haproxy/include/proto/fd.h
Willy Tarreau 609aad9e73 REORG: time/activity: move activity measurements to activity.{c,h}
At the moment the situation with activity measurement is quite tricky
because the struct activity is defined in global.h and declared in
haproxy.c, with operations made in time.h and relying on freq_ctr
which are defined in freq_ctr.h which itself includes time.h. It's
barely possible to touch any of these files without breaking all the
circular dependency.

Let's move all this stuff to activity.{c,h} and be done with it. The
measurement of active and stolen time is now done in a dedicated
function called just after tv_before_poll() instead of mixing the two,
which used to be a lazy (but convenient) decision.

No code was changed, stuff was just moved around.
2018-11-22 11:48:41 +01:00

589 lines
16 KiB
C

/*
* include/proto/fd.h
* File descriptors states.
*
* Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _PROTO_FD_H
#define _PROTO_FD_H
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <common/config.h>
#include <common/ticks.h>
#include <common/time.h>
#include <types/fd.h>
#include <proto/activity.h>
/* public variables */
extern volatile struct fdlist fd_cache;
extern volatile struct fdlist fd_cache_local[MAX_THREADS];
extern volatile struct fdlist update_list;
extern unsigned long *polled_mask;
extern unsigned long fd_cache_mask; // Mask of threads with events in the cache
extern THREAD_LOCAL int *fd_updt; // FD updates list
extern THREAD_LOCAL int fd_nbupdt; // number of updates in the list
extern int poller_wr_pipe[MAX_THREADS];
__decl_hathreads(extern HA_RWLOCK_T __attribute__((aligned(64))) fdcache_lock); /* global lock to protect fd_cache array */
/* Deletes an FD from the fdsets.
* The file descriptor is also closed.
*/
void fd_delete(int fd);
/* Deletes an FD from the fdsets.
* The file descriptor is kept open.
*/
void fd_remove(int fd);
/* disable the specified poller */
void disable_poller(const char *poller_name);
void poller_pipe_io_handler(int fd);
/*
* Initialize the pollers till the best one is found.
* If none works, returns 0, otherwise 1.
* The pollers register themselves just before main() is called.
*/
int init_pollers();
/*
* Deinitialize the pollers.
*/
void deinit_pollers();
/*
* Some pollers may lose their connection after a fork(). It may be necessary
* to create initialize part of them again. Returns 0 in case of failure,
* otherwise 1. The fork() function may be NULL if unused. In case of error,
* the the current poller is destroyed and the caller is responsible for trying
* another one by calling init_pollers() again.
*/
int fork_poller();
/*
* Lists the known pollers on <out>.
* Should be performed only before initialization.
*/
int list_pollers(FILE *out);
/*
* Runs the polling loop
*/
void run_poller();
/* Scan and process the cached events. This should be called right after
* the poller.
*/
void fd_process_cached_events();
void fd_add_to_fd_list(volatile struct fdlist *list, int fd, int off);
void fd_rm_from_fd_list(volatile struct fdlist *list, int fd, int off);
/* Mark fd <fd> as updated for polling and allocate an entry in the update list
* for this if it was not already there. This can be done at any time.
*/
static inline void updt_fd_polling(const int fd)
{
if ((fdtab[fd].thread_mask & all_threads_mask) == tid_bit) {
unsigned int oldupdt;
/* note: we don't have a test-and-set yet in hathreads */
if (HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid))
return;
oldupdt = HA_ATOMIC_ADD(&fd_nbupdt, 1) - 1;
fd_updt[oldupdt] = fd;
} else {
unsigned long update_mask = fdtab[fd].update_mask;
do {
if (update_mask == fdtab[fd].thread_mask)
return;
} while (!HA_ATOMIC_CAS(&fdtab[fd].update_mask, &update_mask,
fdtab[fd].thread_mask));
fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update));
}
}
/* Called from the poller to acknoledge we read an entry from the global
* update list, to remove our bit from the update_mask, and remove it from
* the list if we were the last one.
*/
static inline void done_update_polling(int fd)
{
unsigned long update_mask;
update_mask = HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit);
while ((update_mask & all_threads_mask)== 0) {
/* If we were the last one that had to update that entry, remove it from the list */
fd_rm_from_fd_list(&update_list, fd, offsetof(struct fdtab, update));
if (update_list.first == fd)
abort();
update_mask = (volatile unsigned long)fdtab[fd].update_mask;
if ((update_mask & all_threads_mask) != 0) {
/* Maybe it's been re-updated in the meanwhile, and we
* wrongly removed it from the list, if so, re-add it
*/
fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update));
update_mask = (volatile unsigned long)(fdtab[fd].update_mask);
/* And then check again, just in case after all it
* should be removed, even if it's very unlikely, given
* the current thread wouldn't have been able to take
* care of it yet */
} else
break;
}
}
/* Allocates a cache entry for a file descriptor if it does not yet have one.
