mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-05-03 16:28:01 +00:00
This new analyzer will be called for each HTTP request/response, before the parsing of the body. It is identified by AN_FLT_HTTP_HDRS. Special care was taken about the following condition : * the frontend is a TCP proxy * filters are defined in the frontend section * the selected backend is a HTTP proxy So, this patch explicitly add AN_FLT_HTTP_HDRS analyzer on the request and the response channels when the backend is a HTTP proxy and when there are filters attatched on the stream. This patch simplifies http_request_forward_body and http_response_forward_body functions.
3560 lines
117 KiB
C
3560 lines
117 KiB
C
/*
|
|
* Stream management functions.
|
|
*
|
|
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <common/cfgparse.h>
|
|
#include <common/config.h>
|
|
#include <common/buffer.h>
|
|
#include <common/debug.h>
|
|
#include <common/memory.h>
|
|
|
|
#include <types/applet.h>
|
|
#include <types/capture.h>
|
|
#include <types/filters.h>
|
|
#include <types/global.h>
|
|
|
|
#include <proto/acl.h>
|
|
#include <proto/action.h>
|
|
#include <proto/arg.h>
|
|
#include <proto/backend.h>
|
|
#include <proto/channel.h>
|
|
#include <proto/checks.h>
|
|
#include <proto/connection.h>
|
|
#include <proto/dumpstats.h>
|
|
#include <proto/fd.h>
|
|
#include <proto/filters.h>
|
|
#include <proto/freq_ctr.h>
|
|
#include <proto/frontend.h>
|
|
#include <proto/hdr_idx.h>
|
|
#include <proto/hlua.h>
|
|
#include <proto/listener.h>
|
|
#include <proto/log.h>
|
|
#include <proto/raw_sock.h>
|
|
#include <proto/session.h>
|
|
#include <proto/stream.h>
|
|
#include <proto/pipe.h>
|
|
#include <proto/proto_http.h>
|
|
#include <proto/proto_tcp.h>
|
|
#include <proto/proxy.h>
|
|
#include <proto/queue.h>
|
|
#include <proto/server.h>
|
|
#include <proto/sample.h>
|
|
#include <proto/stick_table.h>
|
|
#include <proto/stream_interface.h>
|
|
#include <proto/task.h>
|
|
#include <proto/vars.h>
|
|
|
|
struct pool_head *pool2_stream;
|
|
struct list streams;
|
|
|
|
/* list of streams waiting for at least one buffer */
|
|
struct list buffer_wq = LIST_HEAD_INIT(buffer_wq);
|
|
|
|
/* List of all use-service keywords. */
|
|
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
|
|
|
|
/* This function is called from the session handler which detects the end of
|
|
* handshake, in order to complete initialization of a valid stream. It must be
|
|
* called with a session (which may be embryonic). It returns the pointer to
|
|
* the newly created stream, or NULL in case of fatal error. The client-facing
|
|
* end point is assigned to <origin>, which must be valid. The task's context
|
|
* is set to the new stream, and its function is set to process_stream().
|
|
* Target and analysers are null.
|
|
*/
|
|
struct stream *stream_new(struct session *sess, struct task *t, enum obj_type *origin)
|
|
{
|
|
struct stream *s;
|
|
struct connection *conn = objt_conn(origin);
|
|
struct appctx *appctx = objt_appctx(origin);
|
|
|
|
if (unlikely((s = pool_alloc2(pool2_stream)) == NULL))
|
|
return s;
|
|
|
|
/* minimum stream initialization required for an embryonic stream is
|
|
* fairly low. We need very little to execute L4 ACLs, then we need a
|
|
* task to make the client-side connection live on its own.
|
|
* - flags
|
|
* - stick-entry tracking
|
|
*/
|
|
s->flags = 0;
|
|
s->logs.logwait = sess->fe->to_log;
|
|
s->logs.level = 0;
|
|
s->logs.accept_date = sess->accept_date; /* user-visible date for logging */
|
|
s->logs.tv_accept = sess->tv_accept; /* corrected date for internal use */
|
|
tv_zero(&s->logs.tv_request);
|
|
s->logs.t_queue = -1;
|
|
s->logs.t_connect = -1;
|
|
s->logs.t_data = -1;
|
|
s->logs.t_close = 0;
|
|
s->logs.bytes_in = s->logs.bytes_out = 0;
|
|
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
|
|
s->logs.srv_queue_size = 0; /* we will get this number soon */
|
|
|
|
/* default logging function */
|
|
s->do_log = strm_log;
|
|
|
|
/* default error reporting function, may be changed by analysers */
|
|
s->srv_error = default_srv_error;
|
|
|
|
/* Initialise the current rule list pointer to NULL. We are sure that
|
|
* any rulelist match the NULL pointer.
|
|
*/
|
|
s->current_rule_list = NULL;
|
|
s->current_rule = NULL;
|
|
|
|
/* Copy SC counters for the stream. We don't touch refcounts because
|
|
* any reference we have is inherited from the session. Since the stream
|
|
* doesn't exist without the session, the session's existence guarantees
|
|
* we don't lose the entry. During the store operation, the stream won't
|
|
* touch these ones.
|
|
*/
|
|
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr));
|
|
|
|
s->sess = sess;
|
|
s->si[0].flags = SI_FL_NONE;
|
|
s->si[1].flags = SI_FL_ISBACK;
|
|
|
|
s->uniq_id = global.req_count++;
|
|
|
|
/* OK, we're keeping the stream, so let's properly initialize the stream */
|
|
LIST_ADDQ(&streams, &s->list);
|
|
LIST_INIT(&s->back_refs);
|
|
LIST_INIT(&s->buffer_wait);
|
|
|
|
s->flags |= SF_INITIALIZED;
|
|
s->unique_id = NULL;
|
|
|
|
s->task = t;
|
|
t->process = process_stream;
|
|
t->context = s;
|
|
t->expire = TICK_ETERNITY;
|
|
|
|
/* Note: initially, the stream's backend points to the frontend.
|
|
* This changes later when switching rules are executed or
|
|
* when the default backend is assigned.
|
|
*/
|
|
s->be = sess->fe;
|
|
s->req.buf = s->res.buf = NULL;
|
|
s->req_cap = NULL;
|
|
s->res_cap = NULL;
|
|
|
|
/* Initialise all the variables contexts even if not used.
|
|
* This permits to prune these contexts without errors.
|
|
*/
|
|
vars_init(&s->vars_txn, SCOPE_TXN);
|
|
vars_init(&s->vars_reqres, SCOPE_REQ);
|
|
|
|
/* this part should be common with other protocols */
|
|
si_reset(&s->si[0]);
|
|
si_set_state(&s->si[0], SI_ST_EST);
|
|
|
|
/* attach the incoming connection to the stream interface now. */
|
|
if (conn)
|
|
si_attach_conn(&s->si[0], conn);
|
|
else if (appctx)
|
|
si_attach_appctx(&s->si[0], appctx);
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->si[0].flags |= SI_FL_INDEP_STR;
|
|
|
|
/* pre-initialize the other side's stream interface to an INIT state. The
|
|
* callbacks will be initialized before attempting to connect.
|
|
*/
|
|
si_reset(&s->si[1]);
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->si[1].flags |= SI_FL_INDEP_STR;
|
|
|
|
stream_init_srv_conn(s);
|
|
s->target = NULL;
|
|
s->pend_pos = NULL;
|
|
|
|
/* init store persistence */
|
|
s->store_count = 0;
|
|
|
|
channel_init(&s->req);
|
|
s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */
|
|
s->req.analysers = 0;
|
|
channel_auto_connect(&s->req); /* don't wait to establish connection */
|
|
channel_auto_close(&s->req); /* let the producer forward close requests */
|
|
|
|
s->req.rto = sess->fe->timeout.client;
|
|
s->req.wto = TICK_ETERNITY;
|
|
s->req.rex = TICK_ETERNITY;
|
|
s->req.wex = TICK_ETERNITY;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
|
|
channel_init(&s->res);
|
|
s->res.flags |= CF_ISRESP;
|
|
s->res.analysers = 0;
|
|
|
|
if (sess->fe->options2 & PR_O2_NODELAY) {
|
|
s->req.flags |= CF_NEVER_WAIT;
|
|
s->res.flags |= CF_NEVER_WAIT;
|
|
}
|
|
|
|
s->res.wto = sess->fe->timeout.client;
|
|
s->res.rto = TICK_ETERNITY;
|
|
s->res.rex = TICK_ETERNITY;
|
|
s->res.wex = TICK_ETERNITY;
|
|
s->res.analyse_exp = TICK_ETERNITY;
|
|
|
|
s->txn = NULL;
|
|
|
|
HLUA_INIT(&s->hlua);
|
|
|
|
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
/* finish initialization of the accepted file descriptor */
|
|
if (conn)
|
|
conn_data_want_recv(conn);
|
|
else if (appctx)
|
|
si_applet_want_get(&s->si[0]);
|
|
|
|
if (sess->fe->accept && sess->fe->accept(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
/* it is important not to call the wakeup function directly but to
|
|
* pass through task_wakeup(), because this one knows how to apply
|
|
* priorities to tasks.
|
|
*/
|
|
task_wakeup(t, TASK_WOKEN_INIT);
|
|
return s;
|
|
|
|
/* Error unrolling */
|
|
out_fail_accept:
|
|
flt_stream_release(s, 0);
|
|
LIST_DEL(&s->list);
|
|
pool_free2(pool2_stream, s);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* frees the context associated to a stream. It must have been removed first.
|
|
*/
|
|
static void stream_free(struct stream *s)
|
|
{
|
|
struct session *sess = strm_sess(s);
|
|
struct proxy *fe = sess->fe;
|
|
struct bref *bref, *back;
|
|
struct connection *cli_conn = objt_conn(sess->origin);
|
|
int i;
|
|
|
|
if (s->pend_pos)
|
|
pendconn_free(s->pend_pos);
|
|
|
|
if (objt_server(s->target)) { /* there may be requests left pending in queue */
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
objt_server(s->target)->cur_sess--;
|
|
}
|
|
if (may_dequeue_tasks(objt_server(s->target), s->be))
|
|
process_srv_queue(objt_server(s->target));
|
|
}
|
|
|
|
if (unlikely(s->srv_conn)) {
|
|
/* the stream still has a reserved slot on a server, but
|
|
* it should normally be only the same as the one above,
|
|
* so this should not happen in fact.
|
|
*/
|
|
sess_change_server(s, NULL);
|
|
}
|
|
|
|
if (s->req.pipe)
|
|
put_pipe(s->req.pipe);
|
|
|
|
if (s->res.pipe)
|
|
put_pipe(s->res.pipe);
|
|
|
|
/* We may still be present in the buffer wait queue */
|
|
if (!LIST_ISEMPTY(&s->buffer_wait)) {
|
|
LIST_DEL(&s->buffer_wait);
|
|
LIST_INIT(&s->buffer_wait);
|
|
}
|
|
|
|
b_drop(&s->req.buf);
|
|
b_drop(&s->res.buf);
|
|
if (!LIST_ISEMPTY(&buffer_wq))
|
|
stream_offer_buffers();
|
|
|
|
hlua_ctx_destroy(&s->hlua);
|
|
if (s->txn)
|
|
http_end_txn(s);
|
|
|
|
/* ensure the client-side transport layer is destroyed */
|
|
if (cli_conn)
|
|
conn_force_close(cli_conn);
|
|
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (!s->store[i].ts)
|
|
continue;
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
}
|
|
|
|
if (s->txn) {
|
|
pool_free2(pool2_hdr_idx, s->txn->hdr_idx.v);
|
|
pool_free2(pool2_http_txn, s->txn);
|
|
s->txn = NULL;
|
|
}
|
|
|
|
flt_stream_stop(s);
|
|
flt_stream_release(s, 0);
|
|
|
|
if (fe) {
|
|
pool_free2(fe->rsp_cap_pool, s->res_cap);
|
|
pool_free2(fe->req_cap_pool, s->req_cap);
|
|
}
|
|
|
|
/* Cleanup all variable contexts. */
|
|
vars_prune(&s->vars_txn, s);
|
|
vars_prune(&s->vars_reqres, s);
|
|
|
|
stream_store_counters(s);
|
|
|
|
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
|
|
/* we have to unlink all watchers. We must not relink them if
|
|
* this stream was the last one in the list.
