haproxy/include/common/buffer.h
Willy Tarreau 4cf1300e6a MINOR: channel/buffer: replace buffer_slow_realign() with channel_slow_realign() and b_slow_realign()
Where relevant, the channel version is used instead. The buffer version
was ported to be more generic and now takes a swap buffer and the output
byte count to know where to set the alignment point. The H2 mux still
uses buffer_slow_realign() with buf->o but it will change later.
2018-07-19 16:23:40 +02:00

881 lines
26 KiB
C

/*
* include/common/buffer.h
* Buffer management definitions, macros and inline functions.
*
* Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _COMMON_BUFFER_H
#define _COMMON_BUFFER_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <common/buf.h>
#include <common/chunk.h>
#include <common/config.h>
#include <common/ist.h>
#include <common/memory.h>
/* an element of the <buffer_wq> list. It represents an object that need to
* acquire a buffer to continue its process. */
struct buffer_wait {
void *target; /* The waiting object that should be woken up */
int (*wakeup_cb)(void *); /* The function used to wake up the <target>, passed as argument */
struct list list; /* Next element in the <buffer_wq> list */
};
extern struct pool_head *pool_head_buffer;
extern struct buffer buf_empty;
extern struct buffer buf_wanted;
extern struct list buffer_wq;
__decl_hathreads(extern HA_SPINLOCK_T buffer_wq_lock);
int init_buffer();
void deinit_buffer();
int buffer_replace2(struct buffer *b, char *pos, char *end, const char *str, int len);
int buffer_insert_line2(struct buffer *b, char *pos, const char *str, int len);
void buffer_dump(FILE *o, struct buffer *b, int from, int to);
void buffer_slow_realign(struct buffer *buf, size_t output);
/*****************************************************************/
/* These functions are used to compute various buffer area sizes */
/*****************************************************************/
/* Returns an absolute pointer for a position relative to the current buffer's
* pointer. It is written so that it is optimal when <ofs> is a const. It is
* written as a macro instead of an inline function so that the compiler knows
* when it can optimize out the sign test on <ofs> when passed an unsigned int.
* Note that callers MUST cast <ofs> to int if they expect negative values.
*/
#define b_ptr(b, ofs) \
({ \
char *__ret = (b)->p + (ofs); \
if ((ofs) > 0 && __ret >= (b)->data + (b)->size) \
__ret -= (b)->size; \
else if ((ofs) < 0 && __ret < (b)->data) \
__ret += (b)->size; \
__ret; \
})
/* Returns the pointer to the buffer's end (data+size) */
static inline const char *b_end(const struct buffer *b)
{
return b->data + b->size;
}
/* Returns the distance between <p> and the buffer's end (data+size) */
static inline unsigned int b_to_end(const struct buffer *b)
{
return b->data + b->size - b->p;
}
/* Skips <del> bytes in a one-way buffer <b> : <p> advances by <del>, <i>
* shrinks by <del> as well, and <o> is left untouched (supposed to be zero).
* The caller is responsible for ensuring that <del> is always smaller than or
* equal to b->i.
*/
static inline void bi_del(struct buffer *b, unsigned int del)
{
b->i -= del;
b->p = b_ptr(b, del);
}
/* Skips <del> bytes from the output of buffer <b> by simply shrinking <o>.
* The caller is responsible for ensuring that <del> is always smaller than or
* equal to b->o.
*/
static inline void bo_del(struct buffer *b, unsigned int del)
{
b->o -= del;
}
/* Advances the buffer by <adv> bytes, which means that the buffer
* pointer advances, and that as many bytes from in are transferred
* to out. The caller is responsible for ensuring that adv is always
* smaller than or equal to b->i.
*/
static inline void b_adv(struct buffer *b, unsigned int adv)
{
b->i -= adv;
b->o += adv;
b->p = b_ptr(b, adv);
}
/* Rewinds the buffer by <adv> bytes, which means that the buffer pointer goes
* backwards, and that as many bytes from out are moved to in. The caller is
* responsible for ensuring that adv is always smaller than or equal to b->o.
