haproxy/include/common/standard.h
Willy Tarreau 48ef4c95b6 MINOR: tools: make str2sa_range() return the port in a separate argument
This will be needed so that we're don't have to extract it from the
returned address where it will not always be anymore (eg: for unresolved
servers).
2017-01-06 19:29:34 +01:00

1167 lines
39 KiB
C

/*
* include/common/standard.h
* This files contains some general purpose functions and macros.
*
* Copyright (C) 2000-2010 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _COMMON_STANDARD_H
#define _COMMON_STANDARD_H
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <common/chunk.h>
#include <common/config.h>
#include <common/namespace.h>
#include <eb32tree.h>
#ifndef LLONG_MAX
# define LLONG_MAX 9223372036854775807LL
# define LLONG_MIN (-LLONG_MAX - 1LL)
#endif
#ifndef ULLONG_MAX
# define ULLONG_MAX (LLONG_MAX * 2ULL + 1)
#endif
#ifndef LONGBITS
#define LONGBITS ((unsigned int)sizeof(long) * 8)
#endif
/* size used for max length of decimal representation of long long int. */
#define NB_LLMAX_STR (sizeof("-9223372036854775807")-1)
/* number of itoa_str entries */
#define NB_ITOA_STR 10
/* maximum quoted string length (truncated above) */
#define QSTR_SIZE 200
#define NB_QSTR 10
/****** string-specific macros and functions ******/
/* if a > max, then bound <a> to <max>. The macro returns the new <a> */
#define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); })
/* if a < min, then bound <a> to <min>. The macro returns the new <a> */
#define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); })
/* returns 1 only if only zero or one bit is set in X, which means that X is a
* power of 2, and 0 otherwise */
#define POWEROF2(x) (((x) & ((x)-1)) == 0)
/* operators to compare values. They're ordered that way so that the lowest bit
* serves as a negation for the test and contains all tests that are not equal.
*/
enum {
STD_OP_LE = 0, STD_OP_GT = 1,
STD_OP_EQ = 2, STD_OP_NE = 3,
STD_OP_GE = 4, STD_OP_LT = 5,
};
enum http_scheme {
SCH_HTTP,
SCH_HTTPS,
};
struct split_url {
enum http_scheme scheme;
const char *host;
int host_len;
};
extern int itoa_idx; /* index of next itoa_str to use */
/*
* copies at most <size-1> chars from <src> to <dst>. Last char is always
* set to 0, unless <size> is 0. The number of chars copied is returned
* (excluding the terminating zero).
* This code has been optimized for size and speed : on x86, it's 45 bytes
* long, uses only registers, and consumes only 4 cycles per char.
*/
extern int strlcpy2(char *dst, const char *src, int size);
/*
* This function simply returns a locally allocated string containing
* the ascii representation for number 'n' in decimal.
*/
extern char itoa_str[][171];
extern char *ultoa_r(unsigned long n, char *buffer, int size);
extern char *lltoa_r(long long int n, char *buffer, int size);
extern char *sltoa_r(long n, char *buffer, int size);
extern const char *ulltoh_r(unsigned long long n, char *buffer, int size);
static inline const char *ultoa(unsigned long n)
{
return ultoa_r(n, itoa_str[0], sizeof(itoa_str[0]));
}
/*
* unsigned long long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ulltoa(unsigned long long n, char *dst, size_t size);
/*
* unsigned long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ultoa_o(unsigned long n, char *dst, size_t size);
/*
* signed long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *ltoa_o(long int n, char *dst, size_t size);
/*
* signed long long ASCII representation
*
* return the last char '\0' or NULL if no enough
* space in dst
*/
char *lltoa(long long n, char *dst, size_t size);
/*
* write a ascii representation of a unsigned into dst,
* return a pointer to the last character
* Pad the ascii representation with '0', using size.
*/
char *utoa_pad(unsigned int n, char *dst, size_t size);
/*
* This function simply returns a locally allocated string containing the ascii
* representation for number 'n' in decimal, unless n is 0 in which case it
* returns the alternate string (or an empty string if the alternate string is
* NULL). It use is intended for limits reported in reports, where it's
* desirable not to display anything if there is no limit. Warning! it shares
* the same vector as ultoa_r().
*/
extern const char *limit_r(unsigned long n, char *buffer, int size, const char *alt);
/* returns a locally allocated string containing the ASCII representation of
* the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same
* function call (eg: printf), shared with the other similar functions making
* use of itoa_str[].
