mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-28 13:58:08 +00:00
There's no point splitting the file in two since only cfgparse uses the types defined there. A few call places were updated and cleaned up. All of them were in C files which register keywords. There is nothing left in common/ now so this directory must not be used anymore.
3454 lines
112 KiB
C
3454 lines
112 KiB
C
/*
|
|
* Stream management functions.
|
|
*
|
|
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <import/ebistree.h>
|
|
|
|
#include <haproxy/acl.h>
|
|
#include <haproxy/action.h>
|
|
#include <haproxy/applet.h>
|
|
#include <haproxy/backend.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/capture.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/check.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/connection.h>
|
|
#include <haproxy/dict.h>
|
|
#include <haproxy/dns.h>
|
|
#include <haproxy/dynbuf.h>
|
|
#include <haproxy/filters.h>
|
|
#include <haproxy/frontend.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/hlua.h>
|
|
#include <haproxy/http_ana.h>
|
|
#include <haproxy/http_rules.h>
|
|
#include <haproxy/istbuf.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/htx.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/queue.h>
|
|
#include <haproxy/server.h>
|
|
#include <haproxy/session.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/stream_interface.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/tcp_rules.h>
|
|
#include <haproxy/trace.h>
|
|
#include <haproxy/vars.h>
|
|
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/arg.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/freq_ctr.h>
|
|
#include <haproxy/pipe.h>
|
|
#include <haproxy/stick_table.h>
|
|
|
|
DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream));
|
|
DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
|
|
|
|
struct list streams = LIST_HEAD_INIT(streams);
|
|
__decl_spinlock(streams_lock);
|
|
|
|
/* List of all use-service keywords. */
|
|
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
|
|
|
|
|
|
/* trace source and events */
|
|
static void strm_trace(enum trace_level level, uint64_t mask,
|
|
const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4);
|
|
|
|
/* The event representation is split like this :
|
|
* strm - stream
|
|
* si - stream interface
|
|
* http - http analyzis
|
|
* tcp - tcp analyzis
|
|
*
|
|
* STRM_EV_* macros are defined in <proto/stream.h>
|
|
*/
|
|
static const struct trace_event strm_trace_events[] = {
|
|
{ .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" },
|
|
{ .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" },
|
|
{ .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" },
|
|
{ .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" },
|
|
{ .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" },
|
|
|
|
{ .mask = STRM_EV_SI_ST, .name = "si_state", .desc = "processing stream-interface states" },
|
|
|
|
{ .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" },
|
|
{ .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" },
|
|
|
|
{ .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" },
|
|
{ .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" },
|
|
{}
|
|
};
|
|
|
|
static const struct name_desc strm_trace_lockon_args[4] = {
|
|
/* arg1 */ { /* already used by the stream */ },
|
|
/* arg2 */ { },
|
|
/* arg3 */ { },
|
|
/* arg4 */ { }
|
|
};
|
|
|
|
static const struct name_desc strm_trace_decoding[] = {
|
|
#define STRM_VERB_CLEAN 1
|
|
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
|
|
#define STRM_VERB_MINIMAL 2
|
|
{ .name="minimal", .desc="report info on stream and stream-interfaces" },
|
|
#define STRM_VERB_SIMPLE 3
|
|
{ .name="simple", .desc="add info on request and response channels" },
|
|
#define STRM_VERB_ADVANCED 4
|
|
{ .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
|
|
#define STRM_VERB_COMPLETE 5
|
|
{ .name="complete", .desc="add info on channel's buffer" },
|
|
{ /* end */ }
|
|
};
|
|
|
|
struct trace_source trace_strm = {
|
|
.name = IST("stream"),
|
|
.desc = "Applicative stream",
|
|
.arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream
|
|
.default_cb = strm_trace,
|
|
.known_events = strm_trace_events,
|
|
.lockon_args = strm_trace_lockon_args,
|
|
.decoding = strm_trace_decoding,
|
|
.report_events = ~0, // report everything by default
|
|
};
|
|
|
|
#define TRACE_SOURCE &trace_strm
|
|
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
|
|
|
|
/* the stream traces always expect that arg1, if non-null, is of a stream (from
|
|
* which we can derive everything), that arg2, if non-null, is an http
|
|
* transaction, that arg3, if non-null, is an http message.
|
|
*/
|
|
static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4)
|
|
{
|
|
const struct stream *s = a1;
|
|
const struct http_txn *txn = a2;
|
|
const struct http_msg *msg = a3;
|
|
struct task *task;
|
|
const struct stream_interface *si_f, *si_b;
|
|
const struct channel *req, *res;
|
|
struct htx *htx;
|
|
|
|
if (!s || src->verbosity < STRM_VERB_CLEAN)
|
|
return;
|
|
|
|
task = s->task;
|
|
si_f = &s->si[0];
|
|
si_b = &s->si[1];
|
|
req = &s->req;
|
|
res = &s->res;
|
|
htx = (msg ? htxbuf(&msg->chn->buf) : NULL);
|
|
|
|
/* General info about the stream (htx/tcp, id...) */
|
|
chunk_appendf(&trace_buf, " : [%u,%s]",
|
|
s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP"));
|
|
if (isttest(s->unique_id)) {
|
|
chunk_appendf(&trace_buf, " id=");
|
|
b_putist(&trace_buf, s->unique_id);
|
|
}
|
|
|
|
/* Front and back stream-int state */
|
|
chunk_appendf(&trace_buf, " SI=(%s,%s)",
|
|
si_state_str(si_f->state), si_state_str(si_b->state));
|
|
|
|
/* If txn is defined, HTTP req/rep states */
|
|
if (txn)
|
|
chunk_appendf(&trace_buf, " HTTP=(%s,%s)",
|
|
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state));
|
|
if (msg)
|
|
chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST"));
|
|
|
|
if (src->verbosity == STRM_VERB_CLEAN)
|
|
return;
|
|
|
|
/* If msg defined, display status-line if possible (verbosity > MINIMAL) */
|
|
if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) {
|
|
const struct htx_blk *blk = htx_get_head_blk(htx);
|
|
const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
|
|
if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
|
|
chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
|
|
HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
|
|
HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
|
|
HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
|
|
}
|
|
|
|
|
|
/* If txn defined info about HTTP msgs, otherwise info about SI. */
|
|
if (txn) {
|
|
chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d",
|
|
task, s, s->flags, txn->flags, txn->req.flags, txn->rsp.flags, txn->status);
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) si_f=(%p,0x%08x,0x%x) si_b=(%p,0x%08x,0x%x) retries=%d",
|
|
task, s, s->flags, si_f, si_f->flags, si_f->err_type,
|
|
si_b, si_b->flags, si_b->err_type, si_b->conn_retries);
|
|
}
|
|
|
|
if (src->verbosity == STRM_VERB_MINIMAL)
|
|
return;
|
|
|
|
|
|
/* If txn defined, don't display all channel info */
|
|
if (src->verbosity == STRM_VERB_SIMPLE || txn) {
|
|
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
|
|
req, req->flags, req->rex, req->wex, req->analyse_exp);
|
|
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
|
|
res, res->flags, res->rex, res->wex, res->analyse_exp);
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
|
|
req, req->flags, req->analysers, req->rex, req->wex, req->analyse_exp,
|
|
(long)req->output, req->total, req->to_forward);
|
|
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
|
|
res, res->flags, res->analysers, res->rex, res->wex, res->analyse_exp,
|
|
(long)res->output, res->total, res->to_forward);
|
|
}
|
|
|
|
if (src->verbosity == STRM_VERB_SIMPLE ||
|
|
(src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA))
|
|
return;
|
|
|
|
/* channels' buffer info */
|
|
if (s->flags & SF_HTX) {
|
|
struct htx *rqhtx = htxbuf(&req->buf);
|
|
struct htx *rphtx = htxbuf(&res->buf);
|
|
|
|
chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)",
|
|
rqhtx->data, rqhtx->size, htx_nbblks(rqhtx),
|
|
rphtx->data, rphtx->size, htx_nbblks(rphtx));
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)",
|
|
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
|
|
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf),
|
|
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
|
|
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf));
|
|
}
|
|
|
|
/* If msg defined, display htx info if defined (level > USER) */
|
|
if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) {
|
|
int full = 0;
|
|
|
|
/* Full htx info (level > STATE && verbosity > SIMPLE) */
|
|
if (src->level > TRACE_LEVEL_STATE) {
|
|
if (src->verbosity == STRM_VERB_COMPLETE)
|
|
full = 1;
|
|
}
|
|
|
|
chunk_memcat(&trace_buf, "\n\t", 2);
|
|
htx_dump(&trace_buf, htx, full);
|
|
}
|
|
}
|
|
|
|
/* Create a new stream for connection <conn>. Return < 0 on error. This is only
|
|
* valid right after the handshake, before the connection's data layer is
|
|
* initialized, because it relies on the session to be in conn->owner.
|
|
*/
|
|
int stream_create_from_cs(struct conn_stream *cs)
|
|
{
|
|
struct stream *strm;
|
|
|
|
strm = stream_new(cs->conn->owner, &cs->obj_type);
|
|
if (strm == NULL)
|
|
return -1;
|
|
|
|
task_wakeup(strm->task, TASK_WOKEN_INIT);
|
|
return 0;
|
|
}
|
|
|
|
/* Callback used to wake up a stream when an input buffer is available. The
|
|
* stream <s>'s stream interfaces are checked for a failed buffer allocation
|
|
* as indicated by the presence of the SI_FL_RXBLK_ROOM flag and the lack of a
|
|
* buffer, and and input buffer is assigned there (at most one). The function
|
|
* returns 1 and wakes the stream up if a buffer was taken, otherwise zero.
|
|
* It's designed to be called from __offer_buffer().
|
|
*/
|
|
int stream_buf_available(void *arg)
|
|
{
|
|
struct stream *s = arg;
|
|
|
|
if (!s->req.buf.size && !s->req.pipe && (s->si[0].flags & SI_FL_RXBLK_BUFF) &&
|
|
b_alloc_margin(&s->req.buf, global.tune.reserved_bufs))
|
|
si_rx_buff_rdy(&s->si[0]);
|
|
else if (!s->res.buf.size && !s->res.pipe && (s->si[1].flags & SI_FL_RXBLK_BUFF) &&
|
|
b_alloc_margin(&s->res.buf, 0))
|
|
si_rx_buff_rdy(&s->si[1]);
|
|
else
|
|
return 0;
|
|
|
|
task_wakeup(s->task, TASK_WOKEN_RES);
|
|
return 1;
|
|
|
|
}
|
|
|
|
/* This function is called from the session handler which detects the end of
|
|
* handshake, in order to complete initialization of a valid stream. It must be
|
|
* called with a completely initialized session. It returns the pointer to
|
|
* the newly created stream, or NULL in case of fatal error. The client-facing
|
|
* end point is assigned to <origin>, which must be valid. The stream's task
|
|
* is configured with a nice value inherited from the listener's nice if any.
|
|
* The task's context is set to the new stream, and its function is set to
|
|
* process_stream(). Target and analysers are null.
|
|
*/
|
|
struct stream *stream_new(struct session *sess, enum obj_type *origin)
|
|
{
|
|
struct stream *s;
|
|
struct task *t;
|
|
struct conn_stream *cs = objt_cs(origin);
|
|
struct appctx *appctx = objt_appctx(origin);
|
|
const struct cs_info *csinfo;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_NEW);
|
|
if (unlikely((s = pool_alloc(pool_head_stream)) == NULL))
|
|
goto out_fail_alloc;
|
|
|
|
/* minimum stream initialization required for an embryonic stream is
|
|
* fairly low. We need very little to execute L4 ACLs, then we need a
|
|
* task to make the client-side connection live on its own.
|
|
* - flags
|
|
* - stick-entry tracking
|
|
*/
|
|
s->flags = 0;
|
|
s->logs.logwait = sess->fe->to_log;
|
|
s->logs.level = 0;
|
|
tv_zero(&s->logs.tv_request);
|
|
s->logs.t_queue = -1;
|
|
s->logs.t_connect = -1;
|
|
s->logs.t_data = -1;
|
|
s->logs.t_close = 0;
|
|
s->logs.bytes_in = s->logs.bytes_out = 0;
|
|
s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
|
|
s->logs.srv_queue_pos = 0; /* we will get this number soon */
|
|
s->obj_type = OBJ_TYPE_STREAM;
|
|
|
|
csinfo = si_get_cs_info(cs);
|
|
if (csinfo) {
|
|
s->logs.accept_date = csinfo->create_date;
|
|
s->logs.tv_accept = csinfo->tv_create;
|
|
s->logs.t_handshake = csinfo->t_handshake;
|
|
s->logs.t_idle = csinfo->t_idle;
|
|
}
|
|
else {
|
|
s->logs.accept_date = sess->accept_date;
|
|
s->logs.tv_accept = sess->tv_accept;
|
|
s->logs.t_handshake = sess->t_handshake;
|
|
s->logs.t_idle = -1;
|
|
}
|
|
|
|
/* default logging function */
|
|
s->do_log = strm_log;
|
|
|
|
/* default error reporting function, may be changed by analysers */
|
|
s->srv_error = default_srv_error;
|
|
|
|
/* Initialise the current rule list pointer to NULL. We are sure that
|
|
* any rulelist match the NULL pointer.
