mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-03-09 21:07:43 +00:00
There's no more reason for keepin the code and definitions in conn_stream, let's move all that to stconn. The alphabetical ordering of include files was adjusted.
1109 lines
33 KiB
C
1109 lines
33 KiB
C
/*
|
|
* Memory management functions.
|
|
*
|
|
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <sys/mman.h>
|
|
#include <errno.h>
|
|
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet-t.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/list.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/sc_strm.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stconn.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
/* These ones are initialized per-thread on startup by init_pools() */
|
|
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
|
|
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
|
|
|
|
static struct list pools __read_mostly = LIST_HEAD_INIT(pools);
|
|
int mem_poison_byte __read_mostly = 'P';
|
|
uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */
|
|
#ifdef DEBUG_FAIL_ALLOC
|
|
POOL_DBG_FAIL_ALLOC |
|
|
#endif
|
|
#ifdef DEBUG_DONT_SHARE_POOLS
|
|
POOL_DBG_DONT_MERGE |
|
|
#endif
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
POOL_DBG_COLD_FIRST |
|
|
#endif
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
POOL_DBG_INTEGRITY |
|
|
#endif
|
|
#ifdef CONFIG_HAP_NO_GLOBAL_POOLS
|
|
POOL_DBG_NO_GLOBAL |
|
|
#endif
|
|
#ifndef CONFIG_HAP_POOLS
|
|
POOL_DBG_NO_CACHE |
|
|
#endif
|
|
#if defined(DEBUG_POOL_TRACING)
|
|
POOL_DBG_CALLER |
|
|
#endif
|
|
#if defined(DEBUG_MEMORY_POOLS)
|
|
POOL_DBG_TAG |
|
|
#endif
|
|
0;
|
|
|
|
static const struct {
|
|
uint flg;
|
|
const char *set;
|
|
const char *clr;
|
|
const char *hlp;
|
|
} dbg_options[] = {
|
|
/* flg, set, clr, hlp */
|
|
{ POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" },
|
|
{ POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" },
|
|
{ POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" },
|
|
{ POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" },
|
|
{ POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" },
|
|
{ POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" },
|
|
{ POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" },
|
|
{ POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" },
|
|
{ POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" },
|
|
{ 0 /* end */ }
|
|
};
|
|
|
|
static int mem_fail_rate __read_mostly = 0;
|
|
static int using_default_allocator __read_mostly = 1;
|
|
static int disable_trim __read_mostly = 0;
|
|
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
|
|
|
|
/* ask the allocator to trim memory pools.
|
|
* This must run under thread isolation so that competing threads trying to
|
|
* allocate or release memory do not prevent the allocator from completing
|
|
* its job. We just have to be careful as callers might already be isolated
|
|
* themselves.
|
|
*/
|
|
static void trim_all_pools(void)
|
|
{
|
|
int isolated = thread_isolated();
|
|
|
|
if (disable_trim)
|
|
return;
|
|
|
|
if (!isolated)
|
|
thread_isolate();
|
|
|
|
if (my_mallctl) {
|
|
unsigned int i, narenas = 0;
|
|
size_t len = sizeof(narenas);
|
|
|
|
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
|
|
for (i = 0; i < narenas; i ++) {
|
|
char mib[32] = {0};
|
|
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
|
|
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
|
|
}
|
|
}
|
|
} else {
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
if (using_default_allocator)
|
|
malloc_trim(0);
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
if (using_default_allocator) {
|
|
vm_address_t *zones;
|
|
unsigned int i, nzones;
|
|
|
|
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
|
|
for (i = 0; i < nzones; i ++) {
|
|
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
|
|
|
|
/* we cannot purge anonymous zones */
|
|
if (zone->zone_name)
|
|
malloc_zone_pressure_relief(zone, 0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (!isolated)
|
|
thread_release();
|
|
}
|
|
|
|
/* check if we're using the same allocator as the one that provides
|
|
* malloc_trim() and mallinfo(). The principle is that on glibc, both
|
|
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
|
|
* can check if malloc() is performed through glibc or any other one
|
|
* the executable was linked against (e.g. jemalloc). Prior to this we
|
|
* have to check whether we're running on jemalloc by verifying if the
|
|
* mallctl() function is provided. Its pointer will be used later.
