1613 lines
58 KiB
C
1613 lines
58 KiB
C
/*
|
|
* Compact Elastic Binary Trees - internal functions and types
|
|
*
|
|
* Copyright (C) 2014-2024 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/* This file MUST NOT be included by public code, it contains macros, enums
|
|
* with short names and function definitions that may clash with user code.
|
|
* It may only be included by the respective types' C files.
|
|
*/
|
|
|
|
/*
|
|
* These trees are optimized for adding the minimalest overhead to the stored
|
|
* data. This version uses the node's pointer as the key, for the purpose of
|
|
* quickly finding its neighbours.
|
|
*
|
|
* A few properties :
|
|
* - the xor between two branches of a node cannot be zero unless the two
|
|
* branches are duplicate keys
|
|
* - the xor between two nodes has *at least* the split bit set, possibly more
|
|
* - the split bit is always strictly smaller for a node than for its parent,
|
|
* which implies that the xor between the keys of the lowest level node is
|
|
* always smaller than the xor between a higher level node. Hence the xor
|
|
* between the branches of a regular leaf is always strictly larger than the
|
|
* xor of its parent node's branches if this node is different, since the
|
|
* leaf is associated with a higher level node which has at least one higher
|
|
* level branch. The first leaf doesn't validate this but is handled by the
|
|
* rules below.
|
|
* - during the descent, the node corresponding to a leaf is always visited
|
|
* before the leaf, unless it's the first inserted, nodeless leaf.
|
|
* - the first key is the only one without any node, and it has both its
|
|
* branches pointing to itself during insertion to detect it (i.e. xor==0).
|
|
* - a leaf is always present as a node on the path from the root, except for
|
|
* the inserted first key which has no node, and is recognizable by its two
|
|
* branches pointing to itself.
|
|
* - a consequence of the rules above is that a non-first leaf appearing below
|
|
* a node will necessarily have an associated node with a split bit equal to
|
|
* or greater than the node's split bit.
|
|
* - another consequence is that below a node, the split bits are different for
|
|
* each branches since both of them are already present above the node, thus
|
|
* at different levels, so their respective XOR values will be different.
|
|
* - since all nodes in a given path have a different split bit, if a leaf has
|
|
* the same split bit as its parent node, it is necessary its associated leaf
|
|
*
|
|
* When descending along the tree, it is possible to know that a search key is
|
|
* not present, because its XOR with both of the branches is stricly higher
|
|
* than the inter-branch XOR. The reason is simple : the inter-branch XOR will
|
|
* have its highest bit set indicating the split bit. Since it's the bit that
|
|
* differs between the two branches, the key cannot have it both set and
|
|
* cleared when comparing to the branch values. So xoring the key with both
|
|
* branches will emit a higher bit only when the key's bit differs from both
|
|
* branches' similar bit. Thus, the following equation :
|
|
* (XOR(key, L) > XOR(L, R)) && (XOR(key, R) > XOR(L, R))
|
|
* is only true when the key should be placed above that node. Since the key
|
|
* has a higher bit which differs from the node, either it has it set and the
|
|
* node has it clear (same for both branches), or it has it clear and the node
|
|
* has it set for both branches. For this reason it's enough to compare the key
|
|
* with any node when the equation above is true, to know if it ought to be
|
|
* present on the left or on the right side. This is useful for insertion and
|
|
* for range lookups.
|
|
*/
|
|
|
|
#ifndef _CEBTREE_PRV_H
|
|
#define _CEBTREE_PRV_H
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include "cebtree.h"
|
|
|
|
/* If DEBUG is set, we'll print additional debugging info during the descent */
|
|
#ifdef DEBUG
|
|
#define CEBDBG(x, ...) fprintf(stderr, x, ##__VA_ARGS__)
|
|
#else
|
|
#define CEBDBG(x, ...) do { } while (0)
|
|
#endif
|
|
|
|
/* These macros are used by upper level files to create two variants of their
|
|
* exported functions:
|
|
* - one which uses sizeof(struct ceb_node) as the key offset, for nodes with
|
|
* adjacent keys ; these ones are named <pfx><sfx>(root, ...)
|
|
* - one with an explicit key offset passed by the caller right after the
|
|
* root.
|
|
* Both rely on a forced inline version with a body that immediately follows
|
|
* the declaration, so that the declaration looks like a single decorated
|
|
* function while 2 are built in practice. There are variants for the basic one
|
|
* with 0, 1 and 2 extra arguments after the root. The root and the key offset
|
|
* are always the first two arguments, and the key offset never appears in the
|
|
* first variant, it's always replaced by sizeof(struct ceb_node) in the calls
|
|
* to the inline version.
