479 lines
12 KiB
C
479 lines
12 KiB
C
/*
|
|
* JSON Web Token (JWT) processing
|
|
*
|
|
* Copyright 2021 HAProxy Technologies
|
|
* Remi Tricot-Le Breton <rlebreton@haproxy.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <import/ebmbtree.h>
|
|
#include <import/ebsttree.h>
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/openssl-compat.h>
|
|
#include <haproxy/base64.h>
|
|
#include <haproxy/jwt.h>
|
|
#include <haproxy/buf.h>
|
|
|
|
|
|
#ifdef USE_OPENSSL
|
|
/* Tree into which the public certificates used to validate JWTs will be stored. */
|
|
static struct eb_root jwt_cert_tree = EB_ROOT_UNIQUE;
|
|
|
|
/*
|
|
* The possible algorithm strings that can be found in a JWS's JOSE header are
|
|
* defined in section 3.1 of RFC7518.
|
|
*/
|
|
enum jwt_alg jwt_parse_alg(const char *alg_str, unsigned int alg_len)
|
|
{
|
|
enum jwt_alg alg = JWT_ALG_DEFAULT;
|
|
|
|
/* Algorithms are all 5 characters long apart from "none". */
|
|
if (alg_len < sizeof("HS256")-1) {
|
|
if (alg_len == sizeof("none")-1 && strcmp("none", alg_str) == 0)
|
|
alg = JWS_ALG_NONE;
|
|
return alg;
|
|
}
|
|
|
|
if (alg == JWT_ALG_DEFAULT) {
|
|
switch(*alg_str++) {
|
|
case 'H':
|
|
if (strncmp(alg_str, "S256", alg_len-1) == 0)
|
|
alg = JWS_ALG_HS256;
|
|
else if (strncmp(alg_str, "S384", alg_len-1) == 0)
|
|
alg = JWS_ALG_HS384;
|
|
else if (strncmp(alg_str, "S512", alg_len-1) == 0)
|
|
alg = JWS_ALG_HS512;
|
|
break;
|
|
case 'R':
|
|
if (strncmp(alg_str, "S256", alg_len-1) == 0)
|
|
alg = JWS_ALG_RS256;
|
|
else if (strncmp(alg_str, "S384", alg_len-1) == 0)
|
|
alg = JWS_ALG_RS384;
|
|
else if (strncmp(alg_str, "S512", alg_len-1) == 0)
|
|
alg = JWS_ALG_RS512;
|
|
break;
|
|
case 'E':
|
|
if (strncmp(alg_str, "S256", alg_len-1) == 0)
|
|
alg = JWS_ALG_ES256;
|
|
else if (strncmp(alg_str, "S384", alg_len-1) == 0)
|
|
alg = JWS_ALG_ES384;
|
|
else if (strncmp(alg_str, "S512", alg_len-1) == 0)
|
|
alg = JWS_ALG_ES512;
|
|
break;
|
|
case 'P':
|
|
if (strncmp(alg_str, "S256", alg_len-1) == 0)
|
|
alg = JWS_ALG_PS256;
|
|
else if (strncmp(alg_str, "S384", alg_len-1) == 0)
|
|
alg = JWS_ALG_PS384;
|
|
else if (strncmp(alg_str, "S512", alg_len-1) == 0)
|
|
alg = JWS_ALG_PS512;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return alg;
|
|
}
|
|
|
|
/*
|
|
* Split a JWT into its separate dot-separated parts.
|
|
* Since only JWS following the Compact Serialization format are managed for
|
|
* now, we don't need to manage more than three subparts in the tokens.
|
|
* See section 3.1 of RFC7515 for more information about JWS Compact
|
|
* Serialization.
|
|
* Returns 0 in case of success.
|
|
*/
|
|
int jwt_tokenize(const struct buffer *jwt, struct jwt_item *items, unsigned int *item_num)
|
|
{
|
|
char *ptr = jwt->area;
|
|
char *jwt_end = jwt->area + jwt->data;
|
|
unsigned int index = 0;
|
|
unsigned int length = 0;
|
|
|
|
if (index < *item_num) {
|
|
items[index].start = ptr;
|
|
items[index].length = 0;
|
|
}
|
|
|
|
while (index < *item_num && ptr < jwt_end) {
|
|
if (*ptr++ == '.') {
|
|
items[index++].length = length;
|
|
|
|
if (index == *item_num)
|
|
return -1;
|
|
items[index].start = ptr;
|
|
items[index].length = 0;
|
|
length = 0;
|
|
} else
|
|
++length;
|
|
}
|
|
|
|
if (index < *item_num)
|
|
items[index].length = length;
|
|
|
|
*item_num = (index+1);
|
|
|
|
return (ptr != jwt_end);
|
|
}
|
|
|
|
/*
|
|
* Parse a public certificate and insert it into the jwt_cert_tree.