|
|
*/
|
|
static void detect_allocator(void)
|
|
{
|
|
#if defined(__ELF__)
|
|
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
|
|
|
|
my_mallctl = mallctl;
|
|
#endif
|
|
|
|
if (!my_mallctl) {
|
|
my_mallctl = get_sym_curr_addr("mallctl");
|
|
using_default_allocator = (my_mallctl == NULL);
|
|
}
|
|
|
|
if (!my_mallctl) {
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
struct mallinfo2 mi1, mi2;
|
|
#else
|
|
struct mallinfo mi1, mi2;
|
|
#endif
|
|
void *ptr;
|
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi1 = mallinfo2();
|
|
#else
|
|
mi1 = mallinfo();
|
|
#endif
|
|
ptr = DISGUISE(malloc(1));
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi2 = mallinfo2();
|
|
#else
|
|
mi2 = mallinfo();
|
|
#endif
|
|
free(DISGUISE(ptr));
|
|
|
|
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
using_default_allocator = (malloc_default_zone() != NULL);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static int is_trim_enabled(void)
|
|
{
|
|
return using_default_allocator;
|
|
}
|
|
|
|
static int mem_should_fail(const struct pool_head *pool)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
|
|
if (mem_fail_rate > statistical_prng_range(100))
|
|
ret = 1;
|
|
else
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Try to find an existing shared pool with the same characteristics and
|
|
* returns it, otherwise creates this one. NULL is returned if no memory
|
|
* is available for a new creation. Two flags are supported :
|
|
* - MEM_F_SHARED to indicate that the pool may be shared with other users
|
|
* - MEM_F_EXACT to indicate that the size must not be rounded up
|
|
*/
|
|
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
|
|
{
|
|
unsigned int extra_mark, extra_caller, extra;
|
|
struct pool_head *pool;
|
|
struct pool_head *entry;
|
|
struct list *start;
|
|
unsigned int align;
|
|
int thr __maybe_unused;
|
|
|
|
/* We need to store a (void *) at the end of the chunks. Since we know
|
|
* that the malloc() function will never return such a small size,
|
|
* let's round the size up to something slightly bigger, in order to
|
|
* ease merging of entries. Note that the rounding is a power of two.
|
|
* This extra (void *) is not accounted for in the size computation
|
|
* so that the visible parts outside are not affected.
|
|
*
|
|
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
|
|
*/
|
|
|
|
extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
|
|
extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
|
|
extra = extra_mark + extra_caller;
|
|
|
|
if (!(flags & MEM_F_EXACT)) {
|
|
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
|
|
size = ((size + extra + align - 1) & -align) - extra;
|
|
}
|
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
/* we'll store two lists there, we need the room for this. This is
|
|
* guaranteed by the test above, except if MEM_F_EXACT is set, or if
|
|
* the only EXTRA part is in fact the one that's stored in the cache
|
|
* in addition to the pci struct.
|
|
*/
|
|
if (size + extra - extra_caller < sizeof(struct pool_cache_item))
|
|
size = sizeof(struct pool_cache_item) + extra_caller - extra;
|
|
}
|
|
|
|
/* TODO: thread: we do not lock pool list for now because all pools are
|
|
* created during HAProxy startup (so before threads creation) */
|
|
start = &pools;
|
|
pool = NULL;
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
if (entry->size == size) {
|
|
/* either we can share this place and we take it, or
|
|
* we look for a shareable one or for the next position
|
|
* before which we will insert a new one.