*/
static inline void b_rew(struct buffer *b, unsigned int adv)
{
b->i += adv;
b->o -= adv;
b->p = b_ptr(b, (int)-adv);
}
/* Returns the start of the input data in a buffer */
static inline char *bi_ptr(const struct buffer *b)
{
return b->p;
}
/* Returns the end of the input data in a buffer (pointer to next
* insertion point).
*/
static inline char *bi_end(const struct buffer *b)
{
char *ret = b->p + b->i;
if (ret >= b->data + b->size)
ret -= b->size;
return ret;
}
/* Returns the amount of input data that can contiguously be read at once */
static inline int bi_contig_data(const struct buffer *b)
{
int data = b->data + b->size - b->p;
if (data > b->i)
data = b->i;
return data;
}
/* Returns the start of the output data in a buffer */
static inline char *bo_ptr(const struct buffer *b)
{
char *ret = b->p - b->o;
if (ret < b->data)
ret += b->size;
return ret;
}
/* Returns the end of the output data in a buffer */
static inline char *bo_end(const struct buffer *b)
{
return b->p;
}
/* Returns the amount of output data that can contiguously be read at once */
static inline int bo_contig_data(const struct buffer *b)
{
char *beg = b->p - b->o;
if (beg < b->data)
return b->data - beg;
return b->o;
}
/* Return the amount of bytes that can be written into the input area at once
* including reserved space which may be overwritten (this is the caller
* responsibility to know if the reserved space is protected or not).
*/
static inline int bi_contig_space(const struct buffer *b)
{
const char *left, *right;
left = b->p + b->i;
right = b->p - b->o;
if (left >= b->data + b->size)
left -= b->size;
else {
if (right < b->data)
right += b->size;
else
right = b->data + b->size;
}
return (right - left);
}
/* Return the amount of bytes that can be written into the output area at once
* including reserved space which may be overwritten (this is the caller
* responsibility to know if the reserved space is protected or not). Input data
* are assumed to not exist.
*/
static inline int bo_contig_space(const struct buffer *b)
{
const char *left, *right;
left = b->p;
right = b->p - b->o;
if (right < b->data)
right += b->size;
else
right = b->data + b->size;
return (right - left);
}
/* Return the buffer's length in bytes by summing the input and the output */
static inline int buffer_len(const struct buffer *buf)
{
return buf->i + buf->o;
}
/* Return non-zero only if the buffer is not empty */
static inline int buffer_not_empty(const struct buffer *buf)
{
return buf->i | buf->o;
}
/* Return non-zero only if the buffer is empty */
static inline int buffer_empty(const struct buffer *buf)
{
return !buffer_not_empty(buf);
}
/* Return non-zero only if the buffer's free space wraps :
* [ |oooo| ] => yes
* [ |iiii| ] => yes
* [ |oooo|iiii| ] => yes
* [oooo| ] => no
* [ |oooo] => no
* [iiii| ] => no
* [ |iiii] => no
* [oooo|iiii| ] => no
* [ |oooo|iiii] => no
* [iiii| |oooo] => no
* [oo|iiii| |oo] => no
* [iiii| |oo|ii] => no
* [oooooooooo|iiiiiiiiiii] => no
* [iiiiiiiiiiiii|oooooooo] => no
*
* So the only case where the buffer does not wrap is when there's data either
* at the beginning or at the end of the buffer. Thus we have this :
* - if (p+i >= size) ==> doesn't wrap
* - if (p-data <= o) ==> doesn't wrap
* - otherwise wraps
*/
static inline int buffer_space_wraps(const struct buffer *buf)
{
if (buf->p + buf->i >= buf->data + buf->size)
return 0;
if (buf->p <= buf->data + buf->o)
return 0;
return 1;
}
/* Returns non-zero if the buffer's INPUT is considered full, which means that
* it holds at least as much INPUT data as (size - reserve). This also means
* that data that are scheduled for output are considered as potential free
* space, and that the reserved space is always considered as not usable. This
* information alone cannot be used as a general purpose free space indicator.
* However it accurately indicates that too many data were fed in the buffer
* for an analyzer for instance. See the channel_may_recv() function for a more
* generic function taking everything into account.
