389 lines
12 KiB
C
389 lines
12 KiB
C
/*
|
|
* include/proto/channel.h
|
|
* Channel management definitions, macros and inline functions.
|
|
*
|
|
* Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, version 2.1
|
|
* exclusively.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef _PROTO_CHANNEL_H
|
|
#define _PROTO_CHANNEL_H
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <common/config.h>
|
|
#include <common/chunk.h>
|
|
#include <common/memory.h>
|
|
#include <common/ticks.h>
|
|
#include <common/time.h>
|
|
|
|
#include <types/global.h>
|
|
|
|
extern struct pool_head *pool2_channel;
|
|
|
|
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
|
|
int init_channel();
|
|
|
|
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes);
|
|
|
|
/* SI-to-channel functions working with buffers */
|
|
int bi_putblk(struct channel *buf, const char *str, int len);
|
|
int bi_putchr(struct channel *buf, char c);
|
|
int bo_inject(struct channel *buf, const char *msg, int len);
|
|
int bo_getline(struct channel *buf, char *str, int len);
|
|
int bo_getblk(struct channel *buf, char *blk, int len, int offset);
|
|
|
|
/* Initialize all fields in the channel. */
|
|
static inline void channel_init(struct channel *buf)
|
|
{
|
|
buf->buf.o = 0;
|
|
buf->buf.i = 0;
|
|
buf->buf.p = buf->buf.data;
|
|
buf->to_forward = 0;
|
|
buf->total = 0;
|
|
buf->pipe = NULL;
|
|
buf->analysers = 0;
|
|
buf->cons = NULL;
|
|
buf->flags = 0;
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/* These functions are used to compute various channel content sizes */
|
|
/*********************************************************************/
|
|
|
|
/* Reports non-zero if the channel is empty, which means both its
|
|
* buffer and pipe are empty. The construct looks strange but is
|
|
* jump-less and much more efficient on both 32 and 64-bit than
|
|
* the boolean test.
|
|
*/
|
|
static inline unsigned int channel_is_empty(struct channel *c)
|
|
{
|
|
return !(c->buf.o | (long)c->pipe);
|
|
}
|
|
|
|
/* Returns non-zero if the buffer input is considered full. The reserved space
|
|
* is taken into account if ->to_forward indicates that an end of transfer is
|
|
* close to happen. The test is optimized to avoid as many operations as
|
|
* possible for the fast case and to be used as an "if" condition.
|
|
*/
|
|
static inline int channel_full(const struct channel *b)
|
|
{
|
|
int rem = b->buf.size;
|
|
|
|
rem -= b->buf.o;
|
|
rem -= b->buf.i;
|
|
if (!rem)
|
|
return 1; /* buffer already full */
|
|
|
|
if (b->to_forward >= b->buf.size ||
|
|
(CHN_INFINITE_FORWARD < MAX_RANGE(typeof(b->buf.size)) && // just there to ensure gcc
|
|
b->to_forward == CHN_INFINITE_FORWARD)) // avoids the useless second
|
|
return 0; // test whenever possible
|
|
|
|
rem -= global.tune.maxrewrite;
|
|
rem += b->buf.o;
|
|
rem += b->to_forward;
|
|
return rem <= 0;
|
|
}
|
|
|
|
/* Returns true if the channel's input is already closed */
|
|
static inline int channel_input_closed(struct channel *buf)
|
|
{
|
|
return ((buf->flags & CF_SHUTR) != 0);
|
|
}
|
|
|
|
/* Returns true if the channel's output is already closed */
|
|
static inline int channel_output_closed(struct channel *buf)
|
|
{
|
|
return ((buf->flags & CF_SHUTW) != 0);
|
|
}
|
|
|
|
/* Check channel timeouts, and set the corresponding flags. The likely/unlikely
|
|
* have been optimized for fastest normal path. The read/write timeouts are not
|
|
* set if there was activity on the channel. That way, we don't have to update
|
|
* the timeout on every I/O. Note that the analyser timeout is always checked.
|
|
*/
|
|
static inline void channel_check_timeouts(struct channel *b)
|
|
{
|
|
if (likely(!(b->flags & (CF_SHUTR|CF_READ_TIMEOUT|CF_READ_ACTIVITY|CF_READ_NOEXP))) &&
|
|
unlikely(tick_is_expired(b->rex, now_ms)))
|
|
b->flags |= CF_READ_TIMEOUT;
|
|
|
|
if (likely(!(b->flags & (CF_SHUTW|CF_WRITE_TIMEOUT|CF_WRITE_ACTIVITY))) &&
|
|
unlikely(tick_is_expired(b->wex, now_ms)))
|
|
b->flags |= CF_WRITE_TIMEOUT;
|
|
|
|
if (likely(!(b->flags & CF_ANA_TIMEOUT)) &&
|
|
unlikely(tick_is_expired(b->analyse_exp, now_ms)))
|
|
b->flags |= CF_ANA_TIMEOUT;
|
|
}
|
|
|
|
/* Erase any content from channel <buf> and adjusts flags accordingly. Note
|
|
* that any spliced data is not affected since we may not have any access to
|
|
* it.
