mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-03-07 11:58:55 +00:00
When 0c439d895
("BUILD: tools: make resolve_sym_name() return a const")
was written, the pointer argument ought to have been turned to const for
more flexibility. Let's do it now.
5295 lines
137 KiB
C
5295 lines
137 KiB
C
/*
|
|
* General purpose functions.
|
|
*
|
|
* Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
|
|
#define _GNU_SOURCE
|
|
#include <dlfcn.h>
|
|
#include <link.h>
|
|
#endif
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <netdb.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/un.h>
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
|
|
#include <sys/auxv.h>
|
|
#endif
|
|
|
|
#include <import/eb32sctree.h>
|
|
#include <import/eb32tree.h>
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/chunk.h>
|
|
#include <haproxy/dgram.h>
|
|
#include <haproxy/dns.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/hlua.h>
|
|
#include <haproxy/listener.h>
|
|
#include <haproxy/namespace.h>
|
|
#include <haproxy/protocol.h>
|
|
#include <haproxy/sock.h>
|
|
#include <haproxy/ssl_sock.h>
|
|
#include <haproxy/stream_interface.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
/* This macro returns false if the test __x is false. Many
|
|
* of the following parsing function must be abort the processing
|
|
* if it returns 0, so this macro is useful for writing light code.
|
|
*/
|
|
#define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0)
|
|
|
|
/* enough to store NB_ITOA_STR integers of :
|
|
* 2^64-1 = 18446744073709551615 or
|
|
* -2^63 = -9223372036854775808
|
|
*
|
|
* The HTML version needs room for adding the 25 characters
|
|
* '<span class="rls"></span>' around digits at positions 3N+1 in order
|
|
* to add spacing at up to 6 positions : 18 446 744 073 709 551 615
|
|
*/
|
|
THREAD_LOCAL char itoa_str[NB_ITOA_STR][171];
|
|
THREAD_LOCAL int itoa_idx = 0; /* index of next itoa_str to use */
|
|
|
|
/* sometimes we'll need to quote strings (eg: in stats), and we don't expect
|
|
* to quote strings larger than a max configuration line.
|
|
*/
|
|
THREAD_LOCAL char quoted_str[NB_QSTR][QSTR_SIZE + 1];
|
|
THREAD_LOCAL int quoted_idx = 0;
|
|
|
|
/*
|
|
* unsigned long long ASCII representation
|
|
*
|
|
* return the last char '\0' or NULL if no enough
|
|
* space in dst
|
|
*/
|
|
char *ulltoa(unsigned long long n, char *dst, size_t size)
|
|
{
|
|
int i = 0;
|
|
char *res;
|
|
|
|
switch(n) {
|
|
case 1ULL ... 9ULL:
|
|
i = 0;
|
|
break;
|
|
|
|
case 10ULL ... 99ULL:
|
|
i = 1;
|
|
break;
|
|
|
|
case 100ULL ... 999ULL:
|
|
i = 2;
|
|
break;
|
|
|
|
case 1000ULL ... 9999ULL:
|
|
i = 3;
|
|
break;
|
|
|
|
case 10000ULL ... 99999ULL:
|
|
i = 4;
|
|
break;
|
|
|
|
case 100000ULL ... 999999ULL:
|
|
i = 5;
|
|
break;
|
|
|
|
case 1000000ULL ... 9999999ULL:
|
|
i = 6;
|
|
break;
|
|
|
|
case 10000000ULL ... 99999999ULL:
|
|
i = 7;
|
|
break;
|
|
|
|
case 100000000ULL ... 999999999ULL:
|
|
i = 8;
|
|
break;
|
|
|
|
case 1000000000ULL ... 9999999999ULL:
|
|
i = 9;
|
|
break;
|
|
|
|
case 10000000000ULL ... 99999999999ULL:
|
|
i = 10;
|
|
break;
|
|
|
|
case 100000000000ULL ... 999999999999ULL:
|
|
i = 11;
|
|
break;
|
|
|
|
case 1000000000000ULL ... 9999999999999ULL:
|
|
i = 12;
|
|
break;
|
|
|
|
case 10000000000000ULL ... 99999999999999ULL:
|
|
i = 13;
|
|
break;
|
|
|
|
case 100000000000000ULL ... 999999999999999ULL:
|
|
i = 14;
|
|
break;
|
|
|
|
case 1000000000000000ULL ... 9999999999999999ULL:
|
|
i = 15;
|
|
break;
|
|
|
|
case 10000000000000000ULL ... 99999999999999999ULL:
|
|
i = 16;
|
|
break;
|
|
|
|
case 100000000000000000ULL ... 999999999999999999ULL:
|
|
i = 17;
|
|
break;
|
|
|
|
case 1000000000000000000ULL ... 9999999999999999999ULL:
|
|
i = 18;
|
|
break;
|
|
|
|
case 10000000000000000000ULL ... ULLONG_MAX:
|
|
i = 19;
|
|
break;
|
|
}
|
|
if (i + 2 > size) // (i + 1) + '\0'
|
|
return NULL; // too long
|
|
res = dst + i + 1;
|
|
*res = '\0';
|
|
for (; i >= 0; i--) {
|
|
dst[i] = n % 10ULL + '0';
|
|
n /= 10ULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* unsigned long ASCII representation
|
|
*
|
|
* return the last char '\0' or NULL if no enough
|
|
* space in dst
|
|
*/
|
|
char *ultoa_o(unsigned long n, char *dst, size_t size)
|
|
{
|
|
int i = 0;
|
|
char *res;
|
|
|
|
switch (n) {
|
|
case 0U ... 9UL:
|
|
i = 0;
|
|
break;
|
|
|
|
case 10U ... 99UL:
|
|
i = 1;
|
|
break;
|
|
|
|
case 100U ... 999UL:
|
|
i = 2;
|
|
break;
|
|
|
|
case 1000U ... 9999UL:
|
|
i = 3;
|
|
break;
|
|
|
|
case 10000U ... 99999UL:
|
|
i = 4;
|
|
break;
|
|
|
|
case 100000U ... 999999UL:
|
|
i = 5;
|
|
break;
|
|
|
|
case 1000000U ... 9999999UL:
|
|
i = 6;
|
|
break;
|
|
|
|
case 10000000U ... 99999999UL:
|
|
i = 7;
|
|
break;
|
|
|
|
case 100000000U ... 999999999UL:
|
|
i = 8;
|
|
break;
|
|
#if __WORDSIZE == 32
|
|
|
|
case 1000000000ULL ... ULONG_MAX:
|
|
i = 9;
|
|
break;
|
|
|
|
#elif __WORDSIZE == 64
|
|
|
|
case 1000000000ULL ... 9999999999UL:
|
|
i = 9;
|
|
break;
|
|
|
|
case 10000000000ULL ... 99999999999UL:
|
|
i = 10;
|
|
break;
|
|
|
|
case 100000000000ULL ... 999999999999UL:
|
|
i = 11;
|
|
break;
|
|
|
|
case 1000000000000ULL ... 9999999999999UL:
|
|
i = 12;
|
|
break;
|
|
|
|
case 10000000000000ULL ... 99999999999999UL:
|
|
i = 13;
|
|
break;
|
|
|
|
case 100000000000000ULL ... 999999999999999UL:
|
|
i = 14;
|
|
break;
|
|
|
|
case 1000000000000000ULL ... 9999999999999999UL:
|
|
i = 15;
|
|
break;
|
|
|
|
case 10000000000000000ULL ... 99999999999999999UL:
|
|
i = 16;
|
|
break;
|
|
|
|
case 100000000000000000ULL ... 999999999999999999UL:
|
|
i = 17;
|
|
break;
|
|
|
|
case 1000000000000000000ULL ... 9999999999999999999UL:
|
|
i = 18;
|
|
break;
|
|
|
|
case 10000000000000000000ULL ... ULONG_MAX:
|
|
i = 19;
|
|
break;
|
|
|
|
#endif
|
|
}
|
|
if (i + 2 > size) // (i + 1) + '\0'
|
|
return NULL; // too long
|
|
res = dst + i + 1;
|
|
*res = '\0';
|
|
for (; i >= 0; i--) {
|
|
dst[i] = n % 10U + '0';
|
|
n /= 10U;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* signed long ASCII representation
|
|
*
|
|
* return the last char '\0' or NULL if no enough
|
|
* space in dst
|
|
*/
|
|
char *ltoa_o(long int n, char *dst, size_t size)
|
|
{
|
|
char *pos = dst;
|
|
|
|
if (n < 0) {
|
|
if (size < 3)
|
|
return NULL; // min size is '-' + digit + '\0' but another test in ultoa
|
|
*pos = '-';
|
|
pos++;
|
|
dst = ultoa_o(-n, pos, size - 1);
|
|
} else {
|
|
dst = ultoa_o(n, dst, size);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/*
|
|
* signed long long ASCII representation
|
|
*
|
|
* return the last char '\0' or NULL if no enough
|
|
* space in dst
|
|
*/
|
|
char *lltoa(long long n, char *dst, size_t size)
|
|
{
|
|
char *pos = dst;
|
|
|
|
if (n < 0) {
|
|
if (size < 3)
|
|
return NULL; // min size is '-' + digit + '\0' but another test in ulltoa
|
|
*pos = '-';
|
|
pos++;
|
|
dst = ulltoa(-n, pos, size - 1);
|
|
} else {
|
|
dst = ulltoa(n, dst, size);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/*
|
|
* write a ascii representation of a unsigned into dst,
|
|
* return a pointer to the last character
|
|
* Pad the ascii representation with '0', using size.
|
|
*/
|
|
char *utoa_pad(unsigned int n, char *dst, size_t size)
|
|
{
|
|
int i = 0;
|
|
char *ret;
|
|
|
|
switch(n) {
|
|
case 0U ... 9U:
|
|
i = 0;
|
|
break;
|
|
|
|
case 10U ... 99U:
|
|
i = 1;
|
|
break;
|
|
|
|
case 100U ... 999U:
|
|
i = 2;
|
|
break;
|
|
|
|
case 1000U ... 9999U:
|
|
i = 3;
|
|
break;
|
|
|
|
case 10000U ... 99999U:
|
|
i = 4;
|
|
break;
|
|
|
|
case 100000U ... 999999U:
|
|
i = 5;
|
|
break;
|
|
|
|
case 1000000U ... 9999999U:
|
|
i = 6;
|
|
break;
|
|
|
|
case 10000000U ... 99999999U:
|
|
i = 7;
|
|
break;
|
|
|
|
case 100000000U ... 999999999U:
|
|
i = 8;
|
|
break;
|
|
|
|
case 1000000000U ... 4294967295U:
|
|
i = 9;
|
|
break;
|
|
}
|
|
if (i + 2 > size) // (i + 1) + '\0'
|
|
return NULL; // too long
|
|
if (i < size)
|
|
i = size - 2; // padding - '\0'
|
|
|
|
ret = dst + i + 1;
|
|
*ret = '\0';
|
|
for (; i >= 0; i--) {
|
|
dst[i] = n % 10U + '0';
|
|
n /= 10U;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* copies at most <size-1> chars from <src> to <dst>. Last char is always
|
|
* set to 0, unless <size> is 0. The number of chars copied is returned
|
|
* (excluding the terminating zero).
|
|
* This code has been optimized for size and speed : on x86, it's 45 bytes
|
|
* long, uses only registers, and consumes only 4 cycles per char.
|
|
*/
|
|
int strlcpy2(char *dst, const char *src, int size)
|
|
{
|
|
char *orig = dst;
|
|
if (size) {
|
|
while (--size && (*dst = *src)) {
|
|
src++; dst++;
|
|
}
|
|
*dst = 0;
|
|
}
|
|
return dst - orig;
|
|
}
|
|
|
|
/*
|
|
* This function simply returns a locally allocated string containing
|
|
* the ascii representation for number 'n' in decimal.
|
|
*/
|
|
char *ultoa_r(unsigned long n, char *buffer, int size)
|
|
{
|
|
char *pos;
|
|
|
|
pos = buffer + size - 1;
|
|
*pos-- = '\0';
|
|
|
|
do {
|
|
*pos-- = '0' + n % 10;
|
|
n /= 10;
|
|
} while (n && pos >= buffer);
|
|
return pos + 1;
|
|
}
|
|
|
|
/*
|
|
* This function simply returns a locally allocated string containing
|
|
* the ascii representation for number 'n' in decimal.
|
|
*/
|
|
char *lltoa_r(long long int in, char *buffer, int size)
|
|
{
|
|
char *pos;
|
|
int neg = 0;
|
|
unsigned long long int n;
|
|
|
|
pos = buffer + size - 1;
|
|
*pos-- = '\0';
|
|
|
|
if (in < 0) {
|
|
neg = 1;
|
|
n = -in;
|
|
}
|
|
else
|
|
n = in;
|
|
|
|
do {
|
|
*pos-- = '0' + n % 10;
|
|
n /= 10;
|
|
} while (n && pos >= buffer);
|
|
if (neg && pos > buffer)
|
|
*pos-- = '-';
|
|
return pos + 1;
|
|
}
|
|
|
|
/*
|
|
* This function simply returns a locally allocated string containing
|
|
* the ascii representation for signed number 'n' in decimal.
|
|
*/
|
|
char *sltoa_r(long n, char *buffer, int size)
|
|
{
|
|
char *pos;
|
|
|
|
if (n >= 0)
|
|
return ultoa_r(n, buffer, size);
|
|
|
|
pos = ultoa_r(-n, buffer + 1, size - 1) - 1;
|
|
*pos = '-';
|
|
return pos;
|
|
}
|
|
|
|
/*
|
|
* This function simply returns a locally allocated string containing
|
|
* the ascii representation for number 'n' in decimal, formatted for
|
|
* HTML output with tags to create visual grouping by 3 digits. The
|
|
* output needs to support at least 171 characters.
