u.ipv6, trash->area, trash->size))
|
|
return 0;
|
|
|
|
trash->data = strlen(trash->area);
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
static int c_ipv62ip(struct sample *smp)
|
|
{
|
|
return v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6);
|
|
}
|
|
*/
|
|
|
|
static int c_int2ip(struct sample *smp)
|
|
{
|
|
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
|
|
smp->data.type = SMP_T_IPV4;
|
|
return 1;
|
|
}
|
|
|
|
static int c_int2ipv6(struct sample *smp)
|
|
{
|
|
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
|
|
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
|
|
smp->data.type = SMP_T_IPV6;
|
|
return 1;
|
|
}
|
|
|
|
static int c_str2addr(struct sample *smp)
|
|
{
|
|
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4)) {
|
|
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
|
|
return 0;
|
|
smp->data.type = SMP_T_IPV6;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
smp->data.type = SMP_T_IPV4;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int c_str2ip(struct sample *smp)
|
|
{
|
|
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4))
|
|
return 0;
|
|
smp->data.type = SMP_T_IPV4;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int c_str2ipv6(struct sample *smp)
|
|
{
|
|
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
|
|
return 0;
|
|
smp->data.type = SMP_T_IPV6;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The NULL char always enforces the end of string if it is met.
|
|
* Data is never changed, so we can ignore the CONST case
|
|
*/
|
|
static int c_bin2str(struct sample *smp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < smp->data.u.str.data; i++) {
|
|
if (!smp->data.u.str.area[i]) {
|
|
smp->data.u.str.data = i;
|
|
break;
|
|
}
|
|
}
|
|
smp->data.type = SMP_T_STR;
|
|
return 1;
|
|
}
|
|
|
|
static int c_int2str(struct sample *smp)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
char *pos;
|
|
|
|
pos = lltoa_r(smp->data.u.sint, trash->area, trash->size);
|
|
if (!pos)
|
|
return 0;
|
|
|
|
trash->size = trash->size - (pos - trash->area);
|
|
trash->area = pos;
|
|
trash->data = strlen(pos);
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/* This function unconditionally duplicates data and removes the "const" flag.
|
|
* For strings and binary blocks, it also provides a known allocated size with
|
|
* a length that is capped to the size, and ensures a trailing zero is always
|
|
* appended for strings. This is necessary for some operations which may
|
|
* require to extend the length. It returns 0 if it fails, 1 on success.
|
|
*/
|
|
int smp_dup(struct sample *smp)
|
|
{
|
|
struct buffer *trash;
|
|
|
|
switch (smp->data.type) {
|
|
case SMP_T_BOOL:
|
|
case SMP_T_SINT:
|
|
case SMP_T_ADDR:
|
|
case SMP_T_IPV4:
|
|
case SMP_T_IPV6:
|
|
/* These type are not const. */
|
|
break;
|
|
|
|
case SMP_T_METH:
|
|
if (smp->data.u.meth.meth != HTTP_METH_OTHER)
|
|
break;
|
|
/* Fall through */
|
|
|
|
case SMP_T_STR:
|
|
trash = get_trash_chunk();
|
|
trash->data = smp->data.type == SMP_T_STR ?
|
|
smp->data.u.str.data : smp->data.u.meth.str.data;
|
|
if (trash->data > trash->size - 1)
|
|
trash->data = trash->size - 1;
|
|
|
|
memcpy(trash->area, smp->data.type == SMP_T_STR ?
|
|
smp->data.u.str.area : smp->data.u.meth.str.area,
|
|
trash->data);
|
|
trash->area[trash->data] = 0;
|
|
smp->data.u.str = *trash;
|
|
break;
|
|
|
|
case SMP_T_BIN:
|
|
trash = get_trash_chunk();
|
|
trash->data = smp->data.u.str.data;
|
|
if (trash->data > trash->size)
|
|
trash->data = trash->size;
|
|
|
|
memcpy(trash->area, smp->data.u.str.area, trash->data);
|
|
smp->data.u.str = *trash;
|
|
break;
|
|
|
|
default:
|
|
/* Other cases are unexpected. */
|
|
return 0;
|
|
}
|
|
|
|
/* remove const flag */
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
int c_none(struct sample *smp)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int c_str2int(struct sample *smp)
|
|
{
|
|
const char *str;
|
|
const char *end;
|
|
|
|
if (smp->data.u.str.data == 0)
|
|
return 0;
|
|
|
|
str = smp->data.u.str.area;
|
|
end = smp->data.u.str.area + smp->data.u.str.data;
|
|
|
|
smp->data.u.sint = read_int64(&str, end);
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int c_str2meth(struct sample *smp)
|
|
{
|
|
enum http_meth_t meth;
|
|
int len;
|
|
|
|
meth = find_http_meth(smp->data.u.str.area, smp->data.u.str.data);
|
|
if (meth == HTTP_METH_OTHER) {
|
|
len = smp->data.u.str.data;
|
|
smp->data.u.meth.str.area = smp->data.u.str.area;
|
|
smp->data.u.meth.str.data = len;
|
|
}
|
|
else
|
|
smp->flags &= ~SMP_F_CONST;
|
|
smp->data.u.meth.meth = meth;
|
|
smp->data.type = SMP_T_METH;
|
|
return 1;
|
|
}
|
|
|
|
static int c_meth2str(struct sample *smp)
|
|
{
|
|
int len;
|
|
enum http_meth_t meth;
|
|
|
|
if (smp->data.u.meth.meth == HTTP_METH_OTHER) {
|
|
/* The method is unknown. Copy the original pointer. */
|
|
len = smp->data.u.meth.str.data;
|
|
smp->data.u.str.area = smp->data.u.meth.str.area;
|
|
smp->data.u.str.data = len;
|
|
smp->data.type = SMP_T_STR;
|
|
}
|
|
else if (smp->data.u.meth.meth < HTTP_METH_OTHER) {
|
|
/* The method is known, copy the pointer containing the string. */
|
|
meth = smp->data.u.meth.meth;
|
|
smp->data.u.str.area = http_known_methods[meth].ptr;
|
|
smp->data.u.str.data = http_known_methods[meth].len;
|
|
smp->flags |= SMP_F_CONST;
|
|
smp->data.type = SMP_T_STR;
|
|
}
|
|
else {
|
|
/* Unknown method */
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int c_addr2bin(struct sample *smp)
|
|
{
|
|
struct buffer *chk = get_trash_chunk();
|
|
|
|
if (smp->data.type == SMP_T_IPV4) {
|
|
chk->data = 4;
|
|
memcpy(chk->area, &smp->data.u.ipv4, chk->data);
|
|
}
|
|
else if (smp->data.type == SMP_T_IPV6) {
|
|
chk->data = 16;
|
|
memcpy(chk->area, &smp->data.u.ipv6, chk->data);
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
smp->data.u.str = *chk;
|
|
smp->data.type = SMP_T_BIN;
|
|
return 1;
|
|
}
|
|
|
|
static int c_int2bin(struct sample *smp)
|
|
{
|
|
struct buffer *chk = get_trash_chunk();
|
|
|
|
*(unsigned long long int *) chk->area = my_htonll(smp->data.u.sint);
|
|
chk->data = 8;
|
|
|
|
smp->data.u.str = *chk;
|
|
smp->data.type = SMP_T_BIN;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*****************************************************************/
|
|
/* Sample casts matrix: */
|
|
/* sample_casts[from type][to type] */
|
|
/* NULL pointer used for impossible sample casts */
|
|
/*****************************************************************/
|
|
|
|
sample_cast_fct sample_casts[SMP_TYPES][SMP_TYPES] = {
|
|
/* to: ANY BOOL SINT ADDR IPV4 IPV6 STR BIN METH */
|
|
/* from: ANY */ { c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, },
|
|
/* BOOL */ { c_none, c_none, c_none, NULL, NULL, NULL, c_int2str, NULL, NULL, },
|
|
/* SINT */ { c_none, c_none, c_none, c_int2ip, c_int2ip, c_int2ipv6, c_int2str, c_int2bin, NULL, },
|
|
/* ADDR */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, },
|
|
/* IPV4 */ { c_none, NULL, c_ip2int, c_none, c_none, c_ip2ipv6, c_ip2str, c_addr2bin, NULL, },
|
|
/* IPV6 */ { c_none, NULL, NULL, c_none, c_ipv62ip,c_none, c_ipv62str, c_addr2bin, NULL, },
|
|
/* STR */ { c_none, c_str2int, c_str2int, c_str2addr, c_str2ip, c_str2ipv6, c_none, c_none, c_str2meth, },
|
|
/* BIN */ { c_none, NULL, NULL, NULL, NULL, NULL, c_bin2str, c_none, c_str2meth, },
|
|
/* METH */ { c_none, NULL, NULL, NULL, NULL, NULL, c_meth2str, c_meth2str, c_none, }
|
|
};
|
|
|
|
/*
|
|
* Parse a sample expression configuration:
|
|
* fetch keyword followed by format conversion keywords.
|
|
* Returns a pointer on allocated sample expression structure.
|
|
* The caller must have set al->ctx.
|
|
* If <endptr> is non-nul, it will be set to the first unparsed character
|
|
* (which may be the final '\0') on success. If it is nul, the expression
|
|
* must be properly terminated by a '\0' otherwise an error is reported.
|
|
*/
|
|
struct sample_expr *sample_parse_expr(char **str, int *idx, const char *file, int line, char **err_msg, struct arg_list *al, char **endptr)
|
|
{
|
|
const char *begw; /* beginning of word */
|
|
const char *endw; /* end of word */
|
|
const char *endt; /* end of term */
|
|
struct sample_expr *expr = NULL;
|
|
struct sample_fetch *fetch;
|
|
struct sample_conv *conv;
|
|
unsigned long prev_type;
|
|
char *fkw = NULL;
|
|
char *ckw = NULL;
|
|
int err_arg;
|
|
|
|
begw = str[*idx];
|
|
for (endw = begw; is_idchar(*endw); endw++)
|
|
;
|
|
|
|
if (endw == begw) {
|
|
memprintf(err_msg, "missing fetch method");
|
|
goto out_error;
|
|
}
|
|
|
|
/* keep a copy of the current fetch keyword for error reporting */
|
|
fkw = my_strndup(begw, endw - begw);
|
|
|
|
fetch = find_sample_fetch(begw, endw - begw);
|
|
if (!fetch) {
|
|
memprintf(err_msg, "unknown fetch method '%s'", fkw);
|
|
goto out_error;
|
|
}
|
|
|
|
/* At this point, we have :
|
|
* - begw : beginning of the keyword
|
|
* - endw : end of the keyword, first character not part of keyword
|
|
*/
|
|
|
|
if (fetch->out_type >= SMP_TYPES) {
|
|
memprintf(err_msg, "returns type of fetch method '%s' is unknown", fkw);
|
|
goto out_error;
|
|
}
|
|
prev_type = fetch->out_type;
|
|
|
|
expr = calloc(1, sizeof(*expr));
|
|
if (!expr)
|
|
goto out_error;
|
|
|
|
LIST_INIT(&(expr->conv_exprs));
|
|
expr->fetch = fetch;
|
|
expr->arg_p = empty_arg_list;
|
|
|
|
/* Note that we call the argument parser even with an empty string,
|
|
* this allows it to automatically create entries for mandatory
|
|
* implicit arguments (eg: local proxy name).
|
|
*/
|
|
al->kw = expr->fetch->kw;
|
|
al->conv = NULL;
|
|
if (make_arg_list(endw, -1, fetch->arg_mask, &expr->arg_p, err_msg, &endt, &err_arg, al) < 0) {
|
|
memprintf(err_msg, "fetch method '%s' : %s", fkw, *err_msg);
|
|
goto out_error;
|
|
}
|
|
|
|
/* now endt is our first char not part of the arg list, typically the
|
|
* comma after the sample fetch name or after the closing parenthesis,
|
|
* or the NUL char.
|
|
*/
|
|
|
|
if (!expr->arg_p) {
|
|
expr->arg_p = empty_arg_list;
|
|
}
|
|
else if (fetch->val_args && !fetch->val_args(expr->arg_p, err_msg)) {
|
|
memprintf(err_msg, "invalid args in fetch method '%s' : %s", fkw, *err_msg);
|
|
goto out_error;
|
|
}
|
|
|
|
/* Now process the converters if any. We have two supported syntaxes
|
|
* for the converters, which can be combined :
|
|
* - comma-delimited list of converters just after the keyword and args ;
|
|
* - one converter per keyword
|
|
* The combination allows to have each keyword being a comma-delimited
|
|
* series of converters.
|
|
*
|
|
* We want to process the former first, then the latter. For this we start
|
|
* from the beginning of the supposed place in the exiting conv chain, which
|
|
* starts at the last comma (endt).
|
|
*/
|
|
|
|
while (1) {
|
|
struct sample_conv_expr *conv_expr;
|
|
int err_arg;
|
|
int argcnt;
|
|
|
|
if (*endt && *endt != ',') {
|
|
if (endptr) {
|
|
/* end found, let's stop here */
|
|
break;
|
|
}
|
|
if (ckw)
|
|
memprintf(err_msg, "missing comma after converter '%s'", ckw);
|
|
else
|
|
memprintf(err_msg, "missing comma after fetch keyword '%s'", fkw);
|
|
goto out_error;
|
|
}
|
|
|
|
/* FIXME: how long should we support such idiocies ? Maybe we
|
|
* should already warn ?