|
|
*/
|
|
static inline void channel_erase(struct channel *buf)
|
|
{
|
|
buf->buf.o = 0;
|
|
buf->buf.i = 0;
|
|
buf->to_forward = 0;
|
|
buf->buf.p = buf->buf.data;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP for reads */
|
|
static inline void channel_shutr_now(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_SHUTR_NOW;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP for writes */
|
|
static inline void channel_shutw_now(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_SHUTW_NOW;
|
|
}
|
|
|
|
/* marks the channel as "shutdown" ASAP in both directions */
|
|
static inline void channel_abort(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_SHUTR_NOW | CF_SHUTW_NOW;
|
|
buf->flags &= ~CF_AUTO_CONNECT;
|
|
}
|
|
|
|
/* Installs <func> as a hijacker on the channel <b> for session <s>. The hijack
|
|
* flag is set, and the function called once. The function is responsible for
|
|
* clearing the hijack bit. It is possible that the function clears the flag
|
|
* during this first call.
|
|
*/
|
|
static inline void channel_install_hijacker(struct session *s,
|
|
struct channel *b,
|
|
void (*func)(struct session *, struct channel *))
|
|
{
|
|
b->hijacker = func;
|
|
b->flags |= CF_HIJACK;
|
|
func(s, b);
|
|
}
|
|
|
|
/* Releases the channel from hijacking mode. Often used by the hijack function */
|
|
static inline void channel_stop_hijacker(struct channel *buf)
|
|
{
|
|
buf->flags &= ~CF_HIJACK;
|
|
}
|
|
|
|
/* allow the consumer to try to establish a new connection. */
|
|
static inline void channel_auto_connect(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_AUTO_CONNECT;
|
|
}
|
|
|
|
/* prevent the consumer from trying to establish a new connection, and also
|
|
* disable auto shutdown forwarding.
|
|
*/
|
|
static inline void channel_dont_connect(struct channel *buf)
|
|
{
|
|
buf->flags &= ~(CF_AUTO_CONNECT|CF_AUTO_CLOSE);
|
|
}
|
|
|
|
/* allow the producer to forward shutdown requests */
|
|
static inline void channel_auto_close(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_AUTO_CLOSE;
|
|
}
|
|
|
|
/* prevent the producer from forwarding shutdown requests */
|
|
static inline void channel_dont_close(struct channel *buf)
|
|
{
|
|
buf->flags &= ~CF_AUTO_CLOSE;
|
|
}
|
|
|
|
/* allow the producer to read / poll the input */
|
|
static inline void channel_auto_read(struct channel *buf)
|
|
{
|
|
buf->flags &= ~CF_DONT_READ;
|
|
}
|
|
|
|
/* prevent the producer from read / poll the input */
|
|
static inline void channel_dont_read(struct channel *buf)
|
|
{
|
|
buf->flags |= CF_DONT_READ;
|
|
}
|
|
|
|
|
|
/*************************************************/
|
|
/* Buffer operations in the context of a channel */
|
|
/*************************************************/
|
|
|
|
|
|
/* Return the number of reserved bytes in the channel's visible
|
|
* buffer, which ensures that once all pending data are forwarded, the
|
|
* buffer still has global.tune.maxrewrite bytes free. The result is
|
|
* between 0 and global.tune.maxrewrite, which is itself smaller than
|
|
* any buf->size.
|
|
*/
|
|
static inline int buffer_reserved(const struct channel *buf)
|
|
{
|
|
int ret = global.tune.maxrewrite - buf->to_forward - buf->buf.o;
|
|
|
|
if (buf->to_forward == CHN_INFINITE_FORWARD)
|
|
return 0;
|
|
if (ret <= 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
/* Return the max number of bytes the buffer can contain so that once all the
|
|
* pending bytes are forwarded, the buffer still has global.tune.maxrewrite
|
|
* bytes free. The result sits between buf->size - maxrewrite and buf->size.
|
|
*/
|
|
static inline int buffer_max_len(const struct channel *buf)
|
|
{
|
|
return buf->buf.size - buffer_reserved(buf);
|
|
}
|
|
|
|
/* Return the amount of bytes that can be written into the buffer at once,
|
|
* excluding reserved space, which is preserved.
|
|
*/
|
|
static inline int buffer_contig_space_res(const struct channel *chn)
|
|
{
|
|
return buffer_contig_space_with_res(&chn->buf, buffer_reserved(chn));
|
|
}
|
|
|
|
/* Returns the amount of space available at the input of the buffer, taking the
|
|
* reserved space into account if ->to_forward indicates that an end of transfer
|
|
* is close to happen. The test is optimized to avoid as many operations as
|
|
* possible for the fast case.
