haproxy/include/common/hathreads.h
Olivier Houchard a7bf573520 MEDIUM: fd: Introduce a running mask, and use it instead of the spinlock.
In the struct fdtab, introduce a new mask, running_mask. Each thread should
add its bit before using the fd.
Use the running_mask instead of a lock, in fd_insert/fd_delete, we'll just
spin as long as the mask is non-zero, to be sure we access the data
exclusively.
fd_set_running_excl() spins until the mask is 0, fd_set_running() just
adds the thread bit, and fd_clr_running() removes it.
2020-03-17 15:30:07 +01:00

1249 lines
37 KiB
C

/*
* include/common/hathreads.h
* definitions, macros and inline functions about threads.
*
* Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _COMMON_HATHREADS_H
#define _COMMON_HATHREADS_H
#include <signal.h>
#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>
#endif
#include <common/config.h>
#include <common/initcall.h>
/* Note about all_threads_mask :
* - this variable is comprised between 1 and LONGBITS.
* - with threads support disabled, this symbol is defined as constant 1UL.
* - with threads enabled, it contains the mask of enabled threads. Thus if
* only one thread is enabled, it equals 1.
*/
/* thread info flags, for ha_thread_info[].flags */
#define TI_FL_STUCK 0x00000001
#ifndef USE_THREAD
#define MAX_THREADS 1
#define MAX_THREADS_MASK 1
/* Only way found to replace variables with constants that are optimized away
* at build time.
*/
enum { all_threads_mask = 1UL };
enum { threads_harmless_mask = 0 };
enum { threads_want_rdv_mask = 0 };
enum { threads_sync_mask = 0 };
enum { tid_bit = 1UL };
enum { tid = 0 };
extern struct thread_info {
clockid_t clock_id;
timer_t wd_timer; /* valid timer or TIMER_INVALID if not set */
uint64_t prev_cpu_time; /* previous per thread CPU time */
uint64_t prev_mono_time; /* previous system wide monotonic time */
unsigned int idle_pct; /* idle to total ratio over last sample (percent) */
unsigned int flags; /* thread info flags, TI_FL_* */
/* pad to cache line (64B) */
char __pad[0]; /* unused except to check remaining room */
char __end[0] __attribute__((aligned(64)));
} ha_thread_info[MAX_THREADS];
extern THREAD_LOCAL struct thread_info *ti; /* thread_info for the current thread */
#define __decl_hathreads(decl)
#define __decl_spinlock(lock)
#define __decl_aligned_spinlock(lock)
#define __decl_rwlock(lock)
#define __decl_aligned_rwlock(lock)
#define HA_ATOMIC_CAS(val, old, new) ({((*val) == (*old)) ? (*(val) = (new) , 1) : (*(old) = *(val), 0);})
/* warning, n is a pointer to the double value for dwcas */
#define HA_ATOMIC_DWCAS(val, o, n) \
({ \
long *_v = (long*)(val); \
long *_o = (long*)(o); \
long *_n = (long*)(n); \
long _v0 = _v[0], _v1 = _v[1]; \
(_v0 == _o[0] && _v1 == _o[1]) ? \
(_v[0] = _n[0], _v[1] = _n[1], 1) : \
(_o[0] = _v0, _o[1] = _v1, 0); \
})
#define HA_ATOMIC_ADD(val, i) ({*(val) += (i);})
#define HA_ATOMIC_SUB(val, i) ({*(val) -= (i);})
#define HA_ATOMIC_XADD(val, i) \
({ \
typeof((val)) __p_xadd = (val); \
typeof(*(val)) __old_xadd = *__p_xadd; \
*__p_xadd += i; \
__old_xadd; \
})
#define HA_ATOMIC_AND(val, flags) ({*(val) &= (flags);})
#define HA_ATOMIC_OR(val, flags) ({*(val) |= (flags);})
#define HA_ATOMIC_XCHG(val, new) \
({ \
typeof(*(val)) __old_xchg = *(val); \
*(val) = new; \
__old_xchg; \
})
#define HA_ATOMIC_BTS(val, bit) \
({ \
typeof((val)) __p_bts = (val); \
typeof(*__p_bts) __b_bts = (1UL << (bit)); \
typeof(*__p_bts) __t_bts = *__p_bts & __b_bts; \
if (!__t_bts) \
*__p_bts |= __b_bts; \
__t_bts; \
})
#define HA_ATOMIC_BTR(val, bit) \
({ \
typeof((val)) __p_btr = (val); \
typeof(*__p_btr) __b_btr = (1UL << (bit)); \
typeof(*__p_btr) __t_btr = *__p_btr & __b_btr; \
if (__t_btr) \
*__p_btr &= ~__b_btr; \
__t_btr; \
})
#define HA_ATOMIC_LOAD(val) *(val)
#define HA_ATOMIC_STORE(val, new) ({*(val) = new;})
#define HA_ATOMIC_UPDATE_MAX(val, new) \
({ \
typeof(*(val)) __new_max = (new); \
\
if (*(val) < __new_max) \
*(val) = __new_max; \
*(val); \
})
#define HA_ATOMIC_UPDATE_MIN(val, new) \