*/
static inline const char *U2A(unsigned long n)
{
const char *ret = ultoa_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0]));
if (++itoa_idx >= NB_ITOA_STR)
itoa_idx = 0;
return ret;
}
/* returns a locally allocated string containing the HTML representation of
* the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same
* function call (eg: printf), shared with the other similar functions making
* use of itoa_str[].
*/
static inline const char *U2H(unsigned long long n)
{
const char *ret = ulltoh_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0]));
if (++itoa_idx >= NB_ITOA_STR)
itoa_idx = 0;
return ret;
}
/* returns a locally allocated string containing the HTML representation of
* the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same
* function call (eg: printf), shared with the other similar functions making
* use of itoa_str[].
*/
static inline const char *LIM2A(unsigned long n, const char *alt)
{
const char *ret = limit_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0]), alt);
if (++itoa_idx >= NB_ITOA_STR)
itoa_idx = 0;
return ret;
}
/* returns a locally allocated string containing the quoted encoding of the
* input string. The output may be truncated to QSTR_SIZE chars, but it is
* guaranteed that the string will always be properly terminated. Quotes are
* encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
* always be at least 4 chars.
*/
const char *qstr(const char *str);
/* returns <str> or its quote-encoded equivalent if it contains at least one
* quote or a comma. This is aimed at build CSV-compatible strings.
*/
static inline const char *cstr(const char *str)
{
const char *p = str;
while (*p) {
if (*p == ',' || *p == '"')
return qstr(str);
p++;
}
return str;
}
/*
* Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
*/
extern int ishex(char s);
/*
* Return integer equivalent of character <c> for a hex digit (0-9, a-f, A-F),
* otherwise -1. This compact form helps gcc produce efficient code.
*/
static inline int hex2i(int c)
{
if (unlikely((unsigned char)(c -= '0') > 9)) {
if (likely((unsigned char)(c -= 'A' - '0') > 5 &&
(unsigned char)(c -= 'a' - 'A') > 5))
c = -11;
c += 10;
}
return c;
}
/* rounds <i> down to the closest value having max 2 digits */
unsigned int round_2dig(unsigned int i);
/*
* Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
* invalid character is found, a pointer to it is returned. If everything is
* fine, NULL is returned.
*/
extern const char *invalid_char(const char *name);
/*
* Checks <domainname> for invalid characters. Valid chars are [A-Za-z0-9_.-].
* If an invalid character is found, a pointer to it is returned.
* If everything is fine, NULL is returned.
*/
extern const char *invalid_domainchar(const char *name);
/*
* converts <str> to a locally allocated struct sockaddr_storage *, and a
* port range consisting in two integers. The low and high end are always set
* even if the port is unspecified, in which case (0,0) is returned. The low
* port is set in the sockaddr. Thus, it is enough to check the size of the
* returned range to know if an array must be allocated or not. The format is
* "addr[:[port[-port]]]", where "addr" can be a dotted IPv4 address, an IPv6
* address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6
* address wants to ignore port, it must be terminated by a trailing colon (':').
* The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on
* IPv6, use ":::port". NULL is returned if the host part cannot be resolved.
* If <pfx> is non-null, it is used as a string prefix before any path-based
* address (typically the path to a unix socket). If use_dns is not true,
* the funtion cannot accept the DNS resolution.
*/
struct sockaddr_storage *str2sa_range(const char *str,
int *port, int *low, int *high,
char **err, const char *pfx,
char **fqdn, int resolve);
/* converts <str> to a struct in_addr containing a network mask. It can be
* passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
* if the conversion succeeds otherwise non-zero.
*/
int str2mask(const char *str, struct in_addr *mask);
/* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
* succeeds otherwise non-zero.
*/
int cidr2dotted(int cidr, struct in_addr *mask);
/*
* converts <str> to two struct in_addr* which must be pre-allocated.
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
* is optionnal and either in the dotted or CIDR notation.
* Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
*/
int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask);
/* str2ip and str2ip2:
*
* converts <str> to a struct sockaddr_storage* provided by the caller. The
* caller must have zeroed <sa> first, and may have set sa->ss_family to force
* parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
* the function tries to guess the address family from the syntax. If the
* family is forced and the format doesn't match, an error is returned. The
* string is assumed to contain only an address, no port. The address can be a
* dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
* indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
* The return address will only have the address family and the address set,
* all other fields remain zero. The string is not supposed to be modified.