|
|
* Returns 0 in case of success.
|
|
*/
|
|
int jwt_tree_load_cert(char *path, int pathlen, char **err)
|
|
{
|
|
int retval = -1;
|
|
struct jwt_cert_tree_entry *entry = NULL;
|
|
EVP_PKEY *pkey = NULL;
|
|
BIO *bio = NULL;
|
|
|
|
entry = calloc(1, sizeof(*entry) + pathlen + 1);
|
|
if (!entry) {
|
|
memprintf(err, "%sunable to allocate memory (jwt_cert_tree_entry).\n", err && *err ? *err : "");
|
|
return -1;
|
|
}
|
|
memcpy(entry->path, path, pathlen + 1);
|
|
|
|
if (ebst_insert(&jwt_cert_tree, &entry->node) != &entry->node) {
|
|
free(entry);
|
|
return 0; /* Entry already in the tree */
|
|
}
|
|
|
|
bio = BIO_new(BIO_s_file());
|
|
if (!bio) {
|
|
memprintf(err, "%sunable to allocate memory (BIO).\n", err && *err ? *err : "");
|
|
goto end;
|
|
}
|
|
|
|
if (BIO_read_filename(bio, path) == 1) {
|
|
|
|
pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL);
|
|
|
|
if (!pkey) {
|
|
memprintf(err, "%sfile not found (%s)\n", err && *err ? *err : "", path);
|
|
goto end;
|
|
}
|
|
|
|
entry->pkey = pkey;
|
|
retval = 0;
|
|
}
|
|
|
|
end:
|
|
if (retval) {
|
|
/* Some error happened during pkey parsing, remove the already
|
|
* inserted node from the tree and free it.
|
|
*/
|
|
ebmb_delete(&entry->node);
|
|
free(entry);
|
|
}
|
|
BIO_free(bio);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Calculate the HMAC signature of a specific JWT and check that it matches the
|
|
* one included in the token.
|
|
* Returns 1 in case of success.
|
|
*/
|
|
static enum jwt_vrfy_status
|
|
jwt_jwsverify_hmac(const struct jwt_ctx *ctx, const struct buffer *decoded_signature)
|
|
{
|
|
const EVP_MD *evp = NULL;
|
|
unsigned char signature[EVP_MAX_MD_SIZE];
|
|
unsigned int signature_length = 0;
|
|
unsigned char *hmac_res = NULL;
|
|
enum jwt_vrfy_status retval = JWT_VRFY_KO;
|
|
|
|
switch(ctx->alg) {
|
|
case JWS_ALG_HS256:
|
|
evp = EVP_sha256();
|
|
break;
|
|
case JWS_ALG_HS384:
|
|
evp = EVP_sha384();
|
|
break;
|
|
case JWS_ALG_HS512:
|
|
evp = EVP_sha512();
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
hmac_res = HMAC(evp, ctx->key, ctx->key_length, (const unsigned char*)ctx->jose.start,
|
|
ctx->jose.length + ctx->claims.length + 1, signature, &signature_length);
|
|
|
|
if (hmac_res && signature_length == decoded_signature->data &&
|
|
(CRYPTO_memcmp(decoded_signature->area, signature, signature_length) == 0))
|
|
retval = JWT_VRFY_OK;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Convert a JWT ECDSA signature (R and S parameters concatenatedi, see section
|
|
* 3.4 of RFC7518) into an ECDSA_SIG that can be fed back into OpenSSL's digest
|
|
* verification functions.
|
|
* Returns 0 in case of success.
|
|
*/
|
|
static int convert_ecdsa_sig(const struct jwt_ctx *ctx, EVP_PKEY *pkey, struct buffer *signature)
|
|
{
|
|
int retval = 0;
|
|
ECDSA_SIG *ecdsa_sig = NULL;
|
|
BIGNUM *ec_R = NULL, *ec_S = NULL;
|
|
unsigned int bignum_len;
|
|
unsigned char *p;
|
|
|
|
ecdsa_sig = ECDSA_SIG_new();
|
|
if (!ecdsa_sig) {
|
|
retval = JWT_VRFY_OUT_OF_MEMORY;
|
|
goto end;
|
|
}
|
|
|
|
if (b_data(signature) % 2) {
|
|
retval = JWT_VRFY_INVALID_TOKEN;
|
|
goto end;
|
|
}
|
|
|
|
bignum_len = b_data(signature) / 2;
|
|
|
|
ec_R = BN_bin2bn((unsigned char*)b_orig(signature), bignum_len, NULL);
|
|
ec_S = BN_bin2bn((unsigned char *)(b_orig(signature) + bignum_len), bignum_len, NULL);
|
|
|
|
if (!ec_R || !ec_S) {
|
|
retval = JWT_VRFY_INVALID_TOKEN;
|
|
goto end;
|
|
}
|
|
|
|
/* Build ecdsa out of R and S values. */
|
|
ECDSA_SIG_set0(ecdsa_sig, ec_R, ec_S);
|
|
|
|
p = (unsigned char*)signature->area;
|
|
|
|
signature->data = i2d_ECDSA_SIG(ecdsa_sig, &p);
|
|
if (signature->data == 0) {
|
|
retval = JWT_VRFY_INVALID_TOKEN;
|
|
goto end;
|
|
}
|
|
|
|
end:
|
|
ECDSA_SIG_free(ecdsa_sig);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Check that the signature included in a JWT signed via RSA or ECDSA is valid
|
|
* and can be verified thanks to a given public certificate.