|
|
*/
|
|
s->current_rule_list = NULL;
|
|
s->current_rule = NULL;
|
|
|
|
/* Copy SC counters for the stream. We don't touch refcounts because
|
|
* any reference we have is inherited from the session. Since the stream
|
|
* doesn't exist without the session, the session's existence guarantees
|
|
* we don't lose the entry. During the store operation, the stream won't
|
|
* touch these ones.
|
|
*/
|
|
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr));
|
|
|
|
s->sess = sess;
|
|
s->si[0].flags = SI_FL_NONE;
|
|
s->si[1].flags = SI_FL_ISBACK;
|
|
|
|
s->uniq_id = _HA_ATOMIC_XADD(&global.req_count, 1);
|
|
|
|
/* OK, we're keeping the stream, so let's properly initialize the stream */
|
|
LIST_INIT(&s->back_refs);
|
|
|
|
MT_LIST_INIT(&s->buffer_wait.list);
|
|
s->buffer_wait.target = s;
|
|
s->buffer_wait.wakeup_cb = stream_buf_available;
|
|
|
|
s->call_rate.curr_sec = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0;
|
|
s->pcli_next_pid = 0;
|
|
s->pcli_flags = 0;
|
|
s->unique_id = IST_NULL;
|
|
|
|
if ((t = task_new(tid_bit)) == NULL)
|
|
goto out_fail_alloc;
|
|
|
|
s->task = t;
|
|
s->pending_events = 0;
|
|
t->process = process_stream;
|
|
t->context = s;
|
|
t->expire = TICK_ETERNITY;
|
|
if (sess->listener)
|
|
t->nice = sess->listener->nice;
|
|
|
|
/* Note: initially, the stream's backend points to the frontend.
|
|
* This changes later when switching rules are executed or
|
|
* when the default backend is assigned.
|
|
*/
|
|
s->be = sess->fe;
|
|
s->req.buf = BUF_NULL;
|
|
s->res.buf = BUF_NULL;
|
|
s->req_cap = NULL;
|
|
s->res_cap = NULL;
|
|
|
|
/* Initialise all the variables contexts even if not used.
|
|
* This permits to prune these contexts without errors.
|
|
*/
|
|
vars_init(&s->vars_txn, SCOPE_TXN);
|
|
vars_init(&s->vars_reqres, SCOPE_REQ);
|
|
|
|
/* this part should be common with other protocols */
|
|
if (si_reset(&s->si[0]) < 0)
|
|
goto out_fail_alloc;
|
|
si_set_state(&s->si[0], SI_ST_EST);
|
|
s->si[0].hcto = sess->fe->timeout.clientfin;
|
|
|
|
if (cs && cs->conn->mux) {
|
|
if (cs->conn->mux->flags & MX_FL_CLEAN_ABRT)
|
|
s->si[0].flags |= SI_FL_CLEAN_ABRT;
|
|
if (cs->conn->mux->flags & MX_FL_HTX)
|
|
s->flags |= SF_HTX;
|
|
}
|
|
/* Set SF_HTX flag for HTTP frontends. */
|
|
if (sess->fe->mode == PR_MODE_HTTP)
|
|
s->flags |= SF_HTX;
|
|
|
|
/* attach the incoming connection to the stream interface now. */
|
|
if (cs)
|
|
si_attach_cs(&s->si[0], cs);
|
|
else if (appctx)
|
|
si_attach_appctx(&s->si[0], appctx);
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->si[0].flags |= SI_FL_INDEP_STR;
|
|
|
|
/* pre-initialize the other side's stream interface to an INIT state. The
|
|
* callbacks will be initialized before attempting to connect.
|
|
*/
|
|
if (si_reset(&s->si[1]) < 0)
|
|
goto out_fail_alloc_si1;
|
|
s->si[1].hcto = TICK_ETERNITY;
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->si[1].flags |= SI_FL_INDEP_STR;
|
|
|
|
stream_init_srv_conn(s);
|
|
s->target = sess->listener ? sess->listener->default_target : NULL;
|
|
s->target_addr = NULL;
|
|
|
|
s->pend_pos = NULL;
|
|
s->priority_class = 0;
|
|
s->priority_offset = 0;
|
|
|
|
/* init store persistence */
|
|
s->store_count = 0;
|
|
|
|
channel_init(&s->req);
|
|
s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */
|
|
s->req.analysers = sess->listener ? sess->listener->analysers : 0;
|
|
|
|
if (!sess->fe->fe_req_ana) {
|
|
channel_auto_connect(&s->req); /* don't wait to establish connection */
|
|
channel_auto_close(&s->req); /* let the producer forward close requests */
|
|
}
|
|
|
|
s->req.rto = sess->fe->timeout.client;
|
|
s->req.wto = TICK_ETERNITY;
|
|
s->req.rex = TICK_ETERNITY;
|
|
s->req.wex = TICK_ETERNITY;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
|
|
channel_init(&s->res);
|
|
s->res.flags |= CF_ISRESP;
|
|
s->res.analysers = 0;
|
|
|
|
if (sess->fe->options2 & PR_O2_NODELAY) {
|
|
s->req.flags |= CF_NEVER_WAIT;
|
|
s->res.flags |= CF_NEVER_WAIT;
|
|
}
|
|
|
|
s->res.wto = sess->fe->timeout.client;
|
|
s->res.rto = TICK_ETERNITY;
|
|
s->res.rex = TICK_ETERNITY;
|
|
s->res.wex = TICK_ETERNITY;
|
|
s->res.analyse_exp = TICK_ETERNITY;
|
|
|
|
s->txn = NULL;
|
|
s->hlua = NULL;
|
|
|
|
s->dns_ctx.dns_requester = NULL;
|
|
s->dns_ctx.hostname_dn = NULL;
|
|
s->dns_ctx.hostname_dn_len = 0;
|
|
s->dns_ctx.parent = NULL;
|
|
|
|
HA_SPIN_LOCK(STRMS_LOCK, &streams_lock);
|
|
LIST_ADDQ(&streams, &s->list);
|
|
HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock);
|
|
|
|
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
s->si[1].l7_buffer = BUF_NULL;
|
|
/* finish initialization of the accepted file descriptor */
|
|
if (appctx)
|
|
si_want_get(&s->si[0]);
|
|
|
|
if (sess->fe->accept && sess->fe->accept(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
/* it is important not to call the wakeup function directly but to
|
|
* pass through task_wakeup(), because this one knows how to apply
|
|
* priorities to tasks. Using multi thread we must be sure that
|
|
* stream is fully initialized before calling task_wakeup. So
|
|
* the caller must handle the task_wakeup
|
|
*/
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s);
|
|
return s;
|
|
|
|
/* Error unrolling */
|
|
out_fail_accept:
|
|
flt_stream_release(s, 0);
|
|
task_destroy(t);
|
|
tasklet_free(s->si[1].wait_event.tasklet);
|
|
LIST_DEL(&s->list);
|
|
out_fail_alloc_si1:
|
|
tasklet_free(s->si[0].wait_event.tasklet);
|
|
out_fail_alloc:
|
|
pool_free(pool_head_stream, s);
|
|
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* frees the context associated to a stream. It must have been removed first.
|
|
*/
|
|
static void stream_free(struct stream *s)
|
|
{
|
|
struct session *sess = strm_sess(s);
|
|
struct proxy *fe = sess->fe;
|
|
struct bref *bref, *back;
|
|
struct conn_stream *cli_cs = objt_cs(s->si[0].end);
|
|
int must_free_sess;
|
|
int i;
|
|
|
|
DBG_TRACE_POINT(STRM_EV_STRM_FREE, s);
|
|
|
|
/* detach the stream from its own task before even releasing it so
|
|
* that walking over a task list never exhibits a dying stream.
|
|
*/
|
|
s->task->context = NULL;
|
|
__ha_barrier_store();
|
|
|
|
pendconn_free(s);
|
|
|
|
if (objt_server(s->target)) { /* there may be requests left pending in queue */
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
_HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1);
|
|
}
|
|
if (may_dequeue_tasks(objt_server(s->target), s->be))
|
|
process_srv_queue(objt_server(s->target));
|
|
}
|
|
|
|
if (unlikely(s->srv_conn)) {
|
|
/* the stream still has a reserved slot on a server, but
|
|
* it should normally be only the same as the one above,
|
|
* so this should not happen in fact.
|
|
*/
|
|
sess_change_server(s, NULL);
|
|
}
|
|
|
|
if (s->req.pipe)
|
|
put_pipe(s->req.pipe);
|
|
|
|
if (s->res.pipe)
|
|
put_pipe(s->res.pipe);
|
|
|
|
/* We may still be present in the buffer wait queue */
|
|
if (MT_LIST_ADDED(&s->buffer_wait.list))
|
|
MT_LIST_DEL(&s->buffer_wait.list);
|
|
|
|
if (s->req.buf.size || s->res.buf.size) {
|
|
b_free(&s->req.buf);
|
|
b_free(&s->res.buf);
|
|
offer_buffers(NULL, tasks_run_queue);
|
|
}
|
|
|
|
pool_free(pool_head_uniqueid, s->unique_id.ptr);
|
|
s->unique_id = IST_NULL;
|
|
|
|
hlua_ctx_destroy(s->hlua);
|
|
s->hlua = NULL;
|
|
if (s->txn)
|
|
http_end_txn(s);
|
|
|
|
/* ensure the client-side transport layer is destroyed */
|
|
if (cli_cs)
|
|
cs_close(cli_cs);
|
|
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (!s->store[i].ts)
|
|
continue;
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
}
|
|
|
|
if (s->txn) {
|
|
pool_free(pool_head_http_txn, s->txn);
|
|
s->txn = NULL;
|
|
}
|
|
|
|
if (s->dns_ctx.dns_requester) {
|
|
free(s->dns_ctx.hostname_dn); s->dns_ctx.hostname_dn = NULL;
|
|
s->dns_ctx.hostname_dn_len = 0;
|
|
dns_unlink_resolution(s->dns_ctx.dns_requester);
|
|
|
|
pool_free(dns_requester_pool, s->dns_ctx.dns_requester);
|
|
s->dns_ctx.dns_requester = NULL;
|
|
}
|
|
|
|
flt_stream_stop(s);
|
|
flt_stream_release(s, 0);
|
|
|
|
if (fe) {
|
|
if (s->req_cap) {
|
|
struct cap_hdr *h;
|
|
for (h = fe->req_cap; h; h = h->next)
|
|
pool_free(h->pool, s->req_cap[h->index]);
|
|
}
|
|
|
|
if (s->res_cap) {
|
|
struct cap_hdr *h;
|
|
for (h = fe->rsp_cap; h; h = h->next)
|
|
pool_free(h->pool, s->res_cap[h->index]);
|
|
}
|
|
|
|
pool_free(fe->rsp_cap_pool, s->res_cap);
|
|
pool_free(fe->req_cap_pool, s->req_cap);
|
|
}
|
|
|
|
/* Cleanup all variable contexts. */
|
|
if (!LIST_ISEMPTY(&s->vars_txn.head))
|
|
vars_prune(&s->vars_txn, s->sess, s);
|
|
if (!LIST_ISEMPTY(&s->vars_reqres.head))
|
|
vars_prune(&s->vars_reqres, s->sess, s);
|
|
|
|
stream_store_counters(s);
|
|
|
|
HA_SPIN_LOCK(STRMS_LOCK, &streams_lock);
|
|
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
|
|
/* we have to unlink all watchers. We must not relink them if
|
|
* this stream was the last one in the list.