|
|
*/
|
|
#define CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2); \
|
|
type pfx##sfx(type1 arg1) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node)); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2) { \
|
|
return _##pfx##sfx(arg1, arg2); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3); \
|
|
type pfx##sfx(type1 arg1, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4); \
|
|
type pfx##sfx(type1 arg1, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4); \
|
|
} \
|
|
type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3, arg4); \
|
|
} \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4)
|
|
/* function body follows */
|
|
|
|
/* tree walk method: key, left, right */
|
|
enum ceb_walk_meth {
|
|
CEB_WM_FST, /* look up "first" (walk left only) */
|
|
CEB_WM_NXT, /* look up "next" (walk right once then left) */
|
|
CEB_WM_PRV, /* look up "prev" (walk left once then right) */
|
|
CEB_WM_LST, /* look up "last" (walk right only) */
|
|
/* all methods from CEB_WM_KEQ and above do have a key */
|
|
CEB_WM_KEQ, /* look up the node equal to the key */
|
|
CEB_WM_KGE, /* look up the node greater than or equal to the key */
|
|
CEB_WM_KGT, /* look up the node greater than the key */
|
|
CEB_WM_KLE, /* look up the node lower than or equal to the key */
|
|
CEB_WM_KLT, /* look up the node lower than the key */
|
|
CEB_WM_KNX, /* look up the node's key first, then find the next */
|
|
CEB_WM_KPR, /* look up the node's key first, then find the prev */
|
|
};
|
|
|
|
enum ceb_key_type {
|
|
CEB_KT_ADDR, /* the key is the node's address */
|
|
CEB_KT_U32, /* 32-bit unsigned word in key_u32 */
|
|
CEB_KT_U64, /* 64-bit unsigned word in key_u64 */
|
|
CEB_KT_MB, /* fixed size memory block in (key_u64,key_ptr), direct storage */
|
|
CEB_KT_IM, /* fixed size memory block in (key_u64,key_ptr), indirect storage */
|
|
CEB_KT_ST, /* NUL-terminated string in key_ptr, direct storage */
|
|
CEB_KT_IS, /* NUL-terminated string in key_ptr, indirect storage */
|
|
};
|
|
|
|
union ceb_key_storage {
|
|
uint32_t u32;
|
|
uint64_t u64;
|
|
unsigned long ul;
|
|
unsigned char mb[0];
|
|
unsigned char str[0];
|
|
unsigned char *ptr; /* for CEB_KT_IS */
|
|
};
|
|
|
|
/* returns the ceb_key_storage pointer for node <n> and offset <o> */
|
|
#define NODEK(n, o) ((union ceb_key_storage*)(((char *)(n)) + (o)))
|
|
|
|
/* Returns the xor (or common length) between the two sides <l> and <r> if both
|
|
* are non-null, otherwise between the first non-null one and the value in the
|
|
* associate key. As a reminder, memory blocks place their length in key_u64.
|
|
* This is only intended for internal use, essentially for debugging.
|
|
*
|
|
* <kofs> contains the offset between the key and the node's base. When simply
|
|
* adjacent, this would just be sizeof(ceb_node).
|
|
*/
|
|
__attribute__((unused))
|
|
static inline uint64_t _xor_branches(ptrdiff_t kofs, enum ceb_key_type key_type, uint32_t key_u32,
|
|
uint64_t key_u64, const void *key_ptr,
|
|
const struct ceb_node *l,
|
|
const struct ceb_node *r)
|
|
{
|
|
if (l && r) {
|
|
if (key_type == CEB_KT_MB)
|
|
return equal_bits(NODEK(l, kofs)->mb, NODEK(r, kofs)->mb, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_IM)
|
|
return equal_bits(NODEK(l, kofs)->mb, NODEK(r, kofs)->ptr, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_ST)
|
|
return string_equal_bits(NODEK(l, kofs)->str, NODEK(r, kofs)->str, 0);
|
|
else if (key_type == CEB_KT_IS)
|
|
return string_equal_bits(NODEK(l, kofs)->ptr, NODEK(r, kofs)->ptr, 0);
|
|
else if (key_type == CEB_KT_U64)
|
|
return NODEK(l, kofs)->u64 ^ NODEK(r, kofs)->u64;
|
|
else if (key_type == CEB_KT_U32)
|
|
return NODEK(l, kofs)->u32 ^ NODEK(r, kofs)->u32;
|
|
else if (key_type == CEB_KT_ADDR)
|
|
return ((uintptr_t)l ^ (uintptr_t)r);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if (!l)
|
|
l = r;
|
|
|
|
if (key_type == CEB_KT_MB)
|
|
return equal_bits(key_ptr, NODEK(l, kofs)->mb, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_IM)
|
|
return equal_bits(key_ptr, NODEK(l, kofs)->ptr, 0, key_u64 << 3);
|
|
else if (key_type == CEB_KT_ST)
|
|
return string_equal_bits(key_ptr, NODEK(l, kofs)->str, 0);
|
|
else if (key_type == CEB_KT_IS)
|
|
return string_equal_bits(key_ptr, NODEK(l, kofs)->ptr, 0);
|
|
else if (key_type == CEB_KT_U64)
|
|
return key_u64 ^ NODEK(l, kofs)->u64;
|
|
else if (key_type == CEB_KT_U32)
|
|
return key_u32 ^ NODEK(l, kofs)->u32;
|
|
else if (key_type == CEB_KT_ADDR)
|
|
return ((uintptr_t)key_ptr ^ (uintptr_t)r);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
__attribute__((unused))
|
|
static void dbg(int line,
|
|
const char *pfx,
|
|
enum ceb_walk_meth meth,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
struct ceb_node * const *root,
|
|