|
|
*/
|
|
if ((flags & entry->flags & MEM_F_SHARED) &&
|
|
(!(pool_debugging & POOL_DBG_DONT_MERGE) ||
|
|
strcmp(name, entry->name) == 0)) {
|
|
/* we can share this one */
|
|
pool = entry;
|
|
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
|
|
break;
|
|
}
|
|
}
|
|
else if (entry->size > size) {
|
|
/* insert before this one */
|
|
start = &entry->list;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pool) {
|
|
void *pool_addr;
|
|
|
|
pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
|
|
if (!pool_addr)
|
|
return NULL;
|
|
|
|
/* always provide an aligned pool */
|
|
pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
|
|
pool->base_addr = pool_addr; // keep it, it's the address to free later
|
|
|
|
if (name)
|
|
strlcpy2(pool->name, name, sizeof(pool->name));
|
|
pool->alloc_sz = size + extra;
|
|
pool->size = size;
|
|
pool->flags = flags;
|
|
LIST_APPEND(start, &pool->list);
|
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
/* update per-thread pool cache if necessary */
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&pool->cache[thr].list);
|
|
pool->cache[thr].tid = thr;
|
|
pool->cache[thr].pool = pool;
|
|
}
|
|
}
|
|
}
|
|
pool->users++;
|
|
return pool;
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's allocated counter is checked and updated,
|
|
* but no other checks are performed.
|
|
*/
|
|
void *pool_get_from_os(struct pool_head *pool)
|
|
{
|
|
if (!pool->limit || pool->allocated < pool->limit) {
|
|
void *ptr = pool_alloc_area(pool->alloc_sz);
|
|
if (ptr) {
|
|
_HA_ATOMIC_INC(&pool->allocated);
|
|
return ptr;
|
|
}
|
|
_HA_ATOMIC_INC(&pool->failed);
|
|
}
|
|
activity[tid].pool_fail++;
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* Releases a pool item back to the operating system and atomically updates
|
|
* the allocation counter.
|
|
*/
|
|
void pool_put_to_os(struct pool_head *pool, void *ptr)
|
|
{
|
|
#ifdef DEBUG_UAF
|
|
/* This object will be released for real in order to detect a use after
|
|
* free. We also force a write to the area to ensure we crash on double
|
|
* free or free of a const area.
|
|
*/
|
|
*(uint32_t *)ptr = 0xDEADADD4;
|
|
#endif /* DEBUG_UAF */
|
|
|
|
pool_free_area(ptr, pool->alloc_sz);
|
|
_HA_ATOMIC_DEC(&pool->allocated);
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's counters are updated but the object is
|
|
* never cached, so this is usable with and without local or shared caches.
|
|
*/
|
|
void *pool_alloc_nocache(struct pool_head *pool)
|
|
{
|
|
void *ptr = NULL;
|
|
|
|
ptr = pool_get_from_os(pool);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
|
|
_HA_ATOMIC_INC(&pool->used);
|
|
|
|
/* keep track of where the element was allocated from */
|
|
POOL_DEBUG_SET_MARK(pool, ptr);
|
|
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL);
|
|
return ptr;
|
|
}
|
|
|
|
/* Release a pool item back to the OS and keeps the pool's counters up to date.
|
|
* This is always defined even when pools are not enabled (their usage stats
|
|
* are maintained).
|
|
*/
|
|
void pool_free_nocache(struct pool_head *pool, void *ptr)
|
|
{
|
|
_HA_ATOMIC_DEC(&pool->used);
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
pool_put_to_os(pool, ptr);
|
|
}
|
|
|
|
|
|
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
|
|
* up to <size> bytes. The item part is left untouched.
|
|
*/
|
|
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
{
|
|
ulong *ptr = (ulong *)item;
|
|
uint ofs;
|
|
ulong u;
|
|
|
|
if (size <= sizeof(*item))
|
|
return;
|
|
|
|
/* Upgrade the fill_pattern to change about half of the bits
|
|
* (to be sure to catch static flag corruption), and apply it.
|
|
*/
|
|
u = pch->fill_pattern += ~0UL / 3; // 0x55...55
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
while (ofs < size / sizeof(*ptr))
|
|
ptr[ofs++] = u;
|
|
}
|
|
|
|
/* check for a pool_cache_item integrity after extracting it from the cache. It
|
|
* must have been previously initialized using pool_fill_pattern(). If any
|
|
* corruption is detected, the function provokes an immediate crash.