* The IPv6 '::' address is IN6ADDR_ANY.
*
* str2ip2:
*
* If <resolve> is set, this function try to resolve DNS, otherwise, it returns
* NULL result.
*/
struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve);
static inline struct sockaddr_storage *str2ip(const char *str, struct sockaddr_storage *sa)
{
return str2ip2(str, sa, 1);
}
/*
* converts <str> to two struct in6_addr* which must be pre-allocated.
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
* is an optionnal number of bits (128 being the default).
* Returns 1 if OK, 0 if error.
*/
int str62net(const char *str, struct in6_addr *addr, unsigned char *mask);
/*
* Parse IP address found in url.
*/
int url2ipv4(const char *addr, struct in_addr *dst);
/*
* Resolve destination server from URL. Convert <str> to a sockaddr_storage*.
*/
int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out);
/* Tries to convert a sockaddr_storage address to text form. Upon success, the
* address family is returned so that it's easy for the caller to adapt to the
* output format. Zero is returned if the address family is not supported. -1
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
* supported.
*/
int addr_to_str(struct sockaddr_storage *addr, char *str, int size);
/* Tries to convert a sockaddr_storage port to text form. Upon success, the
* address family is returned so that it's easy for the caller to adapt to the
* output format. Zero is returned if the address family is not supported. -1
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
* supported.
*/
int port_to_str(struct sockaddr_storage *addr, char *str, int size);
/* check if the given address is local to the system or not. It will return
* -1 when it's not possible to know, 0 when the address is not local, 1 when
* it is. We don't want to iterate over all interfaces for this (and it is not
* portable). So instead we try to bind in UDP to this address on a free non
* privileged port and to connect to the same address, port 0 (connect doesn't
* care). If it succeeds, we own the address. Note that non-inet addresses are
* considered local since they're most likely AF_UNIX.
*/
int addr_is_local(const struct netns_entry *ns,
const struct sockaddr_storage *orig);
/* will try to encode the string <string> replacing all characters tagged in
* <map> with the hexadecimal representation of their ASCII-code (2 digits)
* prefixed by <escape>, and will store the result between <start> (included)
* and <stop> (excluded), and will always terminate the string with a '\0'
* before <stop>. The position of the '\0' is returned if the conversion
* completes. If bytes are missing between <start> and <stop>, then the
* conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
* cannot even be stored so we return <start> without writing the 0.
* The input string must also be zero-terminated.
*/
extern const char hextab[];
char *encode_string(char *start, char *stop,
const char escape, const fd_set *map,
const char *string);
/*
* Same behavior, except that it encodes chunk <chunk> instead of a string.
*/
char *encode_chunk(char *start, char *stop,
const char escape, const fd_set *map,
const struct chunk *chunk);
/*
* Tries to prefix characters tagged in the <map> with the <escape>
* character. The input <string> must be zero-terminated. The result will
* be stored between <start> (included) and <stop> (excluded). This
* function will always try to terminate the resulting string with a '\0'
* before <stop>, and will return its position if the conversion
* completes.
*/
char *escape_string(char *start, char *stop,
const char escape, const fd_set *map,
const char *string);
/*
* Tries to prefix characters tagged in the <map> with the <escape>
* character. <chunk> contains the input to be escaped. The result will be
* stored between <start> (included) and <stop> (excluded). The function
* will always try to terminate the resulting string with a '\0' before
* <stop>, and will return its position if the conversion completes.
*/
char *escape_chunk(char *start, char *stop,
const char escape, const fd_set *map,
const struct chunk *chunk);
/* Check a string for using it in a CSV output format. If the string contains
* one of the following four char <">, <,>, CR or LF, the string is
* encapsulated between <"> and the <"> are escaped by a <""> sequence.
* <str> is the input string to be escaped. The function assumes that
* the input string is null-terminated.
*
* If <quote> is 0, the result is returned escaped but without double quote.
* It is useful if the escaped string is used between double quotes in the
* format.
*
* printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash));
*
* If <quote> is 1, the converter puts the quotes only if any character is
* escaped. If <quote> is 2, the converter always puts the quotes.
*
* <output> is a struct chunk used for storing the output string.