const struct ceb_node *p,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
uint32_t px32,
|
|
uint64_t px64,
|
|
size_t plen)
|
|
{
|
|
const char *meths[] = {
|
|
[CEB_WM_FST] = "FST",
|
|
[CEB_WM_NXT] = "NXT",
|
|
[CEB_WM_PRV] = "PRV",
|
|
[CEB_WM_LST] = "LST",
|
|
[CEB_WM_KEQ] = "KEQ",
|
|
[CEB_WM_KGE] = "KGE",
|
|
[CEB_WM_KGT] = "KGT",
|
|
[CEB_WM_KLE] = "KLE",
|
|
[CEB_WM_KLT] = "KLT",
|
|
[CEB_WM_KNX] = "KNX",
|
|
[CEB_WM_KPR] = "KPR",
|
|
};
|
|
const char *ktypes[] = {
|
|
[CEB_KT_ADDR] = "ADDR",
|
|
[CEB_KT_U32] = "U32",
|
|
[CEB_KT_U64] = "U64",
|
|
[CEB_KT_MB] = "MB",
|
|
[CEB_KT_IM] = "IM",
|
|
[CEB_KT_ST] = "ST",
|
|
[CEB_KT_IS] = "IS",
|
|
};
|
|
const char *kstr __attribute__((unused)) = ktypes[key_type];
|
|
const char *mstr __attribute__((unused)) = meths[meth];
|
|
long long nlen __attribute__((unused)) = 0;
|
|
long long llen __attribute__((unused)) = 0;
|
|
long long rlen __attribute__((unused)) = 0;
|
|
long long xlen __attribute__((unused)) = 0;
|
|
|
|
if (p)
|
|
nlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p, NULL);
|
|
|
|
if (p && p->b[0])
|
|
llen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p->b[0], NULL);
|
|
|
|
if (p && p->b[1])
|
|
rlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, NULL, p->b[1]);
|
|
|
|
if (p && p->b[0] && p->b[1])
|
|
xlen = _xor_branches(kofs, key_type, key_u32, key_u64, key_ptr, p->b[0], p->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_U32:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#x root=%p pxor=%#x p=%p,%#x(^%#llx) l=%p,%#x(^%#llx) r=%p,%#x(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, key_u32, root, px32,
|
|
p, p ? NODEK(p, kofs)->u32 : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->u32 : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->u32 : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_U64:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#llx root=%p pxor=%#llx p=%p,%#llx(^%#llx) l=%p,%#llx(^%#llx) r=%p,%#llx(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, (long long)key_u64, root, (long long)px64,
|
|
p, (long long)(p ? NODEK(p, kofs)->u64 : 0), nlen,
|
|
p ? p->b[0] : NULL, (long long)(p ? NODEK(p->b[0], kofs)->u64 : 0), llen,
|
|
p ? p->b[1] : NULL, (long long)(p ? NODEK(p->b[1], kofs)->u64 : 0), rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_MB:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%p root=%p plen=%ld p=%p,%p(^%llu) l=%p,%p(^%llu) r=%p,%p(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr, root, (long)plen,
|
|
p, p ? NODEK(p, kofs)->mb : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->mb : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->mb : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_IM:
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%p root=%p plen=%ld p=%p,%p(^%llu) l=%p,%p(^%llu) r=%p,%p(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr, root, (long)plen,
|
|
p, p ? NODEK(p, kofs)->ptr : 0, nlen,
|
|
p ? p->b[0] : NULL, p ? NODEK(p->b[0], kofs)->ptr : 0, llen,
|
|
p ? p->b[1] : NULL, p ? NODEK(p->b[1], kofs)->ptr : 0, rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_ST:
|
|
CEBDBG("%04d (%8s) m=%s.%s key='%s' root=%p plen=%ld p=%p,%s(^%llu) l=%p,%s(^%llu) r=%p,%s(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr ? (const char *)key_ptr : "", root, (long)plen,
|
|
p, p ? (const char *)NODEK(p, kofs)->str : "-", nlen,
|
|
p ? p->b[0] : NULL, p ? (const char *)NODEK(p->b[0], kofs)->str : "-", llen,
|
|
p ? p->b[1] : NULL, p ? (const char *)NODEK(p->b[1], kofs)->str : "-", rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_IS:
|
|
CEBDBG("%04d (%8s) m=%s.%s key='%s' root=%p plen=%ld p=%p,%s(^%llu) l=%p,%s(^%llu) r=%p,%s(^%llu) l^r=%llu\n",
|
|
line, pfx, kstr, mstr, key_ptr ? (const char *)key_ptr : "", root, (long)plen,
|
|
p, p ? (const char *)NODEK(p, kofs)->ptr : "-", nlen,
|
|
p ? p->b[0] : NULL, p ? (const char *)NODEK(p->b[0], kofs)->ptr : "-", llen,
|
|
p ? p->b[1] : NULL, p ? (const char *)NODEK(p->b[1], kofs)->ptr : "-", rlen,
|
|
xlen);
|
|
break;
|
|
case CEB_KT_ADDR:
|
|
/* key type is the node's address */
|
|
CEBDBG("%04d (%8s) m=%s.%s key=%#llx root=%p pxor=%#llx p=%p,%#llx(^%#llx) l=%p,%#llx(^%#llx) r=%p,%#llx(^%#llx) l^r=%#llx\n",
|
|
line, pfx, kstr, mstr, (long long)(uintptr_t)key_ptr, root, (long long)px64,
|
|
p, (long long)(uintptr_t)p, nlen,
|
|
p ? p->b[0] : NULL, p ? (long long)(uintptr_t)p->b[0] : 0, llen,
|
|
p ? p->b[1] : NULL, p ? (long long)(uintptr_t)p->b[1] : 0, rlen,
|
|
xlen);
|
|
}
|
|
}
|
|
#else
|
|
#define dbg(...) do { } while (0)
|
|
#endif
|
|
|
|
/* Generic tree descent function. It must absolutely be inlined so that the
|
|
* compiler can eliminate the tests related to the various return pointers,
|
|
* which must either point to a local variable in the caller, or be NULL.