|
|
*/
|
|
LIST_DEL(&bref->users);
|
|
LIST_INIT(&bref->users);
|
|
if (s->list.n != &streams)
|
|
LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
|
|
bref->ref = s->list.n;
|
|
}
|
|
LIST_DEL(&s->list);
|
|
HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock);
|
|
|
|
/* applets do not release session yet */
|
|
must_free_sess = objt_appctx(sess->origin) && sess->origin == s->si[0].end;
|
|
|
|
|
|
si_release_endpoint(&s->si[1]);
|
|
si_release_endpoint(&s->si[0]);
|
|
|
|
tasklet_free(s->si[0].wait_event.tasklet);
|
|
tasklet_free(s->si[1].wait_event.tasklet);
|
|
|
|
b_free(&s->si[1].l7_buffer);
|
|
if (must_free_sess) {
|
|
sess->origin = NULL;
|
|
session_free(sess);
|
|
}
|
|
|
|
sockaddr_free(&s->target_addr);
|
|
pool_free(pool_head_stream, s);
|
|
|
|
/* We may want to free the maximum amount of pools if the proxy is stopping */
|
|
if (fe && unlikely(fe->state == PR_STSTOPPED)) {
|
|
pool_flush(pool_head_buffer);
|
|
pool_flush(pool_head_http_txn);
|
|
pool_flush(pool_head_requri);
|
|
pool_flush(pool_head_capture);
|
|
pool_flush(pool_head_stream);
|
|
pool_flush(pool_head_session);
|
|
pool_flush(pool_head_connection);
|
|
pool_flush(pool_head_pendconn);
|
|
pool_flush(fe->req_cap_pool);
|
|
pool_flush(fe->rsp_cap_pool);
|
|
}
|
|
}
|
|
|
|
|
|
/* Allocates a work buffer for stream <s>. It is meant to be called inside
|
|
* process_stream(). It will only allocate the side needed for the function
|
|
* to work fine, which is the response buffer so that an error message may be
|
|
* built and returned. Response buffers may be allocated from the reserve, this
|
|
* is critical to ensure that a response may always flow and will never block a
|
|
* server from releasing a connection. Returns 0 in case of failure, non-zero
|
|
* otherwise.
|
|
*/
|
|
static int stream_alloc_work_buffer(struct stream *s)
|
|
{
|
|
if (MT_LIST_ADDED(&s->buffer_wait.list))
|
|
MT_LIST_DEL(&s->buffer_wait.list);
|
|
|
|
if (b_alloc_margin(&s->res.buf, 0))
|
|
return 1;
|
|
|
|
MT_LIST_ADDQ(&buffer_wq, &s->buffer_wait.list);
|
|
return 0;
|
|
}
|
|
|
|
/* releases unused buffers after processing. Typically used at the end of the
|
|
* update() functions. It will try to wake up as many tasks/applets as the
|
|
* number of buffers that it releases. In practice, most often streams are
|
|
* blocked on a single buffer, so it makes sense to try to wake two up when two
|
|
* buffers are released at once.
|
|
*/
|
|
void stream_release_buffers(struct stream *s)
|
|
{
|
|
int offer = 0;
|
|
|
|
if (c_size(&s->req) && c_empty(&s->req)) {
|
|
offer = 1;
|
|
b_free(&s->req.buf);
|
|
}
|
|
if (c_size(&s->res) && c_empty(&s->res)) {
|
|
offer = 1;
|
|
b_free(&s->res.buf);
|
|
}
|
|
|
|
/* if we're certain to have at least 1 buffer available, and there is
|
|
* someone waiting, we can wake up a waiter and offer them.
|
|
*/
|
|
if (offer)
|
|
offer_buffers(s, tasks_run_queue);
|
|
}
|
|
|
|
void stream_process_counters(struct stream *s)
|
|
{
|
|
struct session *sess = s->sess;
|
|
unsigned long long bytes;
|
|
void *ptr1,*ptr2;
|
|
struct stksess *ts;
|
|
int i;
|
|
|
|
bytes = s->req.total - s->logs.bytes_in;
|
|
s->logs.bytes_in = s->req.total;
|
|
if (bytes) {
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes);
|
|
|
|
if (objt_server(s->target))
|
|
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_in, bytes);
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes);
|
|
|
|
for (i = 0; i < MAX_SESS_STKCTR; i++) {
|
|
struct stkctr *stkctr = &s->stkctr[i];
|
|
|
|
ts = stkctr_entry(stkctr);
|
|
if (!ts) {
|
|
stkctr = &sess->stkctr[i];
|
|
ts = stkctr_entry(stkctr);
|
|
if (!ts)
|
|
continue;
|
|
}
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_CNT);
|
|
if (ptr1)
|
|
stktable_data_cast(ptr1, bytes_in_cnt) += bytes;
|
|
|
|
ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_RATE);
|
|
if (ptr2)
|
|
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes);
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
if (ptr1 || ptr2)
|
|
stktable_touch_local(stkctr->table, ts, 0);
|
|
}
|
|
}
|
|
|
|
bytes = s->res.total - s->logs.bytes_out;
|
|
s->logs.bytes_out = s->res.total;
|
|
if (bytes) {
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes);
|
|
|
|
if (objt_server(s->target))
|
|
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_out, bytes);
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes);
|
|
|
|
for (i = 0; i < MAX_SESS_STKCTR; i++) {
|
|
struct stkctr *stkctr = &s->stkctr[i];
|
|
|
|
ts = stkctr_entry(stkctr);
|
|
if (!ts) {
|
|
stkctr = &sess->stkctr[i];
|
|
ts = stkctr_entry(stkctr);
|
|
if (!ts)
|
|
continue;
|
|
}
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_CNT);
|
|
if (ptr1)
|
|
stktable_data_cast(ptr1, bytes_out_cnt) += bytes;
|
|
|
|
ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_RATE);
|
|
if (ptr2)
|
|
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate),
|
|
stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes);
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
/* If data was modified, we need to touch to re-schedule sync */
|
|
if (ptr1 || ptr2)
|
|
stktable_touch_local(stkctr->table, stkctr_entry(stkctr), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function handles the transition between the SI_ST_CON state and the
|
|
* SI_ST_EST state. It must only be called after switching from SI_ST_CON (or
|
|
* SI_ST_INI or SI_ST_RDY) to SI_ST_EST, but only when a ->proto is defined.
|
|
* Note that it will switch the interface to SI_ST_DIS if we already have
|
|
* the CF_SHUTR flag, it means we were able to forward the request, and
|
|
* receive the response, before process_stream() had the opportunity to
|
|
* make the switch from SI_ST_CON to SI_ST_EST. When that happens, we want
|
|
* to go through back_establish() anyway, to make sure the analysers run.
|
|
* Timeouts are cleared. Error are reported on the channel so that analysers
|
|
* can handle them.
|
|
*/
|
|
static void back_establish(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct conn_stream *srv_cs = objt_cs(si->end);
|
|
struct connection *conn = srv_cs ? srv_cs->conn : objt_conn(si->end);
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
/* First, centralize the timers information, and clear any irrelevant
|
|
* timeout.
|
|
*/
|
|
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->exp = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_EXP;
|
|
|
|
/* errors faced after sending data need to be reported */
|
|
if (si->flags & SI_FL_ERR && req->flags & CF_WROTE_DATA) {
|
|
/* Don't add CF_WRITE_ERROR if we're here because
|
|
* early data were rejected by the server, or
|
|
* http_wait_for_response() will never be called
|
|
* to send a 425.
|
|
*/
|
|
if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED)
|
|
req->flags |= CF_WRITE_ERROR;
|
|
rep->flags |= CF_READ_ERROR;
|
|
si->err_type = SI_ET_DATA_ERR;
|
|
DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
|
|
if (objt_server(s->target))
|
|
health_adjust(objt_server(s->target), HANA_STATUS_L4_OK);
|
|
|
|
if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
|
|
/* if the user wants to log as soon as possible, without counting
|
|
* bytes from the server, then this is the right moment. */
|
|
if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
|
|
/* note: no pend_pos here, session is established */
|
|
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
|
|
s->do_log(s);
|
|
}
|
|
}
|
|
else {
|
|
rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
|
|
}
|
|
|
|
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
|
|
|
|
/* Be sure to filter response headers if the backend is an HTTP proxy
|
|
* and if there are filters attached to the stream. */
|
|
if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s))
|
|
rep->analysers |= AN_RES_FLT_HTTP_HDRS;
|
|
|
|
si_rx_endp_more(si);
|
|
rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
|
|
if (objt_cs(si->end)) {
|
|
/* real connections have timeouts */
|
|
req->wto = s->be->timeout.server;
|
|
rep->rto = s->be->timeout.server;
|
|
/* The connection is now established, try to read data from the
|
|
* underlying layer, and subscribe to recv events. We use a
|
|
* delayed recv here to give a chance to the data to flow back
|
|
* by the time we process other tasks.
|
|
*/
|
|
si_chk_rcv(si);
|
|
}
|
|
req->wex = TICK_ETERNITY;
|
|
/* If we managed to get the whole response, and we don't have anything
|
|
* left to send, or can't, switch to SI_ST_DIS now. */
|
|
if (rep->flags & (CF_SHUTR | CF_SHUTW)) {
|
|
si->state = SI_ST_DIS;
|
|
DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
/* Set correct stream termination flags in case no analyser has done it. It
|
|
* also counts a failed request if the server state has not reached the request
|
|
* stage.
|
|
*/
|
|
static void sess_set_term_flags(struct stream *s)
|
|
{
|
|
if (!(s->flags & SF_FINST_MASK)) {
|
|
if (s->si[1].state == SI_ST_INI) {
|
|
/* anything before REQ in fact */
|
|
_HA_ATOMIC_ADD(&strm_fe(s)->fe_counters.failed_req, 1);
|
|
if (strm_li(s) && strm_li(s)->counters)
|
|
_HA_ATOMIC_ADD(&strm_li(s)->counters->failed_req, 1);
|
|
|
|
s->flags |= SF_FINST_R;
|
|
}
|
|
else if (s->si[1].state == SI_ST_QUE)
|
|
s->flags |= SF_FINST_Q;
|
|
else if (si_state_in(s->si[1].state, SI_SB_REQ|SI_SB_TAR|SI_SB_ASS|SI_SB_CON|SI_SB_CER|SI_SB_RDY))
|
|
s->flags |= SF_FINST_C;
|
|
else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST)
|
|
s->flags |= SF_FINST_D;
|
|
else
|
|
s->flags |= SF_FINST_L;
|
|
}
|
|
}
|
|
|
|
/* This function parses the use-service action ruleset. It executes
|
|
* the associated ACL and set an applet as a stream or txn final node.
|
|
* it returns ACT_RET_ERR if an error occurs, the proxy left in
|
|
* consistent state. It returns ACT_RET_STOP in success case because
|
|
* use-service must be a terminal action. Returns ACT_RET_YIELD
|
|
* if the initialisation function require more data.
|
|
*/
|
|
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
|
|
{
|
|
struct appctx *appctx;
|
|
|
|
/* Initialises the applet if it is required. */
|
|
if (flags & ACT_OPT_FIRST) {
|
|
/* Register applet. this function schedules the applet. */
|
|
s->target = &rule->applet.obj_type;
|
|
if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target))))
|
|
return ACT_RET_ERR;
|
|
|
|
/* Initialise the context. */
|
|
appctx = si_appctx(&s->si[1]);
|
|
memset(&appctx->ctx, 0, sizeof(appctx->ctx));
|
|
appctx->rule = rule;
|
|
}
|
|
else
|
|
appctx = si_appctx(&s->si[1]);
|
|
|
|
/* Stops the applet scheduling, in case of the init function miss
|
|
* some data.
|
|
*/
|
|
si_stop_get(&s->si[1]);
|
|
|
|
/* Call initialisation. */
|
|
if (rule->applet.init)
|
|
switch (rule->applet.init(appctx, px, s)) {
|
|
case 0: return ACT_RET_ERR;
|
|
case 1: break;
|
|
default: return ACT_RET_YIELD;
|
|
}
|
|
|
|
if (rule->from != ACT_F_HTTP_REQ) {
|
|
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
|
|
|
|
/* The flag SF_ASSIGNED prevent from server assignment. */
|
|
s->flags |= SF_ASSIGNED;
|
|
}
|
|
|
|
/* Now we can schedule the applet. */
|
|
si_cant_get(&s->si[1]);
|
|
appctx_wakeup(appctx);
|
|
return ACT_RET_STOP;
|
|
}
|
|
|
|
/* This stream analyser checks the switching rules and changes the backend
|
|
* if appropriate. The default_backend rule is also considered, then the
|
|
* target backend's forced persistence rules are also evaluated last if any.
|
|
* It returns 1 if the processing can continue on next analysers, or zero if it
|
|
* either needs more data or wants to immediately abort the request.
|
|
*/
|
|
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct persist_rule *prst_rule;
|
|
struct session *sess = s->sess;
|
|
struct proxy *fe = sess->fe;
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
/* now check whether we have some switching rules for this request */
|
|
if (!(s->flags & SF_BE_ASSIGNED)) {
|
|
struct switching_rule *rule;
|
|
|
|
list_for_each_entry(rule, &fe->switching_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* If the backend name is dynamic, try to resolve the name.
|
|
* If we can't resolve the name, or if any error occurs, break
|
|
* the loop and fallback to the default backend.