|
|
*/
|
|
while (*endt == ',') /* then trailing commas */
|
|
endt++;
|
|
|
|
begw = endt; /* start of converter */
|
|
|
|
if (!*begw) {
|
|
/* none ? skip to next string */
|
|
(*idx)++;
|
|
begw = str[*idx];
|
|
if (!begw || !*begw)
|
|
break;
|
|
}
|
|
|
|
for (endw = begw; is_idchar(*endw); endw++)
|
|
;
|
|
|
|
free(ckw);
|
|
ckw = my_strndup(begw, endw - begw);
|
|
|
|
conv = find_sample_conv(begw, endw - begw);
|
|
if (!conv) {
|
|
/* we found an isolated keyword that we don't know, it's not ours */
|
|
if (begw == str[*idx]) {
|
|
endt = begw;
|
|
break;
|
|
}
|
|
memprintf(err_msg, "unknown converter '%s'", ckw);
|
|
goto out_error;
|
|
}
|
|
|
|
if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) {
|
|
memprintf(err_msg, "returns type of converter '%s' is unknown", ckw);
|
|
goto out_error;
|
|
}
|
|
|
|
/* If impossible type conversion */
|
|
if (!sample_casts[prev_type][conv->in_type]) {
|
|
memprintf(err_msg, "converter '%s' cannot be applied", ckw);
|
|
goto out_error;
|
|
}
|
|
|
|
prev_type = conv->out_type;
|
|
conv_expr = calloc(1, sizeof(*conv_expr));
|
|
if (!conv_expr)
|
|
goto out_error;
|
|
|
|
LIST_APPEND(&(expr->conv_exprs), &(conv_expr->list));
|
|
conv_expr->conv = conv;
|
|
|
|
al->kw = expr->fetch->kw;
|
|
al->conv = conv_expr->conv->kw;
|
|
argcnt = make_arg_list(endw, -1, conv->arg_mask, &conv_expr->arg_p, err_msg, &endt, &err_arg, al);
|
|
if (argcnt < 0) {
|
|
memprintf(err_msg, "invalid arg %d in converter '%s' : %s", err_arg+1, ckw, *err_msg);
|
|
goto out_error;
|
|
}
|
|
|
|
if (argcnt && !conv->arg_mask) {
|
|
memprintf(err_msg, "converter '%s' does not support any args", ckw);
|
|
goto out_error;
|
|
}
|
|
|
|
if (!conv_expr->arg_p)
|
|
conv_expr->arg_p = empty_arg_list;
|
|
|
|
if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err_msg)) {
|
|
memprintf(err_msg, "invalid args in converter '%s' : %s", ckw, *err_msg);
|
|
goto out_error;
|
|
}
|
|
}
|
|
|
|
if (endptr) {
|
|
/* end found, let's stop here */
|
|
*endptr = (char *)endt;
|
|
}
|
|
|
|
out:
|
|
free(fkw);
|
|
free(ckw);
|
|
return expr;
|
|
|
|
out_error:
|
|
release_sample_expr(expr);
|
|
expr = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Process a fetch + format conversion of defined by the sample expression <expr>
|
|
* on request or response considering the <opt> parameter.
|
|
* Returns a pointer on a typed sample structure containing the result or NULL if
|
|
* sample is not found or when format conversion failed.
|
|
* If <p> is not null, function returns results in structure pointed by <p>.
|
|
* If <p> is null, functions returns a pointer on a static sample structure.
|
|
*
|
|
* Note: the fetch functions are required to properly set the return type. The
|
|
* conversion functions must do so too. However the cast functions do not need
|
|
* to since they're made to cast multiple types according to what is required.
|
|
*
|
|
* The caller may indicate in <opt> if it considers the result final or not.
|
|
* The caller needs to check the SMP_F_MAY_CHANGE flag in p->flags to verify
|
|
* if the result is stable or not, according to the following table :
|
|
*
|
|
* return MAY_CHANGE FINAL Meaning for the sample
|
|
* NULL 0 * Not present and will never be (eg: header)
|
|
* NULL 1 0 Not present yet, could change (eg: POST param)
|
|
* NULL 1 1 Not present yet, will not change anymore
|
|
* smp 0 * Present and will not change (eg: header)
|
|
* smp 1 0 Present, may change (eg: request length)
|
|
* smp 1 1 Present, last known value (eg: request length)
|
|
*/
|
|
struct sample *sample_process(struct proxy *px, struct session *sess,
|
|
struct stream *strm, unsigned int opt,
|
|
struct sample_expr *expr, struct sample *p)
|
|
{
|
|
struct sample_conv_expr *conv_expr;
|
|
|
|
if (p == NULL) {
|
|
p = &temp_smp;
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
smp_set_owner(p, px, sess, strm, opt);
|
|
if (!expr->fetch->process(expr->arg_p, p, expr->fetch->kw, expr->fetch->private))
|
|
return NULL;
|
|
|
|
list_for_each_entry(conv_expr, &expr->conv_exprs, list) {
|
|
/* we want to ensure that p->type can be casted into
|
|
* conv_expr->conv->in_type. We have 3 possibilities :
|
|
* - NULL => not castable.
|
|
* - c_none => nothing to do (let's optimize it)
|
|
* - other => apply cast and prepare to fail
|
|
*/
|
|
if (!sample_casts[p->data.type][conv_expr->conv->in_type])
|
|
return NULL;
|
|
|
|
if (sample_casts[p->data.type][conv_expr->conv->in_type] != c_none &&
|
|
!sample_casts[p->data.type][conv_expr->conv->in_type](p))
|
|
return NULL;
|
|
|
|
/* OK cast succeeded */
|
|
|
|
if (!conv_expr->conv->process(conv_expr->arg_p, p, conv_expr->conv->private))
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Resolve all remaining arguments in proxy <p>. Returns the number of
|
|
* errors or 0 if everything is fine. If at least one error is met, it will
|
|
* be appended to *err. If *err==NULL it will be allocated first.
|
|
*/
|
|
int smp_resolve_args(struct proxy *p, char **err)
|
|
{
|
|
struct arg_list *cur, *bak;
|
|
const char *ctx, *where;
|
|
const char *conv_ctx, *conv_pre, *conv_pos;
|
|
struct userlist *ul;
|
|
struct my_regex *reg;
|
|
struct arg *arg;
|
|
int cfgerr = 0;
|
|
int rflags;
|
|
|
|
list_for_each_entry_safe(cur, bak, &p->conf.args.list, list) {
|
|
struct proxy *px;
|
|
struct server *srv;
|
|
struct stktable *t;
|
|
char *pname, *sname, *stktname;
|
|
char *err2;
|
|
|
|
arg = cur->arg;
|
|
|
|
/* prepare output messages */
|
|
conv_pre = conv_pos = conv_ctx = "";
|
|
if (cur->conv) {
|
|
conv_ctx = cur->conv;
|
|
conv_pre = "conversion keyword '";
|
|
conv_pos = "' for ";
|
|
}
|
|
|
|
where = "in";
|
|
ctx = "sample fetch keyword";
|
|
switch (cur->ctx) {
|
|
case ARGC_STK: where = "in stick rule in"; break;
|
|
case ARGC_TRK: where = "in tracking rule in"; break;
|
|
case ARGC_LOG: where = "in log-format string in"; break;
|
|
case ARGC_LOGSD: where = "in log-format-sd string in"; break;
|
|
case ARGC_HRQ: where = "in http-request header format string in"; break;
|
|
case ARGC_HRS: where = "in http-response header format string in"; break;
|
|
case ARGC_UIF: where = "in unique-id-format string in"; break;
|
|
case ARGC_RDR: where = "in redirect format string in"; break;
|
|
case ARGC_CAP: where = "in capture rule in"; break;
|
|
case ARGC_ACL: ctx = "ACL keyword"; break;
|
|
case ARGC_SRV: where = "in server directive in"; break;
|
|
case ARGC_SPOE: where = "in spoe-message directive in"; break;
|
|
case ARGC_HERR: where = "in http-error directive in"; break;
|
|
case ARGC_OT: where = "in ot-scope directive in"; break;
|
|
}
|
|
|
|
/* set a few default settings */
|
|
px = p;
|
|
pname = p->id;
|
|
|
|
switch (arg->type) {
|
|
case ARGT_SRV:
|
|
if (!arg->data.str.data) {
|
|
memprintf(err, "%sparsing [%s:%d]: missing server name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
continue;
|
|
}
|
|
|
|
/* we support two formats : "bck/srv" and "srv" */
|
|
sname = strrchr(arg->data.str.area, '/');
|
|
|
|
if (sname) {
|
|
*sname++ = '\0';
|
|
pname = arg->data.str.area;
|
|
|
|
px = proxy_be_by_name(pname);
|
|
if (!px) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
sname = arg->data.str.area;
|
|
|
|
srv = findserver(px, sname);
|
|
if (!srv) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find server '%s' in proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, sname, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.srv = srv;
|
|
break;
|
|
|
|
case ARGT_FE:
|
|
if (arg->data.str.data) {
|
|
pname = arg->data.str.area;
|
|
px = proxy_fe_by_name(pname);
|
|
}
|
|
|
|
if (!px) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find frontend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
if (!(px->cap & PR_CAP_FE)) {
|
|
memprintf(err, "%sparsing [%s:%d]: proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not frontend capability.\n",
|
|
*err ? *err : "", cur->file, cur->line, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.prx = px;
|
|
break;
|
|
|
|
case ARGT_BE:
|
|
if (arg->data.str.data) {
|
|
pname = arg->data.str.area;
|
|
px = proxy_be_by_name(pname);
|
|
}
|
|
|
|
if (!px) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find backend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
if (!(px->cap & PR_CAP_BE)) {
|
|
memprintf(err, "%sparsing [%s:%d]: proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not backend capability.\n",
|
|
*err ? *err : "", cur->file, cur->line, pname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.prx = px;
|
|
break;
|
|
|
|
case ARGT_TAB:
|
|
if (arg->data.str.data)
|
|
stktname = arg->data.str.area;
|
|
else
|
|
stktname = px->id;
|
|
|
|
t = stktable_find_by_name(stktname);
|
|
if (!t) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find table '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, stktname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
if (!t->size) {
|
|
memprintf(err, "%sparsing [%s:%d]: no table in proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line, stktname,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
if (!in_proxies_list(t->proxies_list, p)) {
|
|
p->next_stkt_ref = t->proxies_list;
|
|
t->proxies_list = p;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.t = t;
|
|
break;
|
|
|
|
case ARGT_USR:
|
|
if (!arg->data.str.data) {
|
|
memprintf(err, "%sparsing [%s:%d]: missing userlist name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
if (p->uri_auth && p->uri_auth->userlist &&
|
|
strcmp(p->uri_auth->userlist->name, arg->data.str.area) == 0)
|
|
ul = p->uri_auth->userlist;
|
|
else
|
|
ul = auth_find_userlist(arg->data.str.area);
|
|
|
|
if (!ul) {
|
|
memprintf(err, "%sparsing [%s:%d]: unable to find userlist '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line,
|
|
arg->data.str.area,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
break;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.usr = ul;
|
|
break;
|
|
|
|
case ARGT_REG:
|
|
if (!arg->data.str.data) {
|
|
memprintf(err, "%sparsing [%s:%d]: missing regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
|
|
*err ? *err : "", cur->file, cur->line,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
|
|
cfgerr++;
|
|
continue;
|
|
}
|
|
|
|
rflags = 0;
|
|
rflags |= (arg->type_flags & ARGF_REG_ICASE) ? REG_ICASE : 0;
|
|
err2 = NULL;
|
|
|
|
if (!(reg = regex_comp(arg->data.str.area, !(rflags & REG_ICASE), 1 /* capture substr */, &err2))) {
|
|
memprintf(err, "%sparsing [%s:%d]: error in regex '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n",
|
|
*err ? *err : "", cur->file, cur->line,
|
|
arg->data.str.area,
|
|
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err2);
|
|
cfgerr++;
|
|
continue;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->unresolved = 0;
|
|
arg->data.reg = reg;
|
|
break;
|
|
|
|
|
|
}
|
|
|
|
LIST_DELETE(&cur->list);
|
|
free(cur);
|
|
} /* end of args processing */
|
|
|
|
return cfgerr;
|
|
}
|
|
|
|
/*
|
|
* Process a fetch + format conversion as defined by the sample expression
|
|
* <expr> on request or response considering the <opt> parameter. The output is
|
|
* not explicitly set to <smp_type>, but shall be compatible with it as
|
|
* specified by 'sample_casts' table. If a stable sample can be fetched, or an
|
|
* unstable one when <opt> contains SMP_OPT_FINAL, the sample is converted and
|
|
* returned without the SMP_F_MAY_CHANGE flag. If an unstable sample is found
|
|
* and <opt> does not contain SMP_OPT_FINAL, then the sample is returned as-is
|
|
* with its SMP_F_MAY_CHANGE flag so that the caller can check it and decide to
|
|
* take actions (eg: wait longer). If a sample could not be found or could not
|
|
* be converted, NULL is returned. The caller MUST NOT use the sample if the
|
|
* SMP_F_MAY_CHANGE flag is present, as it is used only as a hint that there is
|
|
* still hope to get it after waiting longer, and is not converted to string.