|
|
* It must not be called with an empty tree, it's the caller business to
|
|
* deal with this special case. It returns in ret_root the location of the
|
|
* pointer to the leaf (i.e. where we have to insert ourselves). The integer
|
|
* pointed to by ret_nside will contain the side the leaf should occupy at
|
|
* its own node, with the sibling being *ret_root. Note that keys for fixed-
|
|
* size arrays are passed in key_ptr with their length in key_u64. For keyless
|
|
* nodes whose address serves as the key, the pointer needs to be passed in
|
|
* key_ptr, and pxor64 will be used internally.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_descend(struct ceb_node **root,
|
|
enum ceb_walk_meth meth,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *ret_nside,
|
|
struct ceb_node ***ret_root,
|
|
struct ceb_node **ret_lparent,
|
|
int *ret_lpside,
|
|
struct ceb_node **ret_nparent,
|
|
int *ret_npside,
|
|
struct ceb_node **ret_gparent,
|
|
int *ret_gpside,
|
|
struct ceb_node **ret_back)
|
|
{
|
|
#if !defined(__OPTIMIZE__) && __GNUC_PREREQ__(12, 0)
|
|
/* Avoid a bogus warning with gcc 12 and above: it warns about negative
|
|
* memcmp() length in non-existing code paths at -O0, as reported here:
|
|
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114622
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wstringop-overread"
|
|
#endif
|
|
struct ceb_node *p;
|
|
union ceb_key_storage *l, *r, *k;
|
|
struct ceb_node *gparent = NULL;
|
|
struct ceb_node *nparent = NULL;
|
|
struct ceb_node *bnode = NULL;
|
|
struct ceb_node *lparent;
|
|
uint32_t pxor32 = ~0U; // previous xor between branches
|
|
uint64_t pxor64 = ~0ULL; // previous xor between branches
|
|
int gpside = 0; // side on the grand parent
|
|
int npside = 0; // side on the node's parent
|
|
long lpside = 0; // side on the leaf's parent
|
|
long brside = 0; // branch side when descending
|
|
size_t llen = 0; // left vs key matching length
|
|
size_t rlen = 0; // right vs key matching length
|
|
size_t plen = 0; // previous common len between branches
|
|
int found = 0; // key was found (saves an extra strcmp for arrays)
|
|
|
|
dbg(__LINE__, "_enter__", meth, kofs, key_type, root, NULL, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
/* the parent will be the (possibly virtual) node so that
|
|
* &lparent->l == root.
|
|
*/
|
|
lparent = container_of(root, struct ceb_node, b[0]);
|
|
gparent = nparent = lparent;
|
|
|
|
/* for key-less descents we need to set the initial branch to take */
|
|
switch (meth) {
|
|
case CEB_WM_NXT:
|
|
case CEB_WM_LST:
|
|
brside = 1; // start right for next/last
|
|
break;
|
|
case CEB_WM_FST:
|
|
case CEB_WM_PRV:
|
|
default:
|
|
brside = 0; // start left for first/prev
|
|
break;
|
|
}
|
|
|
|
/* the previous xor is initialized to the largest possible inter-branch
|
|
* value so that it can never match on the first test as we want to use
|
|
* it to detect a leaf vs node. That's achieved with plen==0 for arrays
|
|
* and pxorXX==~0 for scalars.
|
|
*/
|
|
while (1) {
|
|
p = *root;
|
|
|
|
/* Tests have shown that for write-intensive workloads (many
|
|
* insertions/deletion), prefetching for reads is counter
|
|
* productive (-10% perf) but that prefetching only the next
|
|
* nodes for writes when deleting can yield around 3% extra
|
|
* boost.
|
|
*/
|
|
if (ret_lpside) {
|
|
/* this is a deletion, prefetch for writes */
|
|
__builtin_prefetch(p->b[0], 1);
|
|
__builtin_prefetch(p->b[1], 1);
|
|
}
|
|
|
|
/* neither pointer is tagged */
|
|
k = NODEK(p, kofs);
|
|
l = NODEK(p->b[0], kofs);
|
|
r = NODEK(p->b[1], kofs);
|
|
|
|
dbg(__LINE__, "newp", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
/* two equal pointers identifies the nodeless leaf. */
|
|
if (l == r) {
|
|
dbg(__LINE__, "l==r", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
/* In the following block, we're dealing with type-specific
|
|
* operations which follow the same construct for each type:
|
|
* 1) calculate the new side for key lookups (otherwise keep
|
|
* the current side, e.g. for first/last). Doing it early
|
|
* allows the CPU to more easily predict next branches and
|
|
* is faster by ~10%. For complex bits we keep the length
|
|
* of identical bits instead of xor. We can also xor lkey
|
|
* and rkey with key and use it everywhere later but it
|
|
* doesn't seem to bring anything.
|
|
*
|
|
* 2) calculate the xor between the two sides to figure the
|
|
* split bit position. If the new split bit is before the
|
|
* previous one, we've reached a leaf: each leaf we visit
|
|
* had its node part already visited. The only way to
|
|
* distinguish them is that the inter-branch xor of the
|
|
* leaf will be the node's one, and will necessarily be
|
|
* larger than the previous node's xor if the node is
|
|
* above (we've already checked for direct descendent
|
|
* below). Said differently, if an inter-branch xor is
|
|
* strictly larger than the previous one, it necessarily
|
|
* is the one of an upper node, so what we're seeing
|
|
* cannot be the node, hence it's the leaf. The case where
|
|
* they're equal was already dealt with by the test at the
|
|
* end of the loop (node points to self). For scalar keys,
|
|
* we directly store the last xor value in pxorXX. For
|
|
* arrays and strings, instead we store the previous equal
|
|
* length.
|
|
*
|
|
* 3) for lookups, check if the looked key still has a chance
|
|
* to be below: if it has a xor with both branches that is
|
|
* larger than the xor between them, it cannot be there,
|
|
* since it means that it differs from these branches by
|
|
* at least one bit that's higher than the split bit,
|
|
* hence not common to these branches. In such cases:
|
|
* - if we're just doing a lookup, the key is not found
|
|
* and we fail.
|
|
* - if we are inserting, we must stop here and we have
|
|
* the guarantee to be above a node.
|
|
* - if we're deleting, it could be the key we were
|
|
* looking for so we have to check for it as long as
|
|
* it's still possible to keep a copy of the node's
|
|
* parent. <found> is set int this case for expensive
|
|
* types.