*
* The function returns the converted string on its output. If an error
* occurs, the function returns an empty string. This type of output is useful
* for using the function directly as printf() argument.
*
* If the output buffer is too short to contain the input string, the result
* is truncated.
*
* This function appends the encoding to the existing output chunk. Please
* use csv_enc() instead if you want to replace the output chunk.
*/
const char *csv_enc_append(const char *str, int quote, struct chunk *output);
/* same as above but the output chunk is reset first */
static inline const char *csv_enc(const char *str, int quote, struct chunk *output)
{
chunk_reset(output);
return csv_enc_append(str, quote, output);
}
/* Decode an URL-encoded string in-place. The resulting string might
* be shorter. If some forbidden characters are found, the conversion is
* aborted, the string is truncated before the issue and non-zero is returned,
* otherwise the operation returns non-zero indicating success.
*/
int url_decode(char *string);
/* This one is 6 times faster than strtoul() on athlon, but does
* no check at all.
*/
static inline unsigned int __str2ui(const char *s)
{
unsigned int i = 0;
while (*s) {
i = i * 10 - '0';
i += (unsigned char)*s++;
}
return i;
}
/* This one is 5 times faster than strtoul() on athlon with checks.
* It returns the value of the number composed of all valid digits read.
*/
static inline unsigned int __str2uic(const char *s)
{
unsigned int i = 0;
unsigned int j;
while (1) {
j = (*s++) - '0';
if (j > 9)
break;
i *= 10;
i += j;
}
return i;
}
/* This one is 28 times faster than strtoul() on athlon, but does
* no check at all!
*/
static inline unsigned int __strl2ui(const char *s, int len)
{
unsigned int i = 0;
while (len-- > 0) {
i = i * 10 - '0';
i += (unsigned char)*s++;
}
return i;
}
/* This one is 7 times faster than strtoul() on athlon with checks.
* It returns the value of the number composed of all valid digits read.
*/
static inline unsigned int __strl2uic(const char *s, int len)
{
unsigned int i = 0;
unsigned int j, k;
while (len-- > 0) {
j = (*s++) - '0';
k = i * 10;
if (j > 9)
break;
i = k + j;
}
return i;
}
/* This function reads an unsigned integer from the string pointed to by <s>
* and returns it. The <s> pointer is adjusted to point to the first unread
* char. The function automatically stops at <end>.
*/
static inline unsigned int __read_uint(const char **s, const char *end)
{
const char *ptr = *s;
unsigned int i = 0;
unsigned int j, k;
while (ptr < end) {
j = *ptr - '0';
k = i * 10;
if (j > 9)
break;
i = k + j;
ptr++;
}
*s = ptr;
return i;
}
unsigned long long int read_uint64(const char **s, const char *end);
long long int read_int64(const char **s, const char *end);
extern unsigned int str2ui(const char *s);
extern unsigned int str2uic(const char *s);
extern unsigned int strl2ui(const char *s, int len);
extern unsigned int strl2uic(const char *s, int len);
extern int strl2ic(const char *s, int len);
extern int strl2irc(const char *s, int len, int *ret);
extern int strl2llrc(const char *s, int len, long long *ret);
extern int strl2llrc_dotted(const char *text, int len, long long *ret);
extern unsigned int read_uint(const char **s, const char *end);
unsigned int inetaddr_host(const char *text);
unsigned int inetaddr_host_lim(const char *text, const char *stop);
unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret);
static inline char *cut_crlf(char *s) {
while (*s != '\r' && *s != '\n') {
char *p = s++;
if (!*p)
return p;
}
*s++ = '\0';
return s;
}
static inline char *ltrim(char *s, char c) {
if (c)
while (*s == c)
s++;
return s;
}
static inline char *rtrim(char *s, char c) {
char *p = s + strlen(s);
while (p-- > s)
if (*p == c)
*p = '\0';
else
break;
return s;
}
static inline char *alltrim(char *s, char c) {
rtrim(s, c);
return ltrim(s, c);
}
/* This function converts the time_t value <now> into a broken out struct tm
* which must be allocated by the caller. It is highly recommended to use this
* function intead of localtime() because that one requires a time_t* which
* is not always compatible with tv_sec depending on OS/hardware combinations.