|
|
* Returns 1 in case of success.
|
|
*/
|
|
static enum jwt_vrfy_status
|
|
jwt_jwsverify_rsa_ecdsa(const struct jwt_ctx *ctx, struct buffer *decoded_signature)
|
|
{
|
|
const EVP_MD *evp = NULL;
|
|
EVP_MD_CTX *evp_md_ctx;
|
|
EVP_PKEY_CTX *pkey_ctx = NULL;
|
|
enum jwt_vrfy_status retval = JWT_VRFY_KO;
|
|
struct ebmb_node *eb;
|
|
struct jwt_cert_tree_entry *entry = NULL;
|
|
int is_ecdsa = 0;
|
|
int padding = RSA_PKCS1_PADDING;
|
|
|
|
switch(ctx->alg) {
|
|
case JWS_ALG_RS256:
|
|
evp = EVP_sha256();
|
|
break;
|
|
case JWS_ALG_RS384:
|
|
evp = EVP_sha384();
|
|
break;
|
|
case JWS_ALG_RS512:
|
|
evp = EVP_sha512();
|
|
break;
|
|
|
|
case JWS_ALG_ES256:
|
|
evp = EVP_sha256();
|
|
is_ecdsa = 1;
|
|
break;
|
|
case JWS_ALG_ES384:
|
|
evp = EVP_sha384();
|
|
is_ecdsa = 1;
|
|
break;
|
|
case JWS_ALG_ES512:
|
|
evp = EVP_sha512();
|
|
is_ecdsa = 1;
|
|
break;
|
|
|
|
case JWS_ALG_PS256:
|
|
evp = EVP_sha256();
|
|
padding = RSA_PKCS1_PSS_PADDING;
|
|
break;
|
|
case JWS_ALG_PS384:
|
|
evp = EVP_sha384();
|
|
padding = RSA_PKCS1_PSS_PADDING;
|
|
break;
|
|
case JWS_ALG_PS512:
|
|
evp = EVP_sha512();
|
|
padding = RSA_PKCS1_PSS_PADDING;
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
evp_md_ctx = EVP_MD_CTX_new();
|
|
if (!evp_md_ctx)
|
|
return JWT_VRFY_OUT_OF_MEMORY;
|
|
|
|
eb = ebst_lookup(&jwt_cert_tree, ctx->key);
|
|
|
|
if (!eb) {
|
|
retval = JWT_VRFY_UNKNOWN_CERT;
|
|
goto end;
|
|
}
|
|
|
|
entry = ebmb_entry(eb, struct jwt_cert_tree_entry, node);
|
|
|
|
if (!entry->pkey) {
|
|
retval = JWT_VRFY_UNKNOWN_CERT;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* ECXXX signatures are a direct concatenation of the (R, S) pair and
|
|
* need to be converted back to asn.1 in order for verify operations to
|
|
* work with OpenSSL.
|
|
*/
|
|
if (is_ecdsa) {
|
|
int conv_retval = convert_ecdsa_sig(ctx, entry->pkey, decoded_signature);
|
|
if (conv_retval != 0) {
|
|
retval = conv_retval;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (EVP_DigestVerifyInit(evp_md_ctx, &pkey_ctx, evp, NULL, entry->pkey) == 1) {
|
|
if (is_ecdsa || EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding) > 0) {
|
|
if (EVP_DigestVerifyUpdate(evp_md_ctx, (const unsigned char*)ctx->jose.start,
|
|
ctx->jose.length + ctx->claims.length + 1) == 1 &&
|
|
EVP_DigestVerifyFinal(evp_md_ctx, (const unsigned char*)decoded_signature->area, decoded_signature->data) == 1) {
|
|
retval = JWT_VRFY_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
end:
|
|
EVP_MD_CTX_free(evp_md_ctx);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Check that the <token> that was signed via algorithm <alg> using the <key>
|
|
* (either an HMAC secret or the path to a public certificate) has a valid
|
|
* signature.