|
|
*/
|
|
LIST_DEL(&bref->users);
|
|
LIST_INIT(&bref->users);
|
|
if (s->list.n != &streams)
|
|
LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
|
|
bref->ref = s->list.n;
|
|
}
|
|
LIST_DEL(&s->list);
|
|
si_release_endpoint(&s->si[1]);
|
|
si_release_endpoint(&s->si[0]);
|
|
|
|
/* FIXME: for now we have a 1:1 relation between stream and session so
|
|
* the stream must free the session.
|
|
*/
|
|
pool_free2(pool2_stream, s);
|
|
session_free(sess);
|
|
|
|
/* We may want to free the maximum amount of pools if the proxy is stopping */
|
|
if (fe && unlikely(fe->state == PR_STSTOPPED)) {
|
|
pool_flush2(pool2_buffer);
|
|
pool_flush2(pool2_http_txn);
|
|
pool_flush2(pool2_hdr_idx);
|
|
pool_flush2(pool2_requri);
|
|
pool_flush2(pool2_capture);
|
|
pool_flush2(pool2_stream);
|
|
pool_flush2(pool2_session);
|
|
pool_flush2(pool2_connection);
|
|
pool_flush2(pool2_pendconn);
|
|
pool_flush2(fe->req_cap_pool);
|
|
pool_flush2(fe->rsp_cap_pool);
|
|
}
|
|
}
|
|
|
|
/* Allocates a receive buffer for channel <chn>, but only if it's guaranteed
|
|
* that it's not the last available buffer or it's the response buffer. Unless
|
|
* the buffer is the response buffer, an extra control is made so that we always
|
|
* keep <tune.buffers.reserved> buffers available after this allocation. To be
|
|
* called at the beginning of recv() callbacks to ensure that the required
|
|
* buffers are properly allocated. Returns 0 in case of failure, non-zero
|
|
* otherwise.
|
|
*/
|
|
int stream_alloc_recv_buffer(struct channel *chn)
|
|
{
|
|
struct stream *s;
|
|
struct buffer *b;
|
|
int margin = 0;
|
|
|
|
if (!(chn->flags & CF_ISRESP))
|
|
margin = global.tune.reserved_bufs;
|
|
|
|
s = chn_strm(chn);
|
|
|
|
b = b_alloc_margin(&chn->buf, margin);
|
|
if (b)
|
|
return 1;
|
|
|
|
if (LIST_ISEMPTY(&s->buffer_wait))
|
|
LIST_ADDQ(&buffer_wq, &s->buffer_wait);
|
|
return 0;
|
|
}
|
|
|
|
/* Allocates a work buffer for stream <s>. It is meant to be called inside
|
|
* process_stream(). It will only allocate the side needed for the function
|
|
* to work fine, which is the response buffer so that an error message may be
|
|
* built and returned. Response buffers may be allocated from the reserve, this
|
|
* is critical to ensure that a response may always flow and will never block a
|
|
* server from releasing a connection. Returns 0 in case of failure, non-zero
|
|
* otherwise.
|
|
*/
|
|
int stream_alloc_work_buffer(struct stream *s)
|
|
{
|
|
if (!LIST_ISEMPTY(&s->buffer_wait)) {
|
|
LIST_DEL(&s->buffer_wait);
|
|
LIST_INIT(&s->buffer_wait);
|
|
}
|
|
|
|
if (b_alloc_margin(&s->res.buf, 0))
|
|
return 1;
|
|
|
|
LIST_ADDQ(&buffer_wq, &s->buffer_wait);
|
|
return 0;
|
|
}
|
|
|
|
/* releases unused buffers after processing. Typically used at the end of the
|
|
* update() functions. It will try to wake up as many tasks as the number of
|
|
* buffers that it releases. In practice, most often streams are blocked on
|
|
* a single buffer, so it makes sense to try to wake two up when two buffers
|
|
* are released at once.
|
|
*/
|
|
void stream_release_buffers(struct stream *s)
|
|
{
|
|
if (s->req.buf->size && buffer_empty(s->req.buf))
|
|
b_free(&s->req.buf);
|
|
|
|
if (s->res.buf->size && buffer_empty(s->res.buf))
|
|
b_free(&s->res.buf);
|
|
|
|
/* if we're certain to have at least 1 buffer available, and there is
|
|
* someone waiting, we can wake up a waiter and offer them.
|
|
*/
|
|
if (!LIST_ISEMPTY(&buffer_wq))
|
|
stream_offer_buffers();
|
|
}
|
|
|
|
/* Runs across the list of pending streams waiting for a buffer and wakes one
|
|
* up if buffers are available. Will stop when the run queue reaches <rqlimit>.
|
|
* Should not be called directly, use stream_offer_buffers() instead.
|
|
*/
|
|
void __stream_offer_buffers(int rqlimit)
|
|
{
|
|
struct stream *sess, *bak;
|
|
|
|
list_for_each_entry_safe(sess, bak, &buffer_wq, buffer_wait) {
|
|
if (rqlimit <= run_queue)
|
|
break;
|
|
|
|
if (sess->task->state & TASK_RUNNING)
|
|
continue;
|
|
|
|
LIST_DEL(&sess->buffer_wait);
|
|
LIST_INIT(&sess->buffer_wait);
|
|
task_wakeup(sess->task, TASK_WOKEN_RES);
|
|
}
|
|
}
|
|
|
|
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
|
|
int init_stream()
|
|
{
|
|
LIST_INIT(&streams);
|
|
pool2_stream = create_pool("stream", sizeof(struct stream), MEM_F_SHARED);
|
|
return pool2_stream != NULL;
|
|
}
|
|
|
|
void stream_process_counters(struct stream *s)
|
|
{
|
|
struct session *sess = s->sess;
|
|
unsigned long long bytes;
|
|
void *ptr1,*ptr2;
|
|
int i;
|
|
|
|
bytes = s->req.total - s->logs.bytes_in;
|
|
s->logs.bytes_in = s->req.total;
|
|
if (bytes) {
|
|
sess->fe->fe_counters.bytes_in += bytes;
|
|
|
|
s->be->be_counters.bytes_in += bytes;
|
|
|
|
if (objt_server(s->target))
|
|
objt_server(s->target)->counters.bytes_in += bytes;
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
sess->listener->counters->bytes_in += bytes;
|
|
|
|
for (i = 0; i < MAX_SESS_STKCTR; i++) {
|
|
struct stkctr *stkctr = &s->stkctr[i];
|
|
|
|
if (!stkctr_entry(stkctr)) {
|
|
stkctr = &sess->stkctr[i];
|
|
if (!stkctr_entry(stkctr))
|
|
continue;
|
|
}
|
|
|
|
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT);
|
|
if (ptr1)
|
|
stktable_data_cast(ptr1, bytes_in_cnt) += bytes;
|
|
|
|
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE);
|
|
if (ptr2)
|
|
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes);
|
|
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
if (ptr1 || ptr2)
|
|
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
|
|
}
|
|
}
|
|
|
|
bytes = s->res.total - s->logs.bytes_out;
|
|
s->logs.bytes_out = s->res.total;
|
|
if (bytes) {
|
|
sess->fe->fe_counters.bytes_out += bytes;
|
|
|
|
s->be->be_counters.bytes_out += bytes;
|
|
|
|
if (objt_server(s->target))
|
|
objt_server(s->target)->counters.bytes_out += bytes;
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
sess->listener->counters->bytes_out += bytes;
|
|
|
|
for (i = 0; i < MAX_SESS_STKCTR; i++) {
|
|
struct stkctr *stkctr = &s->stkctr[i];
|
|
|
|
if (!stkctr_entry(stkctr)) {
|
|
stkctr = &sess->stkctr[i];
|
|
if (!stkctr_entry(stkctr))
|
|
continue;
|
|
}
|
|
|
|
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT);
|
|
if (ptr1)
|
|
stktable_data_cast(ptr1, bytes_out_cnt) += bytes;
|
|
|
|
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE);
|
|
if (ptr2)
|
|
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes);
|
|
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
if (ptr1 || ptr2)
|
|
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CON) meaning that a
|
|
* connection was attempted and that the file descriptor is already allocated.
|
|
* We must check for establishment, error and abort. Possible output states
|
|
* are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and
|
|
* SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER,
|
|
* otherwise 1. This only works with connection-based streams.
|
|
*/
|
|
static int sess_update_st_con_tcp(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
struct connection *srv_conn = __objt_conn(si->end);
|
|
|
|
/* If we got an error, or if nothing happened and the connection timed
|
|
* out, we must give up. The CER state handler will take care of retry
|
|
* attempts and error reports.
|
|
*/
|
|
if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) {
|
|
if (unlikely(req->flags & CF_WRITE_PARTIAL)) {
|
|
/* Some data were sent past the connection establishment,
|
|
* so we need to pretend we're established to log correctly
|
|
* and let later states handle the failure.
|
|
*/
|
|
si->state = SI_ST_EST;
|
|
si->err_type = SI_ET_DATA_ERR;
|
|
rep->flags |= CF_READ_ERROR | CF_WRITE_ERROR;
|
|
return 1;
|
|
}
|
|
si->exp = TICK_ETERNITY;
|
|
si->state = SI_ST_CER;
|
|
|
|
conn_force_close(srv_conn);
|
|
|
|
if (si->err_type)
|
|
return 0;
|
|
|
|
if (si->flags & SI_FL_ERR)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
else
|
|
si->err_type = SI_ET_CONN_TO;
|
|
return 0;
|
|
}
|
|
|
|
/* OK, maybe we want to abort */
|
|
if (!(req->flags & CF_WRITE_PARTIAL) &&
|
|
unlikely((rep->flags & CF_SHUTW) ||
|
|
((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */
|
|
((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) ||
|
|
s->be->options & PR_O_ABRT_CLOSE)))) {
|
|
/* give up */
|
|
si_shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return 1;
|
|
}
|
|
|
|
/* we need to wait a bit more if there was no activity either */
|
|
if (!(req->flags & CF_WRITE_ACTIVITY))
|
|
return 1;
|
|
|
|
/* OK, this means that a connection succeeded. The caller will be
|
|
* responsible for handling the transition from CON to EST.
|
|
*/
|
|
si->state = SI_ST_EST;
|
|
si->err_type = SI_ET_NONE;
|
|
return 1;
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CER) meaning that a
|
|
* previous connection attempt has failed and that the file descriptor
|
|
* has already been released. Possible causes include asynchronous error
|
|
* notification and time out. Possible output states are SI_ST_CLO when
|
|
* retries are exhausted, SI_ST_TAR when a delay is wanted before a new
|
|
* connection attempt, SI_ST_ASS when it's wise to retry on the same server,
|
|
* and SI_ST_REQ when an immediate redispatch is wanted. The buffers are
|
|
* marked as in error state. It returns 0.
|
|
*/
|
|
static int sess_update_st_cer(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
|
|
/* we probably have to release last stream from the server */
|
|
if (objt_server(s->target)) {
|
|
health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR);
|
|
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
objt_server(s->target)->cur_sess--;
|
|
}
|
|
}
|
|
|
|
/* ensure that we have enough retries left */
|
|
si->conn_retries--;
|
|
if (si->conn_retries < 0) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
}
|
|
|
|
if (objt_server(s->target))
|
|
objt_server(s->target)->counters.failed_conns++;
|
|
s->be->be_counters.failed_conns++;
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(objt_server(s->target), s->be))
|
|
process_srv_queue(objt_server(s->target));
|
|
|
|
/* shutw is enough so stop a connecting socket */
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
s->res.flags |= CF_READ_ERROR;
|
|
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return 0;
|
|
}
|
|
|
|
/* If the "redispatch" option is set on the backend, we are allowed to
|
|
* retry on another server. By default this redispatch occurs on the
|
|
* last retry, but if configured we allow redispatches to occur on
|
|
* configurable intervals, e.g. on every retry. In order to achieve this,
|
|
* we must mark the stream unassigned, and eventually clear the DIRECT
|
|
* bit to ignore any persistence cookie. We won't count a retry nor a
|
|
* redispatch yet, because this will depend on what server is selected.