*/
static inline void get_localtime(const time_t now, struct tm *tm)
{
localtime_r(&now, tm);
}
/* This function converts the time_t value <now> into a broken out struct tm
* which must be allocated by the caller. It is highly recommended to use this
* function intead of gmtime() because that one requires a time_t* which
* is not always compatible with tv_sec depending on OS/hardware combinations.
*/
static inline void get_gmtime(const time_t now, struct tm *tm)
{
gmtime_r(&now, tm);
}
/* This function parses a time value optionally followed by a unit suffix among
* "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
* expected by the caller. The computation does its best to avoid overflows.
* The value is returned in <ret> if everything is fine, and a NULL is returned
* by the function. In case of error, a pointer to the error is returned and
* <ret> is left untouched.
*/
extern const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags);
extern const char *parse_size_err(const char *text, unsigned *ret);
/* unit flags to pass to parse_time_err */
#define TIME_UNIT_US 0x0000
#define TIME_UNIT_MS 0x0001
#define TIME_UNIT_S 0x0002
#define TIME_UNIT_MIN 0x0003
#define TIME_UNIT_HOUR 0x0004
#define TIME_UNIT_DAY 0x0005
#define TIME_UNIT_MASK 0x0007
#define SEC 1
#define MINUTE (60 * SEC)
#define HOUR (60 * MINUTE)
#define DAY (24 * HOUR)
/* Multiply the two 32-bit operands and shift the 64-bit result right 32 bits.
* This is used to compute fixed ratios by setting one of the operands to
* (2^32*ratio).
*/
static inline unsigned int mul32hi(unsigned int a, unsigned int b)
{
return ((unsigned long long)a * b) >> 32;
}
/* gcc does not know when it can safely divide 64 bits by 32 bits. Use this
* function when you know for sure that the result fits in 32 bits, because
* it is optimal on x86 and on 64bit processors.
*/
static inline unsigned int div64_32(unsigned long long o1, unsigned int o2)
{
unsigned int result;
#ifdef __i386__
asm("divl %2"
: "=a" (result)
: "A"(o1), "rm"(o2));
#else
result = o1 / o2;
#endif
return result;
}
/* Simple popcountl implementation. It returns the number of ones in a word */
static inline unsigned int my_popcountl(unsigned long a)
{
unsigned int cnt;
for (cnt = 0; a; a >>= 1) {
if (a & 1)
cnt++;
}
return cnt;
}
/* Build a word with the <bits> lower bits set (reverse of my_popcountl) */
static inline unsigned long nbits(int bits)
{
if (--bits < 0)
return 0;
else
return (2UL << bits) - 1;
}
/*
* Parse binary string written in hexadecimal (source) and store the decoded
* result into binstr and set binstrlen to the lengh of binstr. Memory for
* binstr is allocated by the function. In case of error, returns 0 with an
* error message in err.
*/
int parse_binary(const char *source, char **binstr, int *binstrlen, char **err);
/* copies at most <n> characters from <src> and always terminates with '\0' */
char *my_strndup(const char *src, int n);
/*
* search needle in haystack
* returns the pointer if found, returns NULL otherwise
*/
const void *my_memmem(const void *, size_t, const void *, size_t);
/* This function returns the first unused key greater than or equal to <key> in
* ID tree <root>. Zero is returned if no place is found.
*/
unsigned int get_next_id(struct eb_root *root, unsigned int key);
/* This function compares a sample word possibly followed by blanks to another
* clean word. The compare is case-insensitive. 1 is returned if both are equal,
* otherwise zero. This intends to be used when checking HTTP headers for some
* values.
*/
int word_match(const char *sample, int slen, const char *word, int wlen);
/* Convert a fixed-length string to an IP address. Returns 0 in case of error,
* or the number of chars read in case of success.
*/
int buf2ip(const char *buf, size_t len, struct in_addr *dst);
int buf2ip6(const char *buf, size_t len, struct in6_addr *dst);
/* To be used to quote config arg positions. Returns the string at <ptr>
* surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
* if ptr is NULL or empty. The string is locally allocated.
*/
const char *quote_arg(const char *ptr);
/* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
int get_std_op(const char *str);
/* hash a 32-bit integer to another 32-bit integer */
extern unsigned int full_hash(unsigned int a);
static inline unsigned int __full_hash(unsigned int a)
{
/* This function is one of Bob Jenkins' full avalanche hashing
* functions, which when provides quite a good distribution for little
* input variations. The result is quite suited to fit over a 32-bit
* space with enough variations so that a randomly picked number falls
* equally before any server position.