|
|
*/
|
|
void pool_check_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
{
|
|
const ulong *ptr = (const ulong *)item;
|
|
uint ofs;
|
|
ulong u;
|
|
|
|
if (size <= sizeof(*item))
|
|
return;
|
|
|
|
/* let's check that all words past *item are equal */
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
u = ptr[ofs++];
|
|
while (ofs < size / sizeof(*ptr)) {
|
|
if (unlikely(ptr[ofs] != u))
|
|
ABORT_NOW();
|
|
ofs++;
|
|
}
|
|
}
|
|
|
|
/* removes up to <count> items from the end of the local pool cache <ph> for
|
|
* pool <pool>. The shared pool is refilled with these objects in the limit
|
|
* of the number of acceptable objects, and the rest will be released to the
|
|
* OS. It is not a problem is <count> is larger than the number of objects in
|
|
* the local cache. The counters are automatically updated. Must not be used
|
|
* with pools disabled.
|
|
*/
|
|
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_item *pi, *head = NULL;
|
|
uint released = 0;
|
|
uint cluster = 0;
|
|
uint to_free_max;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
/* Note: this will be zero when global pools are disabled */
|
|
to_free_max = pool_releasable(pool);
|
|
|
|
while (released < count && !LIST_ISEMPTY(&ph->list)) {
|
|
item = LIST_PREV(&ph->list, typeof(item), by_pool);
|
|
BUG_ON(&item->by_pool == &ph->list);
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_check_pattern(ph, item, pool->size);
|
|
LIST_DELETE(&item->by_pool);
|
|
LIST_DELETE(&item->by_lru);
|
|
|
|
if (to_free_max > released || cluster) {
|
|
/* will never match when global pools are disabled */
|
|
pi = (struct pool_item *)item;
|
|
pi->next = NULL;
|
|
pi->down = head;
|
|
head = pi;
|
|
cluster++;
|
|
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
|
|
/* enough to make a cluster */
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
cluster = 0;
|
|
head = NULL;
|
|
}
|
|
} else
|
|
pool_free_nocache(pool, item);
|
|
|
|
released++;
|
|
}
|
|
|
|
/* incomplete cluster left */
|
|
if (cluster)
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
|
|
ph->count -= released;
|
|
pool_cache_count -= released;
|
|
pool_cache_bytes -= released * pool->size;
|
|
}
|
|
|
|
/* Evicts some of the oldest objects from one local cache, until its number of
|
|
* objects is no more than 16+1/8 of the total number of locally cached objects
|
|
* or the total size of the local cache is no more than 75% of its maximum (i.e.
|
|
* we don't want a single cache to use all the cache for itself). For this, the
|
|
* list is scanned in reverse. If <full> is non-null, all objects are evicted.
|
|
* Must not be used when pools are disabled.
|
|
*/
|
|
void pool_evict_from_local_cache(struct pool_head *pool, int full)
|
|
{
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
while ((ph->count && full) ||
|
|
(ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
|
|
ph->count >= 16 + pool_cache_count / 8 &&
|
|
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
|
}
|
|
}
|
|
|
|
/* Evicts some of the oldest objects from the local cache, pushing them to the
|
|
* global pool. Must not be used when pools are disabled.
|
|
*/
|
|
void pool_evict_from_local_caches()
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_cache_head *ph;
|
|
struct pool_head *pool;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
do {
|
|
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
|
|
BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
|
|
/* note: by definition we remove oldest objects so they also are the
|
|
* oldest in their own pools, thus their next is the pool's head.
|
|
*/
|
|
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
|
|
BUG_ON(ph->tid != tid);
|
|
|
|
pool = container_of(ph - tid, struct pool_head, cache);
|
|
BUG_ON(pool != ph->pool);
|
|
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
|
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
|
|
}
|
|
|
|
/* Frees an object to the local cache, possibly pushing oldest objects to the
|
|
* shared cache, which itself may decide to release some of them to the OS.