|
|
* The possible output combinations are the following :
|
|
*
|
|
* return MAY_CHANGE FINAL Meaning for the sample
|
|
* NULL * * Not present and will never be (eg: header)
|
|
* smp 0 * Final value converted (eg: header)
|
|
* smp 1 0 Not present yet, may appear later (eg: header)
|
|
* smp 1 1 never happens (either flag is cleared on output)
|
|
*/
|
|
struct sample *sample_fetch_as_type(struct proxy *px, struct session *sess,
|
|
struct stream *strm, unsigned int opt,
|
|
struct sample_expr *expr, int smp_type)
|
|
{
|
|
struct sample *smp = &temp_smp;
|
|
|
|
memset(smp, 0, sizeof(*smp));
|
|
|
|
if (!sample_process(px, sess, strm, opt, expr, smp)) {
|
|
if ((smp->flags & SMP_F_MAY_CHANGE) && !(opt & SMP_OPT_FINAL))
|
|
return smp;
|
|
return NULL;
|
|
}
|
|
|
|
if (!sample_casts[smp->data.type][smp_type])
|
|
return NULL;
|
|
|
|
if (!sample_casts[smp->data.type][smp_type](smp))
|
|
return NULL;
|
|
|
|
smp->flags &= ~SMP_F_MAY_CHANGE;
|
|
return smp;
|
|
}
|
|
|
|
static void release_sample_arg(struct arg *p)
|
|
{
|
|
struct arg *p_back = p;
|
|
|
|
if (!p)
|
|
return;
|
|
|
|
while (p->type != ARGT_STOP) {
|
|
if (p->type == ARGT_STR || p->unresolved) {
|
|
chunk_destroy(&p->data.str);
|
|
p->unresolved = 0;
|
|
}
|
|
else if (p->type == ARGT_REG) {
|
|
regex_free(p->data.reg);
|
|
p->data.reg = NULL;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
if (p_back != empty_arg_list)
|
|
free(p_back);
|
|
}
|
|
|
|
void release_sample_expr(struct sample_expr *expr)
|
|
{
|
|
struct sample_conv_expr *conv_expr, *conv_exprb;
|
|
|
|
if (!expr)
|
|
return;
|
|
|
|
list_for_each_entry_safe(conv_expr, conv_exprb, &expr->conv_exprs, list) {
|
|
LIST_DELETE(&conv_expr->list);
|
|
release_sample_arg(conv_expr->arg_p);
|
|
free(conv_expr);
|
|
}
|
|
|
|
release_sample_arg(expr->arg_p);
|
|
free(expr);
|
|
}
|
|
|
|
/*****************************************************************/
|
|
/* Sample format convert functions */
|
|
/* These functions set the data type on return. */
|
|
/*****************************************************************/
|
|
|
|
static int sample_conv_debug(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int i;
|
|
struct sample tmp;
|
|
struct buffer *buf;
|
|
struct sink *sink;
|
|
struct ist line;
|
|
char *pfx;
|
|
|
|
buf = alloc_trash_chunk();
|
|
if (!buf)
|
|
goto end;
|
|
|
|
sink = (struct sink *)arg_p[1].data.ptr;
|
|
BUG_ON(!sink);
|
|
|
|
pfx = arg_p[0].data.str.area;
|
|
BUG_ON(!pfx);
|
|
|
|
chunk_printf(buf, "[debug] %s: type=%s ", pfx, smp_to_type[smp->data.type]);
|
|
if (!sample_casts[smp->data.type][SMP_T_STR])
|
|
goto nocast;
|
|
|
|
/* Copy sample fetch. This puts the sample as const, the
|
|
* cast will copy data if a transformation is required.
|
|
*/
|
|
memcpy(&tmp, smp, sizeof(struct sample));
|
|
tmp.flags = SMP_F_CONST;
|
|
|
|
if (!sample_casts[smp->data.type][SMP_T_STR](&tmp))
|
|
goto nocast;
|
|
|
|
/* Display the displayable chars*. */
|
|
b_putchr(buf, '<');
|
|
for (i = 0; i < tmp.data.u.str.data; i++) {
|
|
if (isprint((unsigned char)tmp.data.u.str.area[i]))
|
|
b_putchr(buf, tmp.data.u.str.area[i]);
|
|
else
|
|
b_putchr(buf, '.');
|
|
}
|
|
b_putchr(buf, '>');
|
|
|
|
done:
|
|
line = ist2(buf->area, buf->data);
|
|
sink_write(sink, &line, 1, 0, 0, NULL);
|
|
end:
|
|
free_trash_chunk(buf);
|
|
return 1;
|
|
nocast:
|
|
chunk_appendf(buf, "(undisplayable)");
|
|
goto done;
|
|
}
|
|
|
|
// This function checks the "debug" converter's arguments.
|
|
static int smp_check_debug(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
const char *name = "buf0";
|
|
struct sink *sink = NULL;
|
|
|
|
if (args[0].type != ARGT_STR) {
|
|
/* optional prefix */
|
|
args[0].data.str.area = "";
|
|
args[0].data.str.data = 0;
|
|
}
|
|
|
|
if (args[1].type == ARGT_STR)
|
|
name = args[1].data.str.area;
|
|
|
|
sink = sink_find(name);
|
|
if (!sink) {
|
|
memprintf(err, "No such sink '%s'", name);
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&args[1].data.str);
|
|
args[1].type = ARGT_PTR;
|
|
args[1].data.ptr = sink;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_base642bin(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
int bin_len;
|
|
|
|
trash->data = 0;
|
|
bin_len = base64dec(smp->data.u.str.area, smp->data.u.str.data,
|
|
trash->area, trash->size);
|
|
if (bin_len < 0)
|
|
return 0;
|
|
|
|
trash->data = bin_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_base64url2bin(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
int bin_len;
|
|
|
|
trash->data = 0;
|
|
bin_len = base64urldec(smp->data.u.str.area, smp->data.u.str.data,
|
|
trash->area, trash->size);
|
|
if (bin_len < 0)
|
|
return 0;
|
|
|
|
trash->data = bin_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_bin2base64(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
int b64_len;
|
|
|
|
trash->data = 0;
|
|
b64_len = a2base64(smp->data.u.str.area, smp->data.u.str.data,
|
|
trash->area, trash->size);
|
|
if (b64_len < 0)
|
|
return 0;
|
|
|
|
trash->data = b64_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_bin2base64url(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
int b64_len;
|
|
|
|
trash->data = 0;
|
|
b64_len = a2base64url(smp->data.u.str.area, smp->data.u.str.data,
|
|
trash->area, trash->size);
|
|
if (b64_len < 0)
|
|
return 0;
|
|
|
|
trash->data = b64_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_sha1(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
blk_SHA_CTX ctx;
|
|
struct buffer *trash = get_trash_chunk();
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
|
|
blk_SHA1_Init(&ctx);
|
|
blk_SHA1_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
|
|
blk_SHA1_Final((unsigned char *) trash->area, &ctx);
|
|
|
|
trash->data = 20;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef USE_OPENSSL
|
|
static int smp_check_sha2(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (args[0].type == ARGT_STOP)
|
|
return 1;
|
|
if (args[0].type != ARGT_SINT) {
|
|
memprintf(err, "Invalid type '%s'", arg_type_names[args[0].type]);
|
|
return 0;
|
|
}
|
|
|
|
switch (args[0].data.sint) {
|
|
case 224:
|
|
case 256:
|
|
case 384:
|
|
case 512:
|
|
/* this is okay */
|
|
return 1;
|
|
default:
|
|
memprintf(err, "Unsupported number of bits: '%lld'", args[0].data.sint);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int sample_conv_sha2(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
int bits = 256;
|
|
if (arg_p->data.sint)
|
|
bits = arg_p->data.sint;
|
|
|
|
switch (bits) {
|
|
case 224: {
|
|
SHA256_CTX ctx;
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
|
|
SHA224_Init(&ctx);
|
|
SHA224_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
|
|
SHA224_Final((unsigned char *) trash->area, &ctx);
|
|
trash->data = SHA224_DIGEST_LENGTH;
|
|
break;
|
|
}
|
|
case 256: {
|
|
SHA256_CTX ctx;
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
|
|
SHA256_Final((unsigned char *) trash->area, &ctx);
|
|
trash->data = SHA256_DIGEST_LENGTH;
|
|
break;
|
|
}
|
|
case 384: {
|
|
SHA512_CTX ctx;
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
|
|
SHA384_Init(&ctx);
|
|
SHA384_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
|
|
SHA384_Final((unsigned char *) trash->area, &ctx);
|
|
trash->data = SHA384_DIGEST_LENGTH;
|
|
break;
|
|
}
|
|
case 512: {
|
|
SHA512_CTX ctx;
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
|
|
SHA512_Init(&ctx);
|
|
SHA512_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
|
|
SHA512_Final((unsigned char *) trash->area, &ctx);
|
|
trash->data = SHA512_DIGEST_LENGTH;
|
|
break;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/* This function returns a sample struct filled with an <arg> content.
|
|
* If the <arg> contains a string, it is returned in the sample flagged as
|
|
* SMP_F_CONST. If the <arg> contains a variable descriptor, the sample is
|
|
* filled with the content of the variable by using vars_get_by_desc().
|
|
*
|
|
* Keep in mind that the sample content may be written to a pre-allocated
|
|
* trash chunk as returned by get_trash_chunk().
|
|
*
|
|
* This function returns 0 if an error occurs, otherwise it returns 1.
|
|
*/
|
|
static inline int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp)
|
|
{
|
|
switch (arg->type) {
|
|
case ARGT_STR:
|
|
smp->data.type = SMP_T_STR;
|
|
smp->data.u.str = arg->data.str;
|
|
smp->flags = SMP_F_CONST;
|
|
return 1;
|
|
case ARGT_VAR:
|
|
if (!vars_get_by_desc(&arg->data.var, smp))
|
|
return 0;
|
|
if (!sample_casts[smp->data.type][SMP_T_STR])
|
|
return 0;
|
|
if (!sample_casts[smp->data.type][SMP_T_STR](smp))
|
|
return 0;
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* This function checks an <arg> and fills it with a variable type if the
|
|
* <arg> string contains a valid variable name. If failed, the function
|
|
* tries to perform a base64 decode operation on the same string, and
|
|
* fills the <arg> with the decoded content.
|
|
*
|
|
* Validation is skipped if the <arg> string is empty.
|
|
*
|
|
* This function returns 0 if the variable lookup fails and the specified
|
|
* <arg> string is not a valid base64 encoded string, as well if
|
|
* unexpected argument type is specified or memory allocation error
|
|
* occurs. Otherwise it returns 1.
|
|
*/
|
|
static inline int sample_check_arg_base64(struct arg *arg, char **err)
|
|
{
|
|
char *dec = NULL;
|
|
int dec_size;
|
|
|
|
if (arg->type != ARGT_STR) {
|
|
memprintf(err, "unexpected argument type");
|
|
return 0;
|
|
}
|
|
|
|
if (arg->data.str.data == 0) /* empty */
|
|
return 1;
|
|
|
|
if (vars_check_arg(arg, NULL))
|
|
return 1;
|
|
|
|
if (arg->data.str.data % 4) {
|
|
memprintf(err, "argument needs to be base64 encoded, and "
|
|
"can either be a string or a variable");
|
|
return 0;
|
|
}
|
|
|
|
dec_size = (arg->data.str.data / 4 * 3)
|
|
- (arg->data.str.area[arg->data.str.data-1] == '=' ? 1 : 0)
|
|
- (arg->data.str.area[arg->data.str.data-2] == '=' ? 1 : 0);
|
|
|
|
if ((dec = malloc(dec_size)) == NULL) {
|
|
memprintf(err, "memory allocation error");
|
|
return 0;
|
|
}
|
|
|
|
dec_size = base64dec(arg->data.str.area, arg->data.str.data, dec, dec_size);
|
|
if (dec_size < 0) {
|
|
memprintf(err, "argument needs to be base64 encoded, and "
|
|
"can either be a string or a variable");
|
|
free(dec);
|
|
return 0;
|
|
}
|
|
|
|
/* base64 decoded */
|
|
chunk_destroy(&arg->data.str);
|
|
arg->data.str.area = dec;
|
|
arg->data.str.data = dec_size;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef EVP_CIPH_GCM_MODE
|
|
static int check_aes_gcm(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
switch(args[0].data.sint) {
|
|
case 128:
|
|
case 192:
|
|
case 256:
|
|
break;
|
|
default:
|
|
memprintf(err, "key size must be 128, 192 or 256 (bits).");
|
|
return 0;
|
|
}
|
|
|
|
/* Try to decode variables. */
|
|
if (!sample_check_arg_base64(&args[1], err)) {
|
|
memprintf(err, "failed to parse nonce : %s", *err);
|
|
return 0;
|
|
}
|
|
if (!sample_check_arg_base64(&args[2], err)) {
|
|
memprintf(err, "failed to parse key : %s", *err);
|
|
return 0;
|
|
}
|
|
if (!sample_check_arg_base64(&args[3], err)) {
|
|
memprintf(err, "failed to parse aead_tag : %s", *err);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */
|
|
static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample nonce, key, aead_tag;
|
|
struct buffer *smp_trash = NULL, *smp_trash_alloc = NULL;
|
|
EVP_CIPHER_CTX *ctx;
|
|
int dec_size, ret;
|
|
|
|
smp_trash_alloc = alloc_trash_chunk();
|
|
if (!smp_trash_alloc)
|
|
return 0;
|
|
|
|
/* smp copy */
|
|
smp_trash_alloc->data = smp->data.u.str.data;
|
|
if (unlikely(smp_trash_alloc->data > smp_trash_alloc->size))
|
|
smp_trash_alloc->data = smp_trash_alloc->size;
|
|
memcpy(smp_trash_alloc->area, smp->data.u.str.area, smp_trash_alloc->data);
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
|
|
if (!ctx)
|
|
goto err;
|
|
|
|
smp_trash = alloc_trash_chunk();
|
|
if (!smp_trash)
|
|
goto err;
|
|
|
|
smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp_str(&arg_p[1], &nonce))
|
|
goto err;
|
|
|
|
if (arg_p[1].type == ARGT_VAR) {
|
|
dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size);
|
|
if (dec_size < 0)
|
|
goto err;
|
|
smp_trash->data = dec_size;
|
|
nonce.data.u.str = *smp_trash;
|
|
}
|
|
|
|
/* Set cipher type and mode */
|
|
switch(arg_p[0].data.sint) {
|
|
case 128:
|
|
EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
|
|
break;
|
|
case 192:
|
|
EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL);
|
|
break;
|
|
case 256:
|
|
EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
|
|
break;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, nonce.data.u.str.data, NULL);
|
|
|
|
/* Initialise IV */
|
|
if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) nonce.data.u.str.area))
|
|
goto err;
|
|
|
|
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp_str(&arg_p[2], &key))
|
|
goto err;
|
|
|
|
if (arg_p[2].type == ARGT_VAR) {
|
|
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size);
|
|
if (dec_size < 0)
|
|
goto err;
|
|
smp_trash->data = dec_size;
|
|
key.data.u.str = *smp_trash;
|
|
}
|
|
|
|
/* Initialise key */
|
|
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) key.data.u.str.area, NULL))
|
|
goto err;
|
|
|
|
if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data,
|
|
(unsigned char *) smp_trash_alloc->area, (int) smp_trash_alloc->data))
|
|
goto err;
|
|
|
|
smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag))
|
|
goto err;
|
|
|
|
if (arg_p[3].type == ARGT_VAR) {
|
|
dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size);
|
|
if (dec_size < 0)
|
|
goto err;
|
|
smp_trash_alloc->data = dec_size;
|
|
aead_tag.data.u.str = *smp_trash_alloc;
|
|
}
|
|
|
|
dec_size = smp_trash->data;