|
|
*/
|
|
static inline int bi_avail(const struct channel *b)
|
|
{
|
|
int rem = b->buf.size;
|
|
int rem2;
|
|
|
|
rem -= b->buf.o;
|
|
rem -= b->buf.i;
|
|
if (!rem)
|
|
return rem; /* buffer already full */
|
|
|
|
if (b->to_forward >= b->buf.size ||
|
|
(CHN_INFINITE_FORWARD < MAX_RANGE(typeof(b->buf.size)) && // just there to ensure gcc
|
|
b->to_forward == CHN_INFINITE_FORWARD)) // avoids the useless second
|
|
return rem; // test whenever possible
|
|
|
|
rem2 = rem - global.tune.maxrewrite;
|
|
rem2 += b->buf.o;
|
|
rem2 += b->to_forward;
|
|
|
|
if (rem > rem2)
|
|
rem = rem2;
|
|
if (rem > 0)
|
|
return rem;
|
|
return 0;
|
|
}
|
|
|
|
/* Cut the "tail" of the channel's buffer, which means strip it to the length
|
|
* of unsent data only, and kill any remaining unsent data. Any scheduled
|
|
* forwarding is stopped. This is mainly to be used to send error messages
|
|
* after existing data.
|
|
*/
|
|
static inline void bi_erase(struct channel *buf)
|
|
{
|
|
if (!buf->buf.o)
|
|
return channel_erase(buf);
|
|
|
|
buf->to_forward = 0;
|
|
if (!buf->buf.i)
|
|
return;
|
|
|
|
buf->buf.i = 0;
|
|
}
|
|
|
|
/*
|
|
* Advance the channel buffer's read pointer by <len> bytes. This is useful
|
|
* when data have been read directly from the buffer. It is illegal to call
|
|
* this function with <len> causing a wrapping at the end of the buffer. It's
|
|
* the caller's responsibility to ensure that <len> is never larger than
|
|
* buf->o. Channel flag WRITE_PARTIAL is set.
|
|
*/
|
|
static inline void bo_skip(struct channel *buf, int len)
|
|
{
|
|
buf->buf.o -= len;
|
|
|
|
if (buffer_len(&buf->buf) == 0)
|
|
buf->buf.p = buf->buf.data;
|
|
|
|
/* notify that some data was written to the SI from the buffer */
|
|
buf->flags |= CF_WRITE_PARTIAL;
|
|
}
|
|
|
|
/* Tries to copy chunk <chunk> into the channel's buffer after length controls.
|
|
* The buf->o and to_forward pointers are updated. If the channel's input is
|
|
* closed, -2 is returned. If the block is too large for this buffer, -3 is
|
|
* returned. If there is not enough room left in the buffer, -1 is returned.
|
|
* Otherwise the number of bytes copied is returned (0 being a valid number).
|
|
* Channel flag READ_PARTIAL is updated if some data can be transferred. The
|
|
* chunk's length is updated with the number of bytes sent.
|
|
*/
|
|
static inline int bi_putchk(struct channel *buf, struct chunk *chunk)
|
|
{
|
|
int ret;
|
|
|
|
ret = bi_putblk(buf, chunk->str, chunk->len);
|
|
if (ret > 0)
|
|
chunk->len -= ret;
|
|
return ret;
|
|
}
|
|
|
|
/* Tries to copy string <str> at once into the channel's buffer after length
|
|
* controls. The buf->o and to_forward pointers are updated. If the channel's
|
|
* input is closed, -2 is returned. If the block is too large for this buffer,
|
|
* -3 is returned. If there is not enough room left in the buffer, -1 is
|
|
* returned. Otherwise the number of bytes copied is returned (0 being a valid
|
|
* number). Channel flag READ_PARTIAL is updated if some data can be
|
|
* transferred.
|
|
*/
|
|
static inline int bi_putstr(struct channel *buf, const char *str)
|
|
{
|
|
return bi_putblk(buf, str, strlen(str));
|
|
}
|
|
|
|
/*
|
|
* Return one char from the channel's buffer. If the buffer is empty and the
|
|
* channel is closed, return -2. If the buffer is just empty, return -1. The
|
|
* buffer's pointer is not advanced, it's up to the caller to call bo_skip(buf,
|
|
* 1) when it has consumed the char. Also note that this function respects the
|
|
* buf->o limit.
|
|
*/
|
|
static inline int bo_getchr(struct channel *buf)
|
|
{
|
|
/* closed or empty + imminent close = -2; empty = -1 */
|
|
if (unlikely((buf->flags & CF_SHUTW) || channel_is_empty(buf))) {
|
|
if (buf->flags & (CF_SHUTW|CF_SHUTW_NOW))
|
|
return -2;
|
|
return -1;
|
|
}
|
|
return *buffer_wrap_sub(&buf->buf, buf->buf.p - buf->buf.o);
|
|
}
|
|
|
|
|
|
#endif /* _PROTO_CHANNEL_H */
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|