|
|
*/
|
|
const char *ulltoh_r(unsigned long long n, char *buffer, int size)
|
|
{
|
|
char *start;
|
|
int digit = 0;
|
|
|
|
start = buffer + size;
|
|
*--start = '\0';
|
|
|
|
do {
|
|
if (digit == 3 && start >= buffer + 7)
|
|
memcpy(start -= 7, "</span>", 7);
|
|
|
|
if (start >= buffer + 1) {
|
|
*--start = '0' + n % 10;
|
|
n /= 10;
|
|
}
|
|
|
|
if (digit == 3 && start >= buffer + 18)
|
|
memcpy(start -= 18, "<span class=\"rls\">", 18);
|
|
|
|
if (digit++ == 3)
|
|
digit = 1;
|
|
} while (n && start > buffer);
|
|
return start;
|
|
}
|
|
|
|
/*
|
|
* This function simply returns a locally allocated string containing the ascii
|
|
* representation for number 'n' in decimal, unless n is 0 in which case it
|
|
* returns the alternate string (or an empty string if the alternate string is
|
|
* NULL). It use is intended for limits reported in reports, where it's
|
|
* desirable not to display anything if there is no limit. Warning! it shares
|
|
* the same vector as ultoa_r().
|
|
*/
|
|
const char *limit_r(unsigned long n, char *buffer, int size, const char *alt)
|
|
{
|
|
return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : "");
|
|
}
|
|
|
|
/* returns a locally allocated string containing the quoted encoding of the
|
|
* input string. The output may be truncated to QSTR_SIZE chars, but it is
|
|
* guaranteed that the string will always be properly terminated. Quotes are
|
|
* encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
|
|
* always be at least 4 chars.
|
|
*/
|
|
const char *qstr(const char *str)
|
|
{
|
|
char *ret = quoted_str[quoted_idx];
|
|
char *p, *end;
|
|
|
|
if (++quoted_idx >= NB_QSTR)
|
|
quoted_idx = 0;
|
|
|
|
p = ret;
|
|
end = ret + QSTR_SIZE;
|
|
|
|
*p++ = '"';
|
|
|
|
/* always keep 3 chars to support passing "" and the ending " */
|
|
while (*str && p < end - 3) {
|
|
if (*str == '"') {
|
|
*p++ = '"';
|
|
*p++ = '"';
|
|
}
|
|
else
|
|
*p++ = *str;
|
|
str++;
|
|
}
|
|
*p++ = '"';
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
|
|
*
|
|
* It looks like this one would be a good candidate for inlining, but this is
|
|
* not interesting because it around 35 bytes long and often called multiple
|
|
* times within the same function.
|
|
*/
|
|
int ishex(char s)
|
|
{
|
|
s -= '0';
|
|
if ((unsigned char)s <= 9)
|
|
return 1;
|
|
s -= 'A' - '0';
|
|
if ((unsigned char)s <= 5)
|
|
return 1;
|
|
s -= 'a' - 'A';
|
|
if ((unsigned char)s <= 5)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* rounds <i> down to the closest value having max 2 digits */
|
|
unsigned int round_2dig(unsigned int i)
|
|
{
|
|
unsigned int mul = 1;
|
|
|
|
while (i >= 100) {
|
|
i /= 10;
|
|
mul *= 10;
|
|
}
|
|
return i * mul;
|
|
}
|
|
|
|
/*
|
|
* Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
|
|
* invalid character is found, a pointer to it is returned. If everything is
|
|
* fine, NULL is returned.
|
|
*/
|
|
const char *invalid_char(const char *name)
|
|
{
|
|
if (!*name)
|
|
return name;
|
|
|
|
while (*name) {
|
|
if (!isalnum((unsigned char)*name) && *name != '.' && *name != ':' &&
|
|
*name != '_' && *name != '-')
|
|
return name;
|
|
name++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Checks <name> for invalid characters. Valid chars are [_.-] and those
|
|
* accepted by <f> function.
|
|
* If an invalid character is found, a pointer to it is returned.
|
|
* If everything is fine, NULL is returned.
|
|
*/
|
|
static inline const char *__invalid_char(const char *name, int (*f)(int)) {
|
|
|
|
if (!*name)
|
|
return name;
|
|
|
|
while (*name) {
|
|
if (!f((unsigned char)*name) && *name != '.' &&
|
|
*name != '_' && *name != '-')
|
|
return name;
|
|
|
|
name++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_.-].
|
|
* If an invalid character is found, a pointer to it is returned.
|
|
* If everything is fine, NULL is returned.
|
|
*/
|
|
const char *invalid_domainchar(const char *name) {
|
|
return __invalid_char(name, isalnum);
|
|
}
|
|
|
|
/*
|
|
* Checks <name> for invalid characters. Valid chars are [A-Za-z_.-].
|
|
* If an invalid character is found, a pointer to it is returned.
|
|
* If everything is fine, NULL is returned.
|
|
*/
|
|
const char *invalid_prefix_char(const char *name) {
|
|
return __invalid_char(name, isalnum);
|
|
}
|
|
|
|
/*
|
|
* converts <str> to a struct sockaddr_storage* provided by the caller. The
|
|
* caller must have zeroed <sa> first, and may have set sa->ss_family to force
|
|
* parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
|
|
* the function tries to guess the address family from the syntax. If the
|
|
* family is forced and the format doesn't match, an error is returned. The
|
|
* string is assumed to contain only an address, no port. The address can be a
|
|
* dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
|
|
* indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
|
|
* The return address will only have the address family and the address set,
|
|
* all other fields remain zero. The string is not supposed to be modified.
|
|
* The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname
|
|
* is resolved, otherwise only IP addresses are resolved, and anything else
|
|
* returns NULL. If the address contains a port, this one is preserved.
|
|
*/
|
|
struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve)
|
|
{
|
|
struct hostent *he;
|
|
/* max IPv6 length, including brackets and terminating NULL */
|
|
char tmpip[48];
|
|
int port = get_host_port(sa);
|
|
|
|
/* check IPv6 with square brackets */
|
|
if (str[0] == '[') {
|
|
size_t iplength = strlen(str);
|
|
|
|
if (iplength < 4) {
|
|
/* minimal size is 4 when using brackets "[::]" */
|
|
goto fail;
|
|
}
|
|
else if (iplength >= sizeof(tmpip)) {
|
|
/* IPv6 literal can not be larger than tmpip */
|
|
goto fail;
|
|
}
|
|
else {
|
|
if (str[iplength - 1] != ']') {
|
|
/* if address started with bracket, it should end with bracket */
|
|
goto fail;
|
|
}
|
|
else {
|
|
memcpy(tmpip, str + 1, iplength - 2);
|
|
tmpip[iplength - 2] = '\0';
|
|
str = tmpip;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Any IPv6 address */
|
|
if (str[0] == ':' && str[1] == ':' && !str[2]) {
|
|
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
|
|
sa->ss_family = AF_INET6;
|
|
else if (sa->ss_family != AF_INET6)
|
|
goto fail;
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
}
|
|
|
|
/* Any address for the family, defaults to IPv4 */
|
|
if (!str[0] || (str[0] == '*' && !str[1])) {
|
|
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
|
|
sa->ss_family = AF_INET;
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
}
|
|
|
|
/* check for IPv6 first */
|
|
if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) &&
|
|
inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) {
|
|
sa->ss_family = AF_INET6;
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
}
|
|
|
|
/* then check for IPv4 */
|
|
if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) &&
|
|
inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) {
|
|
sa->ss_family = AF_INET;
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
}
|
|
|
|
if (!resolve)
|
|
return NULL;
|
|
|
|
if (!dns_hostname_validation(str, NULL))
|
|
return NULL;
|
|
|
|
#ifdef USE_GETADDRINFO
|
|
if (global.tune.options & GTUNE_USE_GAI) {
|
|
struct addrinfo hints, *result;
|
|
int success = 0;
|
|
|
|
memset(&result, 0, sizeof(result));
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_DGRAM;
|
|
hints.ai_flags = 0;
|
|
hints.ai_protocol = 0;
|
|
|
|
if (getaddrinfo(str, NULL, &hints, &result) == 0) {
|
|
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
|
|
sa->ss_family = result->ai_family;
|
|
else if (sa->ss_family != result->ai_family) {
|
|
freeaddrinfo(result);
|
|
goto fail;
|
|
}
|
|
|
|
switch (result->ai_family) {
|
|
case AF_INET:
|
|
memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen);
|
|
set_host_port(sa, port);
|
|
success = 1;
|
|
break;
|
|
case AF_INET6:
|
|
memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen);
|
|
set_host_port(sa, port);
|
|
success = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
freeaddrinfo(result);
|
|
|
|
if (success)
|
|
return sa;
|
|
}
|
|
#endif
|
|
/* try to resolve an IPv4/IPv6 hostname */
|
|
he = gethostbyname(str);
|
|
if (he) {
|
|
if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
|
|
sa->ss_family = he->h_addrtype;
|
|
else if (sa->ss_family != he->h_addrtype)
|
|
goto fail;
|
|
|
|
switch (sa->ss_family) {
|
|
case AF_INET:
|
|
((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
case AF_INET6:
|
|
((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
|
|
set_host_port(sa, port);
|
|
return sa;
|
|
}
|
|
}
|
|
|
|
/* unsupported address family */
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Converts <str> to a locally allocated struct sockaddr_storage *, and a port
|
|
* range or offset consisting in two integers that the caller will have to
|
|
* check to find the relevant input format. The following format are supported :
|
|
*
|
|
* String format | address | port | low | high
|
|
* addr | <addr> | 0 | 0 | 0
|
|
* addr: | <addr> | 0 | 0 | 0
|
|
* addr:port | <addr> | <port> | <port> | <port>
|
|
* addr:pl-ph | <addr> | <pl> | <pl> | <ph>
|
|
* addr:+port | <addr> | <port> | 0 | <port>
|
|
* addr:-port | <addr> |-<port> | <port> | 0
|
|
*
|
|
* The detection of a port range or increment by the caller is made by
|
|
* comparing <low> and <high>. If both are equal, then port 0 means no port
|
|
* was specified. The caller may pass NULL for <low> and <high> if it is not
|
|
* interested in retrieving port ranges.
|
|
*
|
|
* Note that <addr> above may also be :
|
|
* - empty ("") => family will be AF_INET and address will be INADDR_ANY
|
|
* - "*" => family will be AF_INET and address will be INADDR_ANY
|
|
* - "::" => family will be AF_INET6 and address will be IN6ADDR_ANY
|
|
* - a host name => family and address will depend on host name resolving.
|
|
*
|
|
* A prefix may be passed in before the address above to force the family :
|
|
* - "ipv4@" => force address to resolve as IPv4 and fail if not possible.
|
|
* - "ipv6@" => force address to resolve as IPv6 and fail if not possible.
|
|
* - "unix@" => force address to be a path to a UNIX socket even if the
|
|
* path does not start with a '/'
|
|
* - 'abns@' -> force address to belong to the abstract namespace (Linux
|
|
* only). These sockets are just like Unix sockets but without
|
|
* the need for an underlying file system. The address is a
|
|
* string. Technically it's like a Unix socket with a zero in
|
|
* the first byte of the address.
|
|
* - "fd@" => an integer must follow, and is a file descriptor number.
|
|
*
|
|
* IPv6 addresses can be declared with or without square brackets. When using
|
|
* square brackets for IPv6 addresses, the port separator (colon) is optional.
|
|
* If not using square brackets, and in order to avoid any ambiguity with
|
|
* IPv6 addresses, the last colon ':' is mandatory even when no port is specified.
|
|
* NULL is returned if the address cannot be parsed. The <low> and <high> ports
|
|
* are always initialized if non-null, even for non-IP families.
|
|
*
|
|
* If <pfx> is non-null, it is used as a string prefix before any path-based
|
|
* address (typically the path to a unix socket).
|
|
*
|
|
* if <fqdn> is non-null, it will be filled with :
|
|
* - a pointer to the FQDN of the server name to resolve if there's one, and
|
|
* that the caller will have to free(),
|
|
* - NULL if there was an explicit address that doesn't require resolution.
|
|
*
|
|
* Hostnames are only resolved if <opts> has PA_O_RESOLVE. Otherwise <fqdn> is
|
|
* still honored so it is possible for the caller to know whether a resolution
|
|
* failed by clearing this flag and checking if <fqdn> was filled, indicating
|
|
* the need for a resolution.
|
|
*
|
|
* When a file descriptor is passed, its value is put into the s_addr part of
|
|
* the address when cast to sockaddr_in and the address family is
|
|
* AF_CUST_EXISTING_FD.
|
|
*
|
|
* The matching protocol will be set into <proto> if non-null.
|
|
*
|
|
* Any known file descriptor is also assigned to <fd> if non-null, otherwise it
|
|
* is forced to -1.