|
|
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, aead_tag.data.u.str.data, (void *) aead_tag.data.u.str.area);
|
|
ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data);
|
|
|
|
if (ret <= 0)
|
|
goto err;
|
|
|
|
smp->data.u.str.data = dec_size + smp_trash->data;
|
|
smp->data.u.str.area = smp_trash->area;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp_dup(smp);
|
|
free_trash_chunk(smp_trash_alloc);
|
|
free_trash_chunk(smp_trash);
|
|
return 1;
|
|
|
|
err:
|
|
free_trash_chunk(smp_trash_alloc);
|
|
free_trash_chunk(smp_trash);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int check_crypto_digest(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
|
|
|
|
if (evp)
|
|
return 1;
|
|
|
|
memprintf(err, "algorithm must be a valid OpenSSL message digest name.");
|
|
return 0;
|
|
}
|
|
|
|
static int sample_conv_crypto_digest(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
unsigned char *md = (unsigned char*) trash->area;
|
|
unsigned int md_len = trash->size;
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
|
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
|
|
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_DigestInit_ex(ctx, evp, NULL) ||
|
|
!EVP_DigestUpdate(ctx, smp->data.u.str.area, smp->data.u.str.data) ||
|
|
!EVP_DigestFinal_ex(ctx, md, &md_len)) {
|
|
EVP_MD_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
EVP_MD_CTX_free(ctx);
|
|
|
|
trash->data = md_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int check_crypto_hmac(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (!check_crypto_digest(args, conv, file, line, err))
|
|
return 0;
|
|
|
|
if (!sample_check_arg_base64(&args[1], err)) {
|
|
memprintf(err, "failed to parse key : %s", *err);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_crypto_hmac(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct sample key;
|
|
struct buffer *trash = NULL, *key_trash = NULL;
|
|
unsigned char *md;
|
|
unsigned int md_len;
|
|
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
|
|
int dec_size;
|
|
|
|
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp_str(&args[1], &key))
|
|
return 0;
|
|
|
|
if (args[1].type == ARGT_VAR) {
|
|
key_trash = alloc_trash_chunk();
|
|
if (!key_trash)
|
|
goto err;
|
|
|
|
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, key_trash->area, key_trash->size);
|
|
if (dec_size < 0)
|
|
goto err;
|
|
key_trash->data = dec_size;
|
|
key.data.u.str = *key_trash;
|
|
}
|
|
|
|
trash = alloc_trash_chunk();
|
|
if (!trash)
|
|
goto err;
|
|
|
|
md = (unsigned char*) trash->area;
|
|
md_len = trash->size;
|
|
if (!HMAC(evp, key.data.u.str.area, key.data.u.str.data, (const unsigned char*) smp->data.u.str.area,
|
|
smp->data.u.str.data, md, &md_len))
|
|
goto err;
|
|
|
|
free_trash_chunk(key_trash);
|
|
|
|
trash->data = md_len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp_dup(smp);
|
|
free_trash_chunk(trash);
|
|
return 1;
|
|
|
|
err:
|
|
free_trash_chunk(key_trash);
|
|
free_trash_chunk(trash);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* USE_OPENSSL */
|
|
|
|
static int sample_conv_bin2hex(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
unsigned char c;
|
|
int ptr = 0;
|
|
|
|
trash->data = 0;
|
|
while (ptr < smp->data.u.str.data && trash->data <= trash->size - 2) {
|
|
c = smp->data.u.str.area[ptr++];
|
|
trash->area[trash->data++] = hextab[(c >> 4) & 0xF];
|
|
trash->area[trash->data++] = hextab[c & 0xF];
|
|
}
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_hex2int(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
long long int n = 0;
|
|
int i, c;
|
|
|
|
for (i = 0; i < smp->data.u.str.data; i++) {
|
|
if ((c = hex2i(smp->data.u.str.area[i])) < 0)
|
|
return 0;
|
|
n = (n << 4) + c;
|
|
}
|
|
|
|
smp->data.u.sint = n;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 32-bit unsigned int */
|
|
static int sample_conv_djb2(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = hash_djb2(smp->data.u.str.area,
|
|
smp->data.u.str.data);
|
|
if (arg_p->data.sint)
|
|
smp->data.u.sint = full_hash(smp->data.u.sint);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_length(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int i = smp->data.u.str.data;
|
|
smp->data.u.sint = i;
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int sample_conv_str2lower(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int i;
|
|
|
|
if (!smp_make_rw(smp))
|
|
return 0;
|
|
|
|
for (i = 0; i < smp->data.u.str.data; i++) {
|
|
if ((smp->data.u.str.area[i] >= 'A') && (smp->data.u.str.area[i] <= 'Z'))
|
|
smp->data.u.str.area[i] += 'a' - 'A';
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_str2upper(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int i;
|
|
|
|
if (!smp_make_rw(smp))
|
|
return 0;
|
|
|
|
for (i = 0; i < smp->data.u.str.data; i++) {
|
|
if ((smp->data.u.str.area[i] >= 'a') && (smp->data.u.str.area[i] <= 'z'))
|
|
smp->data.u.str.area[i] += 'A' - 'a';
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* takes the IPv4 mask in args[0] and an optional IPv6 mask in args[1] */
|
|
static int sample_conv_ipmask(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
/* Attempt to convert to IPv4 to apply the correct mask. */
|
|
c_ipv62ip(smp);
|
|
|
|
if (smp->data.type == SMP_T_IPV4) {
|
|
smp->data.u.ipv4.s_addr &= args[0].data.ipv4.s_addr;
|
|
smp->data.type = SMP_T_IPV4;
|
|
}
|
|
else if (smp->data.type == SMP_T_IPV6) {
|
|
/* IPv6 cannot be converted without an IPv6 mask. */
|
|
if (args[1].type != ARGT_IPV6)
|
|
return 0;
|
|
|
|
write_u64(&smp->data.u.ipv6.s6_addr[0],
|
|
read_u64(&smp->data.u.ipv6.s6_addr[0]) & read_u64(&args[1].data.ipv6.s6_addr[0]));
|
|
write_u64(&smp->data.u.ipv6.s6_addr[8],
|
|
read_u64(&smp->data.u.ipv6.s6_addr[8]) & read_u64(&args[1].data.ipv6.s6_addr[8]));
|
|
smp->data.type = SMP_T_IPV6;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* takes an UINT value on input supposed to represent the time since EPOCH,
|
|
* adds an optional offset found in args[1] and emits a string representing
|
|
* the local time in the format specified in args[1] using strftime().
|
|
*/
|
|
static int sample_conv_ltime(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *temp;
|
|
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
|
|
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
|
|
struct tm *tm;
|
|
|
|
/* add offset */
|
|
if (args[1].type == ARGT_SINT)
|
|
curr_date += args[1].data.sint;
|
|
|
|
tm = localtime(&curr_date);
|
|
if (!tm)
|
|
return 0;
|
|
temp = get_trash_chunk();
|
|
temp->data = strftime(temp->area, temp->size, args[0].data.str.area,
|
|
tm);
|
|
smp->data.u.str = *temp;
|
|
smp->data.type = SMP_T_STR;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 32-bit unsigned int */
|
|
static int sample_conv_sdbm(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = hash_sdbm(smp->data.u.str.area,
|
|
smp->data.u.str.data);
|
|
if (arg_p->data.sint)
|
|
smp->data.u.sint = full_hash(smp->data.u.sint);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* takes an UINT value on input supposed to represent the time since EPOCH,
|
|
* adds an optional offset found in args[1] and emits a string representing
|
|
* the UTC date in the format specified in args[1] using strftime().
|
|
*/
|
|
static int sample_conv_utime(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *temp;
|
|
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
|
|
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
|
|
struct tm *tm;
|
|
|
|
/* add offset */
|
|
if (args[1].type == ARGT_SINT)
|
|
curr_date += args[1].data.sint;
|
|
|
|
tm = gmtime(&curr_date);
|
|
if (!tm)
|
|
return 0;
|
|
temp = get_trash_chunk();
|
|
temp->data = strftime(temp->area, temp->size, args[0].data.str.area,
|
|
tm);
|
|
smp->data.u.str = *temp;
|
|
smp->data.type = SMP_T_STR;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 32-bit unsigned int */
|
|
static int sample_conv_wt6(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = hash_wt6(smp->data.u.str.area,
|
|
smp->data.u.str.data);
|
|
if (arg_p->data.sint)
|
|
smp->data.u.sint = full_hash(smp->data.u.sint);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 32-bit unsigned int using xxh.
|
|
* The seed of the hash defaults to 0 but can be changd in argument 1.
|
|
*/
|
|
static int sample_conv_xxh32(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
unsigned int seed;
|
|
|
|
if (arg_p->data.sint)
|
|
seed = arg_p->data.sint;
|
|
else
|
|
seed = 0;
|
|
smp->data.u.sint = XXH32(smp->data.u.str.area, smp->data.u.str.data,
|
|
seed);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 64-bit unsigned int using xxh.
|
|
* In fact, the function returns a 64 bit unsigned, but the sample
|
|
* storage of haproxy only proposes 64-bits signed, so the value is
|
|
* cast as signed. This cast doesn't impact the hash repartition.
|
|
* The seed of the hash defaults to 0 but can be changd in argument 1.
|
|
*/
|
|
static int sample_conv_xxh64(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
unsigned long long int seed;
|
|
|
|
if (arg_p->data.sint)
|
|
seed = (unsigned long long int)arg_p->data.sint;
|
|
else
|
|
seed = 0;
|
|
smp->data.u.sint = (long long int)XXH64(smp->data.u.str.area,
|
|
smp->data.u.str.data, seed);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_xxh3(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
unsigned long long int seed;
|
|
|
|
if (arg_p->data.sint)
|
|
seed = (unsigned long long int)arg_p->data.sint;
|
|
else
|
|
seed = 0;
|
|
smp->data.u.sint = (long long int)XXH3(smp->data.u.str.area,
|
|
smp->data.u.str.data, seed);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into a 32-bit unsigned int */
|
|
static int sample_conv_crc32(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = hash_crc32(smp->data.u.str.area,
|
|
smp->data.u.str.data);
|
|
if (arg_p->data.sint)
|
|
smp->data.u.sint = full_hash(smp->data.u.sint);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* hashes the binary input into crc32c (RFC4960, Appendix B [8].) */
|
|
static int sample_conv_crc32c(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = hash_crc32c(smp->data.u.str.area,
|
|
smp->data.u.str.data);
|
|
if (arg_p->data.sint)
|
|
smp->data.u.sint = full_hash(smp->data.u.sint);
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
/* This function escape special json characters. The returned string can be
|
|
* safely set between two '"' and used as json string. The json string is
|
|
* defined like this:
|
|
*
|
|
* any Unicode character except '"' or '\' or control character
|
|
* \", \\, \/, \b, \f, \n, \r, \t, \u + four-hex-digits
|
|
*
|
|
* The enum input_type contain all the allowed mode for decoding the input
|
|
* string.
|
|
*/
|
|
enum input_type {
|
|
IT_ASCII = 0,
|
|
IT_UTF8,
|
|
IT_UTF8S,
|
|
IT_UTF8P,
|
|
IT_UTF8PS,
|
|
};
|
|
|
|
static int sample_conv_json_check(struct arg *arg, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
enum input_type type;
|
|
|
|
if (strcmp(arg->data.str.area, "") == 0)
|
|
type = IT_ASCII;
|
|
else if (strcmp(arg->data.str.area, "ascii") == 0)
|
|
type = IT_ASCII;
|
|
else if (strcmp(arg->data.str.area, "utf8") == 0)
|
|
type = IT_UTF8;
|
|
else if (strcmp(arg->data.str.area, "utf8s") == 0)
|
|
type = IT_UTF8S;
|
|
else if (strcmp(arg->data.str.area, "utf8p") == 0)
|
|
type = IT_UTF8P;
|
|
else if (strcmp(arg->data.str.area, "utf8ps") == 0)
|
|
type = IT_UTF8PS;
|
|
else {
|
|
memprintf(err, "Unexpected input code type. "
|
|
"Allowed value are 'ascii', 'utf8', 'utf8s', 'utf8p' and 'utf8ps'");
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&arg->data.str);
|
|
arg->type = ARGT_SINT;
|
|
arg->data.sint = type;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_json(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *temp;
|
|
char _str[7]; /* \u + 4 hex digit + null char for sprintf. */
|
|
const char *str;
|
|
int len;
|
|
enum input_type input_type = IT_ASCII;
|
|
unsigned int c;
|
|
unsigned int ret;
|
|
char *p;
|
|
|
|
input_type = arg_p->data.sint;
|
|
|
|
temp = get_trash_chunk();
|
|
temp->data = 0;
|
|
|
|
p = smp->data.u.str.area;
|
|
while (p < smp->data.u.str.area + smp->data.u.str.data) {
|
|
|
|
if (input_type == IT_ASCII) {
|
|
/* Read input as ASCII. */
|
|
c = *(unsigned char *)p;
|
|
p++;
|
|
}
|
|
else {
|
|
/* Read input as UTF8. */
|
|
ret = utf8_next(p,
|
|
smp->data.u.str.data - ( p - smp->data.u.str.area),
|
|
&c);
|
|
p += utf8_return_length(ret);
|
|
|
|
if (input_type == IT_UTF8 && utf8_return_code(ret) != UTF8_CODE_OK)
|
|
return 0;
|
|
if (input_type == IT_UTF8S && utf8_return_code(ret) != UTF8_CODE_OK)
|
|
continue;
|
|
if (input_type == IT_UTF8P && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
|
|
return 0;
|
|
if (input_type == IT_UTF8PS && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
|
|
continue;
|
|
|
|
/* Check too big values. */
|
|
if ((unsigned int)c > 0xffff) {
|
|
if (input_type == IT_UTF8 || input_type == IT_UTF8P)
|
|
return 0;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Convert character. */
|
|
if (c == '"') {
|
|
len = 2;
|
|
str = "\\\"";
|
|
}
|
|
else if (c == '\\') {
|
|
len = 2;
|
|
str = "\\\\";
|
|
}
|
|
else if (c == '/') {
|
|
len = 2;
|
|
str = "\\/";
|
|
}
|
|
else if (c == '\b') {
|
|
len = 2;
|
|
str = "\\b";
|
|
}
|
|
else if (c == '\f') {
|
|
len = 2;
|
|
str = "\\f";
|
|
}
|
|
else if (c == '\r') {
|
|
len = 2;
|
|
str = "\\r";
|
|
}
|
|
else if (c == '\n') {
|
|
len = 2;
|
|
str = "\\n";
|
|
}
|
|
else if (c == '\t') {
|
|
len = 2;
|
|
str = "\\t";
|
|
}
|
|
else if (c > 0xff || !isprint((unsigned char)c)) {
|
|
/* isprint generate a segfault if c is too big. The man says that
|
|
* c must have the value of an unsigned char or EOF.