({ \
typeof(*(val)) __new_min = (new); \
\
if (*(val) > __new_min) \
*(val) = __new_min; \
*(val); \
})
#define HA_BARRIER() do { } while (0)
#define HA_SPIN_INIT(l) do { /* do nothing */ } while(0)
#define HA_SPIN_DESTROY(l) do { /* do nothing */ } while(0)
#define HA_SPIN_LOCK(lbl, l) do { /* do nothing */ } while(0)
#define HA_SPIN_TRYLOCK(lbl, l) ({ 0; })
#define HA_SPIN_UNLOCK(lbl, l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_INIT(l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_DESTROY(l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_WRLOCK(lbl, l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_TRYWRLOCK(lbl, l) ({ 0; })
#define HA_RWLOCK_WRUNLOCK(lbl, l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_RDLOCK(lbl, l) do { /* do nothing */ } while(0)
#define HA_RWLOCK_TRYRDLOCK(lbl, l) ({ 0; })
#define HA_RWLOCK_RDUNLOCK(lbl, l) do { /* do nothing */ } while(0)
#define ha_sigmask(how, set, oldset) sigprocmask(how, set, oldset)
static inline void ha_set_tid(unsigned int tid)
{
ti = &ha_thread_info[tid];
}
static inline void ha_thread_relax(void)
{
#if _POSIX_PRIORITY_SCHEDULING
sched_yield();
#endif
}
/* send signal <sig> to thread <thr> */
static inline void ha_tkill(unsigned int thr, int sig)
{
raise(sig);
}
/* send signal <sig> to all threads */
static inline void ha_tkillall(int sig)
{
raise(sig);
}
static inline void __ha_barrier_atomic_load(void)
{
}
static inline void __ha_barrier_atomic_store(void)
{
}
static inline void __ha_barrier_atomic_full(void)
{
}
static inline void __ha_barrier_load(void)
{
}
static inline void __ha_barrier_store(void)
{
}
static inline void __ha_barrier_full(void)
{
}
static inline void thread_harmless_now()
{
}
static inline void thread_harmless_end()
{
}
static inline void thread_isolate()
{
}
static inline void thread_release()
{
}
static inline void thread_sync_release()
{
}
static inline unsigned long thread_isolated()
{
return 1;
}
#else /* USE_THREAD */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <import/plock.h>
#ifndef MAX_THREADS
#define MAX_THREADS LONGBITS
#endif
#define MAX_THREADS_MASK (~0UL >> (LONGBITS - MAX_THREADS))
#define __decl_hathreads(decl) decl
/* declare a self-initializing spinlock */
#define __decl_spinlock(lock) \
HA_SPINLOCK_T (lock); \
INITCALL1(STG_LOCK, ha_spin_init, &(lock))
/* declare a self-initializing spinlock, aligned on a cache line */
#define __decl_aligned_spinlock(lock) \
HA_SPINLOCK_T (lock) __attribute__((aligned(64))); \
INITCALL1(STG_LOCK, ha_spin_init, &(lock))
/* declare a self-initializing rwlock */
#define __decl_rwlock(lock) \
HA_RWLOCK_T (lock); \
INITCALL1(STG_LOCK, ha_rwlock_init, &(lock))
/* declare a self-initializing rwlock, aligned on a cache line */
#define __decl_aligned_rwlock(lock) \
HA_RWLOCK_T (lock) __attribute__((aligned(64))); \
INITCALL1(STG_LOCK, ha_rwlock_init, &(lock))
/* TODO: thread: For now, we rely on GCC builtins but it could be a good idea to
* have a header file regrouping all functions dealing with threads. */
#if defined(__GNUC__) && (__GNUC__ < 4 || __GNUC__ == 4 && __GNUC_MINOR__ < 7) && !defined(__clang__)
/* gcc < 4.7 */
#define HA_ATOMIC_ADD(val, i) __sync_add_and_fetch(val, i)
#define HA_ATOMIC_SUB(val, i) __sync_sub_and_fetch(val, i)
#define HA_ATOMIC_XADD(val, i) __sync_fetch_and_add(val, i)
#define HA_ATOMIC_AND(val, flags) __sync_and_and_fetch(val, flags)
#define HA_ATOMIC_OR(val, flags) __sync_or_and_fetch(val, flags)
/* the CAS is a bit complicated. The older API doesn't support returning the
* value and the swap's result at the same time. So here we take what looks
* like the safest route, consisting in using the boolean version guaranteeing
* that the operation was performed or not, and we snoop a previous value. If
* the compare succeeds, we return. If it fails, we return the previous value,
* but only if it differs from the expected one. If it's the same it's a race
* thus we try again to avoid confusing a possibly sensitive caller.