|
|
* If the connection is not persistent, the balancing algorithm is not
|
|
* determinist (round robin) and there is more than one active server,
|
|
* we accept to perform an immediate redispatch without waiting since
|
|
* we don't care about this particular server.
|
|
*/
|
|
if (objt_server(s->target) &&
|
|
(s->be->options & PR_O_REDISP) && !(s->flags & SF_FORCE_PRST) &&
|
|
((__objt_server(s->target)->state < SRV_ST_RUNNING) ||
|
|
(((s->be->redispatch_after > 0) &&
|
|
((s->be->conn_retries - si->conn_retries) %
|
|
s->be->redispatch_after == 0)) ||
|
|
((s->be->redispatch_after < 0) &&
|
|
((s->be->conn_retries - si->conn_retries) %
|
|
(s->be->conn_retries + 1 + s->be->redispatch_after) == 0))) ||
|
|
(!(s->flags & SF_DIRECT) && s->be->srv_act > 1 &&
|
|
((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR)))) {
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(objt_server(s->target), s->be))
|
|
process_srv_queue(objt_server(s->target));
|
|
|
|
s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
|
|
si->state = SI_ST_REQ;
|
|
} else {
|
|
if (objt_server(s->target))
|
|
objt_server(s->target)->counters.retries++;
|
|
s->be->be_counters.retries++;
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
|
|
if (si->flags & SI_FL_ERR) {
|
|
/* The error was an asynchronous connection error, and we will
|
|
* likely have to retry connecting to the same server, most
|
|
* likely leading to the same result. To avoid this, we wait
|
|
* MIN(one second, connect timeout) before retrying.
|
|
*/
|
|
|
|
int delay = 1000;
|
|
|
|
if (s->be->timeout.connect && s->be->timeout.connect < delay)
|
|
delay = s->be->timeout.connect;
|
|
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
|
|
/* only wait when we're retrying on the same server */
|
|
if (si->state == SI_ST_ASS ||
|
|
(s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR ||
|
|
(s->be->srv_act <= 1)) {
|
|
si->state = SI_ST_TAR;
|
|
si->exp = tick_add(now_ms, MS_TO_TICKS(delay));
|
|
}
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function handles the transition between the SI_ST_CON state and the
|
|
* SI_ST_EST state. It must only be called after switching from SI_ST_CON (or
|
|
* SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined.
|
|
*/
|
|
static void sess_establish(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
|
|
/* First, centralize the timers information */
|
|
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->exp = TICK_ETERNITY;
|
|
|
|
if (objt_server(s->target))
|
|
health_adjust(objt_server(s->target), HANA_STATUS_L4_OK);
|
|
|
|
if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
|
|
/* if the user wants to log as soon as possible, without counting
|
|
* bytes from the server, then this is the right moment. */
|
|
if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
|
|
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
|
|
s->do_log(s);
|
|
}
|
|
}
|
|
else {
|
|
rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
|
|
}
|
|
|
|
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
|
|
|
|
/* Be sure to filter response headers if the backend is an HTTP proxy
|
|
* and if there are filters attached to the stream. */
|
|
if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s))
|
|
rep->analysers |= AN_FLT_HTTP_HDRS;
|
|
|
|
rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
|
|
if (req->flags & CF_WAKE_CONNECT) {
|
|
req->flags |= CF_WAKE_ONCE;
|
|
req->flags &= ~CF_WAKE_CONNECT;
|
|
}
|
|
if (objt_conn(si->end)) {
|
|
/* real connections have timeouts */
|
|
req->wto = s->be->timeout.server;
|
|
rep->rto = s->be->timeout.server;
|
|
}
|
|
req->wex = TICK_ETERNITY;
|
|
}
|
|
|
|
/* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE,
|
|
* SI_ST_TAR. Other input states are simply ignored.
|
|
* Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON
|
|
* and SI_ST_EST. Flags must have previously been updated for timeouts and other
|
|
* conditions.
|
|
*/
|
|
static void sess_update_stream_int(struct stream *s)
|
|
{
|
|
struct server *srv = objt_server(s->target);
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
|
|
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req, &s->res,
|
|
req->rex, s->res.wex,
|
|
req->flags, s->res.flags,
|
|
req->buf->i, req->buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state);
|
|
|
|
if (si->state == SI_ST_ASS) {
|
|
/* Server assigned to connection request, we have to try to connect now */
|
|
int conn_err;
|
|
|
|
conn_err = connect_server(s);
|
|
srv = objt_server(s->target);
|
|
|
|
if (conn_err == SF_ERR_NONE) {
|
|
/* state = SI_ST_CON or SI_ST_EST now */
|
|
if (srv)
|
|
srv_inc_sess_ctr(srv);
|
|
if (srv)
|
|
srv_set_sess_last(srv);
|
|
return;
|
|
}
|
|
|
|
/* We have received a synchronous error. We might have to
|
|
* abort, retry immediately or redispatch.
|
|
*/
|
|
if (conn_err == SF_ERR_INTERNAL) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
}
|
|
|
|
if (srv)
|
|
srv_inc_sess_ctr(srv);
|
|
if (srv)
|
|
srv_set_sess_last(srv);
|
|
if (srv)
|
|
srv->counters.failed_conns++;
|
|
s->be->be_counters.failed_conns++;
|
|
|
|
/* release other streams waiting for this server */
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
|
|
/* Failed and not retryable. */
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
req->flags |= CF_WRITE_ERROR;
|
|
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
|
|
/* no stream was ever accounted for this server */
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* We are facing a retryable error, but we don't want to run a
|
|
* turn-around now, as the problem is likely a source port
|
|
* allocation problem, so we want to retry now.
|
|
*/
|
|
si->state = SI_ST_CER;
|
|
si->flags &= ~SI_FL_ERR;
|
|
sess_update_st_cer(s);
|
|
/* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */
|
|
return;
|
|
}
|
|
else if (si->state == SI_ST_QUE) {
|
|
/* connection request was queued, check for any update */
|
|
if (!s->pend_pos) {
|
|
/* The connection is not in the queue anymore. Either
|
|
* we have a server connection slot available and we
|
|
* go directly to the assigned state, or we need to
|
|
* load-balance first and go to the INI state.
|
|
*/
|
|
si->exp = TICK_ETERNITY;
|
|
if (unlikely(!(s->flags & SF_ASSIGNED)))
|
|
si->state = SI_ST_REQ;
|
|
else {
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Connection request still in queue... */
|
|
if (si->flags & SI_FL_EXP) {
|
|
/* ... and timeout expired */
|
|
si->exp = TICK_ETERNITY;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
if (srv)
|
|
srv->counters.failed_conns++;
|
|
s->be->be_counters.failed_conns++;
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
req->flags |= CF_WRITE_TIMEOUT;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_QUEUE_TO;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* Connection remains in queue, check if we have to abort it */
|
|
if ((req->flags & (CF_READ_ERROR)) ||
|
|
((req->flags & CF_SHUTW_NOW) && /* empty and client aborted */
|
|
(channel_is_empty(req) || s->be->options & PR_O_ABRT_CLOSE))) {
|
|
/* give up */
|
|
si->exp = TICK_ETERNITY;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
si->err_type |= SI_ET_QUEUE_ABRT;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* Nothing changed */
|
|
return;
|
|
}
|
|
else if (si->state == SI_ST_TAR) {
|
|
/* Connection request might be aborted */
|
|
if ((req->flags & (CF_READ_ERROR)) ||
|
|
((req->flags & CF_SHUTW_NOW) && /* empty and client aborted */
|
|
(channel_is_empty(req) || s->be->options & PR_O_ABRT_CLOSE))) {
|
|
/* give up */
|
|
si->exp = TICK_ETERNITY;
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
if (!(si->flags & SI_FL_EXP))
|
|
return; /* still in turn-around */
|
|
|
|
si->exp = TICK_ETERNITY;
|
|
|
|
/* we keep trying on the same server as long as the stream is
|
|
* marked "assigned".
|
|
* FIXME: Should we force a redispatch attempt when the server is down ?
|
|
*/
|
|
if (s->flags & SF_ASSIGNED)
|
|
si->state = SI_ST_ASS;
|
|
else
|
|
si->state = SI_ST_REQ;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Set correct stream termination flags in case no analyser has done it. It
|
|
* also counts a failed request if the server state has not reached the request
|
|
* stage.
|
|
*/
|
|
static void sess_set_term_flags(struct stream *s)
|
|
{
|
|
if (!(s->flags & SF_FINST_MASK)) {
|
|
if (s->si[1].state < SI_ST_REQ) {
|
|
|
|
strm_fe(s)->fe_counters.failed_req++;
|
|
if (strm_li(s) && strm_li(s)->counters)
|
|
strm_li(s)->counters->failed_req++;
|
|
|
|
s->flags |= SF_FINST_R;
|
|
}
|
|
else if (s->si[1].state == SI_ST_QUE)
|
|
s->flags |= SF_FINST_Q;
|
|
else if (s->si[1].state < SI_ST_EST)
|
|
s->flags |= SF_FINST_C;
|
|
else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST)
|
|
s->flags |= SF_FINST_D;
|
|
else
|
|
s->flags |= SF_FINST_L;
|
|
}
|
|
}
|
|
|
|
/* This function initiates a server connection request on a stream interface
|
|
* already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for
|
|
* a real connection to a server, indicating that a server has been assigned,
|
|
* or SI_ST_EST for a successful connection to an applet. It may also return
|
|
* SI_ST_QUE, or SI_ST_CLO upon error.
|
|
*/
|
|
static void sess_prepare_conn_req(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
|
|
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
&s->req, &s->res,
|
|
s->req.rex, s->res.wex,
|
|
s->req.flags, s->res.flags,
|
|
s->req.buf->i, s->req.buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state);
|
|
|
|
if (si->state != SI_ST_REQ)
|
|
return;
|
|
|
|
if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
|
|
/* the applet directly goes to the EST state */
|
|
struct appctx *appctx = objt_appctx(si->end);
|
|
|
|
if (!appctx || appctx->applet != __objt_applet(s->target))
|
|
appctx = stream_int_register_handler(si, objt_applet(s->target));
|
|
|
|
if (!appctx) {
|
|
/* No more memory, let's immediately abort. Force the
|
|
* error code to ignore the ERR_LOCAL which is not a
|
|
* real error.
|
|
*/
|
|
s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK);
|
|
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
si->err_type = SI_ET_CONN_RES;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_EST;
|
|
si->err_type = SI_ET_NONE;
|
|
be_set_sess_last(s->be);
|
|
/* let sess_establish() finish the job */
|
|
return;
|
|
}
|
|
|
|
/* Try to assign a server */
|
|
if (srv_redispatch_connect(s) != 0) {
|
|
/* We did not get a server. Either we queued the
|
|
* connection request, or we encountered an error.
|
|
*/
|
|
if (si->state == SI_ST_QUE)
|
|
return;
|
|
|
|
/* we did not get any server, let's check the cause */
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* The server is assigned */
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
be_set_sess_last(s->be);
|
|
}
|
|
|
|
/* This function parses the use-service action ruleset. It executes
|
|
* the associated ACL and set an applet as a stream or txn final node.
|
|
* it returns ACT_RET_ERR if an error occurs, the proxy left in
|
|
* consistent state. It returns ACT_RET_STOP in succes case because
|
|
* use-service must be a terminal action. Returns ACT_RET_YIELD
|
|
* if the initialisation function require more data.