|
|
*/
|
|
|
|
if (key_type == CEB_KT_U32) {
|
|
uint32_t xor32; // left vs right branch xor
|
|
uint32_t kl, kr;
|
|
|
|
kl = l->u32; kr = r->u32;
|
|
xor32 = kl ^ kr;
|
|
|
|
if (xor32 > pxor32) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= key_u32; kr ^= key_u32;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xor32 && kr > xor32) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if (key_u32 == k->u32) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor32 = xor32;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
uint64_t xor64; // left vs right branch xor
|
|
uint64_t kl, kr;
|
|
|
|
kl = l->u64; kr = r->u64;
|
|
xor64 = kl ^ kr;
|
|
|
|
if (xor64 > pxor64) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= key_u64; kr ^= key_u64;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xor64 && kr > xor64) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if (key_u64 == k->u64) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor64 = xor64;
|
|
}
|
|
else if (key_type == CEB_KT_MB) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* measure identical lengths */
|
|
llen = equal_bits(key_ptr, l->mb, 0, key_u64 << 3);
|
|
rlen = equal_bits(key_ptr, r->mb, 0, key_u64 << 3);
|
|
brside = llen <= rlen;
|
|
if (llen == rlen && (uint64_t)llen == key_u64 << 3)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = equal_bits(l->mb, r->mb, 0, key_u64 << 3);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if (llen < xlen && rlen < xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if ((uint64_t)xlen / 8 == key_u64 || memcmp(key_ptr + mlen / 8, k->mb + mlen / 8, key_u64 - mlen / 8) == 0) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_IM) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* measure identical lengths */
|
|
llen = equal_bits(key_ptr, l->ptr, 0, key_u64 << 3);
|
|
rlen = equal_bits(key_ptr, r->ptr, 0, key_u64 << 3);
|
|
brside = llen <= rlen;
|
|
if (llen == rlen && (uint64_t)llen == key_u64 << 3)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = equal_bits(l->ptr, r->ptr, 0, key_u64 << 3);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if (llen < xlen && rlen < xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if ((uint64_t)xlen / 8 == key_u64 || memcmp(key_ptr + mlen / 8, k->ptr + mlen / 8, key_u64 - mlen / 8) == 0) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_ST) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* Note that a negative length indicates an
|
|
* equal value with the final zero reached, but
|
|
* it is still needed to descend to find the
|
|
* leaf. We take that negative length for an
|
|
* infinite one, hence the uint cast.
|
|
*/
|
|
llen = string_equal_bits(key_ptr, l->str, 0);
|
|
rlen = string_equal_bits(key_ptr, r->str, 0);
|
|
brside = (size_t)llen <= (size_t)rlen;
|
|
if ((ssize_t)llen < 0 || (ssize_t)rlen < 0)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = string_equal_bits(l->str, r->str, 0);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if ((unsigned)llen < (unsigned)xlen && (unsigned)rlen < (unsigned)xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if (strcmp(key_ptr + mlen / 8, (const void *)k->str + mlen / 8) == 0) {
|
|
/* strcmp() still needed. E.g. 1 2 3 4 10 11 4 3 2 1 10 11 fails otherwise */
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_IS) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* Note that a negative length indicates an
|
|
* equal value with the final zero reached, but
|
|
* it is still needed to descend to find the
|
|
* leaf. We take that negative length for an
|
|
* infinite one, hence the uint cast.
|
|
*/
|
|
llen = string_equal_bits(key_ptr, l->ptr, 0);
|
|
rlen = string_equal_bits(key_ptr, r->ptr, 0);
|
|
brside = (size_t)llen <= (size_t)rlen;
|
|
if ((ssize_t)llen < 0 || (ssize_t)rlen < 0)
|
|
found = 1;
|
|
}
|
|
|
|
xlen = string_equal_bits(l->ptr, r->ptr, 0);
|
|
if (xlen < plen) {
|
|
/* this is a leaf. E.g. triggered using 2 4 6 4 */
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
|
|
if ((unsigned)llen < (unsigned)xlen && (unsigned)rlen < (unsigned)xlen) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) { // delete ?
|
|
size_t mlen = llen > rlen ? llen : rlen;
|
|
|
|
if (mlen > xlen)
|
|
mlen = xlen;
|
|
|
|
if (strcmp(key_ptr + mlen / 8, (const void *)k->ptr + mlen / 8) == 0) {
|
|
/* strcmp() still needed. E.g. 1 2 3 4 10 11 4 3 2 1 10 11 fails otherwise */
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
found = 1;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
uintptr_t xoraddr; // left vs right branch xor
|
|
uintptr_t kl, kr;
|
|
|
|
kl = (uintptr_t)l; kr = (uintptr_t)r;
|
|
xoraddr = kl ^ kr;
|
|
|
|
if (xoraddr > (uintptr_t)pxor64) { // test using 2 4 6 4
|
|
dbg(__LINE__, "xor>", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* "found" is not used here */
|
|
kl ^= (uintptr_t)key_ptr; kr ^= (uintptr_t)key_ptr;
|
|
brside = kl >= kr;
|
|
|
|
/* let's stop if our key is not there */
|
|
|
|
if (kl > xoraddr && kr > xoraddr) {
|
|
dbg(__LINE__, "mismatch", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
|
|
if (ret_npside || ret_nparent) {
|
|
if ((uintptr_t)key_ptr == (uintptr_t)p) {
|
|
dbg(__LINE__, "equal", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
nparent = lparent;
|
|
npside = lpside;
|
|
}
|
|
}
|
|
}
|
|
pxor64 = xoraddr;
|
|
}
|
|
|
|
/* shift all copies by one */
|
|
gparent = lparent;
|
|
gpside = lpside;
|
|
lparent = p;
|
|
lpside = brside;
|
|
if (brside) {
|
|
if (meth == CEB_WM_KPR || meth == CEB_WM_KLE || meth == CEB_WM_KLT)
|
|
bnode = p;
|
|
root = &p->b[1];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_NXT)
|
|
brside = 0;
|
|
|
|
dbg(__LINE__, "side1", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
}
|
|
else {
|
|
if (meth == CEB_WM_KNX || meth == CEB_WM_KGE || meth == CEB_WM_KGT)
|
|
bnode = p;
|
|
root = &p->b[0];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_PRV)
|
|
brside = 1;
|
|
|
|
dbg(__LINE__, "side0", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
}
|
|
|
|
if (p == *root) {
|
|
/* loops over itself, it's a leaf */
|
|
dbg(__LINE__, "loop", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* here we're on the closest node from the requested value. It may be
|
|
* slightly lower (has a zero where we expected a one) or slightly
|
|
* larger has a one where we expected a zero). Thus another check is
|
|
* still deserved, depending on the matching method.