|
|
*/
|
|
len = 6;
|
|
_str[0] = '\\';
|
|
_str[1] = 'u';
|
|
snprintf(&_str[2], 5, "%04x", (unsigned short)c);
|
|
str = _str;
|
|
}
|
|
else {
|
|
len = 1;
|
|
_str[0] = c;
|
|
str = _str;
|
|
}
|
|
|
|
/* Check length */
|
|
if (temp->data + len > temp->size)
|
|
return 0;
|
|
|
|
/* Copy string. */
|
|
memcpy(temp->area + temp->data, str, len);
|
|
temp->data += len;
|
|
}
|
|
|
|
smp->flags &= ~SMP_F_CONST;
|
|
smp->data.u.str = *temp;
|
|
smp->data.type = SMP_T_STR;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This sample function is designed to extract some bytes from an input buffer.
|
|
* First arg is the offset.
|
|
* Optional second arg is the length to truncate */
|
|
static int sample_conv_bytes(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
if (smp->data.u.str.data <= arg_p[0].data.sint) {
|
|
smp->data.u.str.data = 0;
|
|
return 1;
|
|
}
|
|
|
|
if (smp->data.u.str.size)
|
|
smp->data.u.str.size -= arg_p[0].data.sint;
|
|
smp->data.u.str.data -= arg_p[0].data.sint;
|
|
smp->data.u.str.area += arg_p[0].data.sint;
|
|
|
|
if ((arg_p[1].type == ARGT_SINT) && (arg_p[1].data.sint < smp->data.u.str.data))
|
|
smp->data.u.str.data = arg_p[1].data.sint;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_field_check(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
struct arg *arg = args;
|
|
|
|
if (arg->type != ARGT_SINT) {
|
|
memprintf(err, "Unexpected arg type");
|
|
return 0;
|
|
}
|
|
|
|
if (!arg->data.sint) {
|
|
memprintf(err, "Unexpected value 0 for index");
|
|
return 0;
|
|
}
|
|
|
|
arg++;
|
|
|
|
if (arg->type != ARGT_STR) {
|
|
memprintf(err, "Unexpected arg type");
|
|
return 0;
|
|
}
|
|
|
|
if (!arg->data.str.data) {
|
|
memprintf(err, "Empty separators list");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This sample function is designed to a return selected part of a string (field).
|
|
* First arg is the index of the field (start at 1)
|
|
* Second arg is a char list of separators (type string)
|
|
*/
|
|
static int sample_conv_field(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int field;
|
|
char *start, *end;
|
|
int i;
|
|
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
|
|
|
|
if (!arg_p[0].data.sint)
|
|
return 0;
|
|
|
|
if (arg_p[0].data.sint < 0) {
|
|
field = -1;
|
|
end = start = smp->data.u.str.area + smp->data.u.str.data;
|
|
while (start > smp->data.u.str.area) {
|
|
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
|
|
if (*(start-1) == arg_p[1].data.str.area[i]) {
|
|
if (field == arg_p[0].data.sint) {
|
|
if (count == 1)
|
|
goto found;
|
|
else if (count > 1)
|
|
count--;
|
|
} else {
|
|
end = start-1;
|
|
field--;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
start--;
|
|
}
|
|
} else {
|
|
field = 1;
|
|
end = start = smp->data.u.str.area;
|
|
while (end - smp->data.u.str.area < smp->data.u.str.data) {
|
|
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
|
|
if (*end == arg_p[1].data.str.area[i]) {
|
|
if (field == arg_p[0].data.sint) {
|
|
if (count == 1)
|
|
goto found;
|
|
else if (count > 1)
|
|
count--;
|
|
} else {
|
|
start = end+1;
|
|
field++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
end++;
|
|
}
|
|
}
|
|
|
|
/* Field not found */
|
|
if (field != arg_p[0].data.sint) {
|
|
smp->data.u.str.data = 0;
|
|
return 0;
|
|
}
|
|
found:
|
|
smp->data.u.str.data = end - start;
|
|
/* If ret string is len 0, no need to
|
|
change pointers or to update size */
|
|
if (!smp->data.u.str.data)
|
|
return 1;
|
|
|
|
/* Compute remaining size if needed
|
|
Note: smp->data.u.str.size cannot be set to 0 */
|
|
if (smp->data.u.str.size)
|
|
smp->data.u.str.size -= start - smp->data.u.str.area;
|
|
|
|
smp->data.u.str.area = start;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This sample function is designed to return a word from a string.
|
|
* First arg is the index of the word (start at 1)
|
|
* Second arg is a char list of words separators (type string)
|
|
*/
|
|
static int sample_conv_word(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
int word;
|
|
char *start, *end;
|
|
int i, issep, inword;
|
|
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
|
|
|
|
if (!arg_p[0].data.sint)
|
|
return 0;
|
|
|
|
word = 0;
|
|
inword = 0;
|
|
if (arg_p[0].data.sint < 0) {
|
|
end = start = smp->data.u.str.area + smp->data.u.str.data;
|
|
while (start > smp->data.u.str.area) {
|
|
issep = 0;
|
|
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
|
|
if (*(start-1) == arg_p[1].data.str.area[i]) {
|
|
issep = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!inword) {
|
|
if (!issep) {
|
|
if (word != arg_p[0].data.sint) {
|
|
word--;
|
|
end = start;
|
|
}
|
|
inword = 1;
|
|
}
|
|
}
|
|
else if (issep) {
|
|
if (word == arg_p[0].data.sint) {
|
|
if (count == 1)
|
|
goto found;
|
|
else if (count > 1)
|
|
count--;
|
|
}
|
|
inword = 0;
|
|
}
|
|
start--;
|
|
}
|
|
} else {
|
|
end = start = smp->data.u.str.area;
|
|
while (end - smp->data.u.str.area < smp->data.u.str.data) {
|
|
issep = 0;
|
|
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
|
|
if (*end == arg_p[1].data.str.area[i]) {
|
|
issep = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!inword) {
|
|
if (!issep) {
|
|
if (word != arg_p[0].data.sint) {
|
|
word++;
|
|
start = end;
|
|
}
|
|
inword = 1;
|
|
}
|
|
}
|
|
else if (issep) {
|
|
if (word == arg_p[0].data.sint) {
|
|
if (count == 1)
|
|
goto found;
|
|
else if (count > 1)
|
|
count--;
|
|
}
|
|
inword = 0;
|
|
}
|
|
end++;
|
|
}
|
|
}
|
|
|
|
/* Field not found */
|
|
if (word != arg_p[0].data.sint) {
|
|
smp->data.u.str.data = 0;
|
|
return 1;
|
|
}
|
|
found:
|
|
smp->data.u.str.data = end - start;
|
|
/* If ret string is len 0, no need to
|
|
change pointers or to update size */
|
|
if (!smp->data.u.str.data)
|
|
return 1;
|
|
|
|
smp->data.u.str.area = start;
|
|
|
|
/* Compute remaining size if needed
|
|
Note: smp->data.u.str.size cannot be set to 0 */
|
|
if (smp->data.u.str.size)
|
|
smp->data.u.str.size -= start - smp->data.u.str.area;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_regsub_check(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
struct arg *arg = args;
|
|
char *p;
|
|
int len;
|
|
|
|
/* arg0 is a regex, it uses type_flag for ICASE and global match */
|
|
arg[0].type_flags = 0;
|
|
|
|
if (arg[2].type != ARGT_STR)
|
|
return 1;
|
|
|
|
p = arg[2].data.str.area;
|
|
len = arg[2].data.str.data;
|
|
while (len) {
|
|
if (*p == 'i') {
|
|
arg[0].type_flags |= ARGF_REG_ICASE;
|
|
}
|
|
else if (*p == 'g') {
|
|
arg[0].type_flags |= ARGF_REG_GLOB;
|
|
}
|
|
else {
|
|
memprintf(err, "invalid regex flag '%c', only 'i' and 'g' are supported", *p);
|
|
return 0;
|
|
}
|
|
p++;
|
|
len--;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* This sample function is designed to do the equivalent of s/match/replace/ on
|
|
* the input string. It applies a regex and restarts from the last matched
|
|
* location until nothing matches anymore. First arg is the regex to apply to
|
|
* the input string, second arg is the replacement expression.
|
|
*/
|
|
static int sample_conv_regsub(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
char *start, *end;
|
|
struct my_regex *reg = arg_p[0].data.reg;
|
|
regmatch_t pmatch[MAX_MATCH];
|
|
struct buffer *trash = get_trash_chunk();
|
|
struct buffer *output;
|
|
int flag, max;
|
|
int found;
|
|
|
|
start = smp->data.u.str.area;
|
|
end = start + smp->data.u.str.data;
|
|
|
|
flag = 0;
|
|
while (1) {
|
|
/* check for last round which is used to copy remaining parts
|
|
* when not running in global replacement mode.
|
|
*/
|
|
found = 0;
|
|
if ((arg_p[0].type_flags & ARGF_REG_GLOB) || !(flag & REG_NOTBOL)) {
|
|
/* Note: we can have start == end on empty strings or at the end */
|
|
found = regex_exec_match2(reg, start, end - start, MAX_MATCH, pmatch, flag);
|
|
}
|
|
|
|
if (!found)
|
|
pmatch[0].rm_so = end - start;
|
|
|
|
/* copy the heading non-matching part (which may also be the tail if nothing matches) */
|
|
max = trash->size - trash->data;
|
|
if (max && pmatch[0].rm_so > 0) {
|
|
if (max > pmatch[0].rm_so)
|
|
max = pmatch[0].rm_so;
|
|
memcpy(trash->area + trash->data, start, max);
|
|
trash->data += max;
|
|
}
|
|
|
|
if (!found)
|
|
break;
|
|
|
|
output = alloc_trash_chunk();
|
|
if (!output)
|
|
break;
|
|
|
|
output->data = exp_replace(output->area, output->size, start, arg_p[1].data.str.area, pmatch);
|
|
|
|
/* replace the matching part */
|
|
max = output->size - output->data;
|
|
if (max) {
|
|
if (max > output->data)
|
|
max = output->data;
|
|
memcpy(trash->area + trash->data,
|
|
output->area, max);
|
|
trash->data += max;
|
|
}
|
|
|
|
free_trash_chunk(output);
|
|
|
|
/* stop here if we're done with this string */
|
|
if (start >= end)
|
|
break;
|
|
|
|
/* We have a special case for matches of length 0 (eg: "x*y*").
|
|
* These ones are considered to match in front of a character,
|
|
* so we have to copy that character and skip to the next one.
|
|
*/
|
|
if (!pmatch[0].rm_eo) {
|
|
if (trash->data < trash->size)
|
|
trash->area[trash->data++] = start[pmatch[0].rm_eo];
|
|
pmatch[0].rm_eo++;
|
|
}
|
|
|
|
start += pmatch[0].rm_eo;
|
|
flag |= REG_NOTBOL;
|
|
}
|
|
|
|
smp->data.u.str = *trash;
|
|
return 1;
|
|
}
|
|
|
|
/* This function check an operator entry. It expects a string.
|
|
* The string can be an integer or a variable name.
|
|
*/
|
|
static int check_operator(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
const char *str;
|
|
const char *end;
|
|
long long int i;
|
|
|
|
/* Try to decode a variable. */
|
|
if (vars_check_arg(&args[0], NULL))
|
|
return 1;
|
|
|
|
/* Try to convert an integer */
|
|
str = args[0].data.str.area;
|
|
end = str + strlen(str);
|
|
i = read_int64(&str, end);
|
|
if (*str != '\0') {
|
|
memprintf(err, "expects an integer or a variable name");
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = i;
|
|
return 1;
|
|
}
|
|
|
|
/* This function returns a sample struct filled with an arg content.
|
|
* If the arg contain an integer, the integer is returned in the
|
|
* sample. If the arg contains a variable descriptor, it returns the
|
|
* variable value.
|
|
*
|
|
* This function returns 0 if an error occurs, otherwise it returns 1.
|
|
*/
|
|
static inline int sample_conv_var2smp(const struct arg *arg, struct sample *smp)
|
|
{
|
|
switch (arg->type) {
|
|
case ARGT_SINT:
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = arg->data.sint;
|
|
return 1;
|
|
case ARGT_VAR:
|
|
if (!vars_get_by_desc(&arg->data.var, smp))
|
|
return 0;
|
|
if (!sample_casts[smp->data.type][SMP_T_SINT])
|
|
return 0;
|
|
if (!sample_casts[smp->data.type][SMP_T_SINT](smp))
|
|
return 0;
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Takes a SINT on input, applies a binary twos complement and returns the SINT
|
|
* result.
|
|
*/
|
|
static int sample_conv_binary_cpl(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = ~smp->data.u.sint;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies a binary "and" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
*/
|
|
static int sample_conv_binary_and(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
smp->data.u.sint &= tmp.data.u.sint;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies a binary "or" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
*/
|
|
static int sample_conv_binary_or(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
smp->data.u.sint |= tmp.data.u.sint;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies a binary "xor" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
*/
|
|
static int sample_conv_binary_xor(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
smp->data.u.sint ^= tmp.data.u.sint;
|
|
return 1;
|
|
}
|
|
|
|
static inline long long int arith_add(long long int a, long long int b)
|
|
{
|
|
/* Prevent overflow and makes capped calculus.