*/
#define HA_ATOMIC_CAS(val, old, new) \
({ \
typeof((val)) __val_cas = (val); \
typeof((old)) __oldp_cas = (old); \
typeof(*(old)) __oldv_cas; \
typeof((new)) __new_cas = (new); \
int __ret_cas; \
do { \
__oldv_cas = *__val_cas; \
__ret_cas = __sync_bool_compare_and_swap(__val_cas, *__oldp_cas, __new_cas); \
} while (!__ret_cas && *__oldp_cas == __oldv_cas); \
if (!__ret_cas) \
*__oldp_cas = __oldv_cas; \
__ret_cas; \
})
/* warning, n is a pointer to the double value for dwcas */
#define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n)
#define HA_ATOMIC_XCHG(val, new) \
({ \
typeof((val)) __val_xchg = (val); \
typeof(*(val)) __old_xchg; \
typeof((new)) __new_xchg = (new); \
do { __old_xchg = *__val_xchg; \
} while (!__sync_bool_compare_and_swap(__val_xchg, __old_xchg, __new_xchg)); \
__old_xchg; \
})
#define HA_ATOMIC_BTS(val, bit) \
({ \
typeof(*(val)) __b_bts = (1UL << (bit)); \
__sync_fetch_and_or((val), __b_bts) & __b_bts; \
})
#define HA_ATOMIC_BTR(val, bit) \
({ \
typeof(*(val)) __b_btr = (1UL << (bit)); \
__sync_fetch_and_and((val), ~__b_btr) & __b_btr; \
})
#define HA_ATOMIC_LOAD(val) \
({ \
typeof(*(val)) ret; \
__sync_synchronize(); \
ret = *(volatile typeof(val))val; \
__sync_synchronize(); \
ret; \
})
#define HA_ATOMIC_STORE(val, new) \
({ \
typeof((val)) __val_store = (val); \
typeof(*(val)) __old_store; \
typeof((new)) __new_store = (new); \
do { __old_store = *__val_store; \
} while (!__sync_bool_compare_and_swap(__val_store, __old_store, __new_store)); \
})
#else
/* gcc >= 4.7 */
#define HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)
/* warning, n is a pointer to the double value for dwcas */
#define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n)
#define HA_ATOMIC_ADD(val, i) __atomic_add_fetch(val, i, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_XADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_SUB(val, i) __atomic_sub_fetch(val, i, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_AND(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_OR(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_BTS(val, bit) \
({ \
typeof(*(val)) __b_bts = (1UL << (bit)); \
__sync_fetch_and_or((val), __b_bts) & __b_bts; \
})
#define HA_ATOMIC_BTR(val, bit) \
({ \
typeof(*(val)) __b_btr = (1UL << (bit)); \
__sync_fetch_and_and((val), ~__b_btr) & __b_btr; \
})
#define HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_SEQ_CST)
#define HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_SEQ_CST)
/* Variants that don't generate any memory barrier.
* If you're unsure how to deal with barriers, just use the HA_ATOMIC_* version,
* that will always generate correct code.
* Usually it's fine to use those when updating data that have no dependency,
* ie updating a counter. Otherwise a barrier is required.
*/
#define _HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED)
/* warning, n is a pointer to the double value for dwcas */
#define _HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n)
#define _HA_ATOMIC_ADD(val, i) __atomic_add_fetch(val, i, __ATOMIC_RELAXED)
#define _HA_ATOMIC_XADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_RELAXED)
#define _HA_ATOMIC_SUB(val, i) __atomic_sub_fetch(val, i, __ATOMIC_RELAXED)
#define _HA_ATOMIC_AND(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_RELAXED)
#define _HA_ATOMIC_OR(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_RELAXED)
#define _HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_RELAXED)
#define _HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_RELAXED)
#define _HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_RELAXED)
#endif /* gcc >= 4.7 */
#define HA_ATOMIC_UPDATE_MAX(val, new) \
({ \
typeof(*(val)) __old_max = *(val); \
typeof(*(val)) __new_max = (new); \
\
while (__old_max < __new_max && \
!HA_ATOMIC_CAS(val, &__old_max, __new_max)); \
*(val); \
})
#define HA_ATOMIC_UPDATE_MIN(val, new) \
({ \
typeof(*(val)) __old_min = *(val); \
typeof(*(val)) __new_min = (new); \
\
while (__old_min > __new_min && \
!HA_ATOMIC_CAS(val, &__old_min, __new_min)); \
*(val); \
})
#define HA_BARRIER() pl_barrier()
void thread_harmless_till_end();
void thread_isolate();
void thread_release();
void thread_sync_release();
void ha_tkill(unsigned int thr, int sig);
void ha_tkillall(int sig);
extern struct thread_info {
pthread_t pthread;
clockid_t clock_id;
timer_t wd_timer; /* valid timer or TIMER_INVALID if not set */
uint64_t prev_cpu_time; /* previous per thread CPU time */
uint64_t prev_mono_time; /* previous system wide monotonic time */
unsigned int idle_pct; /* idle to total ratio over last sample (percent) */
unsigned int flags; /* thread info flags, TI_FL_* */
/* pad to cache line (64B) */
char __pad[0]; /* unused except to check remaining room */
char __end[0] __attribute__((aligned(64)));
} ha_thread_info[MAX_THREADS];
extern THREAD_LOCAL unsigned int tid; /* The thread id */
extern THREAD_LOCAL unsigned long tid_bit; /* The bit corresponding to the thread id */
extern THREAD_LOCAL struct thread_info *ti; /* thread_info for the current thread */
extern volatile unsigned long all_threads_mask;
extern volatile unsigned long threads_want_rdv_mask;
extern volatile unsigned long threads_harmless_mask;
extern volatile unsigned long threads_sync_mask;
/* explanation for threads_want_rdv_mask, threads_harmless_mask, and
* threads_sync_mask :
* - threads_want_rdv_mask is a bit field indicating all threads that have
* requested a rendez-vous of other threads using thread_isolate().