|
|
*/
|
|
|
|
/* if we've exited on an exact match after visiting a regular node
|
|
* (i.e. not the nodeless leaf), we'll avoid checking the string again.
|
|
* However if it doesn't match, we must make sure to compare from
|
|
* within the key (which can be shorter than the ones already there),
|
|
* so we restart the check from the longest of the two lengths, which
|
|
* guarantees these bits exist. Test with "100", "10", "1" to see where
|
|
* this is needed.
|
|
*/
|
|
if ((key_type == CEB_KT_ST || key_type == CEB_KT_IS) && meth >= CEB_WM_KEQ && !found)
|
|
plen = (llen > rlen) ? llen : rlen;
|
|
|
|
/* update the pointers needed for modifications (insert, delete) */
|
|
if (ret_nside && meth >= CEB_WM_KEQ) {
|
|
switch (key_type) {
|
|
case CEB_KT_U32:
|
|
*ret_nside = key_u32 >= k->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
*ret_nside = key_u64 >= k->u64;
|
|
break;
|
|
case CEB_KT_MB:
|
|
*ret_nside = (uint64_t)plen / 8 == key_u64 || memcmp(key_ptr + plen / 8, k->mb + plen / 8, key_u64 - plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_IM:
|
|
*ret_nside = (uint64_t)plen / 8 == key_u64 || memcmp(key_ptr + plen / 8, k->ptr + plen / 8, key_u64 - plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_ST:
|
|
*ret_nside = found || strcmp(key_ptr + plen / 8, (const void *)k->str + plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_IS:
|
|
*ret_nside = found || strcmp(key_ptr + plen / 8, (const void *)k->ptr + plen / 8) >= 0;
|
|
break;
|
|
case CEB_KT_ADDR:
|
|
*ret_nside = (uintptr_t)key_ptr >= (uintptr_t)p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret_root)
|
|
*ret_root = root;
|
|
|
|
/* info needed by delete */
|
|
if (ret_lpside)
|
|
*ret_lpside = lpside;
|
|
|
|
if (ret_lparent)
|
|
*ret_lparent = lparent;
|
|
|
|
if (ret_npside)
|
|
*ret_npside = npside;
|
|
|
|
if (ret_nparent)
|
|
*ret_nparent = nparent;
|
|
|
|
if (ret_gpside)
|
|
*ret_gpside = gpside;
|
|
|
|
if (ret_gparent)
|
|
*ret_gparent = gparent;
|
|
|
|
if (ret_back)
|
|
*ret_back = bnode;
|
|
|
|
dbg(__LINE__, "_ret____", meth, kofs, key_type, root, p, key_u32, key_u64, key_ptr, pxor32, pxor64, plen);
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* For lookups, an equal value means an instant return. For insertions,
|
|
* it is the same, we want to return the previously existing value so
|
|
* that the caller can decide what to do. For deletion, we also want to
|
|
* return the pointer that's about to be deleted.
|
|
*/
|
|
if (key_type == CEB_KT_U32) {
|
|
if ((meth == CEB_WM_KEQ && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KNX && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KPR && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KGE && k->u32 >= key_u32) ||
|
|
(meth == CEB_WM_KGT && k->u32 > key_u32) ||
|
|
(meth == CEB_WM_KLE && k->u32 <= key_u32) ||
|
|
(meth == CEB_WM_KLT && k->u32 < key_u32))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
if ((meth == CEB_WM_KEQ && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KNX && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KPR && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KGE && k->u64 >= key_u64) ||
|
|
(meth == CEB_WM_KGT && k->u64 > key_u64) ||
|
|
(meth == CEB_WM_KLE && k->u64 <= key_u64) ||
|
|
(meth == CEB_WM_KLT && k->u64 < key_u64))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_MB) {
|
|
int diff;
|
|
|
|
if ((uint64_t)plen / 8 == key_u64)
|
|
diff = 0;
|
|
else
|
|
diff = memcmp(k->mb + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_IM) {
|
|
int diff;
|
|
|
|
if ((uint64_t)plen / 8 == key_u64)
|
|
diff = 0;
|
|
else
|
|
diff = memcmp(k->ptr + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_ST) {
|
|
int diff;
|
|
|
|
if (found)
|
|
diff = 0;
|
|
else
|
|
diff = strcmp((const void *)k->str + plen / 8, key_ptr + plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_IS) {
|
|
int diff;
|
|
|
|
if (found)
|
|
diff = 0;
|
|
else
|
|
diff = strcmp((const void *)k->ptr + plen / 8, key_ptr + plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return p;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
if ((meth == CEB_WM_KEQ && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KNX && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KPR && (uintptr_t)p == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGE && (uintptr_t)p >= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGT && (uintptr_t)p > (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLE && (uintptr_t)p <= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLT && (uintptr_t)p < (uintptr_t)key_ptr))
|
|
return p;
|
|
}
|
|
} else if (meth == CEB_WM_FST || meth == CEB_WM_LST) {
|
|
return p;
|
|
} else if (meth == CEB_WM_PRV || meth == CEB_WM_NXT) {
|
|
return p;
|
|
}
|
|
|
|
/* lookups and deletes fail here */
|
|
|
|
/* let's return NULL to indicate the key was not found. For a lookup or
|
|
* a delete, it's a failure. For an insert, it's an invitation to the
|
|
* caller to proceed since the element is not there.