|
|
* We must ensure that the check calculus doesn't
|
|
* exceed the signed 64 bits limits.
|
|
*
|
|
* +----------+----------+
|
|
* | a<0 | a>=0 |
|
|
* +------+----------+----------+
|
|
* | b<0 | MIN-a>b | no check |
|
|
* +------+----------+----------+
|
|
* | b>=0 | no check | MAX-a<b |
|
|
* +------+----------+----------+
|
|
*/
|
|
if ((a ^ b) >= 0) {
|
|
/* signs are different. */
|
|
if (a < 0) {
|
|
if (LLONG_MIN - a > b)
|
|
return LLONG_MIN;
|
|
}
|
|
if (LLONG_MAX - a < b)
|
|
return LLONG_MAX;
|
|
}
|
|
return a + b;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies an arithmetic "add" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
*/
|
|
static int sample_conv_arith_add(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
smp->data.u.sint = arith_add(smp->data.u.sint, tmp.data.u.sint);
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies an arithmetic "sub" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
*/
|
|
static int sample_conv_arith_sub(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
|
|
/* We cannot represent -LLONG_MIN because abs(LLONG_MIN) is greater
|
|
* than abs(LLONG_MAX). So, the following code use LLONG_MAX in place
|
|
* of -LLONG_MIN and correct the result.
|
|
*/
|
|
if (tmp.data.u.sint == LLONG_MIN) {
|
|
smp->data.u.sint = arith_add(smp->data.u.sint, LLONG_MAX);
|
|
if (smp->data.u.sint < LLONG_MAX)
|
|
smp->data.u.sint++;
|
|
return 1;
|
|
}
|
|
|
|
/* standard subtraction: we use the "add" function and negate
|
|
* the second operand.
|
|
*/
|
|
smp->data.u.sint = arith_add(smp->data.u.sint, -tmp.data.u.sint);
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies an arithmetic "mul" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
* If the result makes an overflow, then the largest possible quantity is
|
|
* returned.
|
|
*/
|
|
static int sample_conv_arith_mul(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
long long int c;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
|
|
/* prevent divide by 0 during the check */
|
|
if (!smp->data.u.sint || !tmp.data.u.sint) {
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* The multiply between LLONG_MIN and -1 returns a
|
|
* "floating point exception".
|
|
*/
|
|
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
|
|
smp->data.u.sint = LLONG_MAX;
|
|
return 1;
|
|
}
|
|
|
|
/* execute standard multiplication. */
|
|
c = smp->data.u.sint * tmp.data.u.sint;
|
|
|
|
/* check for overflow and makes capped multiply. */
|
|
if (smp->data.u.sint != c / tmp.data.u.sint) {
|
|
if ((smp->data.u.sint < 0) == (tmp.data.u.sint < 0)) {
|
|
smp->data.u.sint = LLONG_MAX;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint = LLONG_MIN;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint = c;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies an arithmetic "div" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
* If arg_p makes the result overflow, then the largest possible quantity is
|
|
* returned.
|
|
*/
|
|
static int sample_conv_arith_div(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
|
|
if (tmp.data.u.sint) {
|
|
/* The divide between LLONG_MIN and -1 returns a
|
|
* "floating point exception".
|
|
*/
|
|
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
|
|
smp->data.u.sint = LLONG_MAX;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint /= tmp.data.u.sint;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint = LLONG_MAX;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, applies an arithmetic "mod" with the SINT directly in
|
|
* arg_p or in the variable described in arg_p, and returns the SINT result.
|
|
* If arg_p makes the result overflow, then 0 is returned.
|
|
*/
|
|
static int sample_conv_arith_mod(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (!sample_conv_var2smp(arg_p, &tmp))
|
|
return 0;
|
|
|
|
if (tmp.data.u.sint) {
|
|
/* The divide between LLONG_MIN and -1 returns a
|
|
* "floating point exception".
|
|
*/
|
|
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint %= tmp.data.u.sint;
|
|
return 1;
|
|
}
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes an SINT on input, applies an arithmetic "neg" and returns the SINT
|
|
* result.
|
|
*/
|
|
static int sample_conv_arith_neg(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
if (smp->data.u.sint == LLONG_MIN)
|
|
smp->data.u.sint = LLONG_MAX;
|
|
else
|
|
smp->data.u.sint = -smp->data.u.sint;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, returns true is the value is non-null, otherwise
|
|
* false. The output is a BOOL.
|
|
*/
|
|
static int sample_conv_arith_bool(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = !!smp->data.u.sint;
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, returns false is the value is non-null, otherwise
|
|
* truee. The output is a BOOL.
|
|
*/
|
|
static int sample_conv_arith_not(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = !smp->data.u.sint;
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, returns true is the value is odd, otherwise false.
|
|
* The output is a BOOL.
|
|
*/
|
|
static int sample_conv_arith_odd(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = smp->data.u.sint & 1;
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
|
|
/* Takes a SINT on input, returns true is the value is even, otherwise false.
|
|
* The output is a BOOL.
|
|
*/
|
|
static int sample_conv_arith_even(const struct arg *arg_p,
|
|
struct sample *smp, void *private)
|
|
{
|
|
smp->data.u.sint = !(smp->data.u.sint & 1);
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
|
|
/* appends an optional const string, an optional variable contents and another
|
|
* optional const string to an existing string.
|
|
*/
|
|
static int sample_conv_concat(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash;
|
|
struct sample tmp;
|
|
int max;
|
|
|
|
trash = alloc_trash_chunk();
|
|
if (!trash)
|
|
return 0;
|
|
|
|
trash->data = smp->data.u.str.data;
|
|
if (trash->data > trash->size - 1)
|
|
trash->data = trash->size - 1;
|
|
|
|
memcpy(trash->area, smp->data.u.str.area, trash->data);
|
|
trash->area[trash->data] = 0;
|
|
|
|
/* append first string */
|
|
max = arg_p[0].data.str.data;
|
|
if (max > trash->size - 1 - trash->data)
|
|
max = trash->size - 1 - trash->data;
|
|
|
|
if (max) {
|
|
memcpy(trash->area + trash->data, arg_p[0].data.str.area, max);
|
|
trash->data += max;
|
|
trash->area[trash->data] = 0;
|
|
}
|
|
|
|
/* append second string (variable) if it's found and we can turn it
|
|
* into a string.
|
|
*/
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp) &&
|
|
(sample_casts[tmp.data.type][SMP_T_STR] == c_none ||
|
|
sample_casts[tmp.data.type][SMP_T_STR](&tmp))) {
|
|
|
|
max = tmp.data.u.str.data;
|
|
if (max > trash->size - 1 - trash->data)
|
|
max = trash->size - 1 - trash->data;
|
|
|
|
if (max) {
|
|
memcpy(trash->area + trash->data, tmp.data.u.str.area,
|
|
max);
|
|
trash->data += max;
|
|
trash->area[trash->data] = 0;
|
|
}
|
|
}
|
|
|
|
/* append third string */
|
|
max = arg_p[2].data.str.data;
|
|
if (max > trash->size - 1 - trash->data)
|
|
max = trash->size - 1 - trash->data;
|
|
|
|
if (max) {
|
|
memcpy(trash->area + trash->data, arg_p[2].data.str.area, max);
|
|
trash->data += max;
|
|
trash->area[trash->data] = 0;
|
|
}
|
|
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp_dup(smp);
|
|
free_trash_chunk(trash);
|
|
return 1;
|
|
}
|
|
|
|
/* This function checks the "concat" converter's arguments and extracts the
|
|
* variable name and its scope.
|
|
*/
|
|
static int smp_check_concat(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
/* Try to decode a variable. */
|
|
if (args[1].data.str.data > 0 && !vars_check_arg(&args[1], NULL)) {
|
|
memprintf(err, "failed to register variable name '%s'",
|
|
args[1].data.str.area);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Compares string with a variable containing a string. Return value
|
|
* is compatible with strcmp(3)'s return value.
|
|
*/
|
|
static int sample_conv_strcmp(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
int max, result;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (arg_p[0].type != ARGT_VAR)
|
|
return 0;
|
|
if (!vars_get_by_desc(&arg_p[0].data.var, &tmp))
|
|
return 0;
|
|
if (!sample_casts[tmp.data.type][SMP_T_STR](&tmp))
|
|
return 0;
|
|
|
|
max = MIN(smp->data.u.str.data, tmp.data.u.str.data);
|
|
result = strncmp(smp->data.u.str.area, tmp.data.u.str.area, max);
|
|
if (result == 0) {
|
|
if (smp->data.u.str.data != tmp.data.u.str.data) {
|
|
if (smp->data.u.str.data < tmp.data.u.str.data) {
|
|
result = -1;
|
|
}
|
|
else {
|
|
result = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
smp->data.u.sint = result;
|
|
smp->data.type = SMP_T_SINT;
|
|
return 1;
|
|
}
|
|
|
|
#if defined(HAVE_CRYPTO_memcmp)
|
|
/* Compares bytestring with a variable containing a bytestring. Return value
|
|
* is `true` if both bytestrings are bytewise identical and `false` otherwise.
|
|
*
|
|
* Comparison will be performed in constant time if both bytestrings are of
|
|
* the same length. If the lengths differ execution time will not be constant.
|
|
*/
|
|
static int sample_conv_secure_memcmp(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct sample tmp;
|
|
int result;
|
|
|
|
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
|
|
if (arg_p[0].type != ARGT_VAR)
|
|
return 0;
|
|
if (!vars_get_by_desc(&arg_p[0].data.var, &tmp))
|
|
return 0;
|
|
if (!sample_casts[tmp.data.type][SMP_T_BIN](&tmp))
|
|
return 0;
|
|
|
|
if (smp->data.u.str.data != tmp.data.u.str.data) {
|
|
smp->data.u.sint = 0;
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
|
|
/* The following comparison is performed in constant time. */
|
|
result = CRYPTO_memcmp(smp->data.u.str.area, tmp.data.u.str.area, smp->data.u.str.data);
|
|
|
|
smp->data.u.sint = result == 0;
|
|
smp->data.type = SMP_T_BOOL;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Takes a boolean as input. Returns the first argument if that boolean is true and
|
|
* the second argument otherwise.
|
|
*/
|
|
static int sample_conv_iif(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags |= SMP_F_CONST;
|
|
|
|
if (smp->data.u.sint) {
|
|
smp->data.u.str.data = arg_p[0].data.str.data;
|
|
smp->data.u.str.area = arg_p[0].data.str.area;
|
|
}
|
|
else {
|
|
smp->data.u.str.data = arg_p[1].data.str.data;
|
|
smp->data.u.str.area = arg_p[1].data.str.area;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define GRPC_MSG_COMPRESS_FLAG_SZ 1 /* 1 byte */
|
|
#define GRPC_MSG_LENGTH_SZ 4 /* 4 bytes */
|
|
#define GRPC_MSG_HEADER_SZ (GRPC_MSG_COMPRESS_FLAG_SZ + GRPC_MSG_LENGTH_SZ)
|
|
|
|
/*
|
|
* Extract the field value of an input binary sample. Takes a mandatory argument:
|
|
* the protocol buffers field identifier (dotted notation) internally represented
|
|
* as an array of unsigned integers and its size.
|
|
* Return 1 if the field was found, 0 if not.
|
|
*/
|
|
static int sample_conv_ungrpc(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
unsigned char *pos;
|
|
size_t grpc_left;
|
|
|
|
pos = (unsigned char *)smp->data.u.str.area;
|
|
grpc_left = smp->data.u.str.data;
|
|
|
|
while (grpc_left > GRPC_MSG_HEADER_SZ) {
|
|
size_t grpc_msg_len, left;
|
|
|
|
grpc_msg_len = left = ntohl(*(uint32_t *)(pos + GRPC_MSG_COMPRESS_FLAG_SZ));
|
|
|
|
pos += GRPC_MSG_HEADER_SZ;
|
|
grpc_left -= GRPC_MSG_HEADER_SZ;
|
|
|
|
if (grpc_left < left)
|
|
return 0;
|
|
|
|
if (protobuf_field_lookup(arg_p, smp, &pos, &left))
|
|
return 1;
|
|
|
|
grpc_left -= grpc_msg_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sample_conv_protobuf(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
unsigned char *pos;
|
|
size_t left;
|
|
|
|
pos = (unsigned char *)smp->data.u.str.area;
|
|
left = smp->data.u.str.data;
|
|
|
|
return protobuf_field_lookup(arg_p, smp, &pos, &left);
|
|
}
|
|
|
|
static int sample_conv_protobuf_check(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (!args[1].type) {
|
|
args[1].type = ARGT_SINT;
|
|
args[1].data.sint = PBUF_T_BINARY;
|
|
}
|
|
else {
|
|
int pbuf_type;
|
|
|
|
pbuf_type = protobuf_type(args[1].data.str.area);
|
|
if (pbuf_type == -1) {
|
|
memprintf(err, "Wrong protocol buffer type '%s'", args[1].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&args[1].data.str);
|
|
args[1].type = ARGT_SINT;
|
|
args[1].data.sint = pbuf_type;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Extract the tag value of an input binary sample. Takes a mandatory argument:
|
|
* the FIX protocol tag identifier.
|
|
* Return 1 if the tag was found, 0 if not.
|
|
*/
|
|
static int sample_conv_fix_tag_value(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct ist value;
|
|
|
|
smp->flags &= ~SMP_F_MAY_CHANGE;
|
|
value = fix_tag_value(ist2(smp->data.u.str.area, smp->data.u.str.data),
|
|
arg_p[0].data.sint);
|
|
if (!istlen(value)) {
|
|
if (!isttest(value)) {
|
|
/* value != IST_NULL, need more data */
|
|
smp->flags |= SMP_F_MAY_CHANGE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
smp->data.u.str = ist2buf(value);
|
|
smp->flags |= SMP_F_CONST;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function checks the "fix_tag_value" converter configuration.