|
|
*/
|
|
struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, int *fd,
|
|
struct protocol **proto, char **err,
|
|
const char *pfx, char **fqdn, unsigned int opts)
|
|
{
|
|
static THREAD_LOCAL struct sockaddr_storage ss;
|
|
struct sockaddr_storage *ret = NULL;
|
|
struct protocol *new_proto = NULL;
|
|
char *back, *str2;
|
|
char *port1, *port2;
|
|
int portl, porth, porta;
|
|
int abstract = 0;
|
|
int new_fd = -1;
|
|
int sock_type, ctrl_type;
|
|
|
|
portl = porth = porta = 0;
|
|
if (fqdn)
|
|
*fqdn = NULL;
|
|
|
|
str2 = back = env_expand(strdup(str));
|
|
if (str2 == NULL) {
|
|
memprintf(err, "out of memory in '%s'\n", __FUNCTION__);
|
|
goto out;
|
|
}
|
|
|
|
if (!*str2) {
|
|
memprintf(err, "'%s' resolves to an empty address (environment variable missing?)\n", str);
|
|
goto out;
|
|
}
|
|
|
|
memset(&ss, 0, sizeof(ss));
|
|
|
|
/* prepare the default socket types */
|
|
if ((opts & (PA_O_STREAM|PA_O_DGRAM)) == PA_O_DGRAM)
|
|
sock_type = ctrl_type = SOCK_DGRAM;
|
|
else
|
|
sock_type = ctrl_type = SOCK_STREAM;
|
|
|
|
if (strncmp(str2, "stream+", 7) == 0) {
|
|
str2 += 7;
|
|
sock_type = ctrl_type = SOCK_STREAM;
|
|
}
|
|
else if (strncmp(str2, "dgram+", 6) == 0) {
|
|
str2 += 6;
|
|
sock_type = ctrl_type = SOCK_DGRAM;
|
|
}
|
|
|
|
if (strncmp(str2, "unix@", 5) == 0) {
|
|
str2 += 5;
|
|
abstract = 0;
|
|
ss.ss_family = AF_UNIX;
|
|
}
|
|
else if (strncmp(str2, "abns@", 5) == 0) {
|
|
str2 += 5;
|
|
abstract = 1;
|
|
ss.ss_family = AF_UNIX;
|
|
}
|
|
else if (strncmp(str2, "ipv4@", 5) == 0) {
|
|
str2 += 5;
|
|
ss.ss_family = AF_INET;
|
|
}
|
|
else if (strncmp(str2, "ipv6@", 5) == 0) {
|
|
str2 += 5;
|
|
ss.ss_family = AF_INET6;
|
|
}
|
|
else if (strncmp(str2, "udp4@", 5) == 0) {
|
|
str2 += 5;
|
|
ss.ss_family = AF_INET;
|
|
sock_type = ctrl_type = SOCK_DGRAM;
|
|
}
|
|
else if (strncmp(str2, "udp6@", 5) == 0) {
|
|
str2 += 5;
|
|
ss.ss_family = AF_INET6;
|
|
sock_type = ctrl_type = SOCK_DGRAM;
|
|
}
|
|
else if (strncmp(str2, "udp@", 4) == 0) {
|
|
str2 += 4;
|
|
ss.ss_family = AF_UNSPEC;
|
|
sock_type = ctrl_type = SOCK_DGRAM;
|
|
}
|
|
else if (strncmp(str2, "quic4@", 6) == 0) {
|
|
str2 += 6;
|
|
ss.ss_family = AF_INET;
|
|
sock_type = SOCK_DGRAM;
|
|
ctrl_type = SOCK_STREAM;
|
|
}
|
|
else if (strncmp(str2, "quic6@", 6) == 0) {
|
|
str2 += 6;
|
|
ss.ss_family = AF_INET6;
|
|
sock_type = SOCK_DGRAM;
|
|
ctrl_type = SOCK_STREAM;
|
|
}
|
|
else if (strncmp(str2, "fd@", 3) == 0) {
|
|
str2 += 3;
|
|
ss.ss_family = AF_CUST_EXISTING_FD;
|
|
}
|
|
else if (strncmp(str2, "sockpair@", 9) == 0) {
|
|
str2 += 9;
|
|
ss.ss_family = AF_CUST_SOCKPAIR;
|
|
}
|
|
else if (*str2 == '/') {
|
|
ss.ss_family = AF_UNIX;
|
|
}
|
|
else
|
|
ss.ss_family = AF_UNSPEC;
|
|
|
|
if (ss.ss_family == AF_CUST_SOCKPAIR) {
|
|
struct sockaddr_storage ss2;
|
|
socklen_t addr_len;
|
|
char *endptr;
|
|
|
|
new_fd = strtol(str2, &endptr, 10);
|
|
if (!*str2 || new_fd < 0 || *endptr) {
|
|
memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str);
|
|
goto out;
|
|
}
|
|
|
|
/* just verify that it's a socket */
|
|
addr_len = sizeof(ss2);
|
|
if (getsockname(new_fd, (struct sockaddr *)&ss2, &addr_len) == -1) {
|
|
memprintf(err, "cannot use file descriptor '%d' : %s.\n", new_fd, strerror(errno));
|
|
goto out;
|
|
}
|
|
|
|
((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
|
|
((struct sockaddr_in *)&ss)->sin_port = 0;
|
|
}
|
|
else if (ss.ss_family == AF_CUST_EXISTING_FD) {
|
|
char *endptr;
|
|
|
|
new_fd = strtol(str2, &endptr, 10);
|
|
if (!*str2 || new_fd < 0 || *endptr) {
|
|
memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str);
|
|
goto out;
|
|
}
|
|
|
|
if (opts & PA_O_SOCKET_FD) {
|
|
socklen_t addr_len;
|
|
int type;
|
|
|
|
addr_len = sizeof(ss);
|
|
if (getsockname(new_fd, (struct sockaddr *)&ss, &addr_len) == -1) {
|
|
memprintf(err, "cannot use file descriptor '%d' : %s.\n", new_fd, strerror(errno));
|
|
goto out;
|
|
}
|
|
|
|
addr_len = sizeof(type);
|
|
if (getsockopt(new_fd, SOL_SOCKET, SO_TYPE, &type, &addr_len) != 0 ||
|
|
(type == SOCK_STREAM) != (sock_type == SOCK_STREAM)) {
|
|
memprintf(err, "socket on file descriptor '%d' is of the wrong type.\n", new_fd);
|
|
goto out;
|
|
}
|
|
|
|
porta = portl = porth = get_host_port(&ss);
|
|
} else if (opts & PA_O_RAW_FD) {
|
|
((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
|
|
((struct sockaddr_in *)&ss)->sin_port = 0;
|
|
} else {
|
|
memprintf(err, "a file descriptor is not acceptable here in '%s'\n", str);
|
|
goto out;
|
|
}
|
|
}
|
|
else if (ss.ss_family == AF_UNIX) {
|
|
struct sockaddr_un *un = (struct sockaddr_un *)&ss;
|
|
int prefix_path_len;
|
|
int max_path_len;
|
|
int adr_len;
|
|
|
|
/* complete unix socket path name during startup or soft-restart is
|
|
* <unix_bind_prefix><path>.<pid>.<bak|tmp>
|
|
*/
|
|
prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0;
|
|
max_path_len = (sizeof(un->sun_path) - 1) -
|
|
(abstract ? 0 : prefix_path_len + 1 + 5 + 1 + 3);
|
|
|
|
adr_len = strlen(str2);
|
|
if (adr_len > max_path_len) {
|
|
memprintf(err, "socket path '%s' too long (max %d)\n", str, max_path_len);
|
|
goto out;
|
|
}
|
|
|
|
/* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */
|
|
memset(un->sun_path, 0, sizeof(un->sun_path));
|
|
if (prefix_path_len)
|
|
memcpy(un->sun_path, pfx, prefix_path_len);
|
|
memcpy(un->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract);
|
|
}
|
|
else { /* IPv4 and IPv6 */
|
|
char *end = str2 + strlen(str2);
|
|
char *chr;
|
|
|
|
/* search for : or ] whatever comes first */
|
|
for (chr = end-1; chr > str2; chr--) {
|
|
if (*chr == ']' || *chr == ':')
|
|
break;
|
|
}
|
|
|
|
if (*chr == ':') {
|
|
/* Found a colon before a closing-bracket, must be a port separator.
|
|
* This guarantee backward compatibility.
|
|
*/
|
|
if (!(opts & PA_O_PORT_OK)) {
|
|
memprintf(err, "port specification not permitted here in '%s'", str);
|
|
goto out;
|
|
}
|
|
*chr++ = '\0';
|
|
port1 = chr;
|
|
}
|
|
else {
|
|
/* Either no colon and no closing-bracket
|
|
* or directly ending with a closing-bracket.
|
|
* However, no port.
|
|
*/
|
|
if (opts & PA_O_PORT_MAND) {
|
|
memprintf(err, "missing port specification in '%s'", str);
|
|
goto out;
|
|
}
|
|
port1 = "";
|
|
}
|
|
|
|
if (isdigit((unsigned char)*port1)) { /* single port or range */
|
|
port2 = strchr(port1, '-');
|
|
if (port2) {
|
|
if (!(opts & PA_O_PORT_RANGE)) {
|
|
memprintf(err, "port range not permitted here in '%s'", str);
|
|
goto out;
|
|
}
|
|
*port2++ = '\0';
|
|
}
|
|
else
|
|
port2 = port1;
|
|
portl = atoi(port1);
|
|
porth = atoi(port2);
|
|
|
|
if (portl < !!(opts & PA_O_PORT_MAND) || portl > 65535) {
|
|
memprintf(err, "invalid port '%s'", port1);
|
|
goto out;
|
|
}
|
|
|
|
if (porth < !!(opts & PA_O_PORT_MAND) || porth > 65535) {
|
|
memprintf(err, "invalid port '%s'", port2);
|
|
goto out;
|
|
}
|
|
|
|
if (portl > porth) {
|
|
memprintf(err, "invalid port range '%d-%d'", portl, porth);
|
|
goto out;
|
|
}
|
|
|
|
porta = portl;
|
|
}
|
|
else if (*port1 == '-') { /* negative offset */
|
|
if (!(opts & PA_O_PORT_OFS)) {
|
|
memprintf(err, "port offset not permitted here in '%s'", str);
|
|
goto out;
|
|
}
|
|
portl = atoi(port1 + 1);
|
|
porta = -portl;
|
|
}
|
|
else if (*port1 == '+') { /* positive offset */
|
|
if (!(opts & PA_O_PORT_OFS)) {
|
|
memprintf(err, "port offset not permitted here in '%s'", str);
|
|
goto out;
|
|
}
|
|
porth = atoi(port1 + 1);
|
|
porta = porth;
|
|
}
|
|
else if (*port1) { /* other any unexpected char */
|
|
memprintf(err, "invalid character '%c' in port number '%s' in '%s'\n", *port1, port1, str);
|
|
goto out;
|
|
}
|
|
else if (opts & PA_O_PORT_MAND) {
|
|
memprintf(err, "missing port specification in '%s'", str);
|
|
goto out;
|
|
}
|
|
|
|
/* first try to parse the IP without resolving. If it fails, it
|
|
* tells us we need to keep a copy of the FQDN to resolve later
|
|
* and to enable DNS. In this case we can proceed if <fqdn> is
|
|
* set or if PA_O_RESOLVE is set, otherwise it's an error.
|
|
*/
|
|
if (str2ip2(str2, &ss, 0) == NULL) {
|
|
if ((!(opts & PA_O_RESOLVE) && !fqdn) ||
|
|
((opts & PA_O_RESOLVE) && str2ip2(str2, &ss, 1) == NULL)) {
|
|
memprintf(err, "invalid address: '%s' in '%s'\n", str2, str);
|
|
goto out;
|
|
}
|
|
|
|
if (fqdn) {
|
|
if (str2 != back)
|
|
memmove(back, str2, strlen(str2) + 1);
|
|
*fqdn = back;
|
|
back = NULL;
|
|
}
|
|
}
|
|
set_host_port(&ss, porta);
|
|
}
|
|
|
|
if (ctrl_type == SOCK_STREAM && !(opts & PA_O_STREAM)) {
|
|
memprintf(err, "stream-type socket not acceptable in '%s'\n", str);
|
|
goto out;
|
|
}
|
|
else if (ctrl_type == SOCK_DGRAM && !(opts & PA_O_DGRAM)) {
|
|
memprintf(err, "dgram-type socket not acceptable in '%s'\n", str);
|
|
goto out;
|
|
}
|
|
|
|
if (proto || (opts & PA_O_CONNECT)) {
|
|
/* Note: if the caller asks for a proto, we must find one,
|
|
* except if we return with an fqdn that will resolve later,
|
|
* in which case the address is not known yet (this is only
|
|
* for servers actually).
|
|
*/
|
|
new_proto = protocol_lookup(ss.ss_family,
|
|
sock_type == SOCK_DGRAM,
|
|
ctrl_type == SOCK_DGRAM);
|
|
|
|
if (!new_proto && (!fqdn || !*fqdn)) {
|
|
memprintf(err, "unsupported protocol family %d for address '%s'", ss.ss_family, str);
|
|
goto out;
|
|
}
|
|
|
|
if ((opts & PA_O_CONNECT) && new_proto && !new_proto->connect) {
|
|
memprintf(err, "connect() not supported for this protocol family %d used by address '%s'", ss.ss_family, str);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = &ss;
|
|
out:
|
|
if (port)
|
|
*port = porta;
|
|
if (low)
|
|
*low = portl;
|
|
if (high)
|
|
*high = porth;
|
|
if (fd)
|
|
*fd = new_fd;
|
|
if (proto)
|
|
*proto = new_proto;
|
|
free(back);
|
|
return ret;
|
|
}
|
|
|
|
/* converts <addr> and <port> into a string representation of the address and port. This is sort
|
|
* of an inverse of str2sa_range, with some restrictions. The supported families are AF_INET,
|
|
* AF_INET6, AF_UNIX, and AF_CUST_SOCKPAIR. If the family is unsopported NULL is returned.
|
|
* If map_ports is true, then the sign of the port is included in the output, to indicate it is
|
|
* relative to the incoming port. AF_INET and AF_INET6 will be in the form "<addr>:<port>".
|
|
* AF_UNIX will either be just the path (if using a pathname) or "abns@<path>" if it is abstract.
|
|
* AF_CUST_SOCKPAIR will be of the form "sockpair@<fd>".
|
|
*
|
|
* The returned char* is allocated, and it is the responsibility of the caller to free it.
|
|
*/
|
|
char * sa2str(const struct sockaddr_storage *addr, int port, int map_ports)
|
|
{
|
|
char buffer[INET6_ADDRSTRLEN];
|
|
char *out = NULL;
|
|
const void *ptr;
|
|
const char *path;
|
|
|
|
switch (addr->ss_family) {
|
|
case AF_INET:
|
|
ptr = &((struct sockaddr_in *)addr)->sin_addr;
|
|
break;
|
|
case AF_INET6:
|
|
ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
|
|
break;
|
|
case AF_UNIX:
|
|
path = ((struct sockaddr_un *)addr)->sun_path;
|
|
if (path[0] == '\0') {
|
|
const int max_length = sizeof(struct sockaddr_un) - offsetof(struct sockaddr_un, sun_path) - 1;
|
|
return memprintf(&out, "abns@%.*s", max_length, path+1);
|
|
} else {
|
|
return strdup(path);
|
|
}
|
|
case AF_CUST_SOCKPAIR:
|
|
return memprintf(&out, "sockpair@%d", ((struct sockaddr_in *)addr)->sin_addr.s_addr);
|
|
default:
|
|
return NULL;
|
|
}
|
|
inet_ntop(addr->ss_family, ptr, buffer, get_addr_len(addr));
|
|
if (map_ports)
|
|
return memprintf(&out, "%s:%+d", buffer, port);
|
|
else
|
|
return memprintf(&out, "%s:%d", buffer, port);
|
|
}
|
|
|
|
|
|
/* converts <str> to a struct in_addr containing a network mask. It can be
|
|
* passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
|
|
* if the conversion succeeds otherwise zero.