|
|
*/
|
|
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
|
|
{
|
|
struct appctx *appctx;
|
|
|
|
/* Initialises the applet if it is required. */
|
|
if (flags & ACT_FLAG_FIRST) {
|
|
/* Register applet. this function schedules the applet. */
|
|
s->target = &rule->applet.obj_type;
|
|
if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target))))
|
|
return ACT_RET_ERR;
|
|
|
|
/* Initialise the context. */
|
|
appctx = si_appctx(&s->si[1]);
|
|
memset(&appctx->ctx, 0, sizeof(appctx->ctx));
|
|
appctx->rule = rule;
|
|
}
|
|
else
|
|
appctx = si_appctx(&s->si[1]);
|
|
|
|
/* Stops the applet sheduling, in case of the init function miss
|
|
* some data.
|
|
*/
|
|
appctx_pause(appctx);
|
|
si_applet_stop_get(&s->si[1]);
|
|
|
|
/* Call initialisation. */
|
|
if (rule->applet.init)
|
|
switch (rule->applet.init(appctx, px, s)) {
|
|
case 0: return ACT_RET_ERR;
|
|
case 1: break;
|
|
default: return ACT_RET_YIELD;
|
|
}
|
|
|
|
/* Now we can schedule the applet. */
|
|
si_applet_cant_get(&s->si[1]);
|
|
appctx_wakeup(appctx);
|
|
|
|
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
|
|
sess->fe->fe_counters.intercepted_req++;
|
|
|
|
/* The flag SF_ASSIGNED prevent from server assignment. */
|
|
s->flags |= SF_ASSIGNED;
|
|
|
|
return ACT_RET_STOP;
|
|
}
|
|
|
|
/* This stream analyser checks the switching rules and changes the backend
|
|
* if appropriate. The default_backend rule is also considered, then the
|
|
* target backend's forced persistence rules are also evaluated last if any.
|
|
* It returns 1 if the processing can continue on next analysers, or zero if it
|
|
* either needs more data or wants to immediately abort the request.
|
|
*/
|
|
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct persist_rule *prst_rule;
|
|
struct session *sess = s->sess;
|
|
struct proxy *fe = sess->fe;
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
|
|
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->buf->i,
|
|
req->analysers);
|
|
|
|
/* now check whether we have some switching rules for this request */
|
|
if (!(s->flags & SF_BE_ASSIGNED)) {
|
|
struct switching_rule *rule;
|
|
|
|
list_for_each_entry(rule, &fe->switching_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* If the backend name is dynamic, try to resolve the name.
|
|
* If we can't resolve the name, or if any error occurs, break
|
|
* the loop and fallback to the default backend.
|
|
*/
|
|
struct proxy *backend;
|
|
|
|
if (rule->dynamic) {
|
|
struct chunk *tmp = get_trash_chunk();
|
|
if (!build_logline(s, tmp->str, tmp->size, &rule->be.expr))
|
|
break;
|
|
backend = proxy_be_by_name(tmp->str);
|
|
if (!backend)
|
|
break;
|
|
}
|
|
else
|
|
backend = rule->be.backend;
|
|
|
|
if (!stream_set_backend(s, backend))
|
|
goto sw_failed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* To ensure correct connection accounting on the backend, we
|
|
* have to assign one if it was not set (eg: a listen). This
|
|
* measure also takes care of correctly setting the default
|
|
* backend if any.
|
|
*/
|
|
if (!(s->flags & SF_BE_ASSIGNED))
|
|
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
|
|
goto sw_failed;
|
|
}
|
|
|
|
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
|
|
if (fe == s->be) {
|
|
s->req.analysers &= ~AN_REQ_INSPECT_BE;
|
|
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
|
|
s->req.analysers &= ~AN_FLT_START_BE;
|
|
}
|
|
|
|
/* as soon as we know the backend, we must check if we have a matching forced or ignored
|
|
* persistence rule, and report that in the stream.
|
|
*/
|
|
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (prst_rule->cond) {
|
|
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (prst_rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* no rule, or the rule matches */
|
|
if (prst_rule->type == PERSIST_TYPE_FORCE) {
|
|
s->flags |= SF_FORCE_PRST;
|
|
} else {
|
|
s->flags |= SF_IGNORE_PRST;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
|
|
sw_failed:
|
|
/* immediately abort this request in case of allocation failure */
|
|
channel_abort(&s->req);
|
|
channel_abort(&s->res);
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_RESOURCE;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_R;
|
|
|
|
if (s->txn)
|
|
s->txn->status = 500;
|
|
s->req.analysers &= AN_FLT_END;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
return 0;
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all use-server rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct server_rule *rule;
|
|
|
|
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->buf->i + req->buf->o,
|
|
req->analysers);
|
|
|
|
if (!(s->flags & SF_ASSIGNED)) {
|
|
list_for_each_entry(rule, &px->server_rules, list) {
|
|
int ret;
|
|
|
|
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
|
|
if (ret) {
|
|
struct server *srv = rule->srv.ptr;
|
|
|
|
if ((srv->state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) ||
|
|
(s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
break;
|
|
}
|
|
/* if the server is not UP, let's go on with next rules
|
|
* just in case another one is suited.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
return 1;
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all sticking rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
|
|
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->buf->i,
|
|
req->analysers);
|
|
|
|
list_for_each_entry(rule, &px->sticking_rules, list) {
|
|
int ret = 1 ;
|
|
int i;
|
|
|
|
/* Only the first stick store-request of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of the IP address from an HTTP
|
|
* header first, then from the source if not found.
|
|
*/
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
if (i != s->store_count)
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (rule->flags & STK_IS_MATCH) {
|
|
struct stksess *ts;
|
|
|
|
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
|
|
if (!(s->flags & SF_ASSIGNED)) {
|
|
struct eb32_node *node;
|
|
void *ptr;
|
|
|
|
/* srv found in table */
|
|
ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID);
|
|
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id));
|
|
if (node) {
|
|
struct server *srv;
|
|
|
|
srv = container_of(node, struct server, conf.id);
|
|
if ((srv->state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) ||
|
|
(s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
}
|
|
}
|
|
}
|
|
stktable_touch(rule->table.t, ts, 1);
|
|
}
|
|
}
|
|
if (rule->flags & STK_IS_STORE) {
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
return 1;
|
|
}
|
|
|
|
/* This stream analyser works on a response. It applies all store rules on it
|
|
* then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
int i;
|
|
int nbreq = s->store_count;
|
|
|
|
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
rep,
|
|
rep->rex, rep->wex,
|
|
rep->flags,
|
|
rep->buf->i,
|
|
rep->analysers);
|
|
|
|
list_for_each_entry(rule, &px->storersp_rules, list) {
|
|
int ret = 1 ;
|
|
|
|
/* Only the first stick store-response of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of a set-cookie value, with a
|
|
* fallback to a parameter found in a 302 redirect.
|
|
*
|
|
* The store-response rules are not allowed to override the
|
|
* store-request rules for the same table, but they may coexist.
|
|
* Thus we can have up to one store-request entry and one store-
|
|
* response entry for the same table at any time.
|
|
*/
|
|
for (i = nbreq; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
/* skip existing entries for this table */
|
|
if (i < s->store_count)
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* process store request and store response */
|
|
for (i = 0; i < s->store_count; i++) {
|
|
struct stksess *ts;
|
|
void *ptr;
|
|
|
|
if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) {
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
continue;
|
|
}
|
|
|
|
ts = stktable_lookup(s->store[i].table, s->store[i].ts);
|
|
if (ts) {
|
|
/* the entry already existed, we can free ours */
|
|
stktable_touch(s->store[i].table, ts, 1);
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
}
|
|
else
|
|
ts = stktable_store(s->store[i].table, s->store[i].ts, 1);
|
|
|
|
s->store[i].ts = NULL;
|
|
ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID);
|
|
stktable_data_cast(ptr, server_id) = objt_server(s->target)->puid;
|
|
}
|
|
s->store_count = 0; /* everything is stored */
|
|
|
|
rep->analysers &= ~an_bit;
|
|
rep->analyse_exp = TICK_ETERNITY;
|
|
return 1;
|
|
}
|
|
|
|
/* This macro is very specific to the function below. See the comments in
|
|
* process_stream() below to understand the logic and the tests.
|
|
*/
|
|
#define UPDATE_ANALYSERS(real, list, back, flag) { \
|
|
list = (((list) & ~(flag)) | ~(back)) & (real); \
|
|
back = real; \
|
|
if (!(list)) \
|
|
break; \
|
|
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
|
|
continue; \
|
|
}
|
|
|
|
/* Processes the client, server, request and response jobs of a stream task,
|
|
* then puts it back to the wait queue in a clean state, or cleans up its
|
|
* resources if it must be deleted. Returns in <next> the date the task wants
|
|
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
|
|
* nothing too many times, the request and response buffers flags are monitored
|
|
* and each function is called only if at least another function has changed at
|
|
* least one flag it is interested in.
|
|
*/
|
|
struct task *process_stream(struct task *t)
|
|
{
|
|
struct server *srv;
|
|
struct stream *s = t->context;
|
|
struct session *sess = s->sess;
|
|
unsigned int rqf_last, rpf_last;
|
|
unsigned int rq_prod_last, rq_cons_last;
|
|
unsigned int rp_cons_last, rp_prod_last;
|
|
unsigned int req_ana_back;
|
|
struct channel *req, *res;
|
|
struct stream_interface *si_f, *si_b;
|
|
|
|
req = &s->req;
|
|
res = &s->res;
|
|
|
|
si_f = &s->si[0];
|
|
si_b = &s->si[1];
|
|
|
|
//DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
|
|
// si_f->state, si_b->state, si_b->err_type, req->flags, res->flags);
|
|
|
|
/* this data may be no longer valid, clear it */
|
|
if (s->txn)
|
|
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
|
|
|
|
/* This flag must explicitly be set every time */
|
|
req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
|
|
res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
|
|
|
|
/* Keep a copy of req/rep flags so that we can detect shutdowns */
|
|
rqf_last = req->flags & ~CF_MASK_ANALYSER;
|
|
rpf_last = res->flags & ~CF_MASK_ANALYSER;
|
|
|
|
/* we don't want the stream interface functions to recursively wake us up */
|
|
si_f->flags |= SI_FL_DONT_WAKE;
|
|
si_b->flags |= SI_FL_DONT_WAKE;
|
|
|
|
/* 1a: Check for low level timeouts if needed. We just set a flag on
|
|
* stream interfaces when their timeouts have expired.
|
|
*/
|
|
if (unlikely(t->state & TASK_WOKEN_TIMER)) {
|
|
stream_int_check_timeouts(si_f);
|
|
stream_int_check_timeouts(si_b);
|
|
|
|
/* check channel timeouts, and close the corresponding stream interfaces
|
|
* for future reads or writes. Note: this will also concern upper layers
|
|
* but we do not touch any other flag. We must be careful and correctly
|
|
* detect state changes when calling them.
|
|
*/
|
|
|
|
channel_check_timeouts(req);
|
|
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_b);
|
|
}
|
|
|
|
if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
|
|
if (si_f->flags & SI_FL_NOHALF)
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_f);
|
|
}
|
|
|
|
channel_check_timeouts(res);
|
|
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_f);
|
|
}
|
|
|
|
if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
|
|
if (si_b->flags & SI_FL_NOHALF)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_b);
|
|
}
|
|
|
|
/* Once in a while we're woken up because the task expires. But
|
|
* this does not necessarily mean that a timeout has been reached.
|
|
* So let's not run a whole stream processing if only an expiration
|
|
* timeout needs to be refreshed.
|
|
*/
|
|
if (!((req->flags | res->flags) &
|
|
(CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
|
|
CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
|
|
!((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) &&
|
|
((t->state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER))
|
|
goto update_exp_and_leave;
|
|
}
|
|
|
|
/* below we may emit error messages so we have to ensure that we have
|
|
* our buffers properly allocated.
|
|
*/
|
|
if (!stream_alloc_work_buffer(s)) {
|
|
/* No buffer available, we've been subscribed to the list of
|
|
* buffer waiters, let's wait for our turn.