|
|
* It expects a "known" (by HAProxy) tag name or ID.
|
|
* Tag string names are converted to their ID counterpart because this is the
|
|
* format they are sent over the wire.
|
|
*/
|
|
static int sample_conv_fix_value_check(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
struct ist str;
|
|
unsigned int tag;
|
|
|
|
str = ist2(args[0].data.str.area, args[0].data.str.data);
|
|
tag = fix_tagid(str);
|
|
if (!tag) {
|
|
memprintf(err, "Unknown FIX tag name '%s'", args[0].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = tag;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Checks that a buffer contains a valid FIX message
|
|
*
|
|
* Return 1 if the check could be run, 0 if not.
|
|
* The result of the analyse itself is stored in <smp> as a boolean
|
|
*/
|
|
static int sample_conv_fix_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct ist msg;
|
|
|
|
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
|
|
|
|
smp->flags &= ~SMP_F_MAY_CHANGE;
|
|
switch (fix_validate_message(msg)) {
|
|
case FIX_VALID_MESSAGE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 1;
|
|
return 1;
|
|
case FIX_NEED_MORE_DATA:
|
|
smp->flags |= SMP_F_MAY_CHANGE;
|
|
return 0;
|
|
case FIX_INVALID_MESSAGE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Extract the field value of an input binary sample containing an MQTT packet.
|
|
* Takes 2 mandatory arguments:
|
|
* - packet type
|
|
* - field name
|
|
*
|
|
* return 1 if the field was found, 0 if not.
|
|
*/
|
|
static int sample_conv_mqtt_field_value(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct ist pkt, value;
|
|
int type, fieldname_id;
|
|
|
|
pkt = ist2(smp->data.u.str.area, smp->data.u.str.data);
|
|
type = arg_p[0].data.sint;
|
|
fieldname_id = arg_p[1].data.sint;
|
|
|
|
smp->flags &= ~SMP_F_MAY_CHANGE;
|
|
value = mqtt_field_value(pkt, type, fieldname_id);
|
|
if (!istlen(value)) {
|
|
if (isttest(value)) {
|
|
/* value != IST_NULL, need more data */
|
|
smp->flags |= SMP_F_MAY_CHANGE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
smp->data.u.str = ist2buf(value);
|
|
smp->flags |= SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* this function checks the "mqtt_field_value" converter configuration.
|
|
* It expects a known packet type name or ID and a field name, in this order
|
|
*
|
|
* Args[0] will be turned into a MQTT_CPT_* value for direct matching when parsing
|
|
* a packet.
|
|
*/
|
|
static int sample_conv_mqtt_field_value_check(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
int type, fieldname_id;
|
|
|
|
/* check the MQTT packet type is valid */
|
|
type = mqtt_typeid(ist2(args[0].data.str.area, args[0].data.str.data));
|
|
if (type == MQTT_CPT_INVALID) {
|
|
memprintf(err, "Unknown MQTT type '%s'", args[0].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
/* check the field name belongs to the MQTT packet type */
|
|
fieldname_id = mqtt_check_type_fieldname(type, ist2(args[1].data.str.area, args[1].data.str.data));
|
|
if (fieldname_id == MQTT_FN_INVALID) {
|
|
memprintf(err, "Unknown MQTT field name '%s' for packet type '%s'", args[1].data.str.area,
|
|
args[0].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
/* save numeric counterparts of type and field name */
|
|
chunk_destroy(&args[0].data.str);
|
|
chunk_destroy(&args[1].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = type;
|
|
args[1].type = ARGT_SINT;
|
|
args[1].data.sint = fieldname_id;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Checks that <smp> contains a valid MQTT message
|
|
*
|
|
* The function returns 1 if the check was run to its end, 0 otherwise.
|
|
* The result of the analyse itself is stored in <smp> as a boolean.
|
|
*/
|
|
static int sample_conv_mqtt_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct ist msg;
|
|
|
|
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
|
|
|
|
smp->flags &= ~SMP_F_MAY_CHANGE;
|
|
switch (mqtt_validate_message(msg, NULL)) {
|
|
case FIX_VALID_MESSAGE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 1;
|
|
return 1;
|
|
case FIX_NEED_MORE_DATA:
|
|
smp->flags |= SMP_F_MAY_CHANGE;
|
|
return 0;
|
|
case FIX_INVALID_MESSAGE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function checks the "strcmp" converter's arguments and extracts the
|
|
* variable name and its scope.
|
|
*/
|
|
static int smp_check_strcmp(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (!args[0].data.str.data) {
|
|
memprintf(err, "missing variable name");
|
|
return 0;
|
|
}
|
|
|
|
/* Try to decode a variable. */
|
|
if (vars_check_arg(&args[0], NULL))
|
|
return 1;
|
|
|
|
memprintf(err, "failed to register variable name '%s'",
|
|
args[0].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(HAVE_CRYPTO_memcmp)
|
|
/* This function checks the "secure_memcmp" converter's arguments and extracts the
|
|
* variable name and its scope.
|
|
*/
|
|
static int smp_check_secure_memcmp(struct arg *args, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (!args[0].data.str.data) {
|
|
memprintf(err, "missing variable name");
|
|
return 0;
|
|
}
|
|
|
|
/* Try to decode a variable. */
|
|
if (vars_check_arg(&args[0], NULL))
|
|
return 1;
|
|
|
|
memprintf(err, "failed to register variable name '%s'",
|
|
args[0].data.str.area);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**/
|
|
static int sample_conv_htonl(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *tmp;
|
|
uint32_t n;
|
|
|
|
n = htonl((uint32_t)smp->data.u.sint);
|
|
tmp = get_trash_chunk();
|
|
|
|
memcpy(b_head(tmp), &n, 4);
|
|
b_add(tmp, 4);
|
|
|
|
smp->data.u.str = *tmp;
|
|
smp->data.type = SMP_T_BIN;
|
|
return 1;
|
|
}
|
|
|
|
/**/
|
|
static int sample_conv_cut_crlf(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
char *p;
|
|
size_t l;
|
|
|
|
p = smp->data.u.str.area;
|
|
for (l = 0; l < smp->data.u.str.data; l++) {
|
|
if (*(p+l) == '\r' || *(p+l) == '\n')
|
|
break;
|
|
}
|
|
smp->data.u.str.data = l;
|
|
return 1;
|
|
}
|
|
|
|
/**/
|
|
static int sample_conv_ltrim(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
char *delimiters, *p;
|
|
size_t dlen, l;
|
|
|
|
delimiters = arg_p[0].data.str.area;
|
|
dlen = arg_p[0].data.str.data;
|
|
|
|
l = smp->data.u.str.data;
|
|
p = smp->data.u.str.area;
|
|
while (l && memchr(delimiters, *p, dlen) != NULL) {
|
|
p++;
|
|
l--;
|
|
}
|
|
|
|
smp->data.u.str.area = p;
|
|
smp->data.u.str.data = l;
|
|
return 1;
|
|
}
|
|
|
|
/**/
|
|
static int sample_conv_rtrim(const struct arg *arg_p, struct sample *smp, void *private)
|
|
{
|
|
char *delimiters, *p;
|
|
size_t dlen, l;
|
|
|
|
delimiters = arg_p[0].data.str.area;
|
|
dlen = arg_p[0].data.str.data;
|
|
|
|
l = smp->data.u.str.data;
|
|
p = smp->data.u.str.area + l - 1;
|
|
while (l && memchr(delimiters, *p, dlen) != NULL) {
|
|
p--;
|
|
l--;
|
|
}
|
|
|
|
smp->data.u.str.data = l;
|
|
return 1;
|
|
}
|
|
|
|
/* This function checks the "json_query" converter's arguments. */
|
|
static int sample_check_json_query(struct arg *arg, struct sample_conv *conv,
|
|
const char *file, int line, char **err)
|
|
{
|
|
if (arg[0].data.str.data == 0) {
|
|
memprintf(err, "json_path must not be empty");
|
|
return 0;
|
|
}
|
|
|
|
if (arg[1].data.str.data != 0) {
|
|
if (strcmp(arg[1].data.str.area, "int") != 0) {
|
|
memprintf(err, "output_type only supports \"int\" as argument");
|
|
return 0;
|
|
} else {
|
|
arg[1].type = ARGT_SINT;
|
|
arg[1].data.sint = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Limit JSON integer values to the range [-(2**53)+1, (2**53)-1] as per
|
|
* the recommendation for interoperable integers in section 6 of RFC 7159.
|
|
*/
|
|
#define JSON_INT_MAX ((1LL << 53) - 1)
|
|
#define JSON_INT_MIN (-JSON_INT_MAX)
|
|
|
|
/* This sample function get the value from a given json string.
|
|
* The mjson library is used to parse the JSON struct
|
|
*/
|
|
static int sample_conv_json_query(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
const char *token; /* holds the temporary string from mjson_find */
|
|
int token_size; /* holds the length of <token> */
|
|
|
|
enum mjson_tok token_type;
|
|
|
|
token_type = mjson_find(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, &token, &token_size);
|
|
|
|
switch (token_type) {
|
|
case MJSON_TOK_NUMBER:
|
|
if (args[1].type == ARGT_SINT) {
|
|
smp->data.u.sint = strtoll(token, NULL, 0);
|
|
|
|
if (smp->data.u.sint < JSON_INT_MIN || smp->data.u.sint > JSON_INT_MAX)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
|
|
return 1;
|
|
} else {
|
|
double double_val;
|
|
|
|
if (mjson_get_number(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, &double_val) == 0)
|
|
return 0;
|
|
|
|
trash->data = snprintf(trash->area,trash->size,"%g",double_val);
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
|
|
return 1;
|
|
}
|
|
case MJSON_TOK_TRUE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 1;
|
|
|
|
return 1;
|
|
case MJSON_TOK_FALSE:
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 0;
|
|
|
|
return 1;
|
|
case MJSON_TOK_STRING: {
|
|
int len;
|
|
|
|
len = mjson_get_string(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, trash->area, trash->size);
|
|
|
|
if (len == -1) {
|
|
/* invalid string */
|
|
return 0;
|
|
}
|
|
|
|
trash->data = len;
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
|
|
return 1;
|
|
}
|
|
case MJSON_TOK_NULL:
|
|
case MJSON_TOK_ARRAY:
|
|
case MJSON_TOK_OBJECT:
|
|
/* We cannot handle these. */
|
|
return 0;
|
|
case MJSON_TOK_INVALID:
|
|
/* Nothing matches the query. */
|
|
return 0;
|
|
case MJSON_TOK_KEY:
|
|
/* This is not a valid return value according to the
|
|
* mjson documentation, but we handle it to benefit
|
|
* from '-Wswitch'.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
my_unreachable();
|
|
return 0;
|
|
}
|
|
|
|
|
|
/************************************************************************/
|
|
/* All supported sample fetch functions must be declared here */
|
|
/************************************************************************/
|
|
|
|
/* force TRUE to be returned at the fetch level */
|
|
static int
|
|
smp_fetch_true(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp_make_rw(smp))
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* force FALSE to be returned at the fetch level */
|
|
static int
|
|
smp_fetch_false(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* retrieve environment variable $1 as a string */
|
|
static int
|
|
smp_fetch_env(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
char *env;
|
|
|
|
if (args[0].type != ARGT_STR)
|
|
return 0;
|
|
|
|
env = getenv(args[0].data.str.area);
|
|
if (!env)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.area = env;
|
|
smp->data.u.str.data = strlen(env);
|
|
return 1;
|
|
}
|
|
|
|
/* Validates the data unit argument passed to "date" fetch. Argument 1 support an
|
|
* optional string representing the unit of the result: "s" for seconds, "ms" for
|
|
* milliseconds and "us" for microseconds.
|
|
* Returns 0 on error and non-zero if OK.
|
|
*/
|
|
int smp_check_date_unit(struct arg *args, char **err)
|
|
{
|
|
if (args[1].type == ARGT_STR) {
|
|
long long int unit;
|
|
|
|
if (strcmp(args[1].data.str.area, "s") == 0) {
|
|
unit = TIME_UNIT_S;
|
|
}
|
|
else if (strcmp(args[1].data.str.area, "ms") == 0) {
|
|
unit = TIME_UNIT_MS;
|
|
}
|
|
else if (strcmp(args[1].data.str.area, "us") == 0) {
|
|
unit = TIME_UNIT_US;
|
|
}
|
|
else {
|
|
memprintf(err, "expects 's', 'ms' or 'us', got '%s'",
|
|
args[1].data.str.area);
|
|
return 0;
|
|
}
|
|
|
|
chunk_destroy(&args[1].data.str);
|
|
args[1].type = ARGT_SINT;
|
|
args[1].data.sint = unit;
|
|
}
|
|
else if (args[1].type != ARGT_STOP) {
|
|
memprintf(err, "Unexpected arg type");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* retrieve the current local date in epoch time, converts it to milliseconds
|
|
* or microseconds if asked to in optional args[1] unit param, and applies an
|
|
* optional args[0] offset.
|
|
*/
|
|
static int
|
|
smp_fetch_date(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.u.sint = date.tv_sec;
|
|
|
|
/* report in milliseconds */
|
|
if (args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_MS) {
|
|
smp->data.u.sint *= 1000;
|
|
smp->data.u.sint += date.tv_usec / 1000;
|
|
}
|
|
/* report in microseconds */
|
|
else if (args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_US) {
|
|
smp->data.u.sint *= 1000000;
|
|
smp->data.u.sint += date.tv_usec;
|
|
}
|
|
|
|
/* add offset */
|
|
if (args[0].type == ARGT_SINT)
|
|
smp->data.u.sint += args[0].data.sint;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
|
|
return 1;
|
|
}
|
|
|
|
/* retrieve the current microsecond part of the date */
|
|
static int
|
|
smp_fetch_date_us(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.u.sint = date.tv_usec;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* returns the hostname */
|
|
static int
|
|
smp_fetch_hostname(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.area = hostname;
|
|
smp->data.u.str.data = strlen(hostname);
|
|
return 1;
|
|
}
|
|
|
|
/* returns the number of processes */
|
|
static int
|
|
smp_fetch_nbproc(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the number of the current process (between 1 and nbproc */
|
|
static int
|
|
smp_fetch_proc(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the number of the current thread (between 1 and nbthread */
|
|
static int
|
|
smp_fetch_thread(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = tid;
|
|
return 1;
|
|
}
|
|
|
|
/* generate a random 32-bit integer for whatever purpose, with an optional
|
|
* range specified in argument.