* Check http://burtleburtle.net/bob/hash/integer.html for more info.
*/
a = (a+0x7ed55d16) + (a<<12);
a = (a^0xc761c23c) ^ (a>>19);
a = (a+0x165667b1) + (a<<5);
a = (a+0xd3a2646c) ^ (a<<9);
a = (a+0xfd7046c5) + (a<<3);
a = (a^0xb55a4f09) ^ (a>>16);
/* ensure values are better spread all around the tree by multiplying
* by a large prime close to 3/4 of the tree.
*/
return a * 3221225473U;
}
/* sets the address family to AF_UNSPEC so that is_addr() does not match */
static inline void clear_addr(struct sockaddr_storage *addr)
{
addr->ss_family = AF_UNSPEC;
}
/* returns non-zero if addr has a valid and non-null IPv4 or IPv6 address,
* otherwise zero.
*/
static inline int is_inet_addr(const struct sockaddr_storage *addr)
{
int i;
switch (addr->ss_family) {
case AF_INET:
return *(int *)&((struct sockaddr_in *)addr)->sin_addr;
case AF_INET6:
for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
if (((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i] != 0)
return ((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i];
}
return 0;
}
/* returns non-zero if addr has a valid and non-null IPv4 or IPv6 address,
* or is a unix address, otherwise returns zero.
*/
static inline int is_addr(const struct sockaddr_storage *addr)
{
if (addr->ss_family == AF_UNIX)
return 1;
else
return is_inet_addr(addr);
}
/* returns port in network byte order */
static inline int get_net_port(struct sockaddr_storage *addr)
{
switch (addr->ss_family) {
case AF_INET:
return ((struct sockaddr_in *)addr)->sin_port;
case AF_INET6:
return ((struct sockaddr_in6 *)addr)->sin6_port;
}
return 0;
}
/* returns port in host byte order */
static inline int get_host_port(struct sockaddr_storage *addr)
{
switch (addr->ss_family) {
case AF_INET:
return ntohs(((struct sockaddr_in *)addr)->sin_port);
case AF_INET6:
return ntohs(((struct sockaddr_in6 *)addr)->sin6_port);
}
return 0;
}
/* returns address len for <addr>'s family, 0 for unknown families */
static inline int get_addr_len(const struct sockaddr_storage *addr)
{
switch (addr->ss_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_UNIX:
return sizeof(struct sockaddr_un);
}
return 0;
}
/* set port in host byte order */
static inline int set_net_port(struct sockaddr_storage *addr, int port)
{
switch (addr->ss_family) {
case AF_INET:
((struct sockaddr_in *)addr)->sin_port = port;
case AF_INET6:
((struct sockaddr_in6 *)addr)->sin6_port = port;
}
return 0;
}
/* set port in network byte order */
static inline int set_host_port(struct sockaddr_storage *addr, int port)
{
switch (addr->ss_family) {
case AF_INET:
((struct sockaddr_in *)addr)->sin_port = htons(port);
case AF_INET6:
((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
}
return 0;
}
/* Convert mask from bit length form to in_addr form.
* This function never fails.
*/
void len2mask4(int len, struct in_addr *addr);
/* Convert mask from bit length form to in6_addr form.
* This function never fails.
*/
void len2mask6(int len, struct in6_addr *addr);
/* Return true if IPv4 address is part of the network */
extern int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net);
/* Return true if IPv6 address is part of the network */
extern int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net);
/* Map IPv4 adress on IPv6 address, as specified in RFC 3513. */
extern void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr);
/* Map IPv6 adress on IPv4 address, as specified in RFC 3513.
* Return true if conversion is possible and false otherwise.
*/
extern int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr);
/* compare two struct sockaddr_storage and return:
* 0 (true) if the addr is the same in both
* 1 (false) if the addr is not the same in both
*/
int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2);
/* copy ip from <source> into <dest>
* the caller must clear <dest> before calling.
* Returns a pointer to the destination
*/
struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest);
char *human_time(int t, short hz_div);
extern const char *monthname[];
/* date2str_log: write a date in the format :
* sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
* tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
* tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
*
* without using sprintf. return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *date2str_log(char *dest, struct tm *tm, struct timeval *date, size_t size);
/* Return the GMT offset for a specific local time.
* Both t and tm must represent the same time.