|
|
*/
|
|
int str2mask(const char *str, struct in_addr *mask)
|
|
{
|
|
if (strchr(str, '.') != NULL) { /* dotted notation */
|
|
if (!inet_pton(AF_INET, str, mask))
|
|
return 0;
|
|
}
|
|
else { /* mask length */
|
|
char *err;
|
|
unsigned long len = strtol(str, &err, 10);
|
|
|
|
if (!*str || (err && *err) || (unsigned)len > 32)
|
|
return 0;
|
|
|
|
len2mask4(len, mask);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* converts <str> to a struct in6_addr containing a network mask. It can be
|
|
* passed in quadruplet form (ffff:ffff::) or in CIDR form (64). It returns 1
|
|
* if the conversion succeeds otherwise zero.
|
|
*/
|
|
int str2mask6(const char *str, struct in6_addr *mask)
|
|
{
|
|
if (strchr(str, ':') != NULL) { /* quadruplet notation */
|
|
if (!inet_pton(AF_INET6, str, mask))
|
|
return 0;
|
|
}
|
|
else { /* mask length */
|
|
char *err;
|
|
unsigned long len = strtol(str, &err, 10);
|
|
|
|
if (!*str || (err && *err) || (unsigned)len > 128)
|
|
return 0;
|
|
|
|
len2mask6(len, mask);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
|
|
* succeeds otherwise zero.
|
|
*/
|
|
int cidr2dotted(int cidr, struct in_addr *mask) {
|
|
|
|
if (cidr < 0 || cidr > 32)
|
|
return 0;
|
|
|
|
mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Convert mask from bit length form to in_addr form.
|
|
* This function never fails.
|
|
*/
|
|
void len2mask4(int len, struct in_addr *addr)
|
|
{
|
|
if (len >= 32) {
|
|
addr->s_addr = 0xffffffff;
|
|
return;
|
|
}
|
|
if (len <= 0) {
|
|
addr->s_addr = 0x00000000;
|
|
return;
|
|
}
|
|
addr->s_addr = 0xffffffff << (32 - len);
|
|
addr->s_addr = htonl(addr->s_addr);
|
|
}
|
|
|
|
/* Convert mask from bit length form to in6_addr form.
|
|
* This function never fails.
|
|
*/
|
|
void len2mask6(int len, struct in6_addr *addr)
|
|
{
|
|
len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */
|
|
len -= 32;
|
|
len2mask4(len, (struct in_addr *)&addr->s6_addr[4]);
|
|
len -= 32;
|
|
len2mask4(len, (struct in_addr *)&addr->s6_addr[8]);
|
|
len -= 32;
|
|
len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */
|
|
}
|
|
|
|
/*
|
|
* converts <str> to two struct in_addr* which must be pre-allocated.
|
|
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
|
|
* is optional and either in the dotted or CIDR notation.
|
|
* Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
|
|
*/
|
|
int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask)
|
|
{
|
|
__label__ out_free, out_err;
|
|
char *c, *s;
|
|
int ret_val;
|
|
|
|
s = strdup(str);
|
|
if (!s)
|
|
return 0;
|
|
|
|
memset(mask, 0, sizeof(*mask));
|
|
memset(addr, 0, sizeof(*addr));
|
|
|
|
if ((c = strrchr(s, '/')) != NULL) {
|
|
*c++ = '\0';
|
|
/* c points to the mask */
|
|
if (!str2mask(c, mask))
|
|
goto out_err;
|
|
}
|
|
else {
|
|
mask->s_addr = ~0U;
|
|
}
|
|
if (!inet_pton(AF_INET, s, addr)) {
|
|
struct hostent *he;
|
|
|
|
if (!resolve)
|
|
goto out_err;
|
|
|
|
if ((he = gethostbyname(s)) == NULL) {
|
|
goto out_err;
|
|
}
|
|
else
|
|
*addr = *(struct in_addr *) *(he->h_addr_list);
|
|
}
|
|
|
|
ret_val = 1;
|
|
out_free:
|
|
free(s);
|
|
return ret_val;
|
|
out_err:
|
|
ret_val = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
|
|
/*
|
|
* converts <str> to two struct in6_addr* which must be pre-allocated.
|
|
* The format is "addr[/mask]", where "addr" cannot be empty, and mask
|
|
* is an optional number of bits (128 being the default).
|
|
* Returns 1 if OK, 0 if error.
|
|
*/
|
|
int str62net(const char *str, struct in6_addr *addr, unsigned char *mask)
|
|
{
|
|
char *c, *s;
|
|
int ret_val = 0;
|
|
char *err;
|
|
unsigned long len = 128;
|
|
|
|
s = strdup(str);
|
|
if (!s)
|
|
return 0;
|
|
|
|
memset(mask, 0, sizeof(*mask));
|
|
memset(addr, 0, sizeof(*addr));
|
|
|
|
if ((c = strrchr(s, '/')) != NULL) {
|
|
*c++ = '\0'; /* c points to the mask */
|
|
if (!*c)
|
|
goto out_free;
|
|
|
|
len = strtoul(c, &err, 10);
|
|
if ((err && *err) || (unsigned)len > 128)
|
|
goto out_free;
|
|
}
|
|
*mask = len; /* OK we have a valid mask in <len> */
|
|
|
|
if (!inet_pton(AF_INET6, s, addr))
|
|
goto out_free;
|
|
|
|
ret_val = 1;
|
|
out_free:
|
|
free(s);
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
/*
|
|
* Parse IPv4 address found in url.
|
|
*/
|
|
int url2ipv4(const char *addr, struct in_addr *dst)
|
|
{
|
|
int saw_digit, octets, ch;
|
|
u_char tmp[4], *tp;
|
|
const char *cp = addr;
|
|
|
|
saw_digit = 0;
|
|
octets = 0;
|
|
*(tp = tmp) = 0;
|
|
|
|
while (*addr) {
|
|
unsigned char digit = (ch = *addr++) - '0';
|
|
if (digit > 9 && ch != '.')
|
|
break;
|
|
if (digit <= 9) {
|
|
u_int new = *tp * 10 + digit;
|
|
if (new > 255)
|
|
return 0;
|
|
*tp = new;
|
|
if (!saw_digit) {
|
|
if (++octets > 4)
|
|
return 0;
|
|
saw_digit = 1;
|
|
}
|
|
} else if (ch == '.' && saw_digit) {
|
|
if (octets == 4)
|
|
return 0;
|
|
*++tp = 0;
|
|
saw_digit = 0;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
if (octets < 4)
|
|
return 0;
|
|
|
|
memcpy(&dst->s_addr, tmp, 4);
|
|
return addr-cp-1;
|
|
}
|
|
|
|
/*
|
|
* Resolve destination server from URL. Convert <str> to a sockaddr_storage.
|
|
* <out> contain the code of the detected scheme, the start and length of
|
|
* the hostname. Actually only http and https are supported. <out> can be NULL.
|
|
* This function returns the consumed length. It is useful if you parse complete
|
|
* url like http://host:port/path, because the consumed length corresponds to
|
|
* the first character of the path. If the conversion fails, it returns -1.
|
|
*
|
|
* This function tries to resolve the DNS name if haproxy is in starting mode.
|
|
* So, this function may be used during the configuration parsing.
|
|
*/
|
|
int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out)
|
|
{
|
|
const char *curr = url, *cp = url;
|
|
const char *end;
|
|
int ret, url_code = 0;
|
|
unsigned long long int http_code = 0;
|
|
int default_port;
|
|
struct hostent *he;
|
|
char *p;
|
|
|
|
/* Firstly, try to find :// pattern */
|
|
while (curr < url+ulen && url_code != 0x3a2f2f) {
|
|
url_code = ((url_code & 0xffff) << 8);
|
|
url_code += (unsigned char)*curr++;
|
|
}
|
|
|
|
/* Secondly, if :// pattern is found, verify parsed stuff
|
|
* before pattern is matching our http pattern.
|
|
* If so parse ip address and port in uri.
|
|
*
|
|
* WARNING: Current code doesn't support dynamic async dns resolver.
|
|
*/
|
|
if (url_code != 0x3a2f2f)
|
|
return -1;
|
|
|
|
/* Copy scheme, and utrn to lower case. */
|
|
while (cp < curr - 3)
|
|
http_code = (http_code << 8) + *cp++;
|
|
http_code |= 0x2020202020202020ULL; /* Turn everything to lower case */
|
|
|
|
/* HTTP or HTTPS url matching */
|
|
if (http_code == 0x2020202068747470ULL) {
|
|
default_port = 80;
|
|
if (out)
|
|
out->scheme = SCH_HTTP;
|
|
}
|
|
else if (http_code == 0x2020206874747073ULL) {
|
|
default_port = 443;
|
|
if (out)
|
|
out->scheme = SCH_HTTPS;
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
/* If the next char is '[', the host address is IPv6. */
|
|
if (*curr == '[') {
|
|
curr++;
|
|
|
|
/* Check trash size */
|
|
if (trash.size < ulen)
|
|
return -1;
|
|
|
|
/* Look for ']' and copy the address in a trash buffer. */
|
|
p = trash.area;
|
|
for (end = curr;
|
|
end < url + ulen && *end != ']';
|
|
end++, p++)
|
|
*p = *end;
|
|
if (*end != ']')
|
|
return -1;
|
|
*p = '\0';
|
|
|
|
/* Update out. */
|
|
if (out) {
|
|
out->host = curr;
|
|
out->host_len = end - curr;
|
|
}
|
|
|
|
/* Try IPv6 decoding. */
|
|
if (!inet_pton(AF_INET6, trash.area, &((struct sockaddr_in6 *)addr)->sin6_addr))
|
|
return -1;
|
|
end++;
|
|
|
|
/* Decode port. */
|
|
if (*end == ':') {
|
|
end++;
|
|
default_port = read_uint(&end, url + ulen);
|
|
}
|
|
((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
|
|
((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
|
|
return end - url;
|
|
}
|
|
else {
|
|
/* We are looking for IP address. If you want to parse and
|
|
* resolve hostname found in url, you can use str2sa_range(), but
|
|
* be warned this can slow down global daemon performances
|
|
* while handling lagging dns responses.
|
|
*/
|
|
ret = url2ipv4(curr, &((struct sockaddr_in *)addr)->sin_addr);
|
|
if (ret) {
|
|
/* Update out. */
|
|
if (out) {
|
|
out->host = curr;
|
|
out->host_len = ret;
|
|
}
|
|
|
|
curr += ret;
|
|
|
|
/* Decode port. */
|
|
if (*curr == ':') {
|
|
curr++;
|
|
default_port = read_uint(&curr, url + ulen);
|
|
}
|
|
((struct sockaddr_in *)addr)->sin_port = htons(default_port);
|
|
|
|
/* Set family. */
|
|
((struct sockaddr_in *)addr)->sin_family = AF_INET;
|
|
return curr - url;
|
|
}
|
|
else if (global.mode & MODE_STARTING) {
|
|
/* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute
|
|
* synchronous DNS request only if HAProxy is in the start state.
|
|
*/
|
|
|
|
/* look for : or / or end */
|
|
for (end = curr;
|
|
end < url + ulen && *end != '/' && *end != ':';
|
|
end++);
|
|
memcpy(trash.area, curr, end - curr);
|
|
trash.area[end - curr] = '\0';
|
|
|
|
/* try to resolve an IPv4/IPv6 hostname */
|
|
he = gethostbyname(trash.area);
|
|
if (!he)
|
|
return -1;
|
|
|
|
/* Update out. */
|
|
if (out) {
|
|
out->host = curr;
|
|
out->host_len = end - curr;
|
|
}
|
|
|
|
/* Decode port. */
|
|
if (*end == ':') {
|
|
end++;
|
|
default_port = read_uint(&end, url + ulen);
|
|
}
|
|
|
|
/* Copy IP address, set port and family. */
|
|
switch (he->h_addrtype) {
|
|
case AF_INET:
|
|
((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
|
|
((struct sockaddr_in *)addr)->sin_port = htons(default_port);
|
|
((struct sockaddr_in *)addr)->sin_family = AF_INET;
|
|
return end - url;
|
|
|
|
case AF_INET6:
|
|
((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
|
|
((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
|
|
((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
|
|
return end - url;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Tries to convert a sockaddr_storage address to text form. Upon success, the
|
|
* address family is returned so that it's easy for the caller to adapt to the
|
|
* output format. Zero is returned if the address family is not supported. -1
|
|
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
|
|
* supported.
|
|
*/
|
|
int addr_to_str(const struct sockaddr_storage *addr, char *str, int size)
|
|
{
|
|
|
|
const void *ptr;
|
|
|
|
if (size < 5)
|
|
return 0;
|
|
*str = '\0';
|
|
|
|
switch (addr->ss_family) {
|
|
case AF_INET:
|
|
ptr = &((struct sockaddr_in *)addr)->sin_addr;
|
|
break;
|
|
case AF_INET6:
|
|
ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
|
|
break;
|
|
case AF_UNIX:
|
|
memcpy(str, "unix", 5);
|
|
return addr->ss_family;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (inet_ntop(addr->ss_family, ptr, str, size))
|
|
return addr->ss_family;
|
|
|
|
/* failed */
|
|
return -1;
|
|
}
|
|
|
|
/* Tries to convert a sockaddr_storage port to text form. Upon success, the
|
|
* address family is returned so that it's easy for the caller to adapt to the
|
|
* output format. Zero is returned if the address family is not supported. -1
|
|
* is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
|
|
* supported.