|
|
*/
|
|
struct proxy *backend = NULL;
|
|
|
|
if (rule->dynamic) {
|
|
struct buffer *tmp;
|
|
|
|
tmp = alloc_trash_chunk();
|
|
if (!tmp)
|
|
goto sw_failed;
|
|
|
|
if (build_logline(s, tmp->area, tmp->size, &rule->be.expr))
|
|
backend = proxy_be_by_name(tmp->area);
|
|
|
|
free_trash_chunk(tmp);
|
|
tmp = NULL;
|
|
|
|
if (!backend)
|
|
break;
|
|
}
|
|
else
|
|
backend = rule->be.backend;
|
|
|
|
if (!stream_set_backend(s, backend))
|
|
goto sw_failed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* To ensure correct connection accounting on the backend, we
|
|
* have to assign one if it was not set (eg: a listen). This
|
|
* measure also takes care of correctly setting the default
|
|
* backend if any.
|
|
*/
|
|
if (!(s->flags & SF_BE_ASSIGNED))
|
|
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
|
|
goto sw_failed;
|
|
}
|
|
|
|
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
|
|
if (fe == s->be) {
|
|
s->req.analysers &= ~AN_REQ_INSPECT_BE;
|
|
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
|
|
s->req.analysers &= ~AN_REQ_FLT_START_BE;
|
|
}
|
|
|
|
/* as soon as we know the backend, we must check if we have a matching forced or ignored
|
|
* persistence rule, and report that in the stream.
|
|
*/
|
|
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (prst_rule->cond) {
|
|
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (prst_rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* no rule, or the rule matches */
|
|
if (prst_rule->type == PERSIST_TYPE_FORCE) {
|
|
s->flags |= SF_FORCE_PRST;
|
|
} else {
|
|
s->flags |= SF_IGNORE_PRST;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
|
|
sw_failed:
|
|
/* immediately abort this request in case of allocation failure */
|
|
channel_abort(&s->req);
|
|
channel_abort(&s->res);
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_RESOURCE;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_R;
|
|
|
|
if (s->txn)
|
|
s->txn->status = 500;
|
|
s->req.analysers &= AN_REQ_FLT_END;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s);
|
|
return 0;
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all use-server rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct server_rule *rule;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
if (!(s->flags & SF_ASSIGNED)) {
|
|
list_for_each_entry(rule, &px->server_rules, list) {
|
|
int ret;
|
|
|
|
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
|
|
if (ret) {
|
|
struct server *srv;
|
|
|
|
if (rule->dynamic) {
|
|
struct buffer *tmp = get_trash_chunk();
|
|
|
|
if (!build_logline(s, tmp->area, tmp->size, &rule->expr))
|
|
break;
|
|
|
|
srv = findserver(s->be, tmp->area);
|
|
if (!srv)
|
|
break;
|
|
}
|
|
else
|
|
srv = rule->srv.ptr;
|
|
|
|
if ((srv->cur_state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) ||
|
|
(s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
break;
|
|
}
|
|
/* if the server is not UP, let's go on with next rules
|
|
* just in case another one is suited.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
static inline void sticking_rule_find_target(struct stream *s,
|
|
struct stktable *t, struct stksess *ts)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct eb32_node *node;
|
|
struct dict_entry *de;
|
|
void *ptr;
|
|
struct server *srv;
|
|
|
|
/* Look for the server name previously stored in <t> stick-table */
|
|
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_NAME);
|
|
de = stktable_data_cast(ptr, server_name);
|
|
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
if (de) {
|
|
struct ebpt_node *name;
|
|
|
|
name = ebis_lookup(&px->conf.used_server_name, de->value.key);
|
|
if (name) {
|
|
srv = container_of(name, struct server, conf.name);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* Look for the server ID */
|
|
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
|
|
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id));
|
|
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
srv = container_of(node, struct server, conf.id);
|
|
found:
|
|
if ((srv->cur_state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
}
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all sticking rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
list_for_each_entry(rule, &px->sticking_rules, list) {
|
|
int ret = 1 ;
|
|
int i;
|
|
|
|
/* Only the first stick store-request of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of the IP address from an HTTP
|
|
* header first, then from the source if not found.
|
|
*/
|
|
if (rule->flags & STK_IS_STORE) {
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
if (i != s->store_count)
|
|
continue;
|
|
}
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (rule->flags & STK_IS_MATCH) {
|
|
struct stksess *ts;
|
|
|
|
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
|
|
if (!(s->flags & SF_ASSIGNED))
|
|
sticking_rule_find_target(s, rule->table.t, ts);
|
|
stktable_touch_local(rule->table.t, ts, 1);
|
|
}
|
|
}
|
|
if (rule->flags & STK_IS_STORE) {
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
/* This stream analyser works on a response. It applies all store rules on it
|
|
* then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
int i;
|
|
int nbreq = s->store_count;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
list_for_each_entry(rule, &px->storersp_rules, list) {
|
|
int ret = 1 ;
|
|
|
|
/* Only the first stick store-response of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of a set-cookie value, with a
|
|
* fallback to a parameter found in a 302 redirect.
|
|
*
|
|
* The store-response rules are not allowed to override the
|
|
* store-request rules for the same table, but they may coexist.
|
|
* Thus we can have up to one store-request entry and one store-
|
|
* response entry for the same table at any time.
|
|
*/
|
|
for (i = nbreq; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
/* skip existing entries for this table */
|
|
if (i < s->store_count)
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* process store request and store response */
|
|
for (i = 0; i < s->store_count; i++) {
|
|
struct stksess *ts;
|
|
void *ptr;
|
|
struct dict_entry *de;
|
|
|
|
if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) {
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
continue;
|
|
}
|
|
|
|
ts = stktable_set_entry(s->store[i].table, s->store[i].ts);
|
|
if (ts != s->store[i].ts) {
|
|
/* the entry already existed, we can free ours */
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
}
|
|
s->store[i].ts = NULL;
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID);
|
|
stktable_data_cast(ptr, server_id) = __objt_server(s->target)->puid;
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
de = dict_insert(&server_name_dict, __objt_server(s->target)->id);
|
|
if (de) {
|
|
ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_NAME);
|
|
stktable_data_cast(ptr, server_name) = de;
|
|
}
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
stktable_touch_local(s->store[i].table, ts, 1);
|
|
}
|
|
s->store_count = 0; /* everything is stored */
|
|
|
|
rep->analysers &= ~an_bit;
|
|
rep->analyse_exp = TICK_ETERNITY;
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
/* This macro is very specific to the function below. See the comments in
|
|
* process_stream() below to understand the logic and the tests.
|
|
*/
|
|
#define UPDATE_ANALYSERS(real, list, back, flag) { \
|
|
list = (((list) & ~(flag)) | ~(back)) & (real); \
|
|
back = real; \
|
|
if (!(list)) \
|
|
break; \
|
|
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
|
|
continue; \
|
|
}
|
|
|
|
/* These 2 following macros call an analayzer for the specified channel if the
|
|
* right flag is set. The first one is used for "filterable" analyzers. If a
|
|
* stream has some registered filters, pre and post analyaze callbacks are
|
|
* called. The second are used for other analyzers (AN_REQ/RES_FLT_* and
|
|
* AN_REQ/RES_HTTP_XFER_BODY) */
|
|
#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
|
|
{ \
|
|
if ((list) & (flag)) { \
|
|
if (HAS_FILTERS(strm)) { \
|
|
if (!flt_pre_analyze((strm), (chn), (flag))) \
|
|
break; \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
if (!flt_post_analyze((strm), (chn), (flag))) \
|
|
break; \
|
|
} \
|
|
else { \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
} \
|
|
UPDATE_ANALYSERS((chn)->analysers, (list), \
|
|
(back), (flag)); \
|
|
} \
|
|
}
|
|
|
|
#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
|
|
{ \
|
|
if ((list) & (flag)) { \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
UPDATE_ANALYSERS((chn)->analysers, (list), \
|
|
(back), (flag)); \
|
|
} \
|
|
}
|
|
|
|
/* Processes the client, server, request and response jobs of a stream task,
|
|
* then puts it back to the wait queue in a clean state, or cleans up its
|
|
* resources if it must be deleted. Returns in <next> the date the task wants
|
|
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
|
|
* nothing too many times, the request and response buffers flags are monitored
|
|
* and each function is called only if at least another function has changed at
|
|
* least one flag it is interested in.
|
|
*/
|
|
struct task *process_stream(struct task *t, void *context, unsigned short state)
|
|
{
|
|
struct server *srv;
|
|
struct stream *s = context;
|
|
struct session *sess = s->sess;
|
|
unsigned int rqf_last, rpf_last;
|
|
unsigned int rq_prod_last, rq_cons_last;
|
|
unsigned int rp_cons_last, rp_prod_last;
|
|
unsigned int req_ana_back;
|
|
struct channel *req, *res;
|
|
struct stream_interface *si_f, *si_b;
|
|
unsigned int rate;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s);
|
|
|
|
activity[tid].stream++;
|
|
|
|
req = &s->req;
|
|
res = &s->res;
|
|
|
|
si_f = &s->si[0];
|
|
si_b = &s->si[1];
|
|
|
|
/* First, attempt to receive pending data from I/O layers */
|
|
si_sync_recv(si_f);
|
|
si_sync_recv(si_b);
|
|
|
|
rate = update_freq_ctr(&s->call_rate, 1);
|
|
if (rate >= 100000 && s->call_rate.prev_ctr) { // make sure to wait at least a full second
|
|
stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate));
|
|
}
|
|
|
|
/* this data may be no longer valid, clear it */
|
|
if (s->txn)
|
|
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
|
|
|
|
/* This flag must explicitly be set every time */
|
|
req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
|
|
res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
|
|
|
|
/* Keep a copy of req/rep flags so that we can detect shutdowns */
|
|
rqf_last = req->flags & ~CF_MASK_ANALYSER;
|
|
rpf_last = res->flags & ~CF_MASK_ANALYSER;
|
|
|
|
/* we don't want the stream interface functions to recursively wake us up */
|
|
si_f->flags |= SI_FL_DONT_WAKE;
|
|
si_b->flags |= SI_FL_DONT_WAKE;
|
|
|
|
/* update pending events */
|
|
s->pending_events |= (state & TASK_WOKEN_ANY);
|
|
|
|
/* 1a: Check for low level timeouts if needed. We just set a flag on
|
|
* stream interfaces when their timeouts have expired.
|
|
*/
|
|
if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) {
|
|
si_check_timeouts(si_f);
|
|
si_check_timeouts(si_b);
|
|
|
|
/* check channel timeouts, and close the corresponding stream interfaces
|
|
* for future reads or writes. Note: this will also concern upper layers
|
|
* but we do not touch any other flag. We must be careful and correctly
|
|
* detect state changes when calling them.
|
|
*/
|
|
|
|
channel_check_timeouts(req);
|
|
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_b);
|
|
}
|
|
|
|
if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
|
|
if (si_f->flags & SI_FL_NOHALF)
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_f);
|
|
}
|
|
|
|
channel_check_timeouts(res);
|
|
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_f);
|
|
}
|
|
|
|
if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
|
|
if (si_b->flags & SI_FL_NOHALF)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_b);
|
|
}
|
|
|
|
if (HAS_FILTERS(s))
|
|
flt_stream_check_timeouts(s);
|
|
|
|
/* Once in a while we're woken up because the task expires. But
|
|
* this does not necessarily mean that a timeout has been reached.
|
|
* So let's not run a whole stream processing if only an expiration
|
|
* timeout needs to be refreshed.
|
|
*/
|
|
if (!((req->flags | res->flags) &
|
|
(CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
|
|
CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
|
|
!((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) &&
|
|
((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
|
|
si_f->flags &= ~SI_FL_DONT_WAKE;
|
|
si_b->flags &= ~SI_FL_DONT_WAKE;
|
|
goto update_exp_and_leave;
|
|
}
|
|
}
|
|
|
|
resync_stream_interface:
|
|
/* below we may emit error messages so we have to ensure that we have
|
|
* our buffers properly allocated.
|
|
*/
|
|
if (!stream_alloc_work_buffer(s)) {
|
|
/* No buffer available, we've been subscribed to the list of
|
|
* buffer waiters, let's wait for our turn.
|
|
*/
|
|
si_f->flags &= ~SI_FL_DONT_WAKE;
|
|
si_b->flags &= ~SI_FL_DONT_WAKE;
|
|
goto update_exp_and_leave;
|
|
}
|
|
|
|
/* 1b: check for low-level errors reported at the stream interface.
|
|
* First we check if it's a retryable error (in which case we don't
|
|
* want to tell the buffer). Otherwise we report the error one level
|
|
* upper by setting flags into the buffers. Note that the side towards
|
|
* the client cannot have connect (hence retryable) errors. Also, the
|
|
* connection setup code must be able to deal with any type of abort.
|
|
*/
|
|
srv = objt_server(s->target);
|
|
if (unlikely(si_f->flags & SI_FL_ERR)) {
|
|
if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS)) {
|
|
si_shutr(si_f);
|
|
si_shutw(si_f);
|
|
si_report_error(si_f);
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1);
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_CLICL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(si_b->flags & SI_FL_ERR)) {
|
|
if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS)) {
|
|
si_shutr(si_b);
|
|
si_shutw(si_b);
|
|
si_report_error(si_b);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.failed_resp, 1);
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1);
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_SRVCL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
/* note: maybe we should process connection errors here ? */
|
|
}
|
|
|
|
if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY)) {
|
|
/* we were trying to establish a connection on the server side,
|
|
* maybe it succeeded, maybe it failed, maybe we timed out, ...