* - threads_harmless_mask is a bit field indicating all threads that are
* currently harmless in that they promise not to access a shared resource.
* - threads_sync_mask is a bit field indicating that a thread waiting for
* others to finish wants to leave synchronized with others and as such
* promises to do so as well using thread_sync_release().
*
* For a given thread, its bits in want_rdv and harmless can be translated like
* this :
*
* ----------+----------+----------------------------------------------------
* want_rdv | harmless | description
* ----------+----------+----------------------------------------------------
* 0 | 0 | thread not interested in RDV, possibly harmful
* 0 | 1 | thread not interested in RDV but harmless
* 1 | 1 | thread interested in RDV and waiting for its turn
* 1 | 0 | thread currently working isolated from others
* ----------+----------+----------------------------------------------------
*
* thread_sync_mask only delays the leaving of threads_sync_release() to make
* sure that each thread's harmless bit is cleared before leaving the function.
*/
#define ha_sigmask(how, set, oldset) pthread_sigmask(how, set, oldset)
/* sets the thread ID and the TID bit for the current thread */
static inline void ha_set_tid(unsigned int data)
{
tid = data;
tid_bit = (1UL << tid);
ti = &ha_thread_info[tid];
}
static inline void ha_thread_relax(void)
{
#if _POSIX_PRIORITY_SCHEDULING
sched_yield();
#else
pl_cpu_relax();
#endif
}
/* Marks the thread as harmless. Note: this must be true, i.e. the thread must
* not be touching any unprotected shared resource during this period. Usually
* this is called before poll(), but it may also be placed around very slow
* calls (eg: some crypto operations). Needs to be terminated using
* thread_harmless_end().
*/
static inline void thread_harmless_now()
{
HA_ATOMIC_OR(&threads_harmless_mask, tid_bit);
}
/* Ends the harmless period started by thread_harmless_now(). Usually this is
* placed after the poll() call. If it is discovered that a job was running and
* is relying on the thread still being harmless, the thread waits for the
* other one to finish.
*/
static inline void thread_harmless_end()
{
while (1) {
HA_ATOMIC_AND(&threads_harmless_mask, ~tid_bit);
if (likely((threads_want_rdv_mask & all_threads_mask) == 0))
break;
thread_harmless_till_end();
}
}
/* an isolated thread has harmless cleared and want_rdv set */
static inline unsigned long thread_isolated()
{
return threads_want_rdv_mask & ~threads_harmless_mask & tid_bit;
}
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
/* WARNING!!! if you update this enum, please also keep lock_label() up to date below */
enum lock_label {
TASK_RQ_LOCK,
TASK_WQ_LOCK,
POOL_LOCK,
LISTENER_LOCK,
PROXY_LOCK,
SERVER_LOCK,
LBPRM_LOCK,
SIGNALS_LOCK,
STK_TABLE_LOCK,
STK_SESS_LOCK,
APPLETS_LOCK,
PEER_LOCK,
STRMS_LOCK,
SSL_LOCK,
SSL_GEN_CERTS_LOCK,
PATREF_LOCK,
PATEXP_LOCK,
VARS_LOCK,
COMP_POOL_LOCK,
LUA_LOCK,
NOTIF_LOCK,
SPOE_APPLET_LOCK,
DNS_LOCK,
PID_LIST_LOCK,
EMAIL_ALERTS_LOCK,
PIPES_LOCK,
TLSKEYS_REF_LOCK,
AUTH_LOCK,
LOGSRV_LOCK,
DICT_LOCK,
PROTO_LOCK,
CKCH_LOCK,
SNI_LOCK,
OTHER_LOCK,
LOCK_LABELS
};
struct lock_stat {
uint64_t nsec_wait_for_write;
uint64_t nsec_wait_for_read;
uint64_t num_write_locked;
uint64_t num_write_unlocked;
uint64_t num_read_locked;
uint64_t num_read_unlocked;
};
extern struct lock_stat lock_stats[LOCK_LABELS];
#define __HA_SPINLOCK_T unsigned long
#define __SPIN_INIT(l) ({ (*l) = 0; })
#define __SPIN_DESTROY(l) ({ (*l) = 0; })
#define __SPIN_LOCK(l) pl_take_s(l)
#define __SPIN_TRYLOCK(l) !pl_try_s(l)
#define __SPIN_UNLOCK(l) pl_drop_s(l)
#define __HA_RWLOCK_T unsigned long
#define __RWLOCK_INIT(l) ({ (*l) = 0; })
#define __RWLOCK_DESTROY(l) ({ (*l) = 0; })
#define __RWLOCK_WRLOCK(l) pl_take_w(l)
#define __RWLOCK_TRYWRLOCK(l) !pl_try_w(l)
#define __RWLOCK_WRUNLOCK(l) pl_drop_w(l)
#define __RWLOCK_RDLOCK(l) pl_take_r(l)
#define __RWLOCK_TRYRDLOCK(l) !pl_try_r(l)