|
|
* While it is unspecified what the object becomes past this point, it is
|
|
* guaranteed to be released from the users' perpective. A caller address may
|
|
* be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
|
|
* be used with pools disabled.
|
|
*/
|
|
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
|
|
{
|
|
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
LIST_INSERT(&ph->list, &item->by_pool);
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
|
|
ph->count++;
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_fill_pattern(ph, item, pool->size);
|
|
pool_cache_count++;
|
|
pool_cache_bytes += pool->size;
|
|
|
|
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
|
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
|
|
pool_evict_from_local_cache(pool, 0);
|
|
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
|
|
pool_evict_from_local_caches();
|
|
}
|
|
}
|
|
|
|
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
|
|
* This is only used when pools are in use and shared pools are enabled. No
|
|
* malloc() is attempted, and poisonning is never performed. The purpose is to
|
|
* get the fastest possible refilling so that the caller can easily check if
|
|
* the cache has enough objects for its use. Must not be used when pools are
|
|
* disabled.
|
|
*/
|
|
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_item *ret, *down;
|
|
uint count;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
/* we'll need to reference the first element to figure the next one. We
|
|
* must temporarily lock it so that nobody allocates then releases it,
|
|
* or the dereference could fail.
|
|
*/
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
do {
|
|
while (unlikely(ret == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
if (ret == NULL)
|
|
return;
|
|
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
|
|
if (unlikely(ret == NULL)) {
|
|
HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
return;
|
|
}
|
|
|
|
/* this releases the lock */
|
|
HA_ATOMIC_STORE(&pool->free_list, ret->next);
|
|
|
|
/* now store the retrieved object(s) into the local cache */
|
|
count = 0;
|
|
for (; ret; ret = down) {
|
|
down = ret->down;
|
|
item = (struct pool_cache_item *)ret;
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
|
|
LIST_INSERT(&pch->list, &item->by_pool);
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
count++;
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_fill_pattern(pch, item, pool->size);
|
|
}
|
|
HA_ATOMIC_ADD(&pool->used, count);
|
|
pch->count += count;
|
|
pool_cache_count += count;
|
|
pool_cache_bytes += count * pool->size;
|
|
}
|
|
|
|
/* Adds pool item cluster <item> to the shared cache, which contains <count>
|
|
* elements. The caller is advised to first check using pool_releasable() if
|
|
* it's wise to add this series of objects there. Both the pool and the item's
|
|
* head must be valid.
|
|
*/
|
|
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count)
|
|
{
|
|
struct pool_item *free_list;
|
|
|
|
_HA_ATOMIC_SUB(&pool->used, count);
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
do {
|
|
while (unlikely(free_list == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
_HA_ATOMIC_STORE(&item->next, free_list);
|
|
__ha_barrier_atomic_store();
|
|
} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
|
|
__ha_barrier_atomic_store();
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
}
|
|
|
|
/*
|
|
* This function frees whatever can be freed in pool <pool>.
|
|
*/
|
|
void pool_flush(struct pool_head *pool)
|
|
{
|
|
struct pool_item *next, *temp, *down;
|
|
|
|
if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
|
|
return;
|
|
|
|
/* The loop below atomically detaches the head of the free list and
|
|
* replaces it with a NULL. Then the list can be released.
|
|
*/
|
|
next = pool->free_list;
|
|
do {
|
|
while (unlikely(next == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
next = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
if (next == NULL)
|
|
return;
|
|
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
_HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
__ha_barrier_atomic_store();
|
|
|
|
while (next) {
|
|
temp = next;
|
|
next = temp->next;
|
|
for (; temp; temp = down) {
|
|
down = temp->down;
|
|
pool_put_to_os(pool, temp);
|
|
}
|
|
}
|
|
/* here, we should have pool->allocated == pool->used */
|
|
}
|
|
|
|
/*
|
|
* This function frees whatever can be freed in all pools, but respecting
|
|
* the minimum thresholds imposed by owners. It makes sure to be alone to
|
|
* run by using thread_isolate(). <pool_ctx> is unused.