|
|
*/
|
|
if (si_b->state == SI_ST_RDY)
|
|
back_handle_st_rdy(s);
|
|
else if (si_b->state == SI_ST_CON)
|
|
back_handle_st_con(s);
|
|
|
|
if (si_b->state == SI_ST_CER)
|
|
back_handle_st_cer(s);
|
|
else if (si_b->state == SI_ST_EST)
|
|
back_establish(s);
|
|
|
|
/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
|
|
* (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
|
|
* SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
|
|
*/
|
|
}
|
|
|
|
rq_prod_last = si_f->state;
|
|
rq_cons_last = si_b->state;
|
|
rp_cons_last = si_f->state;
|
|
rp_prod_last = si_b->state;
|
|
|
|
/* Check for connection closure */
|
|
DBG_TRACE_POINT(STRM_EV_STRM_PROC, s);
|
|
|
|
/* nothing special to be done on client side */
|
|
if (unlikely(si_f->state == SI_ST_DIS))
|
|
si_f->state = SI_ST_CLO;
|
|
|
|
/* When a server-side connection is released, we have to count it and
|
|
* check for pending connections on this server.
|
|
*/
|
|
if (unlikely(si_b->state == SI_ST_DIS)) {
|
|
si_b->state = SI_ST_CLO;
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
_HA_ATOMIC_SUB(&srv->cur_sess, 1);
|
|
}
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
|
|
* at this point.
|
|
*/
|
|
|
|
resync_request:
|
|
/* Analyse request */
|
|
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
|
|
((req->flags ^ rqf_last) & CF_MASK_STATIC) ||
|
|
(req->analysers && (req->flags & CF_SHUTW)) ||
|
|
si_f->state != rq_prod_last ||
|
|
si_b->state != rq_cons_last ||
|
|
s->pending_events & TASK_WOKEN_MSG) {
|
|
unsigned int flags = req->flags;
|
|
|
|
if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop new connections,
|
|
* disable reading or closing. Note: if an analyser
|
|
* disables any of these bits, it is responsible for
|
|
* enabling them again when it disables itself, so
|
|
* that other analysers are called in similar conditions.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* req->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*
|
|
* We build a list of analysers to run. We evaluate all
|
|
* of these analysers in the order of the lower bit to
|
|
* the higher bit. This ordering is very important.
|
|
* An analyser will often add/remove other analysers,
|
|
* including itself. Any changes to itself have no effect
|
|
* on the loop. If it removes any other analysers, we
|
|
* want those analysers not to be called anymore during
|
|
* this loop. If it adds an analyser that is located
|
|
* after itself, we want it to be scheduled for being
|
|
* processed during the loop. If it adds an analyser
|
|
* which is located before it, we want it to switch to
|
|
* it immediately, even if it has already been called
|
|
* once but removed since.
|
|
*
|
|
* In order to achieve this, we compare the analyser
|
|
* list after the call with a copy of it before the
|
|
* call. The work list is fed with analyser bits that
|
|
* appeared during the call. Then we compare previous
|
|
* work list with the new one, and check the bits that
|
|
* appeared. If the lowest of these bits is lower than
|
|
* the current bit, it means we have enabled a previous
|
|
* analyser and must immediately loop again.
|
|
*/
|
|
|
|
ana_list = ana_back = req->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE);
|
|
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
|
|
FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
|
|
FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
|
|
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
|
|
FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
|
|
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE);
|
|
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
|
|
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
|
|
FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
|
|
FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
|
|
FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
|
|
FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
|
|
FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
|
|
ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS);
|
|
ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
|
|
ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI);
|
|
ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA);
|
|
ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rq_prod_last = si_f->state;
|
|
rq_cons_last = si_b->state;
|
|
req->flags &= ~CF_WAKE_ONCE;
|
|
rqf_last = req->flags;
|
|
|
|
if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
|
|
goto resync_request;
|
|
}
|
|
|
|
/* we'll monitor the request analysers while parsing the response,
|
|
* because some response analysers may indirectly enable new request
|
|
* analysers (eg: HTTP keep-alive).
|
|
*/
|
|
req_ana_back = req->analysers;
|
|
|
|
resync_response:
|
|
/* Analyse response */
|
|
|
|
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
|
|
(res->flags ^ rpf_last) & CF_MASK_STATIC ||
|
|
(res->analysers && (res->flags & CF_SHUTW)) ||
|
|
si_f->state != rp_cons_last ||
|
|
si_b->state != rp_prod_last ||
|
|
s->pending_events & TASK_WOKEN_MSG) {
|
|
unsigned int flags = res->flags;
|
|
|
|
if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop disable reading or
|
|
* closing. Note: if an analyser disables any of these
|
|
* bits, it is responsible for enabling them again when
|
|
* it disables itself, so that other analysers are called
|
|
* in similar conditions.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* res->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*/
|
|
|
|
ana_list = ana_back = res->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE);
|
|
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE);
|
|
FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
|
|
FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
|
|
FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
|
|
FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
|
|
ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS);
|
|
ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
|
|
ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI);
|
|
ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA);
|
|
ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rp_cons_last = si_f->state;
|
|
rp_prod_last = si_b->state;
|
|
res->flags &= ~CF_WAKE_ONCE;
|
|
rpf_last = res->flags;
|
|
|
|
if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
|
|
goto resync_response;
|
|
}
|
|
|
|
/* maybe someone has added some request analysers, so we must check and loop */
|
|
if (req->analysers & ~req_ana_back)
|
|
goto resync_request;
|
|
|
|
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
/* FIXME: here we should call protocol handlers which rely on
|
|
* both buffers.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Now we propagate unhandled errors to the stream. Normally
|
|
* we're just in a data phase here since it means we have not
|
|
* seen any analyser who could set an error status.
|
|
*/
|
|
srv = objt_server(s->target);
|
|
if (unlikely(!(s->flags & SF_ERR_MASK))) {
|
|
if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the client got an error or a read timeout expired */
|
|
req->analysers = 0;
|
|
if (req->flags & CF_READ_ERROR) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1);
|
|
s->flags |= SF_ERR_CLICL;
|
|
}
|
|
else if (req->flags & CF_READ_TIMEOUT) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1);
|
|
s->flags |= SF_ERR_CLITO;
|
|
}
|
|
else if (req->flags & CF_WRITE_ERROR) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1);
|
|
s->flags |= SF_ERR_SRVCL;
|
|
}
|
|
else {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1);
|
|
s->flags |= SF_ERR_SRVTO;
|
|
}
|
|
sess_set_term_flags(s);
|
|
|
|
/* Abort the request if a client error occurred while
|
|
* the backend stream-interface is in the SI_ST_INI
|
|
* state. It is switched into the SI_ST_CLO state and
|
|
* the request channel is erased. */
|
|
if (si_b->state == SI_ST_INI) {
|
|
si_b->state = SI_ST_CLO;
|
|
channel_abort(req);
|
|
if (IS_HTX_STRM(s))
|
|
channel_htx_erase(req, htxbuf(&req->buf));
|
|
else
|
|
channel_erase(req);
|
|
}
|
|
}
|
|
else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the server got an error or a read timeout expired */
|
|
res->analysers = 0;
|
|
if (res->flags & CF_READ_ERROR) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1);
|
|
s->flags |= SF_ERR_SRVCL;
|
|
}
|
|
else if (res->flags & CF_READ_TIMEOUT) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1);
|
|
s->flags |= SF_ERR_SRVTO;
|
|
}
|
|
else if (res->flags & CF_WRITE_ERROR) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1);
|
|
s->flags |= SF_ERR_CLICL;
|
|
}
|
|
else {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1);
|
|
s->flags |= SF_ERR_CLITO;
|
|
}
|
|
sess_set_term_flags(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we take care of forwarding unhandled data. This also includes
|
|
* connection establishments and shutdown requests.
|
|
*/
|
|
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) &&
|
|
!(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
|
|
(si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) &&
|
|
(req->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
|
|
if (IS_HTX_STRM(s)) {
|
|
struct htx *htx = htxbuf(&req->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
co_set_data(req, htx->data);
|
|
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_htx_forward_forever(req, htx);
|
|
}
|
|
else {
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer (which might possibly not be connected yet).
|
|
*/
|
|
c_adv(req, ci_data(req));
|
|
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_forward_forever(req);
|
|
}
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward request data */
|
|
if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
|
|
req->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->rcv_pipe &&
|
|
__objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->rcv_pipe) &&
|
|
(objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->snd_pipe &&
|
|
__objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->snd_pipe) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(req->flags & CF_STREAMER_FAST)))) {
|
|
req->flags |= CF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rqf_last = req->flags;
|
|
|
|
/* it's possible that an upper layer has requested a connection setup or abort.
|
|
* There are 2 situations where we decide to establish a new connection :
|
|
* - there are data scheduled for emission in the buffer
|
|
* - the CF_AUTO_CONNECT flag is set (active connection)
|
|
*/
|
|
if (si_b->state == SI_ST_INI) {
|
|
if (!(req->flags & CF_SHUTW)) {
|
|
if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
|
|
/* If we have an appctx, there is no connect method, so we
|
|
* immediately switch to the connected state, otherwise we
|
|
* perform a connection request.
|
|
*/
|
|
si_b->state = SI_ST_REQ; /* new connection requested */
|
|
si_b->conn_retries = s->be->conn_retries;
|
|
if ((s->be->retry_type &~ PR_RE_CONN_FAILED) &&
|
|
(s->be->mode == PR_MODE_HTTP) &&
|
|
!(si_b->flags & SI_FL_D_L7_RETRY))
|
|
si_b->flags |= SI_FL_L7_RETRY;
|
|
}
|
|
}
|
|
else {
|
|
si_release_endpoint(si_b);
|
|
si_b->state = SI_ST_CLO; /* shutw+ini = abort */
|
|
channel_shutw_now(req); /* fix buffer flags upon abort */
|
|
channel_shutr_now(res);
|
|
}
|
|
}
|
|
|
|
|
|
/* we may have a pending connection request, or a connection waiting
|
|
* for completion.
|
|
*/
|
|
if (si_state_in(si_b->state, SI_SB_REQ|SI_SB_QUE|SI_SB_TAR|SI_SB_ASS)) {
|
|
/* prune the request variables and swap to the response variables. */
|
|
if (s->vars_reqres.scope != SCOPE_RES) {
|
|
if (!LIST_ISEMPTY(&s->vars_reqres.head))
|
|
vars_prune(&s->vars_reqres, s->sess, s);
|
|
vars_init(&s->vars_reqres, SCOPE_RES);
|
|
}
|
|
|
|
do {
|
|
/* nb: step 1 might switch from QUE to ASS, but we first want
|
|
* to give a chance to step 2 to perform a redirect if needed.
|
|
*/
|
|
if (si_b->state != SI_ST_REQ)
|
|
back_try_conn_req(s);
|
|
if (si_b->state == SI_ST_REQ)
|
|
back_handle_st_req(s);
|
|
|
|
/* get a chance to complete an immediate connection setup */
|
|
if (si_b->state == SI_ST_RDY)
|
|
goto resync_stream_interface;
|
|
|
|
/* applets directly go to the ESTABLISHED state. Similarly,
|
|
* servers experience the same fate when their connection
|
|
* is reused.
|
|
*/
|
|
if (unlikely(si_b->state == SI_ST_EST))
|
|
back_establish(s);
|
|
|
|
srv = objt_server(s->target);
|
|
if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
|
|
http_perform_server_redirect(s, si_b);
|
|
} while (si_b->state == SI_ST_ASS);
|
|
}
|
|
|
|
/* Let's see if we can send the pending request now */
|
|
si_sync_send(si_b);
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the request buffer
|
|
*/
|
|
|
|
/* first, let's check if the request buffer needs to shutdown(write), which may
|
|
* happen either because the input is closed or because we want to force a close
|
|
* once the server has begun to respond. If a half-closed timeout is set, we adjust
|
|
* the other side's timeout as well.