#define __RWLOCK_RDUNLOCK(l) pl_drop_r(l)
#define HA_SPINLOCK_T struct ha_spinlock
#define HA_SPIN_INIT(l) __spin_init(l)
#define HA_SPIN_DESTROY(l) __spin_destroy(l)
#define HA_SPIN_LOCK(lbl, l) __spin_lock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_SPIN_TRYLOCK(lbl, l) __spin_trylock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_SPIN_UNLOCK(lbl, l) __spin_unlock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_RWLOCK_T struct ha_rwlock
#define HA_RWLOCK_INIT(l) __ha_rwlock_init((l))
#define HA_RWLOCK_DESTROY(l) __ha_rwlock_destroy((l))
#define HA_RWLOCK_WRLOCK(lbl,l) __ha_rwlock_wrlock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_RWLOCK_TRYWRLOCK(lbl,l) __ha_rwlock_trywrlock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_RWLOCK_WRUNLOCK(lbl,l) __ha_rwlock_wrunlock(lbl, l, __func__, __FILE__, __LINE__)
#define HA_RWLOCK_RDLOCK(lbl,l) __ha_rwlock_rdlock(lbl, l)
#define HA_RWLOCK_TRYRDLOCK(lbl,l) __ha_rwlock_tryrdlock(lbl, l)
#define HA_RWLOCK_RDUNLOCK(lbl,l) __ha_rwlock_rdunlock(lbl, l)
struct ha_spinlock {
__HA_SPINLOCK_T lock;
struct {
unsigned long owner; /* a bit is set to 1 << tid for the lock owner */
unsigned long waiters; /* a bit is set to 1 << tid for waiting threads */
struct {
const char *function;
const char *file;
int line;
} last_location; /* location of the last owner */
} info;
};
struct ha_rwlock {
__HA_RWLOCK_T lock;
struct {
unsigned long cur_writer; /* a bit is set to 1 << tid for the lock owner */
unsigned long wait_writers; /* a bit is set to 1 << tid for waiting writers */
unsigned long cur_readers; /* a bit is set to 1 << tid for current readers */
unsigned long wait_readers; /* a bit is set to 1 << tid for waiting waiters */
struct {
const char *function;
const char *file;
int line;
} last_location; /* location of the last write owner */
} info;
};
static inline const char *lock_label(enum lock_label label)
{
switch (label) {
case TASK_RQ_LOCK: return "TASK_RQ";
case TASK_WQ_LOCK: return "TASK_WQ";
case POOL_LOCK: return "POOL";
case LISTENER_LOCK: return "LISTENER";
case PROXY_LOCK: return "PROXY";
case SERVER_LOCK: return "SERVER";
case LBPRM_LOCK: return "LBPRM";
case SIGNALS_LOCK: return "SIGNALS";
case STK_TABLE_LOCK: return "STK_TABLE";
case STK_SESS_LOCK: return "STK_SESS";
case APPLETS_LOCK: return "APPLETS";
case PEER_LOCK: return "PEER";
case STRMS_LOCK: return "STRMS";
case SSL_LOCK: return "SSL";
case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS";
case PATREF_LOCK: return "PATREF";
case PATEXP_LOCK: return "PATEXP";
case VARS_LOCK: return "VARS";
case COMP_POOL_LOCK: return "COMP_POOL";
case LUA_LOCK: return "LUA";
case NOTIF_LOCK: return "NOTIF";
case SPOE_APPLET_LOCK: return "SPOE_APPLET";
case DNS_LOCK: return "DNS";
case PID_LIST_LOCK: return "PID_LIST";
case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS";
case PIPES_LOCK: return "PIPES";
case TLSKEYS_REF_LOCK: return "TLSKEYS_REF";
case AUTH_LOCK: return "AUTH";
case LOGSRV_LOCK: return "LOGSRV";
case DICT_LOCK: return "DICT";
case PROTO_LOCK: return "PROTO";
case CKCH_LOCK: return "CKCH";
case SNI_LOCK: return "SNI";
case OTHER_LOCK: return "OTHER";
case LOCK_LABELS: break; /* keep compiler happy */
};
/* only way to come here is consecutive to an internal bug */
abort();
}
static inline void show_lock_stats()
{
int lbl;
for (lbl = 0; lbl < LOCK_LABELS; lbl++) {
fprintf(stderr,
"Stats about Lock %s: \n"
"\t # write lock : %lu\n"
"\t # write unlock: %lu (%ld)\n"
"\t # wait time for write : %.3f msec\n"
"\t # wait time for write/lock: %.3f nsec\n"
"\t # read lock : %lu\n"
"\t # read unlock : %lu (%ld)\n"
"\t # wait time for read : %.3f msec\n"
"\t # wait time for read/lock : %.3f nsec\n",
lock_label(lbl),
lock_stats[lbl].num_write_locked,
lock_stats[lbl].num_write_unlocked,
lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked,
(double)lock_stats[lbl].nsec_wait_for_write / 1000000.0,
lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0,
lock_stats[lbl].num_read_locked,
lock_stats[lbl].num_read_unlocked,
lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked,
(double)lock_stats[lbl].nsec_wait_for_read / 1000000.0,
lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0);
}
}
/* Following functions are used to collect some stats about locks. We wrap
* pthread functions to known how much time we wait in a lock. */
static uint64_t nsec_now(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ((uint64_t) ts.tv_sec * 1000000000ULL +
(uint64_t) ts.tv_nsec);
}
static inline void __ha_rwlock_init(struct ha_rwlock *l)
{
memset(l, 0, sizeof(struct ha_rwlock));
__RWLOCK_INIT(&l->lock);
}
static inline void __ha_rwlock_destroy(struct ha_rwlock *l)
{
__RWLOCK_DESTROY(&l->lock);
memset(l, 0, sizeof(struct ha_rwlock));
}
static inline void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l,
const char *func, const char *file, int line)
{
uint64_t start_time;
if (unlikely(l->info.cur_writer & tid_bit)) {
/* the thread is already owning the lock for write */
abort();
}
if (unlikely(l->info.cur_readers & tid_bit)) {
/* the thread is already owning the lock for read */
abort();
}
HA_ATOMIC_OR(&l->info.wait_writers, tid_bit);
start_time = nsec_now();
__RWLOCK_WRLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time));
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1);
l->info.cur_writer = tid_bit;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit);
}
static inline int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l,
const char *func, const char *file, int line)
{
uint64_t start_time;
int r;
if (unlikely(l->info.cur_writer & tid_bit)) {
/* the thread is already owning the lock for write */
abort();
}
if (unlikely(l->info.cur_readers & tid_bit)) {
/* the thread is already owning the lock for read */
abort();
}
/* We set waiting writer because trywrlock could wait for readers to quit */
HA_ATOMIC_OR(&l->info.wait_writers, tid_bit);
start_time = nsec_now();
r = __RWLOCK_TRYWRLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time));
if (unlikely(r)) {
HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit);
return r;
}
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1);
l->info.cur_writer = tid_bit;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit);
return 0;
}
static inline void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l,
const char *func, const char *file, int line)
{
if (unlikely(!(l->info.cur_writer & tid_bit))) {
/* the thread is not owning the lock for write */
abort();
}
l->info.cur_writer = 0;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
__RWLOCK_WRUNLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_unlocked, 1);
}
static inline void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l)
{
uint64_t start_time;
if (unlikely(l->info.cur_writer & tid_bit)) {
/* the thread is already owning the lock for write */
abort();
}
if (unlikely(l->info.cur_readers & tid_bit)) {
/* the thread is already owning the lock for read */
abort();
}
HA_ATOMIC_OR(&l->info.wait_readers, tid_bit);
start_time = nsec_now();
__RWLOCK_RDLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (nsec_now() - start_time));
HA_ATOMIC_ADD(&lock_stats[lbl].num_read_locked, 1);
HA_ATOMIC_OR(&l->info.cur_readers, tid_bit);
HA_ATOMIC_AND(&l->info.wait_readers, ~tid_bit);
}
static inline int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l)
{
int r;
if (unlikely(l->info.cur_writer & tid_bit)) {
/* the thread is already owning the lock for write */
abort();
}
if (unlikely(l->info.cur_readers & tid_bit)) {
/* the thread is already owning the lock for read */
abort();
}
/* try read should never wait */
r = __RWLOCK_TRYRDLOCK(&l->lock);
if (unlikely(r))
return r;
HA_ATOMIC_ADD(&lock_stats[lbl].num_read_locked, 1);
HA_ATOMIC_OR(&l->info.cur_readers, tid_bit);
return 0;
}
static inline void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l)
{