|
|
*/
|
|
static int
|
|
smp_fetch_rand(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.u.sint = ha_random32();
|
|
|
|
/* reduce if needed. Don't do a modulo, use all bits! */
|
|
if (args[0].type == ARGT_SINT)
|
|
smp->data.u.sint = ((u64)smp->data.u.sint * (u64)args[0].data.sint) >> 32;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
|
|
return 1;
|
|
}
|
|
|
|
/* returns true if the current process is stopping */
|
|
static int
|
|
smp_fetch_stopping(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = stopping;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the number of calls of the current stream's process_stream() */
|
|
static int
|
|
smp_fetch_cpu_calls(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->task->calls;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the average number of nanoseconds spent processing the stream per call */
|
|
static int
|
|
smp_fetch_cpu_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->cpu_time / smp->strm->task->calls : 0;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the total number of nanoseconds spent processing the stream */
|
|
static int
|
|
smp_fetch_cpu_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->task->cpu_time;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the average number of nanoseconds per call spent waiting for other tasks to be processed */
|
|
static int
|
|
smp_fetch_lat_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->lat_time / smp->strm->task->calls : 0;
|
|
return 1;
|
|
}
|
|
|
|
/* returns the total number of nanoseconds per call spent waiting for other tasks to be processed */
|
|
static int
|
|
smp_fetch_lat_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->strm->task->lat_time;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags |= SMP_F_CONST;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->data.u.str.area = args[0].data.str.area;
|
|
smp->data.u.str.data = args[0].data.str.data;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_check_const_bool(struct arg *args, char **err)
|
|
{
|
|
if (strcasecmp(args[0].data.str.area, "true") == 0 ||
|
|
strcasecmp(args[0].data.str.area, "1") == 0) {
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = 1;
|
|
return 1;
|
|
}
|
|
if (strcasecmp(args[0].data.str.area, "false") == 0 ||
|
|
strcasecmp(args[0].data.str.area, "0") == 0) {
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = 0;
|
|
return 1;
|
|
}
|
|
memprintf(err, "Expects 'true', 'false', '0' or '1'");
|
|
return 0;
|
|
}
|
|
|
|
static int smp_fetch_const_bool(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = args[0].data.sint;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_int(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args[0].data.sint;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_ipv4(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_IPV4;
|
|
smp->data.u.ipv4 = args[0].data.ipv4;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_ipv6(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_IPV6;
|
|
smp->data.u.ipv6 = args[0].data.ipv6;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_check_const_bin(struct arg *args, char **err)
|
|
{
|
|
char *binstr = NULL;
|
|
int binstrlen;
|
|
|
|
if (!parse_binary(args[0].data.str.area, &binstr, &binstrlen, err))
|
|
return 0;
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_STR;
|
|
args[0].data.str.area = binstr;
|
|
args[0].data.str.data = binstrlen;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags |= SMP_F_CONST;
|
|
smp->data.type = SMP_T_BIN;
|
|
smp->data.u.str.area = args[0].data.str.area;
|
|
smp->data.u.str.data = args[0].data.str.data;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_check_const_meth(struct arg *args, char **err)
|
|
{
|
|
enum http_meth_t meth;
|
|
int i;
|
|
|
|
meth = find_http_meth(args[0].data.str.area, args[0].data.str.data);
|
|
if (meth != HTTP_METH_OTHER) {
|
|
chunk_destroy(&args[0].data.str);
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = meth;
|
|
} else {
|
|
/* Check method avalaibility. A method is a token defined as :
|
|
* tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
|
|
* "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
|
|
* token = 1*tchar
|
|
*/
|
|
for (i = 0; i < args[0].data.str.data; i++) {
|
|
if (!HTTP_IS_TOKEN(args[0].data.str.area[i])) {
|
|
memprintf(err, "expects valid method.");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_const_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_METH;
|
|
if (args[0].type == ARGT_SINT) {
|
|
smp->flags &= ~SMP_F_CONST;
|
|
smp->data.u.meth.meth = args[0].data.sint;
|
|
smp->data.u.meth.str.area = "";
|
|
smp->data.u.meth.str.data = 0;
|
|
} else {
|
|
smp->flags |= SMP_F_CONST;
|
|
smp->data.u.meth.meth = HTTP_METH_OTHER;
|
|
smp->data.u.meth.str.area = args[0].data.str.area;
|
|
smp->data.u.meth.str.data = args[0].data.str.data;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// This function checks the "uuid" sample's arguments.
|
|
// Function won't get called when no parameter is specified (maybe a bug?)
|
|
static int smp_check_uuid(struct arg *args, char **err)
|
|
{
|
|
if (!args[0].type) {
|
|
args[0].type = ARGT_SINT;
|
|
args[0].data.sint = 4;
|
|
}
|
|
else if (args[0].data.sint != 4) {
|
|
memprintf(err, "Unsupported UUID version: '%lld'", args[0].data.sint);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Generate a RFC4122 UUID (default is v4 = fully random)
|
|
static int smp_fetch_uuid(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (args[0].data.sint == 4 || !args[0].type) {
|
|
ha_generate_uuid(&trash);
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
|
|
smp->data.u.str = trash;
|
|
return 1;
|
|
}
|
|
|
|
// more implementations of other uuid formats possible here
|
|
return 0;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Note: fetches that may return multiple types must be declared as the lowest
|
|
* common denominator, the type that can be casted into all other ones. For
|
|
* instance IPv4/IPv6 must be declared IPv4.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_CONST },
|
|
{ "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_CONST },
|
|
{ "env", smp_fetch_env, ARG1(1,STR), NULL, SMP_T_STR, SMP_USE_CONST },
|
|
{ "date", smp_fetch_date, ARG2(0,SINT,STR), smp_check_date_unit, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "date_us", smp_fetch_date_us, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "hostname", smp_fetch_hostname, 0, NULL, SMP_T_STR, SMP_USE_CONST },
|
|
{ "nbproc", smp_fetch_nbproc,0, NULL, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "proc", smp_fetch_proc, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "thread", smp_fetch_thread, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "rand", smp_fetch_rand, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_CONST },
|
|
{ "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
|
|
{ "uuid", smp_fetch_uuid, ARG1(0, SINT), smp_check_uuid, SMP_T_STR, SMP_USE_CONST },
|
|
|
|
{ "cpu_calls", smp_fetch_cpu_calls, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
|
|
{ "cpu_ns_avg", smp_fetch_cpu_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
|
|
{ "cpu_ns_tot", smp_fetch_cpu_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
|
|
{ "lat_ns_avg", smp_fetch_lat_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
|
|
{ "lat_ns_tot", smp_fetch_lat_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
|
|
|
|
{ "str", smp_fetch_const_str, ARG1(1,STR), NULL , SMP_T_STR, SMP_USE_CONST },
|
|
{ "bool", smp_fetch_const_bool, ARG1(1,STR), smp_check_const_bool, SMP_T_BOOL, SMP_USE_CONST },
|
|
{ "int", smp_fetch_const_int, ARG1(1,SINT), NULL , SMP_T_SINT, SMP_USE_CONST },
|
|
{ "ipv4", smp_fetch_const_ipv4, ARG1(1,IPV4), NULL , SMP_T_IPV4, SMP_USE_CONST },
|
|
{ "ipv6", smp_fetch_const_ipv6, ARG1(1,IPV6), NULL , SMP_T_IPV6, SMP_USE_CONST },
|
|
{ "bin", smp_fetch_const_bin, ARG1(1,STR), smp_check_const_bin , SMP_T_BIN, SMP_USE_CONST },
|
|
{ "meth", smp_fetch_const_meth, ARG1(1,STR), smp_check_const_meth, SMP_T_METH, SMP_USE_CONST },
|
|
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten */
|
|
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
|
|
{ "debug", sample_conv_debug, ARG2(0,STR,STR), smp_check_debug, SMP_T_ANY, SMP_T_ANY },
|
|
{ "b64dec", sample_conv_base642bin, 0, NULL, SMP_T_STR, SMP_T_BIN },
|
|
{ "base64", sample_conv_bin2base64, 0, NULL, SMP_T_BIN, SMP_T_STR },
|
|
{ "ub64enc", sample_conv_bin2base64url,0, NULL, SMP_T_BIN, SMP_T_STR },
|
|
{ "ub64dec", sample_conv_base64url2bin,0, NULL, SMP_T_STR, SMP_T_BIN },
|
|
{ "upper", sample_conv_str2upper, 0, NULL, SMP_T_STR, SMP_T_STR },
|
|
{ "lower", sample_conv_str2lower, 0, NULL, SMP_T_STR, SMP_T_STR },
|
|
{ "length", sample_conv_length, 0, NULL, SMP_T_STR, SMP_T_SINT },
|
|
{ "hex", sample_conv_bin2hex, 0, NULL, SMP_T_BIN, SMP_T_STR },
|
|
{ "hex2i", sample_conv_hex2int, 0, NULL, SMP_T_STR, SMP_T_SINT },
|
|
{ "ipmask", sample_conv_ipmask, ARG2(1,MSK4,MSK6), NULL, SMP_T_ADDR, SMP_T_IPV4 },
|
|
{ "ltime", sample_conv_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
|
|
{ "utime", sample_conv_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
|
|
{ "crc32", sample_conv_crc32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "crc32c", sample_conv_crc32c, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "djb2", sample_conv_djb2, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "sdbm", sample_conv_sdbm, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "wt6", sample_conv_wt6, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "xxh3", sample_conv_xxh3, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "xxh32", sample_conv_xxh32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "xxh64", sample_conv_xxh64, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
|
|
{ "json", sample_conv_json, ARG1(1,STR), sample_conv_json_check, SMP_T_STR, SMP_T_STR },
|
|
{ "bytes", sample_conv_bytes, ARG2(1,SINT,SINT), NULL, SMP_T_BIN, SMP_T_BIN },
|
|
{ "field", sample_conv_field, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
|
|
{ "word", sample_conv_word, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
|
|
{ "regsub", sample_conv_regsub, ARG3(2,REG,STR,STR), sample_conv_regsub_check, SMP_T_STR, SMP_T_STR },
|
|
{ "sha1", sample_conv_sha1, 0, NULL, SMP_T_BIN, SMP_T_BIN },
|
|
#ifdef USE_OPENSSL
|
|
{ "sha2", sample_conv_sha2, ARG1(0, SINT), smp_check_sha2, SMP_T_BIN, SMP_T_BIN },
|
|
#ifdef EVP_CIPH_GCM_MODE
|
|
{ "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN },
|
|
#endif
|
|
{ "digest", sample_conv_crypto_digest, ARG1(1,STR), check_crypto_digest, SMP_T_BIN, SMP_T_BIN },
|
|
{ "hmac", sample_conv_crypto_hmac, ARG2(2,STR,STR), check_crypto_hmac, SMP_T_BIN, SMP_T_BIN },
|
|
#endif
|
|
{ "concat", sample_conv_concat, ARG3(1,STR,STR,STR), smp_check_concat, SMP_T_STR, SMP_T_STR },
|
|
{ "strcmp", sample_conv_strcmp, ARG1(1,STR), smp_check_strcmp, SMP_T_STR, SMP_T_SINT },
|
|
#if defined(HAVE_CRYPTO_memcmp)
|
|
{ "secure_memcmp", sample_conv_secure_memcmp, ARG1(1,STR), smp_check_secure_memcmp, SMP_T_BIN, SMP_T_BOOL },
|
|
#endif
|
|
|
|
/* gRPC converters. */
|
|
{ "ungrpc", sample_conv_ungrpc, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
|
|
{ "protobuf", sample_conv_protobuf, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
|
|
|
|
/* FIX converters */
|
|
{ "fix_is_valid", sample_conv_fix_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
|
|
{ "fix_tag_value", sample_conv_fix_tag_value, ARG1(1,STR), sample_conv_fix_value_check, SMP_T_BIN, SMP_T_BIN },
|
|
|
|
/* MQTT converters */
|
|
{ "mqtt_is_valid", sample_conv_mqtt_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
|
|
{ "mqtt_field_value", sample_conv_mqtt_field_value, ARG2(2,STR,STR), sample_conv_mqtt_field_value_check, SMP_T_BIN, SMP_T_STR },
|
|
|
|
{ "iif", sample_conv_iif, ARG2(2, STR, STR), NULL, SMP_T_BOOL, SMP_T_STR },
|
|
|
|
{ "and", sample_conv_binary_and, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "or", sample_conv_binary_or, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "xor", sample_conv_binary_xor, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "cpl", sample_conv_binary_cpl, 0, NULL, SMP_T_SINT, SMP_T_SINT },
|
|
{ "bool", sample_conv_arith_bool, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
|
|
{ "not", sample_conv_arith_not, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
|
|
{ "odd", sample_conv_arith_odd, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
|
|
{ "even", sample_conv_arith_even, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
|
|
{ "add", sample_conv_arith_add, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "sub", sample_conv_arith_sub, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "mul", sample_conv_arith_mul, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "div", sample_conv_arith_div, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "mod", sample_conv_arith_mod, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
|
|
{ "neg", sample_conv_arith_neg, 0, NULL, SMP_T_SINT, SMP_T_SINT },
|
|
|
|
{ "htonl", sample_conv_htonl, 0, NULL, SMP_T_SINT, SMP_T_BIN },
|
|
{ "cut_crlf", sample_conv_cut_crlf, 0, NULL, SMP_T_STR, SMP_T_STR },
|
|
{ "ltrim", sample_conv_ltrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
|
|
{ "rtrim", sample_conv_rtrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
|
|
{ "json_query", sample_conv_json_query, ARG2(1,STR,STR), sample_check_json_query , SMP_T_STR, SMP_T_ANY },
|
|
{ NULL, NULL, 0, 0, 0 },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);
|