* The string returned has the same format as returned by strftime(... "%z", tm).
* Offsets are kept in an internal cache for better performances.
*/
const char *get_gmt_offset(time_t t, struct tm *tm);
/* gmt2str_log: write a date in the format :
* "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
* return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *gmt2str_log(char *dst, struct tm *tm, size_t size);
/* localdate2str_log: write a date in the format :
* "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
* Both t and tm must represent the same time.
* return a pointer to the last char written (\0) or
* NULL if there isn't enough space.
*/
char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size);
/* These 3 functions parses date string and fills the
* corresponding broken-down time in <tm>. In succes case,
* it returns 1, otherwise, it returns 0.
*/
int parse_http_date(const char *date, int len, struct tm *tm);
int parse_imf_date(const char *date, int len, struct tm *tm);
int parse_rfc850_date(const char *date, int len, struct tm *tm);
int parse_asctime_date(const char *date, int len, struct tm *tm);
/* Dynamically allocates a string of the proper length to hold the formatted
* output. NULL is returned on error. The caller is responsible for freeing the
* memory area using free(). The resulting string is returned in <out> if the
* pointer is not NULL. A previous version of <out> might be used to build the
* new string, and it will be freed before returning if it is not NULL, which
* makes it possible to build complex strings from iterative calls without
* having to care about freeing intermediate values, as in the example below :
*
* memprintf(&err, "invalid argument: '%s'", arg);
* ...
* memprintf(&err, "parser said : <%s>\n", *err);
* ...
* free(*err);
*
* This means that <err> must be initialized to NULL before first invocation.
* The return value also holds the allocated string, which eases error checking
* and immediate consumption. If the output pointer is not used, NULL must be
* passed instead and it will be ignored. The returned message will then also
* be NULL so that the caller does not have to bother with freeing anything.
*
* It is also convenient to use it without any free except the last one :
* err = NULL;
* if (!fct1(err)) report(*err);
* if (!fct2(err)) report(*err);
* if (!fct3(err)) report(*err);
* free(*err);
*/
char *memprintf(char **out, const char *format, ...)
__attribute__ ((format(printf, 2, 3)));
/* Used to add <level> spaces before each line of <out>, unless there is only one line.
* The input argument is automatically freed and reassigned. The result will have to be
* freed by the caller.
* Example of use :
* parse(cmd, &err); (callee: memprintf(&err, ...))
* fprintf(stderr, "Parser said: %s\n", indent_error(&err));
* free(err);
*/
char *indent_msg(char **out, int level);
/* Convert occurrences of environment variables in the input string to their
* corresponding value. A variable is identified as a series of alphanumeric
* characters or underscores following a '$' sign. The <in> string must be
* free()able. NULL returns NULL. The resulting string might be reallocated if
* some expansion is made.
*/
char *env_expand(char *in);
/* debugging macro to emit messages using write() on fd #-1 so that strace sees
* them.
*/
#define fddebug(msg...) do { char *_m = NULL; memprintf(&_m, ##msg); if (_m) write(-1, _m, strlen(_m)); free(_m); } while (0)
/* displays a <len> long memory block at <buf>, assuming first byte of <buf>
* has address <baseaddr>. The output is emitted to file <out>.
*/
void debug_hexdump(FILE *out, char *buf, unsigned int baseaddr, int len);
/* used from everywhere just to drain results we don't want to read and which
* recent versions of gcc increasingly and annoyingly complain about.
*/
extern int shut_your_big_mouth_gcc_int;
/* used from everywhere just to drain results we don't want to read and which
* recent versions of gcc increasingly and annoyingly complain about.
*/
static inline void shut_your_big_mouth_gcc(int r)
{
shut_your_big_mouth_gcc_int = r;
}
/* same as strstr() but case-insensitive */
const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2);
/************************* Composite address manipulation *********************
* Composite addresses are simply unsigned long data in which the higher bits
* represent a pointer, and the two lower bits are flags. There are several
* places where we just want to associate one or two flags to a pointer (eg,
* to type it), and these functions permit this. The pointer is necessarily a
* 32-bit aligned pointer, as its two lower bits will be cleared and replaced
* with the flags.
*****************************************************************************/
/* Masks the two lower bits of a composite address and converts it to a
* pointer. This is used to mix some bits with some aligned pointers to
* structs and to retrieve the original (32-bit aligned) pointer.