|
|
* Returns 1 in case of success.
|
|
*/
|
|
enum jwt_vrfy_status jwt_verify(const struct buffer *token, const struct buffer *alg,
|
|
const struct buffer *key)
|
|
{
|
|
struct jwt_item items[JWT_ELT_MAX] = { { 0 } };
|
|
unsigned int item_num = JWT_ELT_MAX;
|
|
struct buffer *decoded_sig = NULL;
|
|
struct jwt_ctx ctx = {};
|
|
enum jwt_vrfy_status retval = JWT_VRFY_KO;
|
|
int ret;
|
|
|
|
ctx.alg = jwt_parse_alg(alg->area, alg->data);
|
|
|
|
if (ctx.alg == JWT_ALG_DEFAULT)
|
|
return JWT_VRFY_UNKNOWN_ALG;
|
|
|
|
if (jwt_tokenize(token, items, &item_num))
|
|
return JWT_VRFY_INVALID_TOKEN;
|
|
|
|
if (item_num != JWT_ELT_MAX)
|
|
if (ctx.alg != JWS_ALG_NONE || item_num != JWT_ELT_SIG)
|
|
return JWT_VRFY_INVALID_TOKEN;
|
|
|
|
ctx.jose = items[JWT_ELT_JOSE];
|
|
ctx.claims = items[JWT_ELT_CLAIMS];
|
|
ctx.signature = items[JWT_ELT_SIG];
|
|
|
|
/* "alg" is "none", the signature must be empty for the JWS to be valid. */
|
|
if (ctx.alg == JWS_ALG_NONE) {
|
|
return (ctx.signature.length == 0) ? JWT_VRFY_OK : JWT_VRFY_KO;
|
|
}
|
|
|
|
if (ctx.signature.length == 0)
|
|
return JWT_VRFY_INVALID_TOKEN;
|
|
|
|
decoded_sig = alloc_trash_chunk();
|
|
if (!decoded_sig)
|
|
return JWT_VRFY_OUT_OF_MEMORY;
|
|
|
|
ret = base64urldec(ctx.signature.start, ctx.signature.length,
|
|
decoded_sig->area, decoded_sig->size);
|
|
if (ret == -1) {
|
|
retval = JWT_VRFY_INVALID_TOKEN;
|
|
goto end;
|
|
}
|
|
|
|
decoded_sig->data = ret;
|
|
ctx.key = key->area;
|
|
ctx.key_length = key->data;
|
|
|
|
/* We have all three sections, signature calculation can begin. */
|
|
|
|
switch(ctx.alg) {
|
|
|
|
case JWS_ALG_HS256:
|
|
case JWS_ALG_HS384:
|
|
case JWS_ALG_HS512:
|
|
/* HMAC + SHA-XXX */
|
|
retval = jwt_jwsverify_hmac(&ctx, decoded_sig);
|
|
break;
|
|
case JWS_ALG_RS256:
|
|
case JWS_ALG_RS384:
|
|
case JWS_ALG_RS512:
|
|
case JWS_ALG_ES256:
|
|
case JWS_ALG_ES384:
|
|
case JWS_ALG_ES512:
|
|
case JWS_ALG_PS256:
|
|
case JWS_ALG_PS384:
|
|
case JWS_ALG_PS512:
|
|
/* RSASSA-PKCS1-v1_5 + SHA-XXX */
|
|
/* ECDSA using P-XXX and SHA-XXX */
|
|
/* RSASSA-PSS using SHA-XXX and MGF1 with SHA-XXX */
|
|
retval = jwt_jwsverify_rsa_ecdsa(&ctx, decoded_sig);
|
|
break;
|
|
default:
|
|
/* Not managed yet */
|
|
retval = JWT_VRFY_UNMANAGED_ALG;
|
|
break;
|
|
}
|
|
|
|
end:
|
|
free_trash_chunk(decoded_sig);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void jwt_deinit(void)
|
|
{
|
|
struct ebmb_node *node = NULL;
|
|
struct jwt_cert_tree_entry *entry = NULL;
|
|
|
|
node = ebmb_first(&jwt_cert_tree);
|
|
while (node) {
|
|
entry = ebmb_entry(node, struct jwt_cert_tree_entry, node);
|
|
ebmb_delete(node);
|
|
EVP_PKEY_free(entry->pkey);
|
|
ha_free(&entry);
|
|
node = ebmb_first(&jwt_cert_tree);
|
|
}
|
|
}
|
|
REGISTER_POST_DEINIT(jwt_deinit);
|
|
|
|
|
|
#endif /* USE_OPENSSL */
|