|
|
*/
|
|
goto update_exp_and_leave;
|
|
}
|
|
|
|
/* 1b: check for low-level errors reported at the stream interface.
|
|
* First we check if it's a retryable error (in which case we don't
|
|
* want to tell the buffer). Otherwise we report the error one level
|
|
* upper by setting flags into the buffers. Note that the side towards
|
|
* the client cannot have connect (hence retryable) errors. Also, the
|
|
* connection setup code must be able to deal with any type of abort.
|
|
*/
|
|
srv = objt_server(s->target);
|
|
if (unlikely(si_f->flags & SI_FL_ERR)) {
|
|
if (si_f->state == SI_ST_EST || si_f->state == SI_ST_DIS) {
|
|
si_shutr(si_f);
|
|
si_shutw(si_f);
|
|
stream_int_report_error(si_f);
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
s->be->be_counters.cli_aborts++;
|
|
sess->fe->fe_counters.cli_aborts++;
|
|
if (srv)
|
|
srv->counters.cli_aborts++;
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_CLICL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(si_b->flags & SI_FL_ERR)) {
|
|
if (si_b->state == SI_ST_EST || si_b->state == SI_ST_DIS) {
|
|
si_shutr(si_b);
|
|
si_shutw(si_b);
|
|
stream_int_report_error(si_b);
|
|
s->be->be_counters.failed_resp++;
|
|
if (srv)
|
|
srv->counters.failed_resp++;
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
s->be->be_counters.srv_aborts++;
|
|
sess->fe->fe_counters.srv_aborts++;
|
|
if (srv)
|
|
srv->counters.srv_aborts++;
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_SRVCL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
/* note: maybe we should process connection errors here ? */
|
|
}
|
|
|
|
if (si_b->state == SI_ST_CON) {
|
|
/* we were trying to establish a connection on the server side,
|
|
* maybe it succeeded, maybe it failed, maybe we timed out, ...
|
|
*/
|
|
if (unlikely(!sess_update_st_con_tcp(s)))
|
|
sess_update_st_cer(s);
|
|
else if (si_b->state == SI_ST_EST)
|
|
sess_establish(s);
|
|
|
|
/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
|
|
* (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
|
|
* SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
|
|
*/
|
|
}
|
|
|
|
rq_prod_last = si_f->state;
|
|
rq_cons_last = si_b->state;
|
|
rp_cons_last = si_f->state;
|
|
rp_prod_last = si_b->state;
|
|
|
|
resync_stream_interface:
|
|
/* Check for connection closure */
|
|
|
|
DPRINTF(stderr,
|
|
"[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n",
|
|
now_ms, __FUNCTION__, __LINE__,
|
|
t,
|
|
s, s->flags,
|
|
req, res,
|
|
req->rex, res->wex,
|
|
req->flags, res->flags,
|
|
req->buf->i, req->buf->o, res->buf->i, res->buf->o, si_f->state, si_b->state,
|
|
si_f->err_type, si_b->err_type,
|
|
si_b->conn_retries);
|
|
|
|
/* nothing special to be done on client side */
|
|
if (unlikely(si_f->state == SI_ST_DIS))
|
|
si_f->state = SI_ST_CLO;
|
|
|
|
/* When a server-side connection is released, we have to count it and
|
|
* check for pending connections on this server.
|
|
*/
|
|
if (unlikely(si_b->state == SI_ST_DIS)) {
|
|
si_b->state = SI_ST_CLO;
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
srv->cur_sess--;
|
|
}
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
|
|
* at this point.
|
|
*/
|
|
|
|
resync_request:
|
|
/* Analyse request */
|
|
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
|
|
((req->flags ^ rqf_last) & CF_MASK_STATIC) ||
|
|
si_f->state != rq_prod_last ||
|
|
si_b->state != rq_cons_last ||
|
|
s->task->state & TASK_WOKEN_MSG) {
|
|
unsigned int flags = req->flags;
|
|
|
|
if (si_f->state >= SI_ST_EST) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop new connections,
|
|
* disable reading or closing. Note: if an analyser
|
|
* disables any of these bits, it is responsible for
|
|
* enabling them again when it disables itself, so
|
|
* that other analysers are called in similar conditions.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* req->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*
|
|
* We build a list of analysers to run. We evaluate all
|
|
* of these analysers in the order of the lower bit to
|
|
* the higher bit. This ordering is very important.
|
|
* An analyser will often add/remove other analysers,
|
|
* including itself. Any changes to itself have no effect
|
|
* on the loop. If it removes any other analysers, we
|
|
* want those analysers not to be called anymore during
|
|
* this loop. If it adds an analyser that is located
|
|
* after itself, we want it to be scheduled for being
|
|
* processed during the loop. If it adds an analyser
|
|
* which is located before it, we want it to switch to
|
|
* it immediately, even if it has already been called
|
|
* once but removed since.
|
|
*
|
|
* In order to achieve this, we compare the analyser
|
|
* list after the call with a copy of it before the
|
|
* call. The work list is fed with analyser bits that
|
|
* appeared during the call. Then we compare previous
|
|
* work list with the new one, and check the bits that
|
|
* appeared. If the lowest of these bits is lower than
|
|
* the current bit, it means we have enabled a previous
|
|
* analyser and must immediately loop again.
|
|
*/
|
|
|
|
ana_list = ana_back = req->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
if (ana_list & AN_FLT_START_FE) {
|
|
if (!flt_start_analyze(s, req, AN_FLT_START_FE))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_START_FE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_INSPECT_FE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_INSPECT_FE);
|
|
if (!tcp_inspect_request(s, req, AN_REQ_INSPECT_FE))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_INSPECT_FE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_WAIT_HTTP) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_WAIT_HTTP);
|
|
if (!http_wait_for_request(s, req, AN_REQ_WAIT_HTTP))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_BODY) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_BODY);
|
|
if (!http_wait_for_request_body(s, req, AN_REQ_HTTP_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_PROCESS_FE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_PROCESS_FE);
|
|
if (!http_process_req_common(s, req, AN_REQ_HTTP_PROCESS_FE, sess->fe))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_SWITCHING_RULES) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_SWITCHING_RULES);
|
|
if (!process_switching_rules(s, req, AN_REQ_SWITCHING_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_START_BE) {
|
|
if (!flt_start_analyze(s, req, AN_FLT_START_BE))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_START_BE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_INSPECT_BE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_INSPECT_BE);
|
|
if (!tcp_inspect_request(s, req, AN_REQ_INSPECT_BE))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_INSPECT_BE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_PROCESS_BE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_PROCESS_BE);
|
|
if (!http_process_req_common(s, req, AN_REQ_HTTP_PROCESS_BE, s->be))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_TARPIT) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_TARPIT);
|
|
if (!http_process_tarpit(s, req, AN_REQ_HTTP_TARPIT))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_SRV_RULES) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_SRV_RULES);
|
|
if (!process_server_rules(s, req, AN_REQ_SRV_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_SRV_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_INNER) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_HTTP_INNER);
|
|
if (!http_process_request(s, req, AN_REQ_HTTP_INNER))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_PRST_RDP_COOKIE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_PRST_RDP_COOKIE);
|
|
if (!tcp_persist_rdp_cookie(s, req, AN_REQ_PRST_RDP_COOKIE))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_STICKING_RULES) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, req, AN_REQ_STICKING_RULES);
|
|
if (!process_sticking_rules(s, req, AN_REQ_STICKING_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_HTTP_HDRS) {
|
|
if (!flt_analyze_http_headers(s, req, AN_FLT_HTTP_HDRS))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_HTTP_HDRS);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_XFER_DATA) {
|
|
if (!flt_xfer_data(s, req, AN_FLT_XFER_DATA))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_XFER_DATA);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_XFER_BODY) {
|
|
if (!http_request_forward_body(s, req, AN_REQ_HTTP_XFER_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_END) {
|
|
if (!flt_end_analyze(s, req, AN_FLT_END))
|
|
break;
|
|
UPDATE_ANALYSERS(req->analysers, ana_list, ana_back, AN_FLT_END);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
rq_prod_last = si_f->state;
|
|
rq_cons_last = si_b->state;
|
|
req->flags &= ~CF_WAKE_ONCE;
|
|
rqf_last = req->flags;
|
|
|
|
if ((req->flags ^ flags) & CF_MASK_STATIC)
|
|
goto resync_request;
|
|
}
|
|
|
|
/* we'll monitor the request analysers while parsing the response,
|
|
* because some response analysers may indirectly enable new request
|
|
* analysers (eg: HTTP keep-alive).
|
|
*/
|
|
req_ana_back = req->analysers;
|
|
|
|
resync_response:
|
|
/* Analyse response */
|
|
|
|
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
|
|
(res->flags ^ rpf_last) & CF_MASK_STATIC ||
|
|
si_f->state != rp_cons_last ||
|
|
si_b->state != rp_prod_last ||
|
|
s->task->state & TASK_WOKEN_MSG) {
|
|
unsigned int flags = res->flags;
|
|
|
|
if ((res->flags & CF_MASK_ANALYSER) &&
|
|
(res->analysers & AN_REQ_ALL)) {
|
|
/* Due to HTTP pipelining, the HTTP request analyser might be waiting
|
|
* for some free space in the response buffer, so we might need to call
|
|
* it when something changes in the response buffer, but still we pass
|
|
* it the request buffer. Note that the SI state might very well still
|
|
* be zero due to us returning a flow of redirects!
|
|
*/
|
|
res->analysers &= ~AN_REQ_ALL;
|
|
req->flags |= CF_WAKE_ONCE;
|
|
}
|
|
|
|
if (si_b->state >= SI_ST_EST) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop disable reading or
|
|
* closing. Note: if an analyser disables any of these
|
|
* bits, it is responsible for enabling them again when
|
|
* it disables itself, so that other analysers are called
|
|
* in similar conditions.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* res->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*/
|
|
|
|
ana_list = ana_back = res->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
if (ana_list & AN_FLT_START_FE) {
|
|
if (!flt_start_analyze(s, res, AN_FLT_START_FE))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_START_FE);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_START_BE) {
|
|
if (!flt_start_analyze(s, res, AN_FLT_START_BE))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_START_BE);
|
|
}
|
|
|
|
if (ana_list & AN_RES_INSPECT) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_INSPECT);
|
|
if (!tcp_inspect_response(s, res, AN_RES_INSPECT))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_INSPECT);
|
|
}
|
|
|
|
if (ana_list & AN_RES_WAIT_HTTP) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_WAIT_HTTP);
|
|
if (!http_wait_for_response(s, res, AN_RES_WAIT_HTTP))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP);
|
|
}
|
|
|
|
if (ana_list & AN_RES_STORE_RULES) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_STORE_RULES);
|
|
if (!process_store_rules(s, res, AN_RES_STORE_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_STORE_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_RES_HTTP_PROCESS_BE) {
|
|
CALL_FILTER_ANALYZER(flt_analyze, s, res, AN_RES_HTTP_PROCESS_BE);
|
|
if (!http_process_res_common(s, res, AN_RES_HTTP_PROCESS_BE, s->be))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_HTTP_HDRS) {
|
|
if (!flt_analyze_http_headers(s, res, AN_FLT_HTTP_HDRS))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_HTTP_HDRS);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_XFER_DATA) {
|
|
if (!flt_xfer_data(s, res, AN_FLT_XFER_DATA))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_XFER_DATA);
|
|
}
|
|
|
|
if (ana_list & AN_RES_HTTP_XFER_BODY) {
|
|
if (!http_response_forward_body(s, res, AN_RES_HTTP_XFER_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
|
|
}
|
|
|
|
if (ana_list & AN_FLT_END) {
|
|
if (!flt_end_analyze(s, res, AN_FLT_END))
|
|
break;
|
|
UPDATE_ANALYSERS(res->analysers, ana_list, ana_back, AN_FLT_END);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
rp_cons_last = si_f->state;
|
|
rp_prod_last = si_b->state;
|
|
rpf_last = res->flags;
|
|
|
|
if ((res->flags ^ flags) & CF_MASK_STATIC)
|
|
goto resync_response;
|
|
}
|
|
|
|
/* maybe someone has added some request analysers, so we must check and loop */
|
|
if (req->analysers & ~req_ana_back)
|
|
goto resync_request;
|
|
|
|
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
/* FIXME: here we should call protocol handlers which rely on
|
|
* both buffers.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Now we propagate unhandled errors to the stream. Normally
|
|
* we're just in a data phase here since it means we have not
|
|
* seen any analyser who could set an error status.