|
|
*/
|
|
void pool_gc(struct pool_head *pool_ctx)
|
|
{
|
|
struct pool_head *entry;
|
|
int isolated = thread_isolated();
|
|
|
|
if (!isolated)
|
|
thread_isolate();
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
struct pool_item *temp, *down;
|
|
|
|
while (entry->free_list &&
|
|
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
|
|
temp = entry->free_list;
|
|
entry->free_list = temp->next;
|
|
for (; temp; temp = down) {
|
|
down = temp->down;
|
|
pool_put_to_os(entry, temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
trim_all_pools();
|
|
|
|
if (!isolated)
|
|
thread_release();
|
|
}
|
|
|
|
/*
|
|
* Returns a pointer to type <type> taken from the pool <pool_type> or
|
|
* dynamically allocated. In the first case, <pool_type> is updated to point to
|
|
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
|
|
* Prefer using pool_alloc() which does the right thing without flags.
|
|
*/
|
|
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
|
|
{
|
|
void *p = NULL;
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
|
|
if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
|
|
return NULL;
|
|
|
|
if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
|
|
p = pool_get_from_cache(pool, caller);
|
|
|
|
if (unlikely(!p))
|
|
p = pool_alloc_nocache(pool);
|
|
|
|
if (likely(p)) {
|
|
if (unlikely(flags & POOL_F_MUST_ZERO))
|
|
memset(p, 0, pool->size);
|
|
else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
|
|
memset(p, mem_poison_byte, pool->size);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
|
|
* pool_free() is preferred.
|
|
*/
|
|
void __pool_free(struct pool_head *pool, void *ptr)
|
|
{
|
|
const void *caller = __builtin_return_address(0);
|
|
|
|
/* we'll get late corruption if we refill to the wrong pool or double-free */
|
|
POOL_DEBUG_CHECK_MARK(pool, ptr);
|
|
POOL_DEBUG_RESET_MARK(pool, ptr);
|
|
|
|
if (unlikely(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
pool_free_nocache(pool, ptr);
|
|
return;
|
|
}
|
|
|
|
pool_put_to_cache(pool, ptr, caller);
|
|
}
|
|
|
|
|
|
#ifdef DEBUG_UAF
|
|
|
|
/************* use-after-free allocator *************/
|
|
|
|
/* allocates an area of size <size> and returns it. The semantics are similar
|
|
* to those of malloc(). However the allocation is rounded up to 4kB so that a
|
|
* full page is allocated. This ensures the object can be freed alone so that
|
|
* future dereferences are easily detected. The returned object is always
|
|
* 16-bytes aligned to avoid issues with unaligned structure objects. In case
|
|
* some padding is added, the area's start address is copied at the end of the
|
|
* padding to help detect underflows.
|
|
*/
|
|
void *pool_alloc_area_uaf(size_t size)
|
|
{
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
void *ret;
|
|
|
|
ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
if (ret != MAP_FAILED) {
|
|
/* let's dereference the page before returning so that the real
|
|
* allocation in the system is performed without holding the lock.
|
|
*/
|
|
*(int *)ret = 0;
|
|
if (pad >= sizeof(void *))
|
|
*(void **)(ret + pad - sizeof(void *)) = ret + pad;
|
|
ret += pad;
|
|
} else {
|
|
ret = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* frees an area <area> of size <size> allocated by pool_alloc_area(). The
|
|
* semantics are identical to free() except that the size must absolutely match
|
|
* the one passed to pool_alloc_area(). In case some padding is added, the
|
|
* area's start address is compared to the one at the end of the padding, and
|
|
* a segfault is triggered if they don't match, indicating an underflow.
|
|
*/
|
|
void pool_free_area_uaf(void *area, size_t size)
|
|
{
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
|
|
if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area)
|
|
ABORT_NOW();
|
|
|
|
munmap(area - pad, (size + 4095) & -4096);
|
|
}
|
|
|
|
#endif /* DEBUG_UAF */
|
|
|
|
/*
|
|
* This function destroys a pool by freeing it completely, unless it's still
|
|
* in use. This should be called only under extreme circumstances. It always
|
|
* returns NULL if the resulting pool is empty, easing the clearing of the old
|
|
* pointer, otherwise it returns the pool.