|
|
*/
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTR))) {
|
|
channel_shutw_now(req);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(req))) {
|
|
if (req->flags & CF_READ_ERROR)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si_b);
|
|
}
|
|
|
|
/* shutdown(write) done on server side, we must stop the client too */
|
|
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
|
|
!req->analysers))
|
|
channel_shutr_now(req);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
|
|
if (si_f->flags & SI_FL_NOHALF)
|
|
si_f->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_f);
|
|
}
|
|
|
|
/* Benchmarks have shown that it's optimal to do a full resync now */
|
|
if (si_f->state == SI_ST_DIS ||
|
|
si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) ||
|
|
(si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) ||
|
|
(si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO))
|
|
goto resync_stream_interface;
|
|
|
|
/* otherwise we want to check if we need to resync the req buffer or not */
|
|
if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW))
|
|
goto resync_request;
|
|
|
|
/* perform output updates to the response buffer */
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) &&
|
|
!(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
|
|
si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) &&
|
|
(res->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
|
|
if (IS_HTX_STRM(s)) {
|
|
struct htx *htx = htxbuf(&res->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
co_set_data(res, htx->data);
|
|
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_htx_forward_forever(res, htx);
|
|
}
|
|
else {
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
c_adv(res, ci_data(res));
|
|
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
|
|
channel_forward_forever(res);
|
|
}
|
|
|
|
/* if we have no analyser anymore in any direction and have a
|
|
* tunnel timeout set, use it now. Note that we must respect
|
|
* the half-closed timeouts as well.
|
|
*/
|
|
if (!req->analysers && s->be->timeout.tunnel) {
|
|
req->rto = req->wto = res->rto = res->wto =
|
|
s->be->timeout.tunnel;
|
|
|
|
if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin))
|
|
res->wto = sess->fe->timeout.clientfin;
|
|
if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
|
|
res->rto = s->be->timeout.serverfin;
|
|
if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
|
|
req->wto = s->be->timeout.serverfin;
|
|
if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin))
|
|
req->rto = sess->fe->timeout.clientfin;
|
|
|
|
req->rex = tick_add(now_ms, req->rto);
|
|
req->wex = tick_add(now_ms, req->wto);
|
|
res->rex = tick_add(now_ms, res->rto);
|
|
res->wex = tick_add(now_ms, res->wto);
|
|
}
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward response data */
|
|
if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
|
|
res->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->snd_pipe &&
|
|
__objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->snd_pipe) &&
|
|
(objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->rcv_pipe &&
|
|
__objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->rcv_pipe) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
|
|
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(res->flags & CF_STREAMER_FAST)))) {
|
|
res->flags |= CF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rpf_last = res->flags;
|
|
|
|
/* Let's see if we can send the pending response now */
|
|
si_sync_send(si_f);
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/*
|
|
* FIXME: this is probably where we should produce error responses.
|
|
*/
|
|
|
|
/* first, let's check if the response buffer needs to shutdown(write) */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
|
|
(CF_AUTO_CLOSE|CF_SHUTR))) {
|
|
channel_shutw_now(res);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
|
|
channel_is_empty(res))) {
|
|
si_shutw(si_f);
|
|
}
|
|
|
|
/* shutdown(write) done on the client side, we must stop the server too */
|
|
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
|
|
!res->analysers)
|
|
channel_shutr_now(res);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
|
|
if (si_b->flags & SI_FL_NOHALF)
|
|
si_b->flags |= SI_FL_NOLINGER;
|
|
si_shutr(si_b);
|
|
}
|
|
|
|
if (si_f->state == SI_ST_DIS ||
|
|
si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) ||
|
|
(si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) ||
|
|
(si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO))
|
|
goto resync_stream_interface;
|
|
|
|
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
if ((res->flags ^ rpf_last) & CF_MASK_STATIC)
|
|
goto resync_response;
|
|
|
|
if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
/* we're interested in getting wakeups again */
|
|
si_f->flags &= ~SI_FL_DONT_WAKE;
|
|
si_b->flags &= ~SI_FL_DONT_WAKE;
|
|
|
|
/* This is needed only when debugging is enabled, to indicate
|
|
* client-side or server-side close. Please note that in the unlikely
|
|
* event where both sides would close at once, the sequence is reported
|
|
* on the server side first.
|
|
*/
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) ||
|
|
(global.mode & MODE_VERBOSE)))) {
|
|
if (si_b->state == SI_ST_CLO &&
|
|
si_b->prev_state == SI_ST_EST) {
|
|
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
|
|
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
|
|
if (si_f->state == SI_ST_CLO &&
|
|
si_f->prev_state == SI_ST_EST) {
|
|
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
|
|
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
}
|
|
|
|
if (likely((si_f->state != SI_ST_CLO) || !si_state_in(si_b->state, SI_SB_INI|SI_SB_CLO))) {
|
|
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE))
|
|
stream_process_counters(s);
|
|
|
|
si_update_both(si_f, si_b);
|
|
|
|
/* Trick: if a request is being waiting for the server to respond,
|
|
* and if we know the server can timeout, we don't want the timeout
|
|
* to expire on the client side first, but we're still interested
|
|
* in passing data from the client to the server (eg: POST). Thus,
|
|
* we can cancel the client's request timeout if the server's
|
|
* request timeout is set and the server has not yet sent a response.
|
|
*/
|
|
|
|
if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
|
|
(tick_isset(req->wex) || tick_isset(res->rex))) {
|
|
req->flags |= CF_READ_NOEXP;
|
|
req->rex = TICK_ETERNITY;
|
|
}
|
|
|
|
/* Reset pending events now */
|
|
s->pending_events = 0;
|
|
|
|
update_exp_and_leave:
|
|
/* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */
|
|
t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire),
|
|
tick_first(tick_first(req->rex, req->wex),
|
|
tick_first(res->rex, res->wex)));
|
|
if (!req->analysers)
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
|
|
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) &&
|
|
(!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms)))
|
|
req->analyse_exp = tick_add(now_ms, 5000);
|
|
|
|
t->expire = tick_first(t->expire, req->analyse_exp);
|
|
|
|
t->expire = tick_first(t->expire, res->analyse_exp);
|
|
|
|
if (si_f->exp)
|
|
t->expire = tick_first(t->expire, si_f->exp);
|
|
|
|
if (si_b->exp)
|
|
t->expire = tick_first(t->expire, si_b->exp);
|
|
|
|
s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES);
|
|
stream_release_buffers(s);
|
|
|
|
DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s);
|
|
return t; /* nothing more to do */
|
|
}
|
|
|
|
DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s);
|
|
|
|
if (s->flags & SF_BE_ASSIGNED)
|
|
_HA_ATOMIC_SUB(&s->be->beconn, 1);
|
|
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
|
|
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1,
|
|
objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1);
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
|
|
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
if (!(s->flags & SF_IGNORE))
|
|
stream_process_counters(s);
|
|
|
|
if (s->txn && s->txn->status) {
|
|
int n;
|
|
|
|
n = s->txn->status / 100;
|
|
if (n < 1 || n > 5)
|
|
n = 0;
|
|
|
|
if (sess->fe->mode == PR_MODE_HTTP) {
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[n], 1);
|
|
}
|
|
if ((s->flags & SF_BE_ASSIGNED) &&
|
|
(s->be->mode == PR_MODE_HTTP)) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.p.http.rsp[n], 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.p.http.cum_req, 1);
|
|
}
|
|
}
|
|
|
|
/* let's do a final log if we need it */
|
|
if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
|
|
!(s->flags & SF_MONITOR) &&
|
|
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
|
|
/* we may need to know the position in the queue */
|
|
pendconn_free(s);
|
|
s->do_log(s);
|
|
}
|
|
|
|
/* update time stats for this stream */
|
|
stream_update_time_stats(s);
|
|
|
|
/* the task MUST not be in the run queue anymore */
|
|
stream_free(s);
|
|
task_destroy(t);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the stream's backend and server time stats */
|
|
void stream_update_time_stats(struct stream *s)
|
|
{
|
|
int t_request;
|
|
int t_queue;
|
|
int t_connect;
|
|
int t_data;
|
|
int t_close;
|
|
struct server *srv;
|
|
unsigned int samples_window;
|
|
|
|
t_request = 0;
|
|
t_queue = s->logs.t_queue;
|
|
t_connect = s->logs.t_connect;
|
|
t_close = s->logs.t_close;
|
|
t_data = s->logs.t_data;
|
|
|
|
if (s->be->mode != PR_MODE_HTTP)
|
|
t_data = t_connect;
|
|
|
|
if (t_connect < 0 || t_data < 0)
|
|
return;
|
|
|
|
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
|
|
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
|
|
|
|
t_data -= t_connect;
|
|
t_connect -= t_queue;
|
|
t_queue -= t_request;
|
|
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
|
|
srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
|
|
swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue);
|
|
swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect);
|
|
swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data);
|
|
swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close);
|
|
}
|
|
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
|
|
s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
|
|
swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue);
|
|
swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect);
|
|
swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data);
|
|
swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close);
|
|
}
|
|
|
|
/*
|
|
* This function adjusts sess->srv_conn and maintains the previous and new
|
|
* server's served stream counts. Setting newsrv to NULL is enough to release
|
|
* current connection slot. This function also notifies any LB algo which might
|
|
* expect to be informed about any change in the number of active streams on a
|
|
* server.
|
|
*/
|
|
void sess_change_server(struct stream *sess, struct server *newsrv)
|
|
{
|
|
if (sess->srv_conn == newsrv)
|
|
return;
|
|
|
|
if (sess->srv_conn) {
|
|
_HA_ATOMIC_SUB(&sess->srv_conn->served, 1);
|
|
_HA_ATOMIC_SUB(&sess->srv_conn->proxy->served, 1);
|
|
__ha_barrier_atomic_store();
|
|
if (sess->srv_conn->proxy->lbprm.server_drop_conn)
|
|
sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn);
|
|
stream_del_srv_conn(sess);
|
|
}
|
|
|
|
if (newsrv) {
|
|
_HA_ATOMIC_ADD(&newsrv->served, 1);
|
|
_HA_ATOMIC_ADD(&newsrv->proxy->served, 1);
|
|
__ha_barrier_atomic_store();
|
|
if (newsrv->proxy->lbprm.server_take_conn)
|
|
newsrv->proxy->lbprm.server_take_conn(newsrv);
|
|
stream_add_srv_conn(sess, newsrv);
|
|
}
|
|
}
|
|
|
|
/* Handle server-side errors for default protocols. It is called whenever a a
|
|
* connection setup is aborted or a request is aborted in queue. It sets the
|
|
* stream termination flags so that the caller does not have to worry about
|
|
* them. It's installed as ->srv_error for the server-side stream_interface.
|
|
*/
|
|
void default_srv_error(struct stream *s, struct stream_interface *si)
|
|
{
|
|
int err_type = si->err_type;
|
|
int err = 0, fin = 0;
|
|
|
|
if (err_type & SI_ET_QUEUE_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_CONN_RES) {
|
|
err = SF_ERR_RESOURCE;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else /* SI_ET_CONN_OTHER and others */ {
|
|
err = SF_ERR_INTERNAL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= err;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= fin;
|
|
}
|
|
|
|
/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
|
|
void stream_shutdown(struct stream *stream, int why)
|
|
{
|
|
if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW))
|
|
return;
|
|
|
|
channel_shutw_now(&stream->req);
|
|
channel_shutr_now(&stream->res);
|
|
stream->task->nice = 1024;
|
|
if (!(stream->flags & SF_ERR_MASK))
|
|
stream->flags |= why;
|
|
task_wakeup(stream->task, TASK_WOKEN_OTHER);
|
|
}
|
|
|
|
/* Appends a dump of the state of stream <s> into buffer <buf> which must have
|
|
* preliminary be prepared by its caller, with each line prepended by prefix
|
|
* <pfx>, and each line terminated by character <eol>.
|
|
*/
|
|
void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol)
|
|
{
|
|
const struct conn_stream *csf, *csb;
|
|
const struct connection *cof, *cob;
|
|
const struct appctx *acf, *acb;
|
|
const struct server *srv;
|
|
const char *src = "unknown";
|
|
const char *dst = "unknown";
|
|
char pn[INET6_ADDRSTRLEN];
|
|
const struct channel *req, *res;
|
|
const struct stream_interface *si_f, *si_b;
|
|
|
|
if (!s) {
|
|
chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol);
|
|
return;
|
|
}
|
|
|
|
if (s->obj_type != OBJ_TYPE_STREAM) {
|
|
chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c",
|
|
pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol);
|
|
return;
|
|
}
|
|
|
|
si_f = &s->si[0];
|
|
si_b = &s->si[1];
|
|
req = &s->req;
|
|
res = &s->res;
|
|
|
|
csf = objt_cs(si_f->end);
|
|
cof = cs_conn(csf);
|
|
acf = objt_appctx(si_f->end);
|
|
if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0)
|
|
src = pn;
|
|
else if (acf)
|
|
src = acf->applet->name;
|
|
|
|
csb = objt_cs(si_b->end);
|
|
cob = cs_conn(csb);
|
|
acb = objt_appctx(si_b->end);
|
|
srv = objt_server(s->target);
|
|
if (srv)
|
|
dst = srv->id;
|
|
else if (acb)
|
|
dst = acb->applet->name;
|
|
|
|
chunk_appendf(buf,
|
|
"%sstrm=%p src=%s fe=%s be=%s dst=%s%c"
|
|
"%srqf=%x rqa=%x rpf=%x rpa=%x sif=%s,%x sib=%s,%x%c"
|
|
"%saf=%p,%u csf=%p,%x%c"
|
|
"%sab=%p,%u csb=%p,%x%c"
|
|
"%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
|
|
"%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
|
|
"",
|
|
pfx, s, src, s->sess->fe->id, s->be->id, dst, eol,
|
|
pfx, req->flags, req->analysers, res->flags, res->analysers,
|
|
si_state_str(si_f->state), si_f->flags,
|
|
si_state_str(si_b->state), si_b->flags, eol,
|
|
pfx, acf, acf ? acf->st0 : 0, csf, csf ? csf->flags : 0, eol,
|
|
pfx, acb, acb ? acb->st0 : 0, csb, csb ? csb->flags : 0, eol,
|
|
pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof),
|
|
cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), cof ? cof->handle.fd : 0, eol,
|
|
pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob),
|
|
cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), cob ? cob->handle.fd : 0, eol);
|
|
}
|
|
|
|
/* dumps an error message for type <type> at ptr <ptr> related to stream <s>,
|
|
* having reached loop rate <rate>, then aborts hoping to retrieve a core.