|
|
*/
|
|
return NULL;
|
|
#if __GNUC_PREREQ__(12, 0)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Generic tree insertion function for trees with unique keys. Inserts node
|
|
* <node> into tree <tree>, with key type <key_type> and key <key_*>.
|
|
* Returns the inserted node or the one that already contains the same key.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_insert(struct ceb_node **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node **parent;
|
|
struct ceb_node *ret;
|
|
int nside;
|
|
|
|
if (!*root) {
|
|
/* empty tree, insert a leaf only */
|
|
node->b[0] = node->b[1] = node;
|
|
*root = node;
|
|
return node;
|
|
}
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, &nside, &parent, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
|
|
if (!ret) {
|
|
/* The key was not in the tree, we can insert it. Better use an
|
|
* "if" like this because the inline function above already has
|
|
* quite identifiable code paths. This reduces the code and
|
|
* optimizes it a bit.
|
|
*/
|
|
if (nside) {
|
|
node->b[1] = node;
|
|
node->b[0] = *parent;
|
|
} else {
|
|
node->b[0] = node;
|
|
node->b[1] = *parent;
|
|
}
|
|
*parent = node;
|
|
ret = node;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Returns the first node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_first(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_FST, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Returns the last node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_last(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_LST, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the next
|
|
* node after the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* left turn was made, and returning the first node along the right branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_next(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_cebu_descend(root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
|
|
* node before the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* right turn was made, and returning the last node along the left branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_prev(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_cebu_descend(root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*>. Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
return _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*> or the highest one that's lower than it. Returns
|
|
* NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_le(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KLE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the greatest key that is strictly lower than <key_*>. Returns
|
|
* NULL if not found. It's very similar to next() except that the looked up
|
|
* value doesn't need to exist.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_lt(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KLT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the key <key_*> or the smallest one that's greater than it.
|
|
* Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_ge(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KGE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* containing the lowest key that is strictly greater than <key_*>. Returns
|
|
* NULL if not found. It's very similar to prev() except that the looked up
|
|
* value doesn't need to exist.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_lookup_gt(struct ceb_node **root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_node *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KGT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _cebu_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* that contains the key <key_*>, and deletes it. If <node> is non-NULL, a
|
|
* check is performed and the node found is deleted only if it matches. The
|
|
* found node is returned in any case, otherwise NULL if not found. A deleted
|
|
* node is detected since it has b[0]==NULL, which this functions also clears
|
|
* after operation. The function is idempotent, so it's safe to attempt to
|
|
* delete an already deleted node (NULL is returned in this case since the node
|
|
* was not in the tree).
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_cebu_delete(struct ceb_node **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr)
|
|
{
|
|
struct ceb_node *lparent, *nparent, *gparent;
|
|
int lpside, npside, gpside;
|
|
struct ceb_node *ret = NULL;
|
|
|
|
if (node && !node->b[0]) {
|
|
/* NULL on a branch means the node is not in the tree */
|
|
return NULL;
|
|
}
|
|
|
|
if (!*root) {
|
|
/* empty tree, the node cannot be there */
|
|
goto done;
|
|
}
|
|
|
|
ret = _cebu_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL,
|
|
&lparent, &lpside, &nparent, &npside, &gparent, &gpside, NULL);
|
|
|
|
if (!ret) {
|
|
/* key not found */
|
|
goto done;
|
|
}
|
|
|
|
if (ret == node || !node) {
|
|
if (&lparent->b[0] == root) {
|
|
/* there was a single entry, this one, so we're just
|
|
* deleting the nodeless leaf.
|
|
*/
|
|
*root = NULL;
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* then we necessarily have a gparent */
|
|
gparent->b[gpside] = lparent->b[!lpside];
|
|
|
|
if (lparent == ret) {
|
|
/* we're removing the leaf and node together, nothing
|
|
* more to do.
|
|
*/
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
if (ret->b[0] == ret->b[1]) {
|
|
/* we're removing the node-less item, the parent will
|
|
* take this role.
|
|
*/
|
|
lparent->b[0] = lparent->b[1] = lparent;
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* more complicated, the node was split from the leaf, we have
|
|
* to find a spare one to switch it. The parent node is not
|
|
* needed anymore so we can reuse it.
|
|
*/
|
|
lparent->b[0] = ret->b[0];
|
|
lparent->b[1] = ret->b[1];
|
|
nparent->b[npside] = lparent;
|
|
|
|
mark_and_leave:
|
|
/* now mark the node as deleted */
|
|
ret->b[0] = NULL;
|
|
}
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Functions used to dump trees in Dot format.