*/
static inline int buffer_full(const struct buffer *b, unsigned int reserve)
{
if (b == &buf_empty)
return 0;
return (b->i + reserve >= b->size);
}
/* Normalizes a pointer after a subtract */
static inline char *buffer_wrap_sub(const struct buffer *buf, char *ptr)
{
if (ptr < buf->data)
ptr += buf->size;
return ptr;
}
/* Normalizes a pointer after an addition */
static inline char *buffer_wrap_add(const struct buffer *buf, char *ptr)
{
if (ptr - buf->size >= buf->data)
ptr -= buf->size;
return ptr;
}
/* Return the maximum amount of bytes that can be written into the buffer,
* including reserved space which may be overwritten.
*/
static inline int buffer_total_space(const struct buffer *buf)
{
return buf->size - buffer_len(buf);
}
/* Returns the amount of byte that can be written starting from <p> into the
* input buffer at once, including reserved space which may be overwritten.
* This is used by Lua to insert data in the input side just before the other
* data using buffer_replace(). The goal is to transfer these new data in the
* output buffer.
*/
static inline int bi_space_for_replace(const struct buffer *buf)
{
const char *end;
/* If the input side data overflows, we cannot insert data contiguously. */
if (buf->p + buf->i >= buf->data + buf->size)
return 0;
/* Check the last byte used in the buffer, it may be a byte of the output
* side if the buffer wraps, or its the end of the buffer.
*/
end = buffer_wrap_sub(buf, buf->p - buf->o);
if (end <= buf->p)
end = buf->data + buf->size;
/* Compute the amount of bytes which can be written. */
return end - (buf->p + buf->i);
}
/* Normalizes a pointer which is supposed to be relative to the beginning of a
* buffer, so that wrapping is correctly handled. The intent is to use this
* when increasing a pointer. Note that the wrapping test is only performed
* once, so the original pointer must be between ->data-size and ->data+2*size-1,
* otherwise an invalid pointer might be returned.
*/
static inline const char *buffer_pointer(const struct buffer *buf, const char *ptr)
{
if (ptr < buf->data)
ptr += buf->size;
else if (ptr - buf->size >= buf->data)
ptr -= buf->size;
return ptr;
}
/* Returns the distance between two pointers, taking into account the ability
* to wrap around the buffer's end.
*/
static inline int buffer_count(const struct buffer *buf, const char *from, const char *to)
{
int count = to - from;
count += count < 0 ? buf->size : 0;
return count;
}
/* returns the amount of pending bytes in the buffer. It is the amount of bytes
* that is not scheduled to be sent.
*/
static inline int buffer_pending(const struct buffer *buf)
{
return buf->i;
}
/* Return 1 if the buffer has less than 1/4 of its capacity free, otherwise 0 */
static inline int buffer_almost_full(const struct buffer *buf)
{
if (buf == &buf_empty)
return 0;
return b_almost_full(buf);
}
/* Cut the first <n> pending bytes in a contiguous buffer. It is illegal to
* call this function with remaining data waiting to be sent (o > 0). The
* caller must ensure that <n> is smaller than the actual buffer's length.
* This is mainly used to remove empty lines at the beginning of a request
* or a response.
*/
static inline void bi_fast_delete(struct buffer *buf, int n)
{
buf->i -= n;
buf->p += n;
}
/* Schedule all remaining buffer data to be sent. ->o is not touched if it
* already covers those data. That permits doing a flush even after a forward,
* although not recommended.
*/
static inline void buffer_flush(struct buffer *buf)
{
buf->p = buffer_wrap_add(buf, buf->p + buf->i);
buf->o += buf->i;
buf->i = 0;
}
/* This function writes the string <str> at position <pos> which must be in
* buffer <b>, and moves <end> just after the end of <str>. <b>'s parameters
* (l, r, lr) are updated to be valid after the shift. the shift value
* (positive or negative) is returned. If there's no space left, the move is
* not done. The function does not adjust ->o because it does not make sense
* to use it on data scheduled to be sent.
*/
static inline int buffer_replace(struct buffer *b, char *pos, char *end, const char *str)
{
return buffer_replace2(b, pos, end, str, strlen(str));
}
/* Tries to write char <c> into output data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is full.