if (unlikely(!(l->info.cur_readers & tid_bit))) {
/* the thread is not owning the lock for read */
abort();
}
HA_ATOMIC_AND(&l->info.cur_readers, ~tid_bit);
__RWLOCK_RDUNLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].num_read_unlocked, 1);
}
static inline void __spin_init(struct ha_spinlock *l)
{
memset(l, 0, sizeof(struct ha_spinlock));
__SPIN_INIT(&l->lock);
}
static inline void __spin_destroy(struct ha_spinlock *l)
{
__SPIN_DESTROY(&l->lock);
memset(l, 0, sizeof(struct ha_spinlock));
}
static inline void __spin_lock(enum lock_label lbl, struct ha_spinlock *l,
const char *func, const char *file, int line)
{
uint64_t start_time;
if (unlikely(l->info.owner & tid_bit)) {
/* the thread is already owning the lock */
abort();
}
HA_ATOMIC_OR(&l->info.waiters, tid_bit);
start_time = nsec_now();
__SPIN_LOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (nsec_now() - start_time));
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1);
l->info.owner = tid_bit;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
HA_ATOMIC_AND(&l->info.waiters, ~tid_bit);
}
static inline int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l,
const char *func, const char *file, int line)
{
int r;
if (unlikely(l->info.owner & tid_bit)) {
/* the thread is already owning the lock */
abort();
}
/* try read should never wait */
r = __SPIN_TRYLOCK(&l->lock);
if (unlikely(r))
return r;
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_locked, 1);
l->info.owner = tid_bit;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
return 0;
}
static inline void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l,
const char *func, const char *file, int line)
{
if (unlikely(!(l->info.owner & tid_bit))) {
/* the thread is not owning the lock */
abort();
}
l->info.owner = 0;
l->info.last_location.function = func;
l->info.last_location.file = file;
l->info.last_location.line = line;
__SPIN_UNLOCK(&l->lock);
HA_ATOMIC_ADD(&lock_stats[lbl].num_write_unlocked, 1);
}
#else /* DEBUG_THREAD */
#define HA_SPINLOCK_T unsigned long
#define HA_SPIN_INIT(l) ({ (*l) = 0; })
#define HA_SPIN_DESTROY(l) ({ (*l) = 0; })
#define HA_SPIN_LOCK(lbl, l) pl_take_s(l)
#define HA_SPIN_TRYLOCK(lbl, l) !pl_try_s(l)
#define HA_SPIN_UNLOCK(lbl, l) pl_drop_s(l)
#define HA_RWLOCK_T unsigned long
#define HA_RWLOCK_INIT(l) ({ (*l) = 0; })
#define HA_RWLOCK_DESTROY(l) ({ (*l) = 0; })
#define HA_RWLOCK_WRLOCK(lbl,l) pl_take_w(l)
#define HA_RWLOCK_TRYWRLOCK(lbl,l) !pl_try_w(l)
#define HA_RWLOCK_WRUNLOCK(lbl,l) pl_drop_w(l)
#define HA_RWLOCK_RDLOCK(lbl,l) pl_take_r(l)
#define HA_RWLOCK_TRYRDLOCK(lbl,l) !pl_try_r(l)
#define HA_RWLOCK_RDUNLOCK(lbl,l) pl_drop_r(l)
#endif /* DEBUG_THREAD */
#ifdef __x86_64__
static __inline int
__ha_cas_dw(void *target, void *compare, const void *set)
{
char ret;
__asm __volatile("lock cmpxchg16b %0; setz %3"
: "+m" (*(void **)target),
"=a" (((void **)compare)[0]),
"=d" (((void **)compare)[1]),
"=q" (ret)
: "a" (((void **)compare)[0]),
"d" (((void **)compare)[1]),
"b" (((const void **)set)[0]),
"c" (((const void **)set)[1])
: "memory", "cc");
return (ret);
}
/* Use __ha_barrier_atomic* when you're trying to protect data that are
* are modified using HA_ATOMIC* (except HA_ATOMIC_STORE)
*/
static __inline void
__ha_barrier_atomic_load(void)
{
__asm __volatile("" ::: "memory");
}
static __inline void
__ha_barrier_atomic_store(void)
{
__asm __volatile("" ::: "memory");
}
static __inline void
__ha_barrier_atomic_full(void)
{
__asm __volatile("" ::: "memory");
}
static __inline void
__ha_barrier_load(void)
{
__asm __volatile("lfence" ::: "memory");
}
static __inline void
__ha_barrier_store(void)
{
__asm __volatile("sfence" ::: "memory");
}
static __inline void
__ha_barrier_full(void)
{
__asm __volatile("mfence" ::: "memory");
}
#elif defined(__arm__) && (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__))
/* Use __ha_barrier_atomic* when you're trying to protect data that are