|
|
*/
|
|
int port_to_str(const struct sockaddr_storage *addr, char *str, int size)
|
|
{
|
|
|
|
uint16_t port;
|
|
|
|
|
|
if (size < 6)
|
|
return 0;
|
|
*str = '\0';
|
|
|
|
switch (addr->ss_family) {
|
|
case AF_INET:
|
|
port = ((struct sockaddr_in *)addr)->sin_port;
|
|
break;
|
|
case AF_INET6:
|
|
port = ((struct sockaddr_in6 *)addr)->sin6_port;
|
|
break;
|
|
case AF_UNIX:
|
|
memcpy(str, "unix", 5);
|
|
return addr->ss_family;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
snprintf(str, size, "%u", ntohs(port));
|
|
return addr->ss_family;
|
|
}
|
|
|
|
/* check if the given address is local to the system or not. It will return
|
|
* -1 when it's not possible to know, 0 when the address is not local, 1 when
|
|
* it is. We don't want to iterate over all interfaces for this (and it is not
|
|
* portable). So instead we try to bind in UDP to this address on a free non
|
|
* privileged port and to connect to the same address, port 0 (connect doesn't
|
|
* care). If it succeeds, we own the address. Note that non-inet addresses are
|
|
* considered local since they're most likely AF_UNIX.
|
|
*/
|
|
int addr_is_local(const struct netns_entry *ns,
|
|
const struct sockaddr_storage *orig)
|
|
{
|
|
struct sockaddr_storage addr;
|
|
int result;
|
|
int fd;
|
|
|
|
if (!is_inet_addr(orig))
|
|
return 1;
|
|
|
|
memcpy(&addr, orig, sizeof(addr));
|
|
set_host_port(&addr, 0);
|
|
|
|
fd = my_socketat(ns, addr.ss_family, SOCK_DGRAM, IPPROTO_UDP);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
result = -1;
|
|
if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) {
|
|
if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1)
|
|
result = 0; // fail, non-local address
|
|
else
|
|
result = 1; // success, local address
|
|
}
|
|
else {
|
|
if (errno == EADDRNOTAVAIL)
|
|
result = 0; // definitely not local :-)
|
|
}
|
|
close(fd);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* will try to encode the string <string> replacing all characters tagged in
|
|
* <map> with the hexadecimal representation of their ASCII-code (2 digits)
|
|
* prefixed by <escape>, and will store the result between <start> (included)
|
|
* and <stop> (excluded), and will always terminate the string with a '\0'
|
|
* before <stop>. The position of the '\0' is returned if the conversion
|
|
* completes. If bytes are missing between <start> and <stop>, then the
|
|
* conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
|
|
* cannot even be stored so we return <start> without writing the 0.
|
|
* The input string must also be zero-terminated.
|
|
*/
|
|
const char hextab[16] = "0123456789ABCDEF";
|
|
char *encode_string(char *start, char *stop,
|
|
const char escape, const long *map,
|
|
const char *string)
|
|
{
|
|
if (start < stop) {
|
|
stop--; /* reserve one byte for the final '\0' */
|
|
while (start < stop && *string != '\0') {
|
|
if (!ha_bit_test((unsigned char)(*string), map))
|
|
*start++ = *string;
|
|
else {
|
|
if (start + 3 >= stop)
|
|
break;
|
|
*start++ = escape;
|
|
*start++ = hextab[(*string >> 4) & 15];
|
|
*start++ = hextab[*string & 15];
|
|
}
|
|
string++;
|
|
}
|
|
*start = '\0';
|
|
}
|
|
return start;
|
|
}
|
|
|
|
/*
|
|
* Same behavior as encode_string() above, except that it encodes chunk
|
|
* <chunk> instead of a string.
|
|
*/
|
|
char *encode_chunk(char *start, char *stop,
|
|
const char escape, const long *map,
|
|
const struct buffer *chunk)
|
|
{
|
|
char *str = chunk->area;
|
|
char *end = chunk->area + chunk->data;
|
|
|
|
if (start < stop) {
|
|
stop--; /* reserve one byte for the final '\0' */
|
|
while (start < stop && str < end) {
|
|
if (!ha_bit_test((unsigned char)(*str), map))
|
|
*start++ = *str;
|
|
else {
|
|
if (start + 3 >= stop)
|
|
break;
|
|
*start++ = escape;
|
|
*start++ = hextab[(*str >> 4) & 15];
|
|
*start++ = hextab[*str & 15];
|
|
}
|
|
str++;
|
|
}
|
|
*start = '\0';
|
|
}
|
|
return start;
|
|
}
|
|
|
|
/*
|
|
* Tries to prefix characters tagged in the <map> with the <escape>
|
|
* character. The input <string> must be zero-terminated. The result will
|
|
* be stored between <start> (included) and <stop> (excluded). This
|
|
* function will always try to terminate the resulting string with a '\0'
|
|
* before <stop>, and will return its position if the conversion
|
|
* completes.
|
|
*/
|
|
char *escape_string(char *start, char *stop,
|
|
const char escape, const long *map,
|
|
const char *string)
|
|
{
|
|
if (start < stop) {
|
|
stop--; /* reserve one byte for the final '\0' */
|
|
while (start < stop && *string != '\0') {
|
|
if (!ha_bit_test((unsigned char)(*string), map))
|
|
*start++ = *string;
|
|
else {
|
|
if (start + 2 >= stop)
|
|
break;
|
|
*start++ = escape;
|
|
*start++ = *string;
|
|
}
|
|
string++;
|
|
}
|
|
*start = '\0';
|
|
}
|
|
return start;
|
|
}
|
|
|
|
/*
|
|
* Tries to prefix characters tagged in the <map> with the <escape>
|
|
* character. <chunk> contains the input to be escaped. The result will be
|
|
* stored between <start> (included) and <stop> (excluded). The function
|
|
* will always try to terminate the resulting string with a '\0' before
|
|
* <stop>, and will return its position if the conversion completes.
|
|
*/
|
|
char *escape_chunk(char *start, char *stop,
|
|
const char escape, const long *map,
|
|
const struct buffer *chunk)
|
|
{
|
|
char *str = chunk->area;
|
|
char *end = chunk->area + chunk->data;
|
|
|
|
if (start < stop) {
|
|
stop--; /* reserve one byte for the final '\0' */
|
|
while (start < stop && str < end) {
|
|
if (!ha_bit_test((unsigned char)(*str), map))
|
|
*start++ = *str;
|
|
else {
|
|
if (start + 2 >= stop)
|
|
break;
|
|
*start++ = escape;
|
|
*start++ = *str;
|
|
}
|
|
str++;
|
|
}
|
|
*start = '\0';
|
|
}
|
|
return start;
|
|
}
|
|
|
|
/* Check a string for using it in a CSV output format. If the string contains
|
|
* one of the following four char <">, <,>, CR or LF, the string is
|
|
* encapsulated between <"> and the <"> are escaped by a <""> sequence.
|
|
* <str> is the input string to be escaped. The function assumes that
|
|
* the input string is null-terminated.
|
|
*
|
|
* If <quote> is 0, the result is returned escaped but without double quote.
|
|
* It is useful if the escaped string is used between double quotes in the
|
|
* format.
|
|
*
|
|
* printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash));
|
|
*
|
|
* If <quote> is 1, the converter puts the quotes only if any reserved character
|
|
* is present. If <quote> is 2, the converter always puts the quotes.
|
|
*
|
|
* <output> is a struct buffer used for storing the output string.
|
|
*
|
|
* The function returns the converted string on its output. If an error
|
|
* occurs, the function returns an empty string. This type of output is useful
|
|
* for using the function directly as printf() argument.
|
|
*
|
|
* If the output buffer is too short to contain the input string, the result
|
|
* is truncated.
|
|
*
|
|
* This function appends the encoding to the existing output chunk, and it
|
|
* guarantees that it starts immediately at the first available character of
|
|
* the chunk. Please use csv_enc() instead if you want to replace the output
|
|
* chunk.
|
|
*/
|
|
const char *csv_enc_append(const char *str, int quote, struct buffer *output)
|
|
{
|
|
char *end = output->area + output->size;
|
|
char *out = output->area + output->data;
|
|
char *ptr = out;
|
|
|
|
if (quote == 1) {
|
|
/* automatic quoting: first verify if we'll have to quote the string */
|
|
if (!strpbrk(str, "\n\r,\""))
|
|
quote = 0;
|
|
}
|
|
|
|
if (quote)
|
|
*ptr++ = '"';
|
|
|
|
while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */
|
|
*ptr = *str;
|
|
if (*str == '"') {
|
|
ptr++;
|
|
if (ptr >= end - 2) {
|
|
ptr--;
|
|
break;
|
|
}
|
|
*ptr = '"';
|
|
}
|
|
ptr++;
|
|
str++;
|
|
}
|
|
|
|
if (quote)
|
|
*ptr++ = '"';
|
|
|
|
*ptr = '\0';
|
|
output->data = ptr - output->area;
|
|
return out;
|
|
}
|
|
|
|
/* Decode an URL-encoded string in-place. The resulting string might
|
|
* be shorter. If some forbidden characters are found, the conversion is
|
|
* aborted, the string is truncated before the issue and a negative value is
|
|
* returned, otherwise the operation returns the length of the decoded string.
|
|
* If the 'in_form' argument is non-nul the string is assumed to be part of
|
|
* an "application/x-www-form-urlencoded" encoded string, and the '+' will be
|
|
* turned to a space. If it's zero, this will only be done after a question
|
|
* mark ('?').
|
|
*/
|
|
int url_decode(char *string, int in_form)
|
|
{
|
|
char *in, *out;
|
|
int ret = -1;
|
|
|
|
in = string;
|
|
out = string;
|
|
while (*in) {
|
|
switch (*in) {
|
|
case '+' :
|
|
*out++ = in_form ? ' ' : *in;
|
|
break;
|
|
case '%' :
|
|
if (!ishex(in[1]) || !ishex(in[2]))
|
|
goto end;
|
|
*out++ = (hex2i(in[1]) << 4) + hex2i(in[2]);
|
|
in += 2;
|
|
break;
|
|
case '?':
|
|
in_form = 1;
|
|
/* fall through */
|
|
default:
|
|
*out++ = *in;
|
|
break;
|
|
}
|
|
in++;
|
|
}
|
|
ret = out - string; /* success */
|
|
end:
|
|
*out = 0;
|
|
return ret;
|
|
}
|
|
|
|
unsigned int str2ui(const char *s)
|
|
{
|
|
return __str2ui(s);
|
|
}
|
|
|
|
unsigned int str2uic(const char *s)
|
|
{
|
|
return __str2uic(s);
|
|
}
|
|
|
|
unsigned int strl2ui(const char *s, int len)
|
|
{
|
|
return __strl2ui(s, len);
|
|
}
|
|
|
|
unsigned int strl2uic(const char *s, int len)
|
|
{
|
|
return __strl2uic(s, len);
|
|
}
|
|
|
|
unsigned int read_uint(const char **s, const char *end)
|
|
{
|
|
return __read_uint(s, end);
|
|
}
|
|
|
|
/* This function reads an unsigned integer from the string pointed to by <s> and
|
|
* returns it. The <s> pointer is adjusted to point to the first unread char. The
|
|
* function automatically stops at <end>. If the number overflows, the 2^64-1
|
|
* value is returned.
|
|
*/
|
|
unsigned long long int read_uint64(const char **s, const char *end)
|
|
{
|
|
const char *ptr = *s;
|
|
unsigned long long int i = 0, tmp;
|
|
unsigned int j;
|
|
|
|
while (ptr < end) {
|
|
|
|
/* read next char */
|
|
j = *ptr - '0';
|
|
if (j > 9)
|
|
goto read_uint64_end;
|
|
|
|
/* add char to the number and check overflow. */
|
|
tmp = i * 10;
|
|
if (tmp / 10 != i) {
|
|
i = ULLONG_MAX;
|
|
goto read_uint64_eat;
|
|
}
|
|
if (ULLONG_MAX - tmp < j) {
|
|
i = ULLONG_MAX;
|
|
goto read_uint64_eat;
|
|
}
|
|
i = tmp + j;
|
|
ptr++;
|
|
}
|
|
read_uint64_eat:
|
|
/* eat each numeric char */
|
|
while (ptr < end) {
|
|
if ((unsigned int)(*ptr - '0') > 9)
|
|
break;
|
|
ptr++;
|
|
}
|
|
read_uint64_end:
|
|
*s = ptr;
|
|
return i;
|
|
}
|
|
|
|
/* This function reads an integer from the string pointed to by <s> and returns
|
|
* it. The <s> pointer is adjusted to point to the first unread char. The function
|
|
* automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1
|
|
* value is returned. If the number is lowest than -2^63-1, the -2^63 value is
|
|
* returned.
|
|
*/
|
|
long long int read_int64(const char **s, const char *end)
|
|
{
|
|
unsigned long long int i = 0;
|
|
int neg = 0;
|
|
|
|
/* Look for minus char. */
|
|
if (**s == '-') {
|
|
neg = 1;
|
|
(*s)++;
|
|
}
|
|
else if (**s == '+')
|
|
(*s)++;
|
|
|
|
/* convert as positive number. */
|
|
i = read_uint64(s, end);
|
|
|
|
if (neg) {
|
|
if (i > 0x8000000000000000ULL)
|
|
return LLONG_MIN;
|
|
return -i;
|
|
}
|
|
if (i > 0x7fffffffffffffffULL)
|
|
return LLONG_MAX;
|
|
return i;
|
|
}
|
|
|
|
/* This one is 7 times faster than strtol() on athlon with checks.
|
|
* It returns the value of the number composed of all valid digits read,
|
|
* and can process negative numbers too.