*/
static inline void bo_putchr(struct buffer *b, char c)
{
if (buffer_len(b) == b->size)
return;
*b->p = c;
b->p = b_ptr(b, 1);
b->o++;
}
/* Tries to copy block <blk> into output data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bo_putblk(struct buffer *b, const char *blk, int len)
{
int cur_len = buffer_len(b);
int half;
if (len > b->size - cur_len)
len = (b->size - cur_len);
if (!len)
return 0;
half = bo_contig_space(b);
if (half > len)
half = len;
memcpy(b->p, blk, half);
b->p = b_ptr(b, half);
if (len > half) {
memcpy(b->p, blk + half, len - half);
b->p = b_ptr(b, half);
}
b->o += len;
return len;
}
/* Tries to copy string <str> into output data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bo_putstr(struct buffer *b, const char *str)
{
return bo_putblk(b, str, strlen(str));
}
/* Tries to copy chunk <chk> into output data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bo_putchk(struct buffer *b, const struct chunk *chk)
{
return bo_putblk(b, chk->str, chk->len);
}
/* Gets one full block of data at once from a buffer's output, optionally
* starting at a specific offset. Return values :
* >0 : number of bytes read, equal to requested size.
* =0 : not enough data available. <blk> is left undefined.
* The buffer is left unaffected.
*/
static inline int bo_getblk(const struct buffer *buf, char *blk, int len, int offset)
{
int firstblock;
if (len + offset > buf->o)
return 0;
firstblock = buf->data + buf->size - bo_ptr(buf);
if (firstblock > offset) {
if (firstblock >= len + offset) {
memcpy(blk, bo_ptr(buf) + offset, len);
return len;
}
memcpy(blk, bo_ptr(buf) + offset, firstblock - offset);
memcpy(blk + firstblock - offset, buf->data, len - firstblock + offset);
return len;
}
memcpy(blk, buf->data + offset - firstblock, len);
return len;
}
/* Gets one or two blocks of data at once from a buffer's output.
* Return values :
* >0 : number of blocks filled (1 or 2). blk1 is always filled before blk2.
* =0 : not enough data available. <blk*> are left undefined.
* The buffer is left unaffected. Unused buffers are left in an undefined state.
*/
static inline int bo_getblk_nc(struct buffer *buf, char **blk1, int *len1, char **blk2, int *len2)
{
if (unlikely(buf->o == 0))
return 0;
if (unlikely(buf->p != buf->data && buf->p - buf->o < buf->data)) {
*blk1 = buf->p - buf->o + buf->size;
*len1 = buf->data + buf->size - *blk1;
*blk2 = buf->data;
*len2 = buf->p - buf->data;
return 2;
}
*blk1 = bo_ptr(buf);
*len1 = buf->o;
return 1;
}
/* Tries to write char <c> into input data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is full.
*/
static inline void bi_putchr(struct buffer *b, char c)
{
if (buffer_len(b) == b->size)
return;
*bi_end(b) = c;
b->i++;
}
/* Tries to copy block <blk> into input data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bi_putblk(struct buffer *b, const char *blk, int len)
{
int cur_len = buffer_len(b);
int half;
if (len > b->size - cur_len)
len = (b->size - cur_len);
if (!len)
return 0;
half = bi_contig_space(b);
if (half > len)
half = len;
memcpy(bi_end(b), blk, half);
if (len > half)
memcpy(b_ptr(b, b->i + half), blk + half, len - half);
b->i += len;
return len;
}
/* Tries to copy string <str> into input data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bi_putstr(struct buffer *b, const char *str)
{
return bi_putblk(b, str, strlen(str));
}
/* Tries to copy chunk <chk> into input data at buffer <b>. Supports wrapping.
* Data are truncated if buffer is too short. It returns the number of bytes
* copied.
*/
static inline int bi_putchk(struct buffer *b, const struct chunk *chk)
{
return bi_putblk(b, chk->str, chk->len);
}
/* Gets one full block of data at once from a buffer's input. Return values :
* >0 : number of bytes read, equal to requested size.
* =0 : not enough data available. <blk> is left undefined.
* The buffer is left unaffected.
*/
static inline int bi_getblk(const struct buffer *buf, char *blk, int len)
{
int firstblock;
if (len > buf->i)
return 0;
firstblock = bi_contig_data(buf);
if (firstblock > len)
firstblock = len;
memcpy(blk, bi_ptr(buf), firstblock);
if (len > firstblock)
memcpy(blk + firstblock, buf->data, len - firstblock);
return len;
}
/* Gets one or two blocks of data at once from a buffer's input.