|
|
*/
|
|
void stream_dump_and_crash(enum obj_type *obj, int rate)
|
|
{
|
|
const struct stream *s;
|
|
char *msg = NULL;
|
|
const void *ptr;
|
|
|
|
ptr = s = objt_stream(obj);
|
|
if (!s) {
|
|
const struct appctx *appctx = objt_appctx(obj);
|
|
if (!appctx)
|
|
return;
|
|
ptr = appctx;
|
|
s = si_strm(appctx->owner);
|
|
if (!s)
|
|
return;
|
|
}
|
|
|
|
chunk_reset(&trash);
|
|
stream_dump(&trash, s, "", ' ');
|
|
|
|
chunk_appendf(&trash, "filters={");
|
|
if (HAS_FILTERS(s)) {
|
|
struct filter *filter;
|
|
|
|
list_for_each_entry(filter, &s->strm_flt.filters, list) {
|
|
if (filter->list.p != &s->strm_flt.filters)
|
|
chunk_appendf(&trash, ", ");
|
|
chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter));
|
|
}
|
|
}
|
|
chunk_appendf(&trash, "}");
|
|
|
|
memprintf(&msg,
|
|
"A bogus %s [%p] is spinning at %d calls per second and refuses to die, "
|
|
"aborting now! Please report this error to developers "
|
|
"[%s]\n",
|
|
obj_type_name(obj), ptr, rate, trash.area);
|
|
|
|
ha_alert("%s", msg);
|
|
send_log(NULL, LOG_EMERG, "%s", msg);
|
|
abort();
|
|
}
|
|
|
|
/* Generates a unique ID based on the given <format>, stores it in the given <strm> and
|
|
* returns the unique ID.
|
|
|
|
* If this function fails to allocate memory IST_NULL is returned.
|
|
*
|
|
* If an ID is already stored within the stream nothing happens existing unique ID is
|
|
* returned.
|
|
*/
|
|
struct ist stream_generate_unique_id(struct stream *strm, struct list *format)
|
|
{
|
|
if (isttest(strm->unique_id)) {
|
|
return strm->unique_id;
|
|
}
|
|
else {
|
|
char *unique_id;
|
|
int length;
|
|
if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
|
|
return IST_NULL;
|
|
|
|
length = build_logline(strm, unique_id, UNIQUEID_LEN, format);
|
|
strm->unique_id = ist2(unique_id, length);
|
|
|
|
return strm->unique_id;
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* 0=OK, <0=Alert, >0=Warning */
|
|
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
|
|
struct proxy *px, struct act_rule *rule,
|
|
char **err)
|
|
{
|
|
struct action_kw *kw;
|
|
|
|
/* Check if the service name exists. */
|
|
if (*(args[*cur_arg]) == 0) {
|
|
memprintf(err, "'%s' expects a service name.", args[0]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
/* lookup for keyword corresponding to a service. */
|
|
kw = action_lookup(&service_keywords, args[*cur_arg]);
|
|
if (!kw) {
|
|
memprintf(err, "'%s' unknown service name.", args[1]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
(*cur_arg)++;
|
|
|
|
/* executes specific rule parser. */
|
|
rule->kw = kw;
|
|
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = process_use_service;
|
|
rule->action = ACT_CUSTOM;
|
|
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
void service_keywords_register(struct action_kw_list *kw_list)
|
|
{
|
|
LIST_ADDQ(&service_keywords, &kw_list->list);
|
|
}
|
|
|
|
/* Lists the known services on <out> */
|
|
void list_services(FILE *out)
|
|
{
|
|
struct action_kw_list *kw_list;
|
|
int found = 0;
|
|
int i;
|
|
|
|
fprintf(out, "Available services :");
|
|
list_for_each_entry(kw_list, &service_keywords, list) {
|
|
for (i = 0; kw_list->kw[i].kw != NULL; i++) {
|
|
if (!found)
|
|
fputc('\n', out);
|
|
found = 1;
|
|
fprintf(out, "\t%s\n", kw_list->kw[i].kw);
|
|
}
|
|
}
|
|
if (!found)
|
|
fprintf(out, " none\n");
|
|
}
|
|
|
|
/* This function dumps a complete stream state onto the stream interface's
|
|
* read buffer. The stream has to be set in strm. It returns 0 if the output
|
|
* buffer is full and it needs to be called again, otherwise non-zero. It is
|
|
* designed to be called from stats_dump_strm_to_buffer() below.
|
|
*/
|
|
static int stats_dump_full_strm_to_buffer(struct stream_interface *si, struct stream *strm)
|
|
{
|
|
struct appctx *appctx = __objt_appctx(si->end);
|
|
struct tm tm;
|
|
extern const char *monthname[12];
|
|
char pn[INET6_ADDRSTRLEN];
|
|
struct conn_stream *cs;
|
|
struct connection *conn;
|
|
struct appctx *tmpctx;
|
|
|
|
chunk_reset(&trash);
|
|
|
|
if (appctx->ctx.sess.section > 0 && appctx->ctx.sess.uid != strm->uniq_id) {
|
|
/* stream changed, no need to go any further */
|
|
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
|
|
if (ci_putchk(si_ic(si), &trash) == -1)
|
|
goto full;
|
|
goto done;
|
|
}
|
|
|
|
switch (appctx->ctx.sess.section) {
|
|
case 0: /* main status of the stream */
|
|
appctx->ctx.sess.uid = strm->uniq_id;
|
|
appctx->ctx.sess.section = 1;
|
|
/* fall through */
|
|
|
|
case 1:
|
|
get_localtime(strm->logs.accept_date.tv_sec, &tm);
|
|
chunk_appendf(&trash,
|
|
"%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s",
|
|
strm,
|
|
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec),
|
|
strm->uniq_id,
|
|
strm_li(strm) ? strm_li(strm)->proto->name : "?");
|
|
|
|
conn = objt_conn(strm_orig(strm));
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " source=%s:%d\n",
|
|
pn, get_host_port(conn->src));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid);
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(&trash, "\n");
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" flags=0x%x, conn_retries=%d, srv_conn=%p, pend_pos=%p waiting=%d\n",
|
|
strm->flags, strm->si[1].conn_retries, strm->srv_conn, strm->pend_pos,
|
|
MT_LIST_ADDED(&strm->buffer_wait.list));
|
|
|
|
chunk_appendf(&trash,
|
|
" frontend=%s (id=%u mode=%s), listener=%s (id=%u)",
|
|
strm_fe(strm)->id, strm_fe(strm)->uuid, strm_fe(strm)->mode ? "http" : "tcp",
|
|
strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?",
|
|
strm_li(strm) ? strm_li(strm)->luid : 0);
|
|
|
|
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " addr=%s:%d\n",
|
|
pn, get_host_port(conn->dst));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid);
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(&trash, "\n");
|
|
break;
|
|
}
|
|
|
|
if (strm->be->cap & PR_CAP_BE)
|
|
chunk_appendf(&trash,
|
|
" backend=%s (id=%u mode=%s)",
|
|
strm->be->id,
|
|
strm->be->uuid, strm->be->mode ? "http" : "tcp");
|
|
else
|
|
chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)");
|
|
|
|
cs = objt_cs(strm->si[1].end);
|
|
conn = cs_conn(cs);
|
|
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " addr=%s:%d\n",
|
|
pn, get_host_port(conn->src));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " addr=unix\n");
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(&trash, "\n");
|
|
break;
|
|
}
|
|
|
|
if (strm->be->cap & PR_CAP_BE)
|
|
chunk_appendf(&trash,
|
|
" server=%s (id=%u)",
|
|
objt_server(strm->target) ? objt_server(strm->target)->id : "<none>",
|
|
objt_server(strm->target) ? objt_server(strm->target)->puid : 0);
|
|
else
|
|
chunk_appendf(&trash, " server=<NONE> (id=-1)");
|
|
|
|
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " addr=%s:%d\n",
|
|
pn, get_host_port(conn->dst));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " addr=unix\n");
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(&trash, "\n");
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s",
|
|
strm->task,
|
|
strm->task->state,
|
|
strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate),
|
|
strm->task->expire ?
|
|
tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(strm->task->expire - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
strm->task->thread_mask,
|
|
task_in_rq(strm->task) ? ", running" : "");
|
|
|
|
chunk_appendf(&trash,
|
|
" age=%s)\n",
|
|
human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1));
|
|
|
|
if (strm->txn)
|
|
chunk_appendf(&trash,
|
|
" txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n",
|
|
strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status,
|
|
h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state),
|
|
strm->txn->req.flags, strm->txn->rsp.flags);
|
|
|
|
chunk_appendf(&trash,
|
|
" si[0]=%p (state=%s flags=0x%02x endp0=%s:%p exp=%s et=0x%03x sub=%d)\n",
|
|
&strm->si[0],
|
|
si_state_str(strm->si[0].state),
|
|
strm->si[0].flags,
|
|
obj_type_name(strm->si[0].end),
|
|
obj_base_ptr(strm->si[0].end),
|
|
strm->si[0].exp ?
|
|
tick_is_expired(strm->si[0].exp, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(strm->si[0].exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
strm->si[0].err_type, strm->si[0].wait_event.events);
|
|
|
|
chunk_appendf(&trash,
|
|
" si[1]=%p (state=%s flags=0x%02x endp1=%s:%p exp=%s et=0x%03x sub=%d)\n",
|
|
&strm->si[1],
|
|
si_state_str(strm->si[1].state),
|
|
strm->si[1].flags,
|
|
obj_type_name(strm->si[1].end),
|
|
obj_base_ptr(strm->si[1].end),
|
|
strm->si[1].exp ?
|
|
tick_is_expired(strm->si[1].exp, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(strm->si[1].exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
strm->si[1].err_type, strm->si[1].wait_event.events);
|
|
|
|
if ((cs = objt_cs(strm->si[0].end)) != NULL) {
|
|
conn = cs->conn;
|
|
|
|
chunk_appendf(&trash,
|
|
" co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
|
|
conn,
|
|
conn_get_ctrl_name(conn),
|
|
conn_get_xprt_name(conn),
|
|
conn_get_mux_name(conn),
|
|
cs_get_data_name(cs),
|
|
obj_type_name(conn->target),
|
|
obj_base_ptr(conn->target));
|
|
|
|
chunk_appendf(&trash,
|
|
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
|
|
conn->flags,
|
|
conn->handle.fd,
|
|
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0,
|
|
conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
|
|
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
|
|
|
|
chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx);
|
|
}
|
|
else if ((tmpctx = objt_appctx(strm->si[0].end)) != NULL) {
|
|
chunk_appendf(&trash,
|
|
" app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
|
|
tmpctx,
|
|
tmpctx->st0,
|
|
tmpctx->st1,
|
|
tmpctx->st2,
|
|
tmpctx->applet->name,
|
|
tmpctx->thread_mask,
|
|
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
|
|
(unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
|
|
}
|
|
|
|
if ((cs = objt_cs(strm->si[1].end)) != NULL) {
|
|
conn = cs->conn;
|
|
|
|
chunk_appendf(&trash,
|
|
" co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
|
|
conn,
|
|
conn_get_ctrl_name(conn),
|
|
conn_get_xprt_name(conn),
|
|
conn_get_mux_name(conn),
|
|
cs_get_data_name(cs),
|
|
obj_type_name(conn->target),
|
|
obj_base_ptr(conn->target));
|
|
|
|
chunk_appendf(&trash,
|
|
" flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
|
|
conn->flags,
|
|
conn->handle.fd,
|
|
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0,
|
|
conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
|
|
conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
|
|
|
|
chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx);
|
|
}
|
|
else if ((tmpctx = objt_appctx(strm->si[1].end)) != NULL) {
|
|
chunk_appendf(&trash,
|
|
" app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
|
|
tmpctx,
|
|
tmpctx->st0,
|
|
tmpctx->st1,
|
|
tmpctx->st2,
|
|
tmpctx->applet->name,
|
|
tmpctx->thread_mask,
|
|
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
|
|
(unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
|
|
" an_exp=%s",
|
|
&strm->req,
|
|
strm->req.flags, strm->req.analysers,
|
|
strm->req.pipe ? strm->req.pipe->data : 0,
|
|
strm->req.to_forward, strm->req.total,
|
|
strm->req.analyse_exp ?