* are modified using HA_ATOMIC* (except HA_ATOMIC_STORE)
*/
static __inline void
__ha_barrier_atomic_load(void)
{
__asm __volatile("dmb" ::: "memory");
}
static __inline void
__ha_barrier_atomic_store(void)
{
__asm __volatile("dsb" ::: "memory");
}
static __inline void
__ha_barrier_atomic_full(void)
{
__asm __volatile("dmb" ::: "memory");
}
static __inline void
__ha_barrier_load(void)
{
__asm __volatile("dmb" ::: "memory");
}
static __inline void
__ha_barrier_store(void)
{
__asm __volatile("dsb" ::: "memory");
}
static __inline void
__ha_barrier_full(void)
{
__asm __volatile("dmb" ::: "memory");
}
static __inline int __ha_cas_dw(void *target, void *compare, const void *set)
{
uint64_t previous;
int tmp;
__asm __volatile("1:"
"ldrexd %0, [%4];"
"cmp %Q0, %Q2;"
"ittt eq;"
"cmpeq %R0, %R2;"
"strexdeq %1, %3, [%4];"
"cmpeq %1, #1;"
"beq 1b;"
: "=&r" (previous), "=&r" (tmp)
: "r" (*(uint64_t *)compare), "r" (*(uint64_t *)set), "r" (target)
: "memory", "cc");
tmp = (previous == *(uint64_t *)compare);
*(uint64_t *)compare = previous;
return (tmp);
}
#elif defined (__aarch64__)
/* Use __ha_barrier_atomic* when you're trying to protect data that are
* are modified using HA_ATOMIC* (except HA_ATOMIC_STORE)
*/
static __inline void
__ha_barrier_atomic_load(void)
{
__asm __volatile("dmb ishld" ::: "memory");
}
static __inline void
__ha_barrier_atomic_store(void)
{
__asm __volatile("dmb ishst" ::: "memory");
}
static __inline void
__ha_barrier_atomic_full(void)
{
__asm __volatile("dmb ish" ::: "memory");
}
static __inline void
__ha_barrier_load(void)
{
__asm __volatile("dmb ishld" ::: "memory");
}
static __inline void
__ha_barrier_store(void)
{
__asm __volatile("dmb ishst" ::: "memory");
}
static __inline void
__ha_barrier_full(void)
{
__asm __volatile("dmb ish" ::: "memory");
}
static __inline int __ha_cas_dw(void *target, void *compare, void *set)
{
void *value[2];
uint64_t tmp1, tmp2;
__asm__ __volatile__("1:"
"ldxp %0, %1, [%4];"
"mov %2, %0;"
"mov %3, %1;"
"eor %0, %0, %5;"
"eor %1, %1, %6;"
"orr %1, %0, %1;"
"mov %w0, #0;"
"cbnz %1, 2f;"
"stxp %w0, %7, %8, [%4];"
"cbnz %w0, 1b;"
"mov %w0, #1;"
"2:"
: "=&r" (tmp1), "=&r" (tmp2), "=&r" (value[0]), "=&r" (value[1])
: "r" (target), "r" (((void **)(compare))[0]), "r" (((void **)(compare))[1]), "r" (((void **)(set))[0]), "r" (((void **)(set))[1])
: "cc", "memory");
memcpy(compare, &value, sizeof(value));
return (tmp1);
}
#else
#define __ha_barrier_atomic_load __sync_synchronize
#define __ha_barrier_atomic_store __sync_synchronize
#define __ha_barrier_atomic_full __sync_synchronize
#define __ha_barrier_load __sync_synchronize
#define __ha_barrier_store __sync_synchronize
#define __ha_barrier_full __sync_synchronize
#endif
void ha_spin_init(HA_SPINLOCK_T *l);
void ha_rwlock_init(HA_RWLOCK_T *l);
#endif /* USE_THREAD */
extern int thread_cpus_enabled_at_boot;
static inline void __ha_compiler_barrier(void)
{
__asm __volatile("" ::: "memory");
}
int parse_nbthread(const char *arg, char **err);
int thread_get_default_count();
#ifndef _HA_ATOMIC_CAS
#define _HA_ATOMIC_CAS HA_ATOMIC_CAS
#endif /* !_HA_ATOMIC_CAS */
#ifndef _HA_ATOMIC_DWCAS
#define _HA_ATOMIC_DWCAS HA_ATOMIC_DWCAS
#endif /* !_HA_ATOMIC_CAS */
#ifndef _HA_ATOMIC_ADD
#define _HA_ATOMIC_ADD HA_ATOMIC_ADD
#endif /* !_HA_ATOMIC_ADD */
#ifndef _HA_ATOMIC_XADD
#define _HA_ATOMIC_XADD HA_ATOMIC_XADD
#endif /* !_HA_ATOMIC_SUB */
#ifndef _HA_ATOMIC_SUB
#define _HA_ATOMIC_SUB HA_ATOMIC_SUB
#endif /* !_HA_ATOMIC_SUB */
#ifndef _HA_ATOMIC_AND
#define _HA_ATOMIC_AND HA_ATOMIC_AND
#endif /* !_HA_ATOMIC_AND */
#ifndef _HA_ATOMIC_OR
#define _HA_ATOMIC_OR HA_ATOMIC_OR
#endif /* !_HA_ATOMIC_OR */
#ifndef _HA_ATOMIC_XCHG
#define _HA_ATOMIC_XCHG HA_ATOMIC_XCHG
#endif /* !_HA_ATOMIC_XCHG */
#ifndef _HA_ATOMIC_STORE
#define _HA_ATOMIC_STORE HA_ATOMIC_STORE
#endif /* !_HA_ATOMIC_STORE */
#ifndef _HA_ATOMIC_LOAD
#define _HA_ATOMIC_LOAD HA_ATOMIC_LOAD
#endif /* !_HA_ATOMIC_LOAD */
#endif /* _COMMON_HATHREADS_H */