* Return values :
* >0 : number of blocks filled (1 or 2). blk1 is always filled before blk2.
* =0 : not enough data available. <blk*> are left undefined.
* The buffer is left unaffected. Unused buffers are left in an undefined state.
*/
static inline int bi_getblk_nc(struct buffer *buf, char **blk1, int *len1, char **blk2, int *len2)
{
if (unlikely(buf->i == 0))
return 0;
if (unlikely(buf->p + buf->i > buf->data + buf->size)) {
*blk1 = buf->p;
*len1 = buf->data + buf->size - buf->p;
*blk2 = buf->data;
*len2 = buf->i - *len1;
return 2;
}
*blk1 = buf->p;
*len1 = buf->i;
return 1;
}
/* Allocates a buffer and replaces *buf with this buffer. If no memory is
* available, &buf_wanted is used instead. No control is made to check if *buf
* already pointed to another buffer. The allocated buffer is returned, or
* NULL in case no memory is available.
*/
static inline struct buffer *b_alloc(struct buffer **buf)
{
struct buffer *b;
*buf = &buf_wanted;
b = pool_alloc_dirty(pool_head_buffer);
if (likely(b)) {
b->size = pool_head_buffer->size - sizeof(struct buffer);
b_reset(b);
*buf = b;
}
return b;
}
/* Allocates a buffer and replaces *buf with this buffer. If no memory is
* available, &buf_wanted is used instead. No control is made to check if *buf
* already pointed to another buffer. The allocated buffer is returned, or
* NULL in case no memory is available. The difference with b_alloc() is that
* this function only picks from the pool and never calls malloc(), so it can
* fail even if some memory is available.
*/
static inline struct buffer *b_alloc_fast(struct buffer **buf)
{
struct buffer *b;
*buf = &buf_wanted;
b = pool_get_first(pool_head_buffer);
if (likely(b)) {
b->size = pool_head_buffer->size - sizeof(struct buffer);
b_reset(b);
*buf = b;
}
return b;
}
/* Releases buffer *buf (no check of emptiness) */
static inline void __b_drop(struct buffer **buf)
{
pool_free(pool_head_buffer, *buf);
}
/* Releases buffer *buf if allocated. */
static inline void b_drop(struct buffer **buf)
{
if (!(*buf)->size)
return;
__b_drop(buf);
}
/* Releases buffer *buf if allocated, and replaces it with &buf_empty. */
static inline void b_free(struct buffer **buf)
{
b_drop(buf);
*buf = &buf_empty;
}
/* Ensures that <buf> is allocated. If an allocation is needed, it ensures that
* there are still at least <margin> buffers available in the pool after this
* allocation so that we don't leave the pool in a condition where a session or
* a response buffer could not be allocated anymore, resulting in a deadlock.
* This means that we sometimes need to try to allocate extra entries even if
* only one buffer is needed.
*
* We need to lock the pool here to be sure to have <margin> buffers available
* after the allocation, regardless how many threads that doing it in the same
* time. So, we use internal and lockless memory functions (prefixed with '__').
*/
static inline struct buffer *b_alloc_margin(struct buffer **buf, int margin)
{
struct buffer *b;
if ((*buf)->size)
return *buf;
*buf = &buf_wanted;
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_LOCK(POOL_LOCK, &pool_head_buffer->lock);
#endif
/* fast path */
if ((pool_head_buffer->allocated - pool_head_buffer->used) > margin) {
b = __pool_get_first(pool_head_buffer);
if (likely(b)) {
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_UNLOCK(POOL_LOCK, &pool_head_buffer->lock);
#endif
b->size = pool_head_buffer->size - sizeof(struct buffer);
b_reset(b);
*buf = b;
return b;
}
}
/* slow path, uses malloc() */
b = __pool_refill_alloc(pool_head_buffer, margin);
#ifndef CONFIG_HAP_LOCKLESS_POOLS
HA_SPIN_UNLOCK(POOL_LOCK, &pool_head_buffer->lock);
#endif
if (b) {
b->size = pool_head_buffer->size - sizeof(struct buffer);
b_reset(b);
*buf = b;
}
return b;
}
/* Offer a buffer currently belonging to target <from> to whoever needs one.