* This can be done at any time.
*/
static inline void fd_alloc_cache_entry(const int fd)
{
HA_ATOMIC_OR(&fd_cache_mask, fdtab[fd].thread_mask);
if (!(fdtab[fd].thread_mask & (fdtab[fd].thread_mask - 1)))
fd_add_to_fd_list(&fd_cache_local[my_ffsl(fdtab[fd].thread_mask) - 1], fd, offsetof(struct fdtab, cache));
else
fd_add_to_fd_list(&fd_cache, fd, offsetof(struct fdtab, cache));
}
/* Removes entry used by fd <fd> from the FD cache and replaces it with the
* last one.
* If the fd has no entry assigned, return immediately.
*/
static inline void fd_release_cache_entry(const int fd)
{
if (!(fdtab[fd].thread_mask & (fdtab[fd].thread_mask - 1)))
fd_rm_from_fd_list(&fd_cache_local[my_ffsl(fdtab[fd].thread_mask) - 1], fd, offsetof(struct fdtab, cache));
else
fd_rm_from_fd_list(&fd_cache, fd, offsetof(struct fdtab, cache));
}
/* This function automatically enables/disables caching for an entry depending
* on its state. It is only called on state changes.
*/
static inline void fd_update_cache(int fd)
{
/* only READY and ACTIVE states (the two with both flags set) require a cache entry */
if (((fdtab[fd].state & (FD_EV_READY_R | FD_EV_ACTIVE_R)) == (FD_EV_READY_R | FD_EV_ACTIVE_R)) ||
((fdtab[fd].state & (FD_EV_READY_W | FD_EV_ACTIVE_W)) == (FD_EV_READY_W | FD_EV_ACTIVE_W))) {
fd_alloc_cache_entry(fd);
}
else {
fd_release_cache_entry(fd);
}
}
/*
* returns the FD's recv state (FD_EV_*)
*/
static inline int fd_recv_state(const int fd)
{
return ((unsigned)fdtab[fd].state >> (4 * DIR_RD)) & FD_EV_STATUS;
}
/*
* returns true if the FD is active for recv
*/
static inline int fd_recv_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_R;
}
/*
* returns true if the FD is ready for recv
*/
static inline int fd_recv_ready(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_READY_R;
}
/*
* returns true if the FD is polled for recv
*/
static inline int fd_recv_polled(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_POLLED_R;
}
/*
* returns the FD's send state (FD_EV_*)
*/
static inline int fd_send_state(const int fd)
{
return ((unsigned)fdtab[fd].state >> (4 * DIR_WR)) & FD_EV_STATUS;
}
/*
* returns true if the FD is active for send
*/
static inline int fd_send_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_W;
}
/*
* returns true if the FD is ready for send
*/
static inline int fd_send_ready(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_READY_W;
}
/*
* returns true if the FD is polled for send
*/
static inline int fd_send_polled(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_POLLED_W;
}
/*
* returns true if the FD is active for recv or send
*/
static inline int fd_active(const int fd)
{
return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_RW;
}
/* Disable processing recv events on fd <fd> */
static inline void fd_stop_recv(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_ACTIVE_R))
return;
new = old & ~FD_EV_ACTIVE_R;
new &= ~FD_EV_POLLED_R;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_R)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Disable processing send events on fd <fd> */
static inline void fd_stop_send(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_ACTIVE_W))
return;
new = old & ~FD_EV_ACTIVE_W;
new &= ~FD_EV_POLLED_W;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_W)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Disable processing of events on fd <fd> for both directions. */
static inline void fd_stop_both(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_ACTIVE_RW))
return;
new = old & ~FD_EV_ACTIVE_RW;
new &= ~FD_EV_POLLED_RW;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_RW)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Report that FD <fd> cannot receive anymore without polling (EAGAIN detected). */
static inline void fd_cant_recv(const int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_READY_R))
return;
new = old & ~FD_EV_READY_R;
if (new & FD_EV_ACTIVE_R)
new |= FD_EV_POLLED_R;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_R)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Report that FD <fd> can receive anymore without polling. */
static inline void fd_may_recv(const int fd)
{
/* marking ready never changes polled status */
HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_R);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Disable readiness when polled. This is useful to interrupt reading when it
* is suspected that the end of data might have been reached (eg: short read).