|
|
*/
|
|
srv = objt_server(s->target);
|
|
if (unlikely(!(s->flags & SF_ERR_MASK))) {
|
|
if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the client got an error or a read timeout expired */
|
|
req->analysers = 0;
|
|
if (req->flags & CF_READ_ERROR) {
|
|
s->be->be_counters.cli_aborts++;
|
|
sess->fe->fe_counters.cli_aborts++;
|
|
if (srv)
|
|
srv->counters.cli_aborts++;
|
|
s->flags |= SF_ERR_CLICL;
|
|
}
|
|
else if (req->flags & CF_READ_TIMEOUT) {
|
|
s->be->be_counters.cli_aborts++;
|
|
sess->fe->fe_counters.cli_aborts++;
|
|
if (srv)
|
|
srv->counters.cli_aborts++;
|
|
s->flags |= SF_ERR_CLITO;
|
|
}
|
|
else if (req->flags & CF_WRITE_ERROR) {
|
|
s->be->be_counters.srv_aborts++;
|
|
sess->fe->fe_counters.srv_aborts++;
|
|
if (srv)
|
|
srv->counters.srv_aborts++;
|
|
s->flags |= SF_ERR_SRVCL;
|
|
}
|
|
else {
|
|
s->be->be_counters.srv_aborts++;
|
|
sess->fe->fe_counters.srv_aborts++;
|
|
if (srv)
|
|
srv->counters.srv_aborts++;
|
|
s->flags |= SF_ERR_SRVTO;
|
|
}
|
|
sess_set_term_flags(s);
|
|
}
|
|
else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the server got an error or a read timeout expired */
|
|
res->analysers = 0;
|
|
if (res->flags & CF_READ_ERROR) {
|
|
s->be->be_counters.srv_aborts++;
|
|
sess->fe->fe_counters.srv_aborts++;
|
|
if (srv)
|
|
srv->counters.srv_aborts++;
|
|
s->flags |= SF_ERR_SRVCL;
|
|
}
|
|
else if (res->flags & CF_READ_TIMEOUT) {
|
|
s->be->be_counters.srv_aborts++;
|
|
sess->fe->fe_counters.srv_aborts++;
|
|
if (srv)
|
|
srv->counters.srv_aborts++;
|
|
s->flags |= SF_ERR_SRVTO;
|
|
}
|
|
else if (res->flags & CF_WRITE_ERROR) {
|
|
s->be->be_counters.cli_aborts++;
|
|
sess->fe->fe_counters.cli_aborts++;
|
|
if (srv)
|
|
srv->counters.cli_aborts++;
|
|
s->flags |= SF_ERR_CLICL;
|
|
}
|
|
else {
|
|
s->be->be_counters.cli_aborts++;
|
|
sess->fe->fe_counters.cli_aborts++;
|
|
if (srv)
|
|
srv->counters.cli_aborts++;
|
|
s->flags |= SF_ERR_CLITO;
|
|
}
|
|
sess_set_term_flags(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we take care of forwarding unhandled data. This also includes
|
|
* connection establishments and shutdown requests.
|
|
*/
|
|
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely(!req->analysers &&
|
|
!(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
|
|
(si_f->state >= SI_ST_EST) &&
|
|
(req->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
buffer_flush(req->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer (which might possibly not be connected yet).
|
|
*/
|
|
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_forward(req, CHN_INFINITE_FORWARD);
|
|
|
|
/* Just in order to support fetching HTTP contents after start
|
|
* of forwarding when the HTTP forwarding analyser is not used,
|
|
* we simply reset msg->sov so that HTTP rewinding points to the
|
|
* headers.
|
|
*/
|
|
if (s->txn)
|
|
s->txn->req.sov = s->txn->req.eoh + s->txn->req.eol - req->buf->o;
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward request data */
|
|
if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
|
|
req->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->rcv_pipe) &&
|
|
(objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->snd_pipe) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(req->flags & CF_STREAMER_FAST)))) {
|
|
req->flags |= CF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rqf_last = req->flags;
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/* first, let's check if the request buffer needs to shutdown(write), which may
|
|
* happen either because the input is closed or because we want to force a close
|
|
* once the server has begun to respond. If a half-closed timeout is set, we adjust
|
|
* the other side's timeout as well.
|
|
*/
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTR))) {
|
|
channel_shutw_now(req);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(req))) {
|
|
if (req->flags & CF_READ_ERROR)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_b);
|
|
if (tick_isset(s->be->timeout.serverfin)) {
|
|
res->rto = s->be->timeout.serverfin;
|
|
res->rex = tick_add(now_ms, res->rto);
|
|
}
|
|
}
|
|
|
|
/* shutdown(write) done on server side, we must stop the client too */
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
|
|
!req->analysers))
|
|
channel_shutr_now(req);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
|
|
if (si_f->flags & SI_FL_NOHALF)
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_f);
|
|
}
|
|
|
|
/* it's possible that an upper layer has requested a connection setup or abort.
|
|
* There are 2 situations where we decide to establish a new connection :
|
|
* - there are data scheduled for emission in the buffer
|
|
* - the CF_AUTO_CONNECT flag is set (active connection)
|
|
*/
|
|
if (si_b->state == SI_ST_INI) {
|
|
if (!(req->flags & CF_SHUTW)) {
|
|
if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
|
|
/* If we have an appctx, there is no connect method, so we
|
|
* immediately switch to the connected state, otherwise we
|
|
* perform a connection request.
|
|
*/
|
|
si_b->state = SI_ST_REQ; /* new connection requested */
|
|
si_b->conn_retries = s->be->conn_retries;
|
|
}
|
|
}
|
|
else {
|
|
si_b->state = SI_ST_CLO; /* shutw+ini = abort */
|
|
channel_shutw_now(req); /* fix buffer flags upon abort */
|
|
channel_shutr_now(res);
|
|
}
|
|
}
|
|
|
|
|
|
/* we may have a pending connection request, or a connection waiting
|
|
* for completion.
|
|
*/
|
|
if (si_b->state >= SI_ST_REQ && si_b->state < SI_ST_CON) {
|
|
|
|
/* prune the request variables and swap to the response variables. */
|
|
if (s->vars_reqres.scope != SCOPE_RES) {
|
|
vars_prune(&s->vars_reqres, s);
|
|
vars_init(&s->vars_reqres, SCOPE_RES);
|
|
}
|
|
|
|
do {
|
|
/* nb: step 1 might switch from QUE to ASS, but we first want
|
|
* to give a chance to step 2 to perform a redirect if needed.
|
|
*/
|
|
if (si_b->state != SI_ST_REQ)
|
|
sess_update_stream_int(s);
|
|
if (si_b->state == SI_ST_REQ)
|
|
sess_prepare_conn_req(s);
|
|
|
|
/* applets directly go to the ESTABLISHED state. Similarly,
|
|
* servers experience the same fate when their connection
|
|
* is reused.
|
|
*/
|
|
if (unlikely(si_b->state == SI_ST_EST))
|
|
sess_establish(s);
|
|
|
|
/* Now we can add the server name to a header (if requested) */
|
|
/* check for HTTP mode and proxy server_name_hdr_name != NULL */
|
|
if ((si_b->state >= SI_ST_CON) && (si_b->state < SI_ST_CLO) &&
|
|
(s->be->server_id_hdr_name != NULL) &&
|
|
(s->be->mode == PR_MODE_HTTP) &&
|
|
objt_server(s->target)) {
|
|
http_send_name_header(s->txn, s->be, objt_server(s->target)->id);
|
|
}
|
|
|
|
srv = objt_server(s->target);
|
|
if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
|
|
http_perform_server_redirect(s, si_b);
|
|
} while (si_b->state == SI_ST_ASS);
|
|
}
|
|
|
|
/* Benchmarks have shown that it's optimal to do a full resync now */
|
|
if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS)
|
|
goto resync_stream_interface;
|
|
|
|
/* otherwise we want to check if we need to resync the req buffer or not */
|
|
if ((req->flags ^ rqf_last) & CF_MASK_STATIC)
|
|
goto resync_request;
|
|
|
|
/* perform output updates to the response buffer */
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely(!res->analysers &&
|
|
!(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
|
|
(si_b->state >= SI_ST_EST) &&
|
|
(res->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
buffer_flush(res->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_forward(res, CHN_INFINITE_FORWARD);
|
|
|
|
/* Just in order to support fetching HTTP contents after start
|
|
* of forwarding when the HTTP forwarding analyser is not used,
|
|
* we simply reset msg->sov so that HTTP rewinding points to the
|
|
* headers.
|
|
*/
|
|
if (s->txn)
|
|
s->txn->rsp.sov = s->txn->rsp.eoh + s->txn->rsp.eol - res->buf->o;
|
|
|
|
/* if we have no analyser anymore in any direction and have a
|
|
* tunnel timeout set, use it now. Note that we must respect
|
|
* the half-closed timeouts as well.
|
|
*/
|
|
if (!req->analysers && s->be->timeout.tunnel) {
|
|
req->rto = req->wto = res->rto = res->wto =
|
|
s->be->timeout.tunnel;
|
|
|
|
if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin))
|
|
res->wto = sess->fe->timeout.clientfin;
|
|
if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
|
|
res->rto = s->be->timeout.serverfin;
|
|
if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
|
|
req->wto = s->be->timeout.serverfin;
|
|
if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin))
|
|
req->rto = sess->fe->timeout.clientfin;
|
|
|
|
req->rex = tick_add(now_ms, req->rto);
|
|
req->wex = tick_add(now_ms, req->wto);
|
|
res->rex = tick_add(now_ms, res->rto);
|
|
res->wex = tick_add(now_ms, res->wto);
|
|
}
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward response data */
|
|
if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
|
|
res->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->snd_pipe) &&
|
|
(objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->rcv_pipe) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(res->flags & CF_STREAMER_FAST)))) {
|
|
res->flags |= CF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rpf_last = res->flags;
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/*
|
|
* FIXME: this is probably where we should produce error responses.
|
|
*/
|
|
|
|
/* first, let's check if the response buffer needs to shutdown(write) */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTR))) {
|
|
channel_shutw_now(res);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(res))) {
|
|
si_shutw(si_f);
|
|
if (tick_isset(sess->fe->timeout.clientfin)) {
|
|
req->rto = sess->fe->timeout.clientfin;
|
|
req->rex = tick_add(now_ms, req->rto);
|
|
}
|
|
}
|
|
|
|
/* shutdown(write) done on the client side, we must stop the server too */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
|
|
!res->analysers)
|
|
channel_shutr_now(res);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
|
|
if (si_b->flags & SI_FL_NOHALF)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_b);
|
|
}
|
|
|
|
if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS)
|
|
goto resync_stream_interface;
|
|
|
|
if (req->flags != rqf_last)
|
|
goto resync_request;
|
|
|
|
if ((res->flags ^ rpf_last) & CF_MASK_STATIC)
|
|
goto resync_response;
|
|
|
|
/* we're interested in getting wakeups again */
|
|
si_f->flags &= ~SI_FL_DONT_WAKE;
|
|
si_b->flags &= ~SI_FL_DONT_WAKE;
|
|
|
|
/* This is needed only when debugging is enabled, to indicate
|
|
* client-side or server-side close. Please note that in the unlikely
|
|
* event where both sides would close at once, the sequence is reported
|
|
* on the server side first.