* Any pointer is valid for <from>, including NULL. Its purpose is to avoid
* passing a buffer to oneself in case of failed allocations (e.g. need two
* buffers, get one, fail, release it and wake up self again). In case of
* normal buffer release where it is expected that the caller is not waiting
* for a buffer, NULL is fine.
*/
void __offer_buffer(void *from, unsigned int threshold);
static inline void offer_buffers(void *from, unsigned int threshold)
{
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
if (LIST_ISEMPTY(&buffer_wq)) {
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
return;
}
__offer_buffer(from, threshold);
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
}
/*************************************************************************/
/* functions used to manipulate strings and blocks with wrapping buffers */
/*************************************************************************/
/* returns > 0 if the first <n> characters of buffer <b> starting at
* offset <o> relative to b->p match <ist>. (empty strings do match). It is
* designed to be use with reasonably small strings (ie matches a single byte
* per iteration). This function is usable both with input and output data. To
* be used like this depending on what to match :
* - input contents : b_isteq(b, 0, b->i, ist);
* - output contents : b_isteq(b, -b->o, b->o, ist);
* Return value :
* >0 : the number of matching bytes
* =0 : not enough bytes (or matching of empty string)
* <0 : non-matching byte found
*/
static inline int b_isteq(const struct buffer *b, unsigned int o, size_t n, const struct ist ist)
{
struct ist r = ist;
const char *p;
const char *end = b->data + b->size;
if (n < r.len)
return 0;
p = b_ptr(b, o);
while (r.len--) {
if (*p++ != *r.ptr++)
return -1;
if (unlikely(p == end))
p = b->data;
}
return ist.len;
}
/* "eats" string <ist> from the input region of buffer <b>. Wrapping data is
* explicitly supported. It matches a single byte per iteration so strings
* should remain reasonably small. Returns :
* > 0 : number of bytes matched and eaten
* = 0 : not enough bytes (or matching an empty string)
* < 0 : non-matching byte found
*/
static inline int bi_eat(struct buffer *b, const struct ist ist)
{
int ret = b_isteq(b, 0, b->i, ist);
if (ret > 0)
bi_del(b, ret);
return ret;
}
/* injects string <ist> into the input region of buffer <b> provided that it
* fits. Wrapping is supported. It's designed for small strings as it only
* writes a single byte per iteration. Returns the number of characters copied
* (ist.len), 0 if it temporarily does not fit or -1 if it will never fit. It
* will only modify the buffer upon success. In all cases, the contents are
* copied prior to reporting an error, so that the destination at least
* contains a valid but truncated string.
*/
static inline int bi_istput(struct buffer *b, const struct ist ist)
{
const char *end = b->data + b->size;
struct ist r = ist;
char *p;
if (r.len > (size_t)(b->size - b->i - b->o))
return r.len < b->size ? 0 : -1;
p = b_ptr(b, b->i);
b->i += r.len;
while (r.len--) {
*p++ = *r.ptr++;
if (unlikely(p == end))
p = b->data;
}
return ist.len;
}
/* injects string <ist> into the output region of buffer <b> provided that it
* fits. Input data is assumed not to exist and will silently be overwritten.
* Wrapping is supported. It's designed for small strings as it only writes a
* single byte per iteration. Returns the number of characters copied (ist.len),
* 0 if it temporarily does not fit or -1 if it will never fit. It will only
* modify the buffer upon success. In all cases, the contents are copied prior
* to reporting an error, so that the destination at least contains a valid
* but truncated string.
*/
static inline int bo_istput(struct buffer *b, const struct ist ist)
{
const char *end = b->data + b->size;
struct ist r = ist;
char *p;
if (r.len > (size_t)(b->size - b->o))
return r.len < b->size ? 0 : -1;
p = b->p;
b->o += r.len;
b->p = b_ptr(b, r.len);
while (r.len--) {
*p++ = *r.ptr++;
if (unlikely(p == end))
p = b->data;
}
return ist.len;
}
#endif /* _COMMON_BUFFER_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/