* This can only be done using level-triggered pollers, so if any edge-triggered
* is ever implemented, a test will have to be added here.
*/
static inline void fd_done_recv(const int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if ((old & (FD_EV_POLLED_R|FD_EV_READY_R)) != (FD_EV_POLLED_R|FD_EV_READY_R))
return;
new = old & ~FD_EV_READY_R;
if (new & FD_EV_ACTIVE_R)
new |= FD_EV_POLLED_R;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_R)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Report that FD <fd> cannot send anymore without polling (EAGAIN detected). */
static inline void fd_cant_send(const int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (!(old & FD_EV_READY_W))
return;
new = old & ~FD_EV_READY_W;
if (new & FD_EV_ACTIVE_W)
new |= FD_EV_POLLED_W;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_W)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Report that FD <fd> can send anymore without polling (EAGAIN detected). */
static inline void fd_may_send(const int fd)
{
/* marking ready never changes polled status */
HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_W);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Prepare FD <fd> to try to receive */
static inline void fd_want_recv(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (old & FD_EV_ACTIVE_R)
return;
new = old | FD_EV_ACTIVE_R;
if (!(new & FD_EV_READY_R))
new |= FD_EV_POLLED_R;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_R)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Prepare FD <fd> to try to send */
static inline void fd_want_send(int fd)
{
unsigned char old, new;
old = fdtab[fd].state;
do {
if (old & FD_EV_ACTIVE_W)
return;
new = old | FD_EV_ACTIVE_W;
if (!(new & FD_EV_READY_W))
new |= FD_EV_POLLED_W;
} while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new)));
if ((old ^ new) & FD_EV_POLLED_W)
updt_fd_polling(fd);
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fd_update_cache(fd); /* need an update entry to change the state */
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Update events seen for FD <fd> and its state if needed. This should be called
* by the poller to set FD_POLL_* flags. */
static inline void fd_update_events(int fd, int evts)
{
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fdtab[fd].ev &= FD_POLL_STICKY;
fdtab[fd].ev |= evts;
if (atleast2(fdtab[fd].thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
if (fdtab[fd].ev & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR))
fd_may_recv(fd);
if (fdtab[fd].ev & (FD_POLL_OUT | FD_POLL_ERR))
fd_may_send(fd);
}
/* Prepares <fd> for being polled */
static inline void fd_insert(int fd, void *owner, void (*iocb)(int fd), unsigned long thread_mask)
{
if (atleast2(thread_mask))
HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock);
fdtab[fd].owner = owner;
fdtab[fd].iocb = iocb;
fdtab[fd].ev = 0;
fdtab[fd].linger_risk = 0;
fdtab[fd].cloned = 0;
fdtab[fd].thread_mask = thread_mask;
/* note: do not reset polled_mask here as it indicates which poller
* still knows this FD from a possible previous round.
*/
if (atleast2(thread_mask))
HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock);
}
/* Computes the bounded poll() timeout based on the next expiration timer <next>
* by bounding it to MAX_DELAY_MS. <next> may equal TICK_ETERNITY. The pollers
* just needs to call this function right before polling to get their timeout
* value. Timeouts that are already expired (possibly due to a pending event)
* are accounted for in activity.poll_exp.
*/
static inline int compute_poll_timeout(int next)
{
int wait_time;
if (!tick_isset(next))
wait_time = MAX_DELAY_MS;
else if (tick_is_expired(next, now_ms)) {
activity[tid].poll_exp++;
wait_time = 0;
}
else {
wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1;
if (wait_time > MAX_DELAY_MS)
wait_time = MAX_DELAY_MS;
}
return wait_time;
}
/* These are replacements for FD_SET, FD_CLR, FD_ISSET, working on uints */
static inline void hap_fd_set(int fd, unsigned int *evts)
{
HA_ATOMIC_OR(&evts[fd / (8*sizeof(*evts))], 1U << (fd & (8*sizeof(*evts) - 1)));
}
static inline void hap_fd_clr(int fd, unsigned int *evts)
{
HA_ATOMIC_AND(&evts[fd / (8*sizeof(*evts))], ~(1U << (fd & (8*sizeof(*evts) - 1))));
}
static inline unsigned int hap_fd_isset(int fd, unsigned int *evts)
{
return evts[fd / (8*sizeof(*evts))] & (1U << (fd & (8*sizeof(*evts) - 1)));
}
static inline void wake_thread(int tid)
{
char c = 'c';
shut_your_big_mouth_gcc(write(poller_wr_pipe[tid], &c, 1));
}
#endif /* _PROTO_FD_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/