*/
static inline void *caddr_to_ptr(unsigned long caddr)
{
return (void *)(caddr & ~3UL);
}
/* Only retrieves the two lower bits of a composite address. This is used to mix
* some bits with some aligned pointers to structs and to retrieve the original
* data (2 bits).
*/
static inline unsigned int caddr_to_data(unsigned long caddr)
{
return (caddr & 3UL);
}
/* Combines the aligned pointer whose 2 lower bits will be masked with the bits
* from <data> to form a composite address. This is used to mix some bits with
* some aligned pointers to structs and to retrieve the original (32-bit aligned)
* pointer.
*/
static inline unsigned long caddr_from_ptr(void *ptr, unsigned int data)
{
return (((unsigned long)ptr) & ~3UL) + (data & 3);
}
/* sets the 2 bits of <data> in the <caddr> composite address */
static inline unsigned long caddr_set_flags(unsigned long caddr, unsigned int data)
{
return caddr | (data & 3);
}
/* clears the 2 bits of <data> in the <caddr> composite address */
static inline unsigned long caddr_clr_flags(unsigned long caddr, unsigned int data)
{
return caddr & ~(unsigned long)(data & 3);
}
/* UTF-8 decoder status */
#define UTF8_CODE_OK 0x00
#define UTF8_CODE_OVERLONG 0x10
#define UTF8_CODE_INVRANGE 0x20
#define UTF8_CODE_BADSEQ 0x40
unsigned char utf8_next(const char *s, int len, unsigned int *c);
static inline unsigned char utf8_return_code(unsigned int code)
{
return code & 0xf0;
}
static inline unsigned char utf8_return_length(unsigned char code)
{
return code & 0x0f;
}
/* Turns 64-bit value <a> from host byte order to network byte order.
* The principle consists in letting the compiler detect we're playing
* with a union and simplify most or all operations. The asm-optimized
* htonl() version involving bswap (x86) / rev (arm) / other is a single
* operation on little endian, or a NOP on big-endian. In both cases,
* this lets the compiler "see" that we're rebuilding a 64-bit word from
* two 32-bit quantities that fit into a 32-bit register. In big endian,
* the whole code is optimized out. In little endian, with a decent compiler,
* a few bswap and 2 shifts are left, which is the minimum acceptable.
*/
static inline unsigned long long my_htonll(unsigned long long a)
{
union {
struct {
unsigned int w1;
unsigned int w2;
} by32;
unsigned long long by64;
} w = { .by64 = a };
return ((unsigned long long)htonl(w.by32.w1) << 32) | htonl(w.by32.w2);
}
/* Turns 64-bit value <a> from network byte order to host byte order. */
static inline unsigned long long my_ntohll(unsigned long long a)
{
return my_htonll(a);
}
/* returns a 64-bit a timestamp with the finest resolution available. The
* unit is intentionally not specified. It's mostly used to compare dates.
*/
#if defined(__i386__) || defined(__x86_64__)
static inline unsigned long long rdtsc()
{
unsigned int a, d;
asm volatile("rdtsc" : "=a" (a), "=d" (d));
return a + ((unsigned long long)d << 32);
}
#else
static inline unsigned long long rdtsc()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
#endif
/* append a copy of string <str> (in a wordlist) at the end of the list <li>
* On failure : return 0 and <err> filled with an error message.
* The caller is responsible for freeing the <err> and <str> copy
* memory area using free()
*/
struct list;
int list_append_word(struct list *li, const char *str, char **err);
int dump_text(struct chunk *out, const char *buf, int bsize);
int dump_binary(struct chunk *out, const char *buf, int bsize);
int dump_text_line(struct chunk *out, const char *buf, int bsize, int len,
int *line, int ptr);
/* same as realloc() except that ptr is also freed upon failure */
static inline void *my_realloc2(void *ptr, size_t size)
{
void *ret;
ret = realloc(ptr, size);
if (!ret && size)
free(ptr);
return ret;
}
/* HAP_STRING() makes a string from a literal while HAP_XSTRING() first
* evaluates the argument and is suited to pass macros.
*
* They allow macros like PCRE_MAJOR to be defined without quotes, which
* is convenient for applications that want to test its value.
*/
#define HAP_STRING(...) #__VA_ARGS__
#define HAP_XSTRING(...) HAP_STRING(__VA_ARGS__)
#endif /* _COMMON_STANDARD_H */