|
|
*/
|
|
|
|
/* dump the root and its link to the first node or leaf */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_root(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root, const void *ctx)
|
|
{
|
|
const struct ceb_node *node;
|
|
|
|
printf(" \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)root, (long)root);
|
|
|
|
node = *root;
|
|
if (node) {
|
|
/* under the root we've either a node or the first leaf */
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"B\" arrowsize=0.66];\n",
|
|
(long)root, (long)node,
|
|
(node->b[0] == node->b[1]) ? 'l' : 'n');
|
|
}
|
|
}
|
|
|
|
/* dump a node */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_node(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx)
|
|
{
|
|
unsigned long long int_key = 0;
|
|
uint64_t pxor, lxor, rxor;
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
int_key = (uintptr_t)node;
|
|
break;
|
|
case CEB_KT_U32:
|
|
int_key = NODEK(node, kofs)->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
int_key = NODEK(node, kofs)->u64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* xor of the keys of the two lower branches */
|
|
pxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
/* xor of the keys of the left branch's lower branches */
|
|
lxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
(((struct ceb_node*)node->b[0])->b[0]),
|
|
(((struct ceb_node*)node->b[0])->b[1]));
|
|
|
|
/* xor of the keys of the right branch's lower branches */
|
|
rxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
(((struct ceb_node*)node->b[1])->b[0]),
|
|
(((struct ceb_node*)node->b[1])->b[1]));
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%d\\nkey=%llu\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, flsnz(pxor) - 1, int_key, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor < pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor < pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
case CEB_KT_MB:
|
|
break;
|
|
case CEB_KT_IM:
|
|
break;
|
|
case CEB_KT_ST:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor > pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor > pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
case CEB_KT_IS:
|
|
printf(" \"%lx_n\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\" fillcolor=\"lightskyblue1\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"L\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[0],
|
|
(lxor > pxor && ((struct ceb_node*)node->b[0])->b[0] != ((struct ceb_node*)node->b[0])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[0]) ? " dir=both" : "");
|
|
|
|
printf(" \"%lx_n\" -> \"%lx_%c\" [label=\"R\" arrowsize=0.66 %s];\n",
|
|
(long)node, (long)node->b[1],
|
|
(rxor > pxor && ((struct ceb_node*)node->b[1])->b[0] != ((struct ceb_node*)node->b[1])->b[1]) ? 'n' : 'l',
|
|
(node == node->b[1]) ? " dir=both" : "");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* dump a leaf */
|
|
__attribute__((unused))
|
|
static void cebu_default_dump_leaf(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx)
|
|
{
|
|
unsigned long long int_key = 0;
|
|
uint64_t pxor;
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
int_key = (uintptr_t)node;
|
|
break;
|
|
case CEB_KT_U32:
|
|
int_key = NODEK(node, kofs)->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
int_key = NODEK(node, kofs)->u64;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* xor of the keys of the two lower branches */
|
|
pxor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=%llu\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, int_key, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%d\\nkey=%llu\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, flsnz(pxor) - 1, int_key, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
case CEB_KT_MB:
|
|
break;
|
|
case CEB_KT_IM:
|
|
break;
|
|
case CEB_KT_ST:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=\\\"%s\\\"\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->str, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
case CEB_KT_IS:
|
|
if (node->b[0] == node->b[1])
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d\\nkey=\\\"%s\\\"\\n\" fillcolor=\"green\"%s];\n",
|
|
(long)node, (long)node, level, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
else
|
|
printf(" \"%lx_l\" [label=\"%lx\\nlev=%d bit=%ld\\nkey=\\\"%s\\\"\\n\" fillcolor=\"yellow\"%s];\n",
|
|
(long)node, (long)node, level, (long)pxor, NODEK(node, kofs)->ptr, (ctx == node) ? " color=red" : "");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Dumps a tree through the specified callbacks, falling back to the default
|
|
* callbacks above if left NULL.
|
|
*/
|
|
__attribute__((unused))
|
|
static const struct ceb_node *cebu_default_dump_tree(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root,
|
|
uint64_t pxor, const void *last, int level, const void *ctx,
|
|
void (*root_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_node *const *root, const void *ctx),
|
|
void (*node_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx),
|
|
void (*leaf_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx))
|
|
{
|
|
const struct ceb_node *node = *root;
|
|
uint64_t xor;
|
|
|
|
if (!node) /* empty tree */
|
|
return node;
|
|
|
|
if (!root_dump)
|
|
root_dump = cebu_default_dump_root;
|
|
|
|
if (!node_dump)
|
|
node_dump = cebu_default_dump_node;
|
|
|
|
if (!leaf_dump)
|
|
leaf_dump = cebu_default_dump_leaf;
|
|
|
|
if (!level) {
|
|
/* dump the first arrow */
|
|
root_dump(kofs, key_type, root, ctx);
|
|
}
|
|
|
|
/* regular nodes, all branches are canonical */
|
|
|
|
if (node->b[0] == node->b[1]) {
|
|
/* first inserted leaf */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
|
|
xor = _xor_branches(kofs, key_type, 0, 0, NULL,
|
|
node->b[0], node->b[1]);
|
|
|
|
switch (key_type) {
|
|
case CEB_KT_ADDR:
|
|
case CEB_KT_U32:
|
|
case CEB_KT_U64:
|
|
if (pxor && xor >= pxor) {
|
|
/* that's a leaf for a scalar type */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
break;
|
|
default:
|
|
if (pxor && xor <= pxor) {
|
|
/* that's a leaf for a non-scalar type */
|
|
leaf_dump(kofs, key_type, node, level, ctx);
|
|
return node;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* that's a regular node */
|
|
node_dump(kofs, key_type, node, level, ctx);
|
|
|
|
last = cebu_default_dump_tree(kofs, key_type, &node->b[0], xor, last, level + 1, ctx, root_dump, node_dump, leaf_dump);
|
|
return cebu_default_dump_tree(kofs, key_type, &node->b[1], xor, last, level + 1, ctx, root_dump, node_dump, leaf_dump);
|
|
}
|
|
|
|
|
|
#endif /* _CEBTREE_PRV_H */
|