|
|
*/
|
|
int strl2ic(const char *s, int len)
|
|
{
|
|
int i = 0;
|
|
int j, k;
|
|
|
|
if (len > 0) {
|
|
if (*s != '-') {
|
|
/* positive number */
|
|
while (len-- > 0) {
|
|
j = (*s++) - '0';
|
|
k = i * 10;
|
|
if (j > 9)
|
|
break;
|
|
i = k + j;
|
|
}
|
|
} else {
|
|
/* negative number */
|
|
s++;
|
|
while (--len > 0) {
|
|
j = (*s++) - '0';
|
|
k = i * 10;
|
|
if (j > 9)
|
|
break;
|
|
i = k - j;
|
|
}
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
/* This function reads exactly <len> chars from <s> and converts them to a
|
|
* signed integer which it stores into <ret>. It accurately detects any error
|
|
* (truncated string, invalid chars, overflows). It is meant to be used in
|
|
* applications designed for hostile environments. It returns zero when the
|
|
* number has successfully been converted, non-zero otherwise. When an error
|
|
* is returned, the <ret> value is left untouched. It is yet 5 to 40 times
|
|
* faster than strtol().
|
|
*/
|
|
int strl2irc(const char *s, int len, int *ret)
|
|
{
|
|
int i = 0;
|
|
int j;
|
|
|
|
if (!len)
|
|
return 1;
|
|
|
|
if (*s != '-') {
|
|
/* positive number */
|
|
while (len-- > 0) {
|
|
j = (*s++) - '0';
|
|
if (j > 9) return 1; /* invalid char */
|
|
if (i > INT_MAX / 10) return 1; /* check for multiply overflow */
|
|
i = i * 10;
|
|
if (i + j < i) return 1; /* check for addition overflow */
|
|
i = i + j;
|
|
}
|
|
} else {
|
|
/* negative number */
|
|
s++;
|
|
while (--len > 0) {
|
|
j = (*s++) - '0';
|
|
if (j > 9) return 1; /* invalid char */
|
|
if (i < INT_MIN / 10) return 1; /* check for multiply overflow */
|
|
i = i * 10;
|
|
if (i - j > i) return 1; /* check for subtract overflow */
|
|
i = i - j;
|
|
}
|
|
}
|
|
*ret = i;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* This function reads exactly <len> chars from <s> and converts them to a
|
|
* signed integer which it stores into <ret>. It accurately detects any error
|
|
* (truncated string, invalid chars, overflows). It is meant to be used in
|
|
* applications designed for hostile environments. It returns zero when the
|
|
* number has successfully been converted, non-zero otherwise. When an error
|
|
* is returned, the <ret> value is left untouched. It is about 3 times slower
|
|
* than str2irc().
|
|
*/
|
|
|
|
int strl2llrc(const char *s, int len, long long *ret)
|
|
{
|
|
long long i = 0;
|
|
int j;
|
|
|
|
if (!len)
|
|
return 1;
|
|
|
|
if (*s != '-') {
|
|
/* positive number */
|
|
while (len-- > 0) {
|
|
j = (*s++) - '0';
|
|
if (j > 9) return 1; /* invalid char */
|
|
if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */
|
|
i = i * 10LL;
|
|
if (i + j < i) return 1; /* check for addition overflow */
|
|
i = i + j;
|
|
}
|
|
} else {
|
|
/* negative number */
|
|
s++;
|
|
while (--len > 0) {
|
|
j = (*s++) - '0';
|
|
if (j > 9) return 1; /* invalid char */
|
|
if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */
|
|
i = i * 10LL;
|
|
if (i - j > i) return 1; /* check for subtract overflow */
|
|
i = i - j;
|
|
}
|
|
}
|
|
*ret = i;
|
|
return 0;
|
|
}
|
|
|
|
/* This function is used with pat_parse_dotted_ver(). It converts a string
|
|
* composed by two number separated by a dot. Each part must contain in 16 bits
|
|
* because internally they will be represented as a 32-bit quantity stored in
|
|
* a 64-bit integer. It returns zero when the number has successfully been
|
|
* converted, non-zero otherwise. When an error is returned, the <ret> value
|
|
* is left untouched.
|
|
*
|
|
* "1.3" -> 0x0000000000010003
|
|
* "65535.65535" -> 0x00000000ffffffff
|
|
*/
|
|
int strl2llrc_dotted(const char *text, int len, long long *ret)
|
|
{
|
|
const char *end = &text[len];
|
|
const char *p;
|
|
long long major, minor;
|
|
|
|
/* Look for dot. */
|
|
for (p = text; p < end; p++)
|
|
if (*p == '.')
|
|
break;
|
|
|
|
/* Convert major. */
|
|
if (strl2llrc(text, p - text, &major) != 0)
|
|
return 1;
|
|
|
|
/* Check major. */
|
|
if (major >= 65536)
|
|
return 1;
|
|
|
|
/* Convert minor. */
|
|
minor = 0;
|
|
if (p < end)
|
|
if (strl2llrc(p + 1, end - (p + 1), &minor) != 0)
|
|
return 1;
|
|
|
|
/* Check minor. */
|
|
if (minor >= 65536)
|
|
return 1;
|
|
|
|
/* Compose value. */
|
|
*ret = (major << 16) | (minor & 0xffff);
|
|
return 0;
|
|
}
|
|
|
|
/* This function parses a time value optionally followed by a unit suffix among
|
|
* "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
|
|
* expected by the caller. The computation does its best to avoid overflows.
|
|
* The value is returned in <ret> if everything is fine, and a NULL is returned
|
|
* by the function. In case of error, a pointer to the error is returned and
|
|
* <ret> is left untouched. Values are automatically rounded up when needed.
|
|
* Values resulting in values larger than or equal to 2^31 after conversion are
|
|
* reported as an overflow as value PARSE_TIME_OVER. Non-null values resulting
|
|
* in an underflow are reported as an underflow as value PARSE_TIME_UNDER.
|
|
*/
|
|
const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags)
|
|
{
|
|
unsigned long long imult, idiv;
|
|
unsigned long long omult, odiv;
|
|
unsigned long long value, result;
|
|
const char *str = text;
|
|
|
|
if (!isdigit((unsigned char)*text))
|
|
return text;
|
|
|
|
omult = odiv = 1;
|
|
|
|
switch (unit_flags & TIME_UNIT_MASK) {
|
|
case TIME_UNIT_US: omult = 1000000; break;
|
|
case TIME_UNIT_MS: omult = 1000; break;
|
|
case TIME_UNIT_S: break;
|
|
case TIME_UNIT_MIN: odiv = 60; break;
|
|
case TIME_UNIT_HOUR: odiv = 3600; break;
|
|
case TIME_UNIT_DAY: odiv = 86400; break;
|
|
default: break;
|
|
}
|
|
|
|
value = 0;
|
|
|
|
while (1) {
|
|
unsigned int j;
|
|
|
|
j = *text - '0';
|
|
if (j > 9)
|
|
break;
|
|
text++;
|
|
value *= 10;
|
|
value += j;
|
|
}
|
|
|
|
imult = idiv = 1;
|
|
switch (*text) {
|
|
case '\0': /* no unit = default unit */
|
|
imult = omult = idiv = odiv = 1;
|
|
goto end;
|
|
case 's': /* second = unscaled unit */
|
|
break;
|
|
case 'u': /* microsecond : "us" */
|
|
if (text[1] == 's') {
|
|
idiv = 1000000;
|
|
text++;
|
|
}
|
|
return text;
|
|
case 'm': /* millisecond : "ms" or minute: "m" */
|
|
if (text[1] == 's') {
|
|
idiv = 1000;
|
|
text++;
|
|
} else
|
|
imult = 60;
|
|
break;
|
|
case 'h': /* hour : "h" */
|
|
imult = 3600;
|
|
break;
|
|
case 'd': /* day : "d" */
|
|
imult = 86400;
|
|
break;
|
|
default:
|
|
return text;
|
|
break;
|
|
}
|
|
if (*(++text) != '\0') {
|
|
ha_warning("unexpected character '%c' after the timer value '%s', only "
|
|
"(us=microseconds,ms=milliseconds,s=seconds,m=minutes,h=hours,d=days) are supported."
|
|
" This will be reported as an error in next versions.\n", *text, str);
|
|
}
|
|
|
|
end:
|
|
if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
|
|
if (idiv % omult == 0) { idiv /= omult; omult = 1; }
|
|
if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
|
|
if (odiv % imult == 0) { odiv /= imult; imult = 1; }
|
|
|
|
result = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv);
|
|
if (result >= 0x80000000)
|
|
return PARSE_TIME_OVER;
|
|
if (!result && value)
|
|
return PARSE_TIME_UNDER;
|
|
*ret = result;
|
|
return NULL;
|
|
}
|
|
|
|
/* this function converts the string starting at <text> to an unsigned int
|
|
* stored in <ret>. If an error is detected, the pointer to the unexpected
|
|
* character is returned. If the conversion is successful, NULL is returned.
|
|
*/
|
|
const char *parse_size_err(const char *text, unsigned *ret) {
|
|
unsigned value = 0;
|
|
|
|
if (!isdigit((unsigned char)*text))
|
|
return text;
|
|
|
|
while (1) {
|
|
unsigned int j;
|
|
|
|
j = *text - '0';
|
|
if (j > 9)
|
|
break;
|
|
if (value > ~0U / 10)
|
|
return text;
|
|
value *= 10;
|
|
if (value > (value + j))
|
|
return text;
|
|
value += j;
|
|
text++;
|
|
}
|
|
|
|
switch (*text) {
|
|
case '\0':
|
|
break;
|
|
case 'K':
|
|
case 'k':
|
|
if (value > ~0U >> 10)
|
|
return text;
|
|
value = value << 10;
|
|
break;
|
|
case 'M':
|
|
case 'm':
|
|
if (value > ~0U >> 20)
|
|
return text;
|
|
value = value << 20;
|
|
break;
|
|
case 'G':
|
|
case 'g':
|
|
if (value > ~0U >> 30)
|
|
return text;
|
|
value = value << 30;
|
|
break;
|
|
default:
|
|
return text;
|
|
}
|
|
|
|
if (*text != '\0' && *++text != '\0')
|
|
return text;
|
|
|
|
*ret = value;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Parse binary string written in hexadecimal (source) and store the decoded
|
|
* result into binstr and set binstrlen to the length of binstr. Memory for
|
|
* binstr is allocated by the function. In case of error, returns 0 with an
|
|
* error message in err. In success case, it returns the consumed length.
|
|
*/
|
|
int parse_binary(const char *source, char **binstr, int *binstrlen, char **err)
|
|
{
|
|
int len;
|
|
const char *p = source;
|
|
int i,j;
|
|
int alloc;
|
|
|
|
len = strlen(source);
|
|
if (len % 2) {
|
|
memprintf(err, "an even number of hex digit is expected");
|
|
return 0;
|
|
}
|
|
|
|
len = len >> 1;
|
|
|
|
if (!*binstr) {
|
|
*binstr = calloc(len, sizeof(**binstr));
|
|
if (!*binstr) {
|
|
memprintf(err, "out of memory while loading string pattern");
|
|
return 0;
|
|
}
|
|
alloc = 1;
|
|
}
|
|
else {
|
|
if (*binstrlen < len) {
|
|
memprintf(err, "no space available in the buffer. expect %d, provides %d",
|
|
len, *binstrlen);
|
|
return 0;
|
|
}
|
|
alloc = 0;
|
|
}
|
|
*binstrlen = len;
|
|
|
|
i = j = 0;
|
|
while (j < len) {
|
|
if (!ishex(p[i++]))
|
|
goto bad_input;
|
|
if (!ishex(p[i++]))
|
|
goto bad_input;
|
|
(*binstr)[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
|
|
}
|
|
return len << 1;
|
|
|
|
bad_input:
|
|
memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
|
|
if (alloc) {
|
|
free(*binstr);
|
|
*binstr = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* copies at most <n> characters from <src> and always terminates with '\0' */
|
|
char *my_strndup(const char *src, int n)
|
|
{
|
|
int len = 0;
|
|
char *ret;
|
|
|
|
while (len < n && src[len])
|
|
len++;
|
|
|
|
ret = malloc(len + 1);
|
|
if (!ret)
|
|
return ret;
|
|
memcpy(ret, src, len);
|
|
ret[len] = '\0';
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* search needle in haystack
|
|
* returns the pointer if found, returns NULL otherwise
|
|
*/
|
|
const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen)
|
|
{
|
|
const void *c = NULL;
|
|
unsigned char f;
|
|
|
|
if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen))
|
|
return NULL;
|
|
|
|
f = *(char *)needle;
|
|
c = haystack;
|
|
while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) {
|
|
if ((haystacklen - (c - haystack)) < needlelen)
|
|
return NULL;
|
|
|
|
if (memcmp(c, needle, needlelen) == 0)
|
|
return c;
|
|
++c;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* get length of the initial segment consisting entirely of bytes in <accept> */
|
|
size_t my_memspn(const void *str, size_t len, const void *accept, size_t acceptlen)
|
|
{
|
|
size_t ret = 0;
|
|
|
|
while (ret < len && memchr(accept, *((int *)str), acceptlen)) {
|
|
str++;
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* get length of the initial segment consisting entirely of bytes not in <rejcet> */
|
|
size_t my_memcspn(const void *str, size_t len, const void *reject, size_t rejectlen)
|
|
{
|
|
size_t ret = 0;
|
|
|
|
while (ret < len) {
|
|
if(memchr(reject, *((int *)str), rejectlen))
|
|
return ret;
|
|
str++;
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* This function returns the first unused key greater than or equal to <key> in
|
|
* ID tree <root>. Zero is returned if no place is found.
|
|
*/
|
|
unsigned int get_next_id(struct eb_root *root, unsigned int key)
|
|
{
|
|
struct eb32_node *used;
|
|
|
|
do {
|
|
used = eb32_lookup_ge(root, key);
|
|
if (!used || used->key > key)
|
|
return key; /* key is available */
|
|
key++;
|
|
} while (key);
|
|
return key;
|
|
}
|
|
|
|
/* dump the full tree to <file> in DOT format for debugging purposes. Will
|
|
* optionally highlight node <subj> if found, depending on operation <op> :
|
|
* 0 : nothing
|
|
* >0 : insertion, node/leaf are surrounded in red
|
|
* <0 : removal, node/leaf are dashed with no background
|
|
* Will optionally add "desc" as a label on the graph if set and non-null.