|
|
human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash,
|
|
" rex=%s",
|
|
strm->req.rex ?
|
|
human_time(TICKS_TO_MS(strm->req.rex - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash,
|
|
" wex=%s\n"
|
|
" buf=%p data=%p o=%u p=%u i=%u size=%u\n",
|
|
strm->req.wex ?
|
|
human_time(TICKS_TO_MS(strm->req.wex - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
&strm->req.buf,
|
|
b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req),
|
|
(unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req),
|
|
(unsigned int)strm->req.buf.size);
|
|
|
|
if (IS_HTX_STRM(strm)) {
|
|
struct htx *htx = htxbuf(&strm->req.buf);
|
|
|
|
chunk_appendf(&trash,
|
|
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
|
|
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
|
|
(htx->tail >= htx->head) ? "NO" : "YES",
|
|
(unsigned long long)htx->extra);
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
|
|
" an_exp=%s",
|
|
&strm->res,
|
|
strm->res.flags, strm->res.analysers,
|
|
strm->res.pipe ? strm->res.pipe->data : 0,
|
|
strm->res.to_forward, strm->res.total,
|
|
strm->res.analyse_exp ?
|
|
human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash,
|
|
" rex=%s",
|
|
strm->res.rex ?
|
|
human_time(TICKS_TO_MS(strm->res.rex - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash,
|
|
" wex=%s\n"
|
|
" buf=%p data=%p o=%u p=%u i=%u size=%u\n",
|
|
strm->res.wex ?
|
|
human_time(TICKS_TO_MS(strm->res.wex - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
&strm->res.buf,
|
|
b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res),
|
|
(unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res),
|
|
(unsigned int)strm->res.buf.size);
|
|
|
|
if (IS_HTX_STRM(strm)) {
|
|
struct htx *htx = htxbuf(&strm->res.buf);
|
|
|
|
chunk_appendf(&trash,
|
|
" htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
|
|
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
|
|
(htx->tail >= htx->head) ? "NO" : "YES",
|
|
(unsigned long long)htx->extra);
|
|
}
|
|
|
|
if (ci_putchk(si_ic(si), &trash) == -1)
|
|
goto full;
|
|
|
|
/* use other states to dump the contents */
|
|
}
|
|
/* end of dump */
|
|
done:
|
|
appctx->ctx.sess.uid = 0;
|
|
appctx->ctx.sess.section = 0;
|
|
return 1;
|
|
full:
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
|
|
return 1;
|
|
|
|
if (*args[2] && strcmp(args[2], "all") == 0)
|
|
appctx->ctx.sess.target = (void *)-1;
|
|
else if (*args[2])
|
|
appctx->ctx.sess.target = (void *)strtoul(args[2], NULL, 0);
|
|
else
|
|
appctx->ctx.sess.target = NULL;
|
|
appctx->ctx.sess.section = 0; /* start with stream status */
|
|
appctx->ctx.sess.pos = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function dumps all streams' states onto the stream interface's
|
|
* read buffer. It returns 0 if the output buffer is full and it needs
|
|
* to be called again, otherwise non-zero. It proceeds in an isolated
|
|
* thread so there is no thread safety issue here.
|
|
*/
|
|
static int cli_io_handler_dump_sess(struct appctx *appctx)
|
|
{
|
|
struct stream_interface *si = appctx->owner;
|
|
struct connection *conn;
|
|
|
|
thread_isolate();
|
|
|
|
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) {
|
|
/* If we're forced to shut down, we might have to remove our
|
|
* reference to the last stream being dumped.
|
|
*/
|
|
if (appctx->st2 == STAT_ST_LIST) {
|
|
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) {
|
|
LIST_DEL(&appctx->ctx.sess.bref.users);
|
|
LIST_INIT(&appctx->ctx.sess.bref.users);
|
|
}
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
chunk_reset(&trash);
|
|
|
|
switch (appctx->st2) {
|
|
case STAT_ST_INIT:
|
|
/* the function had not been called yet, let's prepare the
|
|
* buffer for a response. We initialize the current stream
|
|
* pointer to the first in the global list. When a target
|
|
* stream is being destroyed, it is responsible for updating
|
|
* this pointer. We know we have reached the end when this
|
|
* pointer points back to the head of the streams list.
|
|
*/
|
|
LIST_INIT(&appctx->ctx.sess.bref.users);
|
|
appctx->ctx.sess.bref.ref = streams.n;
|
|
appctx->st2 = STAT_ST_LIST;
|
|
/* fall through */
|
|
|
|
case STAT_ST_LIST:
|
|
/* first, let's detach the back-ref from a possible previous stream */
|
|
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) {
|
|
LIST_DEL(&appctx->ctx.sess.bref.users);
|
|
LIST_INIT(&appctx->ctx.sess.bref.users);
|
|
}
|
|
|
|
/* and start from where we stopped */
|
|
while (appctx->ctx.sess.bref.ref != &streams) {
|
|
char pn[INET6_ADDRSTRLEN];
|
|
struct stream *curr_strm;
|
|
|
|
curr_strm = LIST_ELEM(appctx->ctx.sess.bref.ref, struct stream *, list);
|
|
|
|
if (appctx->ctx.sess.target) {
|
|
if (appctx->ctx.sess.target != (void *)-1 && appctx->ctx.sess.target != curr_strm)
|
|
goto next_sess;
|
|
|
|
LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users);
|
|
/* call the proper dump() function and return if we're missing space */
|
|
if (!stats_dump_full_strm_to_buffer(si, curr_strm))
|
|
goto full;
|
|
|
|
/* stream dump complete */
|
|
LIST_DEL(&appctx->ctx.sess.bref.users);
|
|
LIST_INIT(&appctx->ctx.sess.bref.users);
|
|
if (appctx->ctx.sess.target != (void *)-1) {
|
|
appctx->ctx.sess.target = NULL;
|
|
break;
|
|
}
|
|
else
|
|
goto next_sess;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
"%p: proto=%s",
|
|
curr_strm,
|
|
strm_li(curr_strm) ? strm_li(curr_strm)->proto->name : "?");
|
|
|
|
conn = objt_conn(strm_orig(curr_strm));
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash,
|
|
" src=%s:%d fe=%s be=%s srv=%s",
|
|
pn,
|
|
get_host_port(conn->src),
|
|
strm_fe(curr_strm)->id,
|
|
(curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
|
|
objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>"
|
|
);
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash,
|
|
" src=unix:%d fe=%s be=%s srv=%s",
|
|
strm_li(curr_strm)->luid,
|
|
strm_fe(curr_strm)->id,
|
|
(curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
|
|
objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>"
|
|
);
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" ts=%02x age=%s calls=%u rate=%u cpu=%llu lat=%llu",
|
|
curr_strm->task->state,
|
|
human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1),
|
|
curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate),
|
|
(unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time);
|
|
|
|
chunk_appendf(&trash,
|
|
" rq[f=%06xh,i=%u,an=%02xh,rx=%s",
|
|
curr_strm->req.flags,
|
|
(unsigned int)ci_data(&curr_strm->req),
|
|
curr_strm->req.analysers,
|
|
curr_strm->req.rex ?
|
|
human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
",wx=%s",
|
|
curr_strm->req.wex ?
|
|
human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
",ax=%s]",
|
|
curr_strm->req.analyse_exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
" rp[f=%06xh,i=%u,an=%02xh,rx=%s",
|
|
curr_strm->res.flags,
|
|
(unsigned int)ci_data(&curr_strm->res),
|
|
curr_strm->res.analysers,
|
|
curr_strm->res.rex ?
|
|
human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
",wx=%s",
|
|
curr_strm->res.wex ?
|
|
human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
",ax=%s]",
|
|
curr_strm->res.analyse_exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
conn = cs_conn(objt_cs(curr_strm->si[0].end));
|
|
chunk_appendf(&trash,
|
|
" s0=[%d,%1xh,fd=%d,ex=%s]",
|
|
curr_strm->si[0].state,
|
|
curr_strm->si[0].flags,
|
|
conn ? conn->handle.fd : -1,
|
|
curr_strm->si[0].exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->si[0].exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
conn = cs_conn(objt_cs(curr_strm->si[1].end));
|
|
chunk_appendf(&trash,
|
|
" s1=[%d,%1xh,fd=%d,ex=%s]",
|
|
curr_strm->si[1].state,
|
|
curr_strm->si[1].flags,
|
|
conn ? conn->handle.fd : -1,
|
|
curr_strm->si[1].exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->si[1].exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
" exp=%s",
|
|
curr_strm->task->expire ?
|
|
human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
if (task_in_rq(curr_strm->task))
|
|
chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice);
|
|
|
|
chunk_appendf(&trash, "\n");
|
|
|
|
if (ci_putchk(si_ic(si), &trash) == -1) {
|
|
/* let's try again later from this stream. We add ourselves into
|
|
* this stream's users so that it can remove us upon termination.
|
|
*/
|
|
LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users);
|
|
goto full;
|
|
}
|
|
|
|
next_sess:
|
|
appctx->ctx.sess.bref.ref = curr_strm->list.n;
|
|
}
|
|
|
|
if (appctx->ctx.sess.target && appctx->ctx.sess.target != (void *)-1) {
|
|
/* specified stream not found */
|
|
if (appctx->ctx.sess.section > 0)
|
|
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
|
|
else
|
|
chunk_appendf(&trash, "Session not found.\n");
|
|
|
|
if (ci_putchk(si_ic(si), &trash) == -1)
|
|
goto full;
|
|
|
|
appctx->ctx.sess.target = NULL;
|
|
appctx->ctx.sess.uid = 0;
|
|
goto done;
|
|
}
|
|
/* fall through */
|
|
|
|
default:
|
|
appctx->st2 = STAT_ST_FIN;
|
|
goto done;
|
|
}
|
|
done:
|
|
thread_release();
|
|
return 1;
|
|
full:
|
|
thread_release();
|
|
si_rx_room_blk(si);
|
|
return 0;
|
|
}
|
|
|
|
static void cli_release_show_sess(struct appctx *appctx)
|
|
{
|
|
if (appctx->st2 == STAT_ST_LIST) {
|
|
HA_SPIN_LOCK(STRMS_LOCK, &streams_lock);
|
|
if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users))
|
|
LIST_DEL(&appctx->ctx.sess.bref.users);
|
|
HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock);
|
|
}
|
|
}
|
|
|
|
/* Parses the "shutdown session" directive, it always returns 1 */
|
|
static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct stream *strm, *ptr;
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
|
|
return 1;
|
|
|
|
if (!*args[2])
|
|
return cli_err(appctx, "Session pointer expected (use 'show sess').\n");
|
|
|
|
ptr = (void *)strtoul(args[2], NULL, 0);
|
|
|
|
/* first, look for the requested stream in the stream table */
|
|
list_for_each_entry(strm, &streams, list) {
|
|
if (strm == ptr)
|
|
break;
|
|
}
|
|
|
|
/* do we have the stream ? */
|
|
if (strm != ptr)
|
|
return cli_err(appctx, "No such session (use 'show sess').\n");
|
|
|
|
stream_shutdown(strm, SF_ERR_KILLED);
|
|
return 1;
|
|
}
|
|
|
|
/* Parses the "shutdown session server" directive, it always returns 1 */
|
|
static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct server *sv;
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
|
|
return 1;
|
|
|
|
sv = cli_find_server(appctx, args[3]);
|
|
if (!sv)
|
|
return 1;
|
|
|
|
/* kill all the stream that are on this server */
|
|
HA_SPIN_LOCK(SERVER_LOCK, &sv->lock);
|
|
srv_shutdown_streams(sv, SF_ERR_KILLED);
|
|
HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock);
|
|
return 1;
|
|
}
|
|
|
|
/* register cli keywords */
|
|
static struct cli_kw_list cli_kws = {{ },{
|
|
{ { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess },
|
|
{ { "shutdown", "session", NULL }, "shutdown session : kill a specific session", cli_parse_shutdown_session, NULL, NULL },
|
|
{ { "shutdown", "sessions", "server" }, "shutdown sessions server : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
/* main configuration keyword registration. */
|
|
static struct action_kw_list stream_tcp_keywords = { ILH, {
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_keywords);
|
|
|
|
static struct action_kw_list stream_http_keywords = { ILH, {
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_keywords);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|