|
|
*/
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) ||
|
|
(global.mode & MODE_VERBOSE)))) {
|
|
if (si_b->state == SI_ST_CLO &&
|
|
si_b->prev_state == SI_ST_EST) {
|
|
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
|
|
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
|
|
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
|
|
}
|
|
|
|
if (si_f->state == SI_ST_CLO &&
|
|
si_f->prev_state == SI_ST_EST) {
|
|
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
|
|
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
|
|
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
|
|
}
|
|
}
|
|
|
|
if (likely((si_f->state != SI_ST_CLO) ||
|
|
(si_b->state > SI_ST_INI && si_b->state < SI_ST_CLO))) {
|
|
|
|
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED))
|
|
stream_process_counters(s);
|
|
|
|
if (si_f->state == SI_ST_EST)
|
|
si_update(si_f);
|
|
|
|
if (si_b->state == SI_ST_EST)
|
|
si_update(si_b);
|
|
|
|
req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
|
|
res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
|
|
si_f->prev_state = si_f->state;
|
|
si_b->prev_state = si_b->state;
|
|
si_f->flags &= ~(SI_FL_ERR|SI_FL_EXP);
|
|
si_b->flags &= ~(SI_FL_ERR|SI_FL_EXP);
|
|
|
|
/* Trick: if a request is being waiting for the server to respond,
|
|
* and if we know the server can timeout, we don't want the timeout
|
|
* to expire on the client side first, but we're still interested
|
|
* in passing data from the client to the server (eg: POST). Thus,
|
|
* we can cancel the client's request timeout if the server's
|
|
* request timeout is set and the server has not yet sent a response.
|
|
*/
|
|
|
|
if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
|
|
(tick_isset(req->wex) || tick_isset(res->rex))) {
|
|
req->flags |= CF_READ_NOEXP;
|
|
req->rex = TICK_ETERNITY;
|
|
}
|
|
|
|
update_exp_and_leave:
|
|
t->expire = tick_first(tick_first(req->rex, req->wex),
|
|
tick_first(res->rex, res->wex));
|
|
if (req->analysers)
|
|
t->expire = tick_first(t->expire, req->analyse_exp);
|
|
|
|
if (si_f->exp)
|
|
t->expire = tick_first(t->expire, si_f->exp);
|
|
|
|
if (si_b->exp)
|
|
t->expire = tick_first(t->expire, si_b->exp);
|
|
|
|
#ifdef DEBUG_FULL
|
|
fprintf(stderr,
|
|
"[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u"
|
|
" rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n",
|
|
now_ms, t->expire, req->rex, req->wex, req->analyse_exp,
|
|
res->rex, res->wex, si_f->exp, si_b->exp, si_f->state, si_b->state);
|
|
#endif
|
|
|
|
#ifdef DEBUG_DEV
|
|
/* this may only happen when no timeout is set or in case of an FSM bug */
|
|
if (!tick_isset(t->expire))
|
|
ABORT_NOW();
|
|
#endif
|
|
stream_release_buffers(s);
|
|
return t; /* nothing more to do */
|
|
}
|
|
|
|
sess->fe->feconn--;
|
|
if (s->flags & SF_BE_ASSIGNED)
|
|
s->be->beconn--;
|
|
jobs--;
|
|
if (sess->listener) {
|
|
if (!(sess->listener->options & LI_O_UNLIMITED))
|
|
actconn--;
|
|
sess->listener->nbconn--;
|
|
if (sess->listener->state == LI_FULL)
|
|
resume_listener(sess->listener);
|
|
|
|
/* Dequeues all of the listeners waiting for a resource */
|
|
if (!LIST_ISEMPTY(&global_listener_queue))
|
|
dequeue_all_listeners(&global_listener_queue);
|
|
|
|
if (!LIST_ISEMPTY(&sess->fe->listener_queue) &&
|
|
(!sess->fe->fe_sps_lim || freq_ctr_remain(&sess->fe->fe_sess_per_sec, sess->fe->fe_sps_lim, 0) > 0))
|
|
dequeue_all_listeners(&sess->fe->listener_queue);
|
|
}
|
|
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
|
|
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
|
|
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
|
|
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
|
|
}
|
|
|
|
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
stream_process_counters(s);
|
|
|
|
if (s->txn && s->txn->status) {
|
|
int n;
|
|
|
|
n = s->txn->status / 100;
|
|
if (n < 1 || n > 5)
|
|
n = 0;
|
|
|
|
if (sess->fe->mode == PR_MODE_HTTP) {
|
|
sess->fe->fe_counters.p.http.rsp[n]++;
|
|
}
|
|
if ((s->flags & SF_BE_ASSIGNED) &&
|
|
(s->be->mode == PR_MODE_HTTP)) {
|
|
s->be->be_counters.p.http.rsp[n]++;
|
|
s->be->be_counters.p.http.cum_req++;
|
|
}
|
|
}
|
|
|
|
/* let's do a final log if we need it */
|
|
if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
|
|
!(s->flags & SF_MONITOR) &&
|
|
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
|
|
s->do_log(s);
|
|
}
|
|
|
|
/* update time stats for this stream */
|
|
stream_update_time_stats(s);
|
|
|
|
/* the task MUST not be in the run queue anymore */
|
|
stream_free(s);
|
|
task_delete(t);
|
|
task_free(t);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the stream's backend and server time stats */
|
|
void stream_update_time_stats(struct stream *s)
|
|
{
|
|
int t_request;
|
|
int t_queue;
|
|
int t_connect;
|
|
int t_data;
|
|
int t_close;
|
|
struct server *srv;
|
|
|
|
t_request = 0;
|
|
t_queue = s->logs.t_queue;
|
|
t_connect = s->logs.t_connect;
|
|
t_close = s->logs.t_close;
|
|
t_data = s->logs.t_data;
|
|
|
|
if (s->be->mode != PR_MODE_HTTP)
|
|
t_data = t_connect;
|
|
|
|
if (t_connect < 0 || t_data < 0)
|
|
return;
|
|
|
|
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
|
|
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
|
|
|
|
t_data -= t_connect;
|
|
t_connect -= t_queue;
|
|
t_queue -= t_request;
|
|
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
swrate_add(&srv->counters.q_time, TIME_STATS_SAMPLES, t_queue);
|
|
swrate_add(&srv->counters.c_time, TIME_STATS_SAMPLES, t_connect);
|
|
swrate_add(&srv->counters.d_time, TIME_STATS_SAMPLES, t_data);
|
|
swrate_add(&srv->counters.t_time, TIME_STATS_SAMPLES, t_close);
|
|
}
|
|
swrate_add(&s->be->be_counters.q_time, TIME_STATS_SAMPLES, t_queue);
|
|
swrate_add(&s->be->be_counters.c_time, TIME_STATS_SAMPLES, t_connect);
|
|
swrate_add(&s->be->be_counters.d_time, TIME_STATS_SAMPLES, t_data);
|
|
swrate_add(&s->be->be_counters.t_time, TIME_STATS_SAMPLES, t_close);
|
|
}
|
|
|
|
/*
|
|
* This function adjusts sess->srv_conn and maintains the previous and new
|
|
* server's served stream counts. Setting newsrv to NULL is enough to release
|
|
* current connection slot. This function also notifies any LB algo which might
|
|
* expect to be informed about any change in the number of active streams on a
|
|
* server.
|
|
*/
|
|
void sess_change_server(struct stream *sess, struct server *newsrv)
|
|
{
|
|
if (sess->srv_conn == newsrv)
|
|
return;
|
|
|
|
if (sess->srv_conn) {
|
|
sess->srv_conn->served--;
|
|
if (sess->srv_conn->proxy->lbprm.server_drop_conn)
|
|
sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn);
|
|
stream_del_srv_conn(sess);
|
|
}
|
|
|
|
if (newsrv) {
|
|
newsrv->served++;
|
|
if (newsrv->proxy->lbprm.server_take_conn)
|
|
newsrv->proxy->lbprm.server_take_conn(newsrv);
|
|
stream_add_srv_conn(sess, newsrv);
|
|
}
|
|
}
|
|
|
|
/* Handle server-side errors for default protocols. It is called whenever a a
|
|
* connection setup is aborted or a request is aborted in queue. It sets the
|
|
* stream termination flags so that the caller does not have to worry about
|
|
* them. It's installed as ->srv_error for the server-side stream_interface.
|
|
*/
|
|
void default_srv_error(struct stream *s, struct stream_interface *si)
|
|
{
|
|
int err_type = si->err_type;
|
|
int err = 0, fin = 0;
|
|
|
|
if (err_type & SI_ET_QUEUE_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_CONN_RES) {
|
|
err = SF_ERR_RESOURCE;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else /* SI_ET_CONN_OTHER and others */ {
|
|
err = SF_ERR_INTERNAL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= err;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= fin;
|
|
}
|
|
|
|
/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
|
|
void stream_shutdown(struct stream *stream, int why)
|
|
{
|
|
if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW))
|
|
return;
|
|
|
|
channel_shutw_now(&stream->req);
|
|
channel_shutr_now(&stream->res);
|
|
stream->task->nice = 1024;
|
|
if (!(stream->flags & SF_ERR_MASK))
|
|
stream->flags |= why;
|
|
task_wakeup(stream->task, TASK_WOKEN_OTHER);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* Returns a pointer to a stkctr depending on the fetch keyword name.
|
|
* It is designed to be called as sc[0-9]_* sc_* or src_* exclusively.
|
|
* sc[0-9]_* will return a pointer to the respective field in the
|
|
* stream <l4>. sc_* requires an UINT argument specifying the stick
|
|
* counter number. src_* will fill a locally allocated structure with
|
|
* the table and entry corresponding to what is specified with src_*.
|
|
* NULL may be returned if the designated stkctr is not tracked. For
|
|
* the sc_* and sc[0-9]_* forms, an optional table argument may be
|
|
* passed. When present, the currently tracked key is then looked up
|
|
* in the specified table instead of the current table. The purpose is
|
|
* to be able to convery multiple values per key (eg: have gpc0 from
|
|
* multiple tables). <strm> is allowed to be NULL, in which case only
|
|
* the session will be consulted.
|
|
*/
|
|
struct stkctr *
|
|
smp_fetch_sc_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw)
|
|
{
|
|
static struct stkctr stkctr;
|
|
struct stkctr *stkptr;
|
|
struct stksess *stksess;
|
|
unsigned int num = kw[2] - '0';
|
|
int arg = 0;
|
|
|
|
if (num == '_' - '0') {
|
|
/* sc_* variant, args[0] = ctr# (mandatory) */
|
|
num = args[arg++].data.sint;
|
|
if (num >= MAX_SESS_STKCTR)
|
|
return NULL;
|
|
}
|
|
else if (num > 9) { /* src_* variant, args[0] = table */
|
|
struct stktable_key *key;
|
|
struct connection *conn = objt_conn(sess->origin);
|
|
struct sample smp;
|
|
|
|
if (!conn)
|
|
return NULL;
|
|
|
|
/* Fetch source adress in a sample. */
|
|
smp.px = NULL;
|
|
smp.sess = sess;
|
|
smp.strm = strm;
|
|
if (!smp_fetch_src(NULL, &smp, NULL, NULL))
|
|
return NULL;
|
|
|
|
/* Converts into key. */
|
|
key = smp_to_stkey(&smp, &args->data.prx->table);
|
|
if (!key)
|
|
return NULL;
|
|
|
|
stkctr.table = &args->data.prx->table;
|
|
stkctr_set_entry(&stkctr, stktable_lookup_key(stkctr.table, key));
|
|
return &stkctr;
|
|
}
|
|
|
|
/* Here, <num> contains the counter number from 0 to 9 for
|
|
* the sc[0-9]_ form, or even higher using sc_(num) if needed.
|
|
* args[arg] is the first optional argument. We first lookup the
|
|
* ctr form the stream, then from the session if it was not there.