|
|
* .
|
|
*/
|
|
void *pool_destroy(struct pool_head *pool)
|
|
{
|
|
if (pool) {
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE))
|
|
pool_evict_from_local_cache(pool, 1);
|
|
|
|
pool_flush(pool);
|
|
if (pool->used)
|
|
return pool;
|
|
pool->users--;
|
|
if (!pool->users) {
|
|
LIST_DELETE(&pool->list);
|
|
/* note that if used == 0, the cache is empty */
|
|
free(pool->base_addr);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This destroys all pools on exit. It is *not* thread safe. */
|
|
void pool_destroy_all()
|
|
{
|
|
struct pool_head *entry, *back;
|
|
|
|
list_for_each_entry_safe(entry, back, &pools, list) {
|
|
/* there's only one occurrence of each pool in the list,
|
|
* and we're existing instead of looping on the whole
|
|
* list just to decrement users, force it to 1 here.
|
|
*/
|
|
entry->users = 1;
|
|
pool_destroy(entry);
|
|
}
|
|
}
|
|
|
|
/* This function dumps memory usage information into the trash buffer. */
|
|
void dump_pools_to_trash()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long allocated, used;
|
|
int nbpools;
|
|
unsigned long cached_bytes = 0;
|
|
uint cached = 0;
|
|
|
|
allocated = used = nbpools = 0;
|
|
chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
|
|
list_for_each_entry(entry, &pools, list) {
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
int i;
|
|
for (cached = i = 0; i < global.nbthread; i++)
|
|
cached += entry->cache[i].count;
|
|
cached_bytes += cached * entry->size;
|
|
}
|
|
chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used"
|
|
" (~%u by thread caches)"
|
|
", needed_avg %u, %u failures, %u users, @%p%s\n",
|
|
entry->name, entry->size, entry->allocated,
|
|
entry->size * entry->allocated, entry->used,
|
|
cached,
|
|
swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed,
|
|
entry->users, entry,
|
|
(entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
|
|
|
|
allocated += entry->allocated * entry->size;
|
|
used += entry->used * entry->size;
|
|
nbpools++;
|
|
}
|
|
chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used"
|
|
" (~%lu by thread caches)"
|
|
".\n",
|
|
nbpools, allocated, used, cached_bytes
|
|
);
|
|
}
|
|
|
|
/* Dump statistics on pools usage. */
|
|
void dump_pools(void)
|
|
{
|
|
dump_pools_to_trash();
|
|
qfprintf(stderr, "%s", trash.area);
|
|
}
|
|
|
|
/* This function returns the total number of failed pool allocations */
|
|
int pool_total_failures()
|
|
{
|
|
struct pool_head *entry;
|
|
int failed = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
failed += entry->failed;
|
|
return failed;
|
|
}
|
|
|
|
/* This function returns the total amount of memory allocated in pools (in bytes) */
|
|
unsigned long pool_total_allocated()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long allocated = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
allocated += entry->allocated * entry->size;
|
|
return allocated;
|
|
}
|
|
|
|
/* This function returns the total amount of memory used in pools (in bytes) */
|
|
unsigned long pool_total_used()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long used = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
used += entry->used * entry->size;
|
|
return used;
|
|
}
|
|
|
|
/* This function parses a string made of a set of debugging features as
|
|
* specified after -dM on the command line, and will set pool_debugging
|
|
* accordingly. On success it returns a strictly positive value. It may zero
|
|
* with the first warning in <err>, -1 with a help message in <err>, or -2 with
|
|
* the first error in <err> return the first error in <err>. <err> is undefined
|
|
* on success, and will be non-null and locally allocated on help/error/warning.
|
|
* The caller must free it. Warnings are used to report features that were not
|
|
* enabled at build time, and errors are used to report unknown features.