|
|
*/
|
|
void eb32sc_to_file(FILE *file, struct eb_root *root, const struct eb32sc_node *subj, int op, const char *desc)
|
|
{
|
|
struct eb32sc_node *node;
|
|
unsigned long scope = -1;
|
|
|
|
fprintf(file, "digraph ebtree {\n");
|
|
|
|
if (desc && *desc) {
|
|
fprintf(file,
|
|
" fontname=\"fixed\";\n"
|
|
" fontsize=8;\n"
|
|
" label=\"%s\";\n", desc);
|
|
}
|
|
|
|
fprintf(file,
|
|
" node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
|
|
" edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
|
|
" \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
|
|
);
|
|
|
|
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
|
|
(long)eb_root_to_node(root),
|
|
(long)eb_root_to_node(eb_clrtag(root->b[0])),
|
|
eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');
|
|
|
|
node = eb32sc_first(root, scope);
|
|
while (node) {
|
|
if (node->node.node_p) {
|
|
/* node part is used */
|
|
fprintf(file, " \"%lx_n\" [label=\"%lx\\nkey=%u\\nscope=%lx\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
|
|
(long)node, (long)node, node->key, node->node_s, node->node.bit,
|
|
(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
|
|
|
|
fprintf(file, " \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
|
|
(long)node,
|
|
(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
|
|
eb_gettag(node->node.node_p) ? 'R' : 'L');
|
|
|
|
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
|
|
(long)node,
|
|
(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
|
|
eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');
|
|
|
|
fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
|
|
(long)node,
|
|
(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
|
|
eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
|
|
}
|
|
|
|
fprintf(file, " \"%lx_l\" [label=\"%lx\\nkey=%u\\nscope=%lx\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
|
|
(long)node, (long)node, node->key, node->leaf_s, node->node.pfx,
|
|
(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
|
|
|
|
fprintf(file, " \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
|
|
(long)node,
|
|
(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
|
|
eb_gettag(node->node.leaf_p) ? 'R' : 'L');
|
|
node = eb32sc_next(node, scope);
|
|
}
|
|
fprintf(file, "}\n");
|
|
}
|
|
|
|
/* This function compares a sample word possibly followed by blanks to another
|
|
* clean word. The compare is case-insensitive. 1 is returned if both are equal,
|
|
* otherwise zero. This intends to be used when checking HTTP headers for some
|
|
* values. Note that it validates a word followed only by blanks but does not
|
|
* validate a word followed by blanks then other chars.
|
|
*/
|
|
int word_match(const char *sample, int slen, const char *word, int wlen)
|
|
{
|
|
if (slen < wlen)
|
|
return 0;
|
|
|
|
while (wlen) {
|
|
char c = *sample ^ *word;
|
|
if (c && c != ('A' ^ 'a'))
|
|
return 0;
|
|
sample++;
|
|
word++;
|
|
slen--;
|
|
wlen--;
|
|
}
|
|
|
|
while (slen) {
|
|
if (*sample != ' ' && *sample != '\t')
|
|
return 0;
|
|
sample++;
|
|
slen--;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Converts any text-formatted IPv4 address to a host-order IPv4 address. It
|
|
* is particularly fast because it avoids expensive operations such as
|
|
* multiplies, which are optimized away at the end. It requires a properly
|
|
* formatted address though (3 points).
|
|
*/
|
|
unsigned int inetaddr_host(const char *text)
|
|
{
|
|
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
|
|
register unsigned int dig100, dig10, dig1;
|
|
int s;
|
|
const char *p, *d;
|
|
|
|
dig1 = dig10 = dig100 = ascii_zero;
|
|
s = 24;
|
|
|
|
p = text;
|
|
while (1) {
|
|
if (((unsigned)(*p - '0')) <= 9) {
|
|
p++;
|
|
continue;
|
|
}
|
|
|
|
/* here, we have a complete byte between <text> and <p> (exclusive) */
|
|
if (p == text)
|
|
goto end;
|
|
|
|
d = p - 1;
|
|
dig1 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig10 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig100 |= (unsigned int)(*d << s);
|
|
end:
|
|
if (!s || *p != '.')
|
|
break;
|
|
|
|
s -= 8;
|
|
text = ++p;
|
|
}
|
|
|
|
dig100 -= ascii_zero;
|
|
dig10 -= ascii_zero;
|
|
dig1 -= ascii_zero;
|
|
return ((dig100 * 10) + dig10) * 10 + dig1;
|
|
}
|
|
|
|
/*
|
|
* Idem except the first unparsed character has to be passed in <stop>.
|
|
*/
|
|
unsigned int inetaddr_host_lim(const char *text, const char *stop)
|
|
{
|
|
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
|
|
register unsigned int dig100, dig10, dig1;
|
|
int s;
|
|
const char *p, *d;
|
|
|
|
dig1 = dig10 = dig100 = ascii_zero;
|
|
s = 24;
|
|
|
|
p = text;
|
|
while (1) {
|
|
if (((unsigned)(*p - '0')) <= 9 && p < stop) {
|
|
p++;
|
|
continue;
|
|
}
|
|
|
|
/* here, we have a complete byte between <text> and <p> (exclusive) */
|
|
if (p == text)
|
|
goto end;
|
|
|
|
d = p - 1;
|
|
dig1 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig10 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig100 |= (unsigned int)(*d << s);
|
|
end:
|
|
if (!s || p == stop || *p != '.')
|
|
break;
|
|
|
|
s -= 8;
|
|
text = ++p;
|
|
}
|
|
|
|
dig100 -= ascii_zero;
|
|
dig10 -= ascii_zero;
|
|
dig1 -= ascii_zero;
|
|
return ((dig100 * 10) + dig10) * 10 + dig1;
|
|
}
|
|
|
|
/*
|
|
* Idem except the pointer to first unparsed byte is returned into <ret> which
|
|
* must not be NULL.
|
|
*/
|
|
unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret)
|
|
{
|
|
const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
|
|
register unsigned int dig100, dig10, dig1;
|
|
int s;
|
|
char *p, *d;
|
|
|
|
dig1 = dig10 = dig100 = ascii_zero;
|
|
s = 24;
|
|
|
|
p = text;
|
|
while (1) {
|
|
if (((unsigned)(*p - '0')) <= 9 && p < stop) {
|
|
p++;
|
|
continue;
|
|
}
|
|
|
|
/* here, we have a complete byte between <text> and <p> (exclusive) */
|
|
if (p == text)
|
|
goto end;
|
|
|
|
d = p - 1;
|
|
dig1 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig10 |= (unsigned int)(*d << s);
|
|
if (d == text)
|
|
goto end;
|
|
|
|
d--;
|
|
dig100 |= (unsigned int)(*d << s);
|
|
end:
|
|
if (!s || p == stop || *p != '.')
|
|
break;
|
|
|
|
s -= 8;
|
|
text = ++p;
|
|
}
|
|
|
|
*ret = p;
|
|
dig100 -= ascii_zero;
|
|
dig10 -= ascii_zero;
|
|
dig1 -= ascii_zero;
|
|
return ((dig100 * 10) + dig10) * 10 + dig1;
|
|
}
|
|
|
|
/* Convert a fixed-length string to an IP address. Returns 0 in case of error,
|
|
* or the number of chars read in case of success. Maybe this could be replaced
|
|
* by one of the functions above. Also, apparently this function does not support
|
|
* hosts above 255 and requires exactly 4 octets.
|
|
* The destination is only modified on success.
|
|
*/
|
|
int buf2ip(const char *buf, size_t len, struct in_addr *dst)
|
|
{
|
|
const char *addr;
|
|
int saw_digit, octets, ch;
|
|
u_char tmp[4], *tp;
|
|
const char *cp = buf;
|
|
|
|
saw_digit = 0;
|
|
octets = 0;
|
|
*(tp = tmp) = 0;
|
|
|
|
for (addr = buf; addr - buf < len; addr++) {
|
|
unsigned char digit = (ch = *addr) - '0';
|
|
|
|
if (digit > 9 && ch != '.')
|
|
break;
|
|
|
|
if (digit <= 9) {
|
|
u_int new = *tp * 10 + digit;
|
|
|
|
if (new > 255)
|
|
return 0;
|
|
|
|
*tp = new;
|
|
|
|
if (!saw_digit) {
|
|
if (++octets > 4)
|
|
return 0;
|
|
saw_digit = 1;
|
|
}
|
|
} else if (ch == '.' && saw_digit) {
|
|
if (octets == 4)
|
|
return 0;
|
|
|
|
*++tp = 0;
|
|
saw_digit = 0;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
if (octets < 4)
|
|
return 0;
|
|
|
|
memcpy(&dst->s_addr, tmp, 4);
|
|
return addr - cp;
|
|
}
|
|
|
|
/* This function converts the string in <buf> of the len <len> to
|
|
* struct in6_addr <dst> which must be allocated by the caller.
|
|
* This function returns 1 in success case, otherwise zero.
|
|
* The destination is only modified on success.
|
|
*/
|
|
int buf2ip6(const char *buf, size_t len, struct in6_addr *dst)
|
|
{
|
|
char null_term_ip6[INET6_ADDRSTRLEN + 1];
|
|
struct in6_addr out;
|
|
|
|
if (len > INET6_ADDRSTRLEN)
|
|
return 0;
|
|
|
|
memcpy(null_term_ip6, buf, len);
|
|
null_term_ip6[len] = '\0';
|
|
|
|
if (!inet_pton(AF_INET6, null_term_ip6, &out))
|
|
return 0;
|
|
|
|
*dst = out;
|
|
return 1;
|
|
}
|
|
|
|
/* To be used to quote config arg positions. Returns the short string at <ptr>
|
|
* surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
|
|
* if ptr is NULL or empty. The string is locally allocated.
|
|
*/
|
|
const char *quote_arg(const char *ptr)
|
|
{
|
|
static THREAD_LOCAL char val[32];
|
|
int i;
|
|
|
|
if (!ptr || !*ptr)
|
|
return "end of line";
|
|
val[0] = '\'';
|
|
for (i = 1; i < sizeof(val) - 2 && *ptr; i++)
|
|
val[i] = *ptr++;
|
|
val[i++] = '\'';
|
|
val[i] = '\0';
|
|
return val;
|
|
}
|
|
|
|
/* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
|
|
int get_std_op(const char *str)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (*str == 'e' && str[1] == 'q')
|
|
ret = STD_OP_EQ;
|
|
else if (*str == 'n' && str[1] == 'e')
|
|
ret = STD_OP_NE;
|
|
else if (*str == 'l') {
|
|
if (str[1] == 'e') ret = STD_OP_LE;
|
|
else if (str[1] == 't') ret = STD_OP_LT;
|
|
}
|
|
else if (*str == 'g') {
|
|
if (str[1] == 'e') ret = STD_OP_GE;
|
|
else if (str[1] == 't') ret = STD_OP_GT;
|
|
}
|
|
|
|
if (ret == -1 || str[2] != '\0')
|
|
return -1;
|
|
return ret;
|
|
}
|
|
|
|
/* hash a 32-bit integer to another 32-bit integer */
|
|
unsigned int full_hash(unsigned int a)
|
|
{
|
|
return __full_hash(a);
|
|
}
|
|
|
|
/* Return the bit position in mask <m> of the nth bit set of rank <r>, between
|
|
* 0 and LONGBITS-1 included, starting from the left. For example ranks 0,1,2,3
|
|
* for mask 0x55 will be 6, 4, 2 and 0 respectively. This algorithm is based on
|
|
* a popcount variant and is described here :
|
|
* https://graphics.stanford.edu/~seander/bithacks.html
|
|
*/
|
|
unsigned int mask_find_rank_bit(unsigned int r, unsigned long m)
|
|
{
|
|
unsigned long a, b, c, d;
|
|
unsigned int s;
|
|
unsigned int t;
|
|
|
|
a = m - ((m >> 1) & ~0UL/3);
|
|
b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);
|
|
c = (b + (b >> 4)) & ~0UL/0x11;
|
|
d = (c + (c >> 8)) & ~0UL/0x101;
|
|
|
|
r++; // make r be 1..64
|
|
|
|
t = 0;
|
|
s = LONGBITS;
|
|
if (s > 32) {
|
|
unsigned long d2 = (d >> 16) >> 16;
|
|
t = d2 + (d2 >> 16);
|
|
s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
|
|
}
|
|
|
|
t = (d >> (s - 16)) & 0xff;
|
|
s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
|
|
t = (c >> (s - 8)) & 0xf;
|
|
s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
|
|
t = (b >> (s - 4)) & 0x7;
|
|
s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
|
|
t = (a >> (s - 2)) & 0x3;
|
|
s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
|
|
t = (m >> (s - 1)) & 0x1;
|
|
s -= ((t - r) & 256) >> 8;
|
|
|
|
return s - 1;
|
|
}
|
|
|
|
/* Same as mask_find_rank_bit() above but makes use of pre-computed bitmaps
|
|
* based on <m>, in <a..d>. These ones must be updated whenever <m> changes
|
|
* using mask_prep_rank_map() below.
|
|
*/
|
|
unsigned int mask_find_rank_bit_fast(unsigned int r, unsigned long m,
|
|
unsigned long a, unsigned long b,
|
|
unsigned long c, unsigned long d)
|
|
{
|
|
unsigned int s;
|
|
unsigned int t;
|
|
|
|
r++; // make r be 1..64
|
|
|
|
t = 0;
|
|
s = LONGBITS;
|
|
if (s > 32) {
|
|
unsigned long d2 = (d >> 16) >> 16;
|
|
t = d2 + (d2 >> 16);
|
|
s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
|
|
}
|
|
|
|
t = (d >> (s - 16)) & 0xff;
|
|
s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
|
|
t = (c >> (s - 8)) & 0xf;
|
|
s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
|
|
t = (b >> (s - 4)) & 0x7;
|
|
s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
|
|
t = (a >> (s - 2)) & 0x3;
|
|
s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
|
|
t = (m >> (s - 1)) & 0x1;
|
|
s -= ((t - r) & 256) >> 8;
|
|
|
|
return s - 1;
|
|
}
|
|
|
|
/* Prepare the bitmaps used by the fast implementation of the find_rank_bit()
|
|
* above.