|
|
*/
|
|
|
|
stkptr = &strm->stkctr[num];
|
|
if (!strm || !stkctr_entry(stkptr)) {
|
|
stkptr = &sess->stkctr[num];
|
|
if (!stkctr_entry(stkptr))
|
|
return NULL;
|
|
}
|
|
|
|
stksess = stkctr_entry(stkptr);
|
|
if (!stksess)
|
|
return NULL;
|
|
|
|
if (unlikely(args[arg].type == ARGT_TAB)) {
|
|
/* an alternate table was specified, let's look up the same key there */
|
|
stkctr.table = &args[arg].data.prx->table;
|
|
stkctr_set_entry(&stkctr, stktable_lookup(stkctr.table, stksess));
|
|
return &stkctr;
|
|
}
|
|
return stkptr;
|
|
}
|
|
|
|
/* same as smp_fetch_sc_stkctr() but dedicated to src_* and can create
|
|
* the entry if it doesn't exist yet. This is needed for a few fetch
|
|
* functions which need to create an entry, such as src_inc_gpc* and
|
|
* src_clr_gpc*.
|
|
*/
|
|
struct stkctr *
|
|
smp_create_src_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw)
|
|
{
|
|
static struct stkctr stkctr;
|
|
struct stktable_key *key;
|
|
struct connection *conn = objt_conn(sess->origin);
|
|
struct sample smp;
|
|
|
|
if (strncmp(kw, "src_", 4) != 0)
|
|
return NULL;
|
|
|
|
if (!conn)
|
|
return NULL;
|
|
|
|
/* Fetch source adress in a sample. */
|
|
smp.px = NULL;
|
|
smp.sess = sess;
|
|
smp.strm = strm;
|
|
if (!smp_fetch_src(NULL, &smp, NULL, NULL))
|
|
return NULL;
|
|
|
|
/* Converts into key. */
|
|
key = smp_to_stkey(&smp, &args->data.prx->table);
|
|
if (!key)
|
|
return NULL;
|
|
|
|
stkctr.table = &args->data.prx->table;
|
|
stkctr_set_entry(&stkctr, stktable_update_key(stkctr.table, key));
|
|
return &stkctr;
|
|
}
|
|
|
|
/* set return a boolean indicating if the requested stream counter is
|
|
* currently being tracked or not.
|
|
* Supports being called as "sc[0-9]_tracked" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_tracked(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = !!smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the General Purpose Flag 0 value from the stream's tracked
|
|
* frontend counters or from the src.
|
|
* Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpt0" only. Value
|
|
* zero is returned if the key is new.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_get_gpt0(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPT0);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, gpt0);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the General Purpose Counter 0 value from the stream's tracked
|
|
* frontend counters or from the src.
|
|
* Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpc0" only. Value
|
|
* zero is returned if the key is new.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_get_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, gpc0);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the General Purpose Counter 0's event rate from the stream's
|
|
* tracked frontend counters or from the src.
|
|
* Supports being called as "sc[0-9]_gpc0_rate" or "src_gpc0_rate" only.
|
|
* Value zero is returned if the key is new.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_gpc0_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Increment the General Purpose Counter 0 value from the stream's tracked
|
|
* frontend counters and return it into temp integer.
|
|
* Supports being called as "sc[0-9]_inc_gpc0" or "src_inc_gpc0" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_inc_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
if (stkctr_entry(stkctr) == NULL)
|
|
stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr1,*ptr2;
|
|
|
|
/* First, update gpc0_rate if it's tracked. Second, update its
|
|
* gpc0 if tracked. Returns gpc0's value otherwise the curr_ctr.
|
|
*/
|
|
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
|
|
if (ptr1) {
|
|
update_freq_ctr_period(&stktable_data_cast(ptr1, gpc0_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u, 1);
|
|
smp->data.u.sint = (&stktable_data_cast(ptr1, gpc0_rate))->curr_ctr;
|
|
}
|
|
|
|
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
|
|
if (ptr2)
|
|
smp->data.u.sint = ++stktable_data_cast(ptr2, gpc0);
|
|
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
if (ptr1 || ptr2)
|
|
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Clear the General Purpose Counter 0 value from the stream's tracked
|
|
* frontend counters and return its previous value into temp integer.
|
|
* Supports being called as "sc[0-9]_clr_gpc0" or "src_clr_gpc0" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_clr_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
if (stkctr_entry(stkctr) == NULL)
|
|
stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, gpc0);
|
|
stktable_data_cast(ptr, gpc0) = 0;
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the cumulated number of connections from the stream's tracked
|
|
* frontend counters. Supports being called as "sc[0-9]_conn_cnt" or
|
|
* "src_conn_cnt" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, conn_cnt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the connection rate from the stream's tracked frontend
|
|
* counters. Supports being called as "sc[0-9]_conn_rate" or "src_conn_rate"
|
|
* only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_conn_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_CONN_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of connections from the stream's source address
|
|
* in the table pointed to by expr, after updating it.
|
|
* Accepts exactly 1 argument of type table.
|
|
*/
|
|
static int
|
|
smp_fetch_src_updt_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct connection *conn = objt_conn(smp->sess->origin);
|
|
struct stksess *ts;
|
|
struct stktable_key *key;
|
|
void *ptr;
|
|
struct proxy *px;
|
|
|
|
if (!conn)
|
|
return 0;
|
|
|
|
/* Fetch source adress in a sample. */
|
|
if (!smp_fetch_src(NULL, smp, NULL, NULL))
|
|
return 0;
|
|
|
|
/* Converts into key. */
|
|
key = smp_to_stkey(smp, &args->data.prx->table);
|
|
if (!key)
|
|
return 0;
|
|
|
|
px = args->data.prx;
|
|
|
|
if ((ts = stktable_update_key(&px->table, key)) == NULL)
|
|
/* entry does not exist and could not be created */
|
|
return 0;
|
|
|
|
ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored in this table */
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = ++stktable_data_cast(ptr, conn_cnt);
|
|
/* Touch was previously performed by stktable_update_key */
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the number of concurrent connections from the stream's tracked
|
|
* frontend counters. Supports being called as "sc[0-9]_conn_cur" or
|
|
* "src_conn_cur" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_conn_cur(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CUR);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, conn_cur);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the cumulated number of streams from the stream's tracked
|
|
* frontend counters. Supports being called as "sc[0-9]_sess_cnt" or
|
|
* "src_sess_cnt" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_sess_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, sess_cnt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the stream rate from the stream's tracked frontend counters.
|
|
* Supports being called as "sc[0-9]_sess_rate" or "src_sess_rate" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the cumulated number of HTTP requests from the stream's tracked
|
|
* frontend counters. Supports being called as "sc[0-9]_http_req_cnt" or
|
|
* "src_http_req_cnt" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_http_req_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, http_req_cnt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the HTTP request rate from the stream's tracked frontend
|
|
* counters. Supports being called as "sc[0-9]_http_req_rate" or
|
|
* "src_http_req_rate" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_http_req_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the cumulated number of HTTP requests errors from the stream's
|
|
* tracked frontend counters. Supports being called as "sc[0-9]_http_err_cnt" or
|
|
* "src_http_err_cnt" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_http_err_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, http_err_cnt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the HTTP request error rate from the stream's tracked frontend
|
|
* counters. Supports being called as "sc[0-9]_http_err_rate" or
|
|
* "src_http_err_rate" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_http_err_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the number of kbytes received from clients, as found in the
|
|
* stream's tracked frontend counters. Supports being called as
|
|
* "sc[0-9]_kbytes_in" or "src_kbytes_in" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_kbytes_in(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, bytes_in_cnt) >> 10;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the data rate received from clients in bytes/s, as found
|
|
* in the stream's tracked frontend counters. Supports being called as
|
|
* "sc[0-9]_bytes_in_rate" or "src_bytes_in_rate" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_bytes_in_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the number of kbytes sent to clients, as found in the
|
|
* stream's tracked frontend counters. Supports being called as
|
|
* "sc[0-9]_kbytes_out" or "src_kbytes_out" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_kbytes_out(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = stktable_data_cast(ptr, bytes_out_cnt) >> 10;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the data rate sent to clients in bytes/s, as found in the
|
|
* stream's tracked frontend counters. Supports being called as
|
|
* "sc[0-9]_bytes_out_rate" or "src_bytes_out_rate" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_bytes_out_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
if (stkctr_entry(stkctr) != NULL) {
|
|
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE);
|
|
if (!ptr)
|
|
return 0; /* parameter not stored */
|
|
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* set <smp> to the number of active trackers on the SC entry in the stream's
|
|
* tracked frontend counters. Supports being called as "sc[0-9]_trackers" only.
|
|
*/
|
|
static int
|
|
smp_fetch_sc_trackers(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct stkctr *stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
|
|
|
|
if (!stkctr)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = stkctr_entry(stkctr)->ref_cnt;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of used entries in the table pointed to by expr.
|
|
* Accepts exactly 1 argument of type table.
|
|
*/
|
|
static int
|
|
smp_fetch_table_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.prx->table.current;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of free entries in the table pointed to by expr.
|
|
* Accepts exactly 1 argument of type table.
|
|
*/
|
|
static int
|
|
smp_fetch_table_avl(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct proxy *px;
|
|
|
|
px = args->data.prx;
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = px->table.size - px->table.current;
|
|
return 1;
|
|
}
|
|
|
|
/* 0=OK, <0=Alert, >0=Warning */
|
|
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
|
|
struct proxy *px, struct act_rule *rule,
|
|
char **err)
|
|
{
|
|
struct action_kw *kw;
|
|
|
|
/* Check if the service name exists. */
|
|
if (*(args[*cur_arg]) == 0) {
|
|
memprintf(err, "'%s' expects a service name.", args[0]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
/* lookup for keyword corresponding to a service. */
|
|
kw = action_lookup(&service_keywords, args[*cur_arg]);
|
|
if (!kw) {
|
|
memprintf(err, "'%s' unknown service name.", args[1]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
(*cur_arg)++;
|
|
|
|
/* executes specific rule parser. */
|
|
rule->kw = kw;
|
|
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = process_use_service;
|
|
rule->action = ACT_CUSTOM;
|
|
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
void service_keywords_register(struct action_kw_list *kw_list)
|
|
{
|
|
LIST_ADDQ(&service_keywords, &kw_list->list);
|
|
}
|
|
|
|
/* main configuration keyword registration. */
|
|
static struct action_kw_list stream_tcp_keywords = { ILH, {
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
static struct action_kw_list stream_http_keywords = { ILH, {
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_fetch_keywords = {ILH, {
|
|
{ "sc_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_conn_cnt", smp_fetch_sc_conn_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_conn_cur", smp_fetch_sc_conn_cur, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_conn_rate", smp_fetch_sc_conn_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_get_gpt0", smp_fetch_sc_get_gpt0, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc_get_gpc0", smp_fetch_sc_get_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_http_err_rate", smp_fetch_sc_http_err_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_http_req_rate", smp_fetch_sc_http_req_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_kbytes_in", smp_fetch_sc_kbytes_in, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc_kbytes_out", smp_fetch_sc_kbytes_out, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc_sess_cnt", smp_fetch_sc_sess_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_sess_rate", smp_fetch_sc_sess_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc_tracked", smp_fetch_sc_tracked, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc_trackers", smp_fetch_sc_trackers, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc0_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc0_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc0_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc0_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc0_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc1_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc1_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc1_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc1_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc1_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc2_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc2_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "sc2_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "sc2_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "sc2_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "src_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_conn_cur", smp_fetch_sc_conn_cur, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_conn_rate", smp_fetch_sc_conn_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(1,TAB), NULL, SMP_T_BOOL, SMP_USE_L4CLI, },
|
|
{ "src_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_sess_rate", smp_fetch_sc_sess_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "src_updt_conn_cnt", smp_fetch_src_updt_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
|
|
{ "table_avl", smp_fetch_table_avl, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "table_cnt", smp_fetch_table_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
__attribute__((constructor))
|
|
static void __stream_init(void)
|
|
{
|
|
sample_register_fetches(&smp_fetch_keywords);
|
|
acl_register_keywords(&acl_kws);
|
|
tcp_req_cont_keywords_register(&stream_tcp_keywords);
|
|
http_req_keywords_register(&stream_http_keywords);
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|