|
|
*/
|
|
int pool_parse_debugging(const char *str, char **err)
|
|
{
|
|
struct ist args;
|
|
char *end;
|
|
uint new_dbg;
|
|
int v;
|
|
|
|
|
|
/* if it's empty or starts with a number, it's the mem poisonning byte */
|
|
v = strtol(str, &end, 0);
|
|
if (!*end || *end == ',') {
|
|
mem_poison_byte = *str ? v : 'P';
|
|
if (mem_poison_byte >= 0)
|
|
pool_debugging |= POOL_DBG_POISON;
|
|
else
|
|
pool_debugging &= ~POOL_DBG_POISON;
|
|
str = end;
|
|
}
|
|
|
|
new_dbg = pool_debugging;
|
|
|
|
for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
|
|
struct ist feat = iststop(args, ',');
|
|
|
|
if (!istlen(feat))
|
|
continue;
|
|
|
|
if (isteq(feat, ist("help"))) {
|
|
ha_free(err);
|
|
memprintf(err,
|
|
"-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
|
|
"value may be appended immediately after -dM to use another value (0 supported).\n"
|
|
"Then an optional list of comma-delimited keywords may be appended to set or\n"
|
|
"clear some debugging options ('*' marks the current setting):\n\n"
|
|
" set clear description\n"
|
|
" -----------------+-----------------+-----------------------------------------\n");
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
memprintf(err, "%s %c %-15s|%c %-15s| %s\n",
|
|
*err,
|
|
(pool_debugging & dbg_options[v].flg) ? '*' : ' ',
|
|
dbg_options[v].set,
|
|
(pool_debugging & dbg_options[v].flg) ? ' ' : '*',
|
|
dbg_options[v].clr,
|
|
dbg_options[v].hlp);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
if (isteq(feat, ist(dbg_options[v].set))) {
|
|
new_dbg |= dbg_options[v].flg;
|
|
break;
|
|
}
|
|
else if (isteq(feat, ist(dbg_options[v].clr))) {
|
|
new_dbg &= ~dbg_options[v].flg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dbg_options[v].flg) {
|
|
memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
pool_debugging = new_dbg;
|
|
return 1;
|
|
}
|
|
|
|
/* This function dumps memory usage information onto the stream connector's
|
|
* read buffer. It returns 0 as long as it does not complete, non-zero upon
|
|
* completion. No state is used.
|
|
*/
|
|
static int cli_io_handler_dump_pools(struct appctx *appctx)
|
|
{
|
|
dump_pools_to_trash();
|
|
if (applet_putchk(appctx, &trash) == -1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* callback used to create early pool <name> of size <size> and store the
|
|
* resulting pointer into <ptr>. If the allocation fails, it quits with after
|
|
* emitting an error message.
|
|
*/
|
|
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
|
|
{
|
|
*ptr = create_pool(name, size, MEM_F_SHARED);
|
|
if (!*ptr) {
|
|
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
|
|
name, size, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Initializes all per-thread arrays on startup */
|
|
static void init_pools()
|
|
{
|
|
int thr;
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
|
|
}
|
|
|
|
detect_allocator();
|
|
}
|
|
|
|
INITCALL0(STG_PREPARE, init_pools);
|
|
|
|
/* Report in build options if trim is supported */
|
|
static void pools_register_build_options(void)
|
|
{
|
|
if (is_trim_enabled()) {
|
|
char *ptr = NULL;
|
|
memprintf(&ptr, "Support for malloc_trim() is enabled.");
|
|
hap_register_build_opts(ptr, 1);
|
|
}
|
|
}
|
|
INITCALL0(STG_REGISTER, pools_register_build_options);
|
|
|
|
/* register cli keywords */
|
|
static struct cli_kw_list cli_kws = {{ },{
|
|
{ { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
|
|
/* config parser for global "tune.fail-alloc" */
|
|
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
mem_fail_rate = atoi(args[1]);
|
|
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
|
|
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* config parser for global "no-memory-trimming" */
|
|
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(0, args, err, NULL))
|
|
return -1;
|
|
disable_trim = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* register global config keywords */
|
|
static struct cfg_kw_list mem_cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
|
|
{ CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|