|
|
*/
|
|
void mask_prep_rank_map(unsigned long m,
|
|
unsigned long *a, unsigned long *b,
|
|
unsigned long *c, unsigned long *d)
|
|
{
|
|
*a = m - ((m >> 1) & ~0UL/3);
|
|
*b = (*a & ~0UL/5) + ((*a >> 2) & ~0UL/5);
|
|
*c = (*b + (*b >> 4)) & ~0UL/0x11;
|
|
*d = (*c + (*c >> 8)) & ~0UL/0x101;
|
|
}
|
|
|
|
/* Return non-zero if IPv4 address is part of the network,
|
|
* otherwise zero. Note that <addr> may not necessarily be aligned
|
|
* while the two other ones must.
|
|
*/
|
|
int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net)
|
|
{
|
|
struct in_addr addr_copy;
|
|
|
|
memcpy(&addr_copy, addr, sizeof(addr_copy));
|
|
return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr));
|
|
}
|
|
|
|
/* Return non-zero if IPv6 address is part of the network,
|
|
* otherwise zero. Note that <addr> may not necessarily be aligned
|
|
* while the two other ones must.
|
|
*/
|
|
int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net)
|
|
{
|
|
int i;
|
|
struct in6_addr addr_copy;
|
|
|
|
memcpy(&addr_copy, addr, sizeof(addr_copy));
|
|
for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
|
|
if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) !=
|
|
(((int *)net)[i] & ((int *)mask)[i]))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* RFC 4291 prefix */
|
|
const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0xFF, 0xFF };
|
|
|
|
/* Map IPv4 address on IPv6 address, as specified in RFC 3513.
|
|
* Input and output may overlap.
|
|
*/
|
|
void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr)
|
|
{
|
|
struct in_addr tmp_addr;
|
|
|
|
tmp_addr.s_addr = sin_addr->s_addr;
|
|
memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx));
|
|
memcpy(sin6_addr->s6_addr+12, &tmp_addr.s_addr, 4);
|
|
}
|
|
|
|
/* Map IPv6 address on IPv4 address, as specified in RFC 3513.
|
|
* Return true if conversion is possible and false otherwise.
|
|
*/
|
|
int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr)
|
|
{
|
|
if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) {
|
|
memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]),
|
|
sizeof(struct in_addr));
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* compare two struct sockaddr_storage and return:
|
|
* 0 (true) if the addr is the same in both
|
|
* 1 (false) if the addr is not the same in both
|
|
* -1 (unable) if one of the addr is not AF_INET*
|
|
*/
|
|
int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2)
|
|
{
|
|
if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6))
|
|
return -1;
|
|
|
|
if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6))
|
|
return -1;
|
|
|
|
if (ss1->ss_family != ss2->ss_family)
|
|
return 1;
|
|
|
|
switch (ss1->ss_family) {
|
|
case AF_INET:
|
|
return memcmp(&((struct sockaddr_in *)ss1)->sin_addr,
|
|
&((struct sockaddr_in *)ss2)->sin_addr,
|
|
sizeof(struct in_addr)) != 0;
|
|
case AF_INET6:
|
|
return memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr,
|
|
&((struct sockaddr_in6 *)ss2)->sin6_addr,
|
|
sizeof(struct in6_addr)) != 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* copy IP address from <source> into <dest>
|
|
* The caller must allocate and clear <dest> before calling.
|
|
* The source must be in either AF_INET or AF_INET6 family, or the destination
|
|
* address will be undefined. If the destination address used to hold a port,
|
|
* it is preserved, so that this function can be used to switch to another
|
|
* address family with no risk. Returns a pointer to the destination.
|
|
*/
|
|
struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest)
|
|
{
|
|
int prev_port;
|
|
|
|
prev_port = get_net_port(dest);
|
|
memset(dest, 0, sizeof(*dest));
|
|
dest->ss_family = source->ss_family;
|
|
|
|
/* copy new addr and apply it */
|
|
switch (source->ss_family) {
|
|
case AF_INET:
|
|
((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr;
|
|
((struct sockaddr_in *)dest)->sin_port = prev_port;
|
|
break;
|
|
case AF_INET6:
|
|
memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr));
|
|
((struct sockaddr_in6 *)dest)->sin6_port = prev_port;
|
|
break;
|
|
}
|
|
|
|
return dest;
|
|
}
|
|
|
|
char *human_time(int t, short hz_div) {
|
|
static char rv[sizeof("24855d23h")+1]; // longest of "23h59m" and "59m59s"
|
|
char *p = rv;
|
|
char *end = rv + sizeof(rv);
|
|
int cnt=2; // print two numbers
|
|
|
|
if (unlikely(t < 0 || hz_div <= 0)) {
|
|
snprintf(p, end - p, "?");
|
|
return rv;
|
|
}
|
|
|
|
if (unlikely(hz_div > 1))
|
|
t /= hz_div;
|
|
|
|
if (t >= DAY) {
|
|
p += snprintf(p, end - p, "%dd", t / DAY);
|
|
cnt--;
|
|
}
|
|
|
|
if (cnt && t % DAY / HOUR) {
|
|
p += snprintf(p, end - p, "%dh", t % DAY / HOUR);
|
|
cnt--;
|
|
}
|
|
|
|
if (cnt && t % HOUR / MINUTE) {
|
|
p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE);
|
|
cnt--;
|
|
}
|
|
|
|
if ((cnt && t % MINUTE) || !t) // also display '0s'
|
|
p += snprintf(p, end - p, "%ds", t % MINUTE / SEC);
|
|
|
|
return rv;
|
|
}
|
|
|
|
const char *monthname[12] = {
|
|
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
|
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
|
|
};
|
|
|
|
/* date2str_log: write a date in the format :
|
|
* sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
|
|
* tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
|
|
* tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
|
|
*
|
|
* without using sprintf. return a pointer to the last char written (\0) or
|
|
* NULL if there isn't enough space.
|
|
*/
|
|
char *date2str_log(char *dst, const struct tm *tm, const struct timeval *date, size_t size)
|
|
{
|
|
|
|
if (size < 25) /* the size is fixed: 24 chars + \0 */
|
|
return NULL;
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = '/';
|
|
|
|
memcpy(dst, monthname[tm->tm_mon], 3); // month
|
|
dst += 3;
|
|
*dst++ = '/';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = '.';
|
|
|
|
dst = utoa_pad((unsigned int)(date->tv_usec/1000)%1000, dst, 4); // milliseconds
|
|
if (!dst)
|
|
return NULL;
|
|
*dst = '\0';
|
|
|
|
return dst;
|
|
}
|
|
|
|
/* Base year used to compute leap years */
|
|
#define TM_YEAR_BASE 1900
|
|
|
|
/* Return the difference in seconds between two times (leap seconds are ignored).
|
|
* Retrieved from glibc 2.18 source code.
|
|
*/
|
|
static int my_tm_diff(const struct tm *a, const struct tm *b)
|
|
{
|
|
/* Compute intervening leap days correctly even if year is negative.
|
|
* Take care to avoid int overflow in leap day calculations,
|
|
* but it's OK to assume that A and B are close to each other.
|
|
*/
|
|
int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
|
|
int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
|
|
int a100 = a4 / 25 - (a4 % 25 < 0);
|
|
int b100 = b4 / 25 - (b4 % 25 < 0);
|
|
int a400 = a100 >> 2;
|
|
int b400 = b100 >> 2;
|
|
int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
|
|
int years = a->tm_year - b->tm_year;
|
|
int days = (365 * years + intervening_leap_days
|
|
+ (a->tm_yday - b->tm_yday));
|
|
return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
|
|
+ (a->tm_min - b->tm_min))
|
|
+ (a->tm_sec - b->tm_sec));
|
|
}
|
|
|
|
/* Return the GMT offset for a specific local time.
|
|
* Both t and tm must represent the same time.
|
|
* The string returned has the same format as returned by strftime(... "%z", tm).
|
|
* Offsets are kept in an internal cache for better performances.
|
|
*/
|
|
const char *get_gmt_offset(time_t t, struct tm *tm)
|
|
{
|
|
/* Cache offsets from GMT (depending on whether DST is active or not) */
|
|
static THREAD_LOCAL char gmt_offsets[2][5+1] = { "", "" };
|
|
|
|
char *gmt_offset;
|
|
struct tm tm_gmt;
|
|
int diff;
|
|
int isdst = tm->tm_isdst;
|
|
|
|
/* Pretend DST not active if its status is unknown */
|
|
if (isdst < 0)
|
|
isdst = 0;
|
|
|
|
/* Fetch the offset and initialize it if needed */
|
|
gmt_offset = gmt_offsets[isdst & 0x01];
|
|
if (unlikely(!*gmt_offset)) {
|
|
get_gmtime(t, &tm_gmt);
|
|
diff = my_tm_diff(tm, &tm_gmt);
|
|
if (diff < 0) {
|
|
diff = -diff;
|
|
*gmt_offset = '-';
|
|
} else {
|
|
*gmt_offset = '+';
|
|
}
|
|
diff %= 86400U;
|
|
diff /= 60; /* Convert to minutes */
|
|
snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60);
|
|
}
|
|
|
|
return gmt_offset;
|
|
}
|
|
|
|
/* gmt2str_log: write a date in the format :
|
|
* "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
|
|
* return a pointer to the last char written (\0) or
|
|
* NULL if there isn't enough space.
|
|
*/
|
|
char *gmt2str_log(char *dst, struct tm *tm, size_t size)
|
|
{
|
|
if (size < 27) /* the size is fixed: 26 chars + \0 */
|
|
return NULL;
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = '/';
|
|
|
|
memcpy(dst, monthname[tm->tm_mon], 3); // month
|
|
dst += 3;
|
|
*dst++ = '/';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ' ';
|
|
*dst++ = '+';
|
|
*dst++ = '0';
|
|
*dst++ = '0';
|
|
*dst++ = '0';
|
|
*dst++ = '0';
|
|
*dst = '\0';
|
|
|
|
return dst;
|
|
}
|
|
|
|
/* localdate2str_log: write a date in the format :
|
|
* "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
|
|
* Both t and tm must represent the same time.
|
|
* return a pointer to the last char written (\0) or
|
|
* NULL if there isn't enough space.
|
|
*/
|
|
char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size)
|
|
{
|
|
const char *gmt_offset;
|
|
if (size < 27) /* the size is fixed: 26 chars + \0 */
|
|
return NULL;
|
|
|
|
gmt_offset = get_gmt_offset(t, tm);
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = '/';
|
|
|
|
memcpy(dst, monthname[tm->tm_mon], 3); // month
|
|
dst += 3;
|
|
*dst++ = '/';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ':';
|
|
|
|
dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
|
|
if (!dst)
|
|
return NULL;
|
|
*dst++ = ' ';
|
|
|
|
memcpy(dst, gmt_offset, 5); // Offset from local time to GMT
|
|
dst += 5;
|
|
*dst = '\0';
|
|
|
|
return dst;
|
|
}
|
|
|
|
/* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date <tm>.
|
|
* It is meant as a portable replacement for timegm() for use with valid inputs.
|
|
* Returns undefined results for invalid dates (eg: months out of range 0..11).
|
|
*/
|
|
time_t my_timegm(const struct tm *tm)
|
|
{
|
|
/* Each month has 28, 29, 30 or 31 days, or 28+N. The date in the year
|
|
* is thus (current month - 1)*28 + cumulated_N[month] to count the
|
|
* sum of the extra N days for elapsed months. The sum of all these N
|
|
* days doesn't exceed 30 for a complete year (366-12*28) so it fits
|
|
* in a 5-bit word. This means that with 60 bits we can represent a
|
|
* matrix of all these values at once, which is fast and efficient to
|
|
* access. The extra February day for leap years is not counted here.
|
|
*
|
|
* Jan : none = 0 (0)
|
|
* Feb : Jan = 3 (3)
|
|
* Mar : Jan..Feb = 3 (3 + 0)
|
|
* Apr : Jan..Mar = 6 (3 + 0 + 3)
|
|
* May : Jan..Apr = 8 (3 + 0 + 3 + 2)
|
|
* Jun : Jan..May = 11 (3 + 0 + 3 + 2 + 3)
|
|
* Jul : Jan..Jun = 13 (3 + 0 + 3 + 2 + 3 + 2)
|
|
* Aug : Jan..Jul = 16 (3 + 0 + 3 + 2 + 3 + 2 + 3)
|
|
* Sep : Jan..Aug = 19 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3)
|
|
* Oct : Jan..Sep = 21 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2)
|
|
* Nov : Jan..Oct = 24 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3)
|
|
* Dec : Jan..Nov = 26 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3 + 2)
|
|
*/
|
|
uint64_t extra =
|
|
( 0ULL << 0*5) + ( 3ULL << 1*5) + ( 3ULL << 2*5) + /* Jan, Feb, Mar, */
|
|
( 6ULL << 3*5) + ( 8ULL << 4*5) + (11ULL << 5*5) + /* Apr, May, Jun, */
|
|
(13ULL << 6*5) + (16ULL << 7*5) + (19ULL << 8*5) + /* Jul, Aug, Sep, */
|
|
(21ULL << 9*5) + (24ULL << 10*5) + (26ULL << 11*5); /* Oct, Nov, Dec, */
|
|
|
|
unsigned int y = tm->tm_year + 1900;
|
|
unsigned int m = tm->tm_mon;
|
|
unsigned long days = 0;
|
|
|
|
/* days since 1/1/1970 for full years */
|
|
days += days_since_zero(y) - days_since_zero(1970);
|
|
|
|
/* days for full months in the current year */
|
|
days += 28 * m + ((extra >> (m * 5)) & 0x1f);
|
|
|
|
/* count + 1 after March for leap years. A leap year is a year multiple
|
|
* of 4, unless it's multiple of 100 without being multiple of 400. 2000
|
|
* is leap, 1900 isn't, 1904 is.
|
|
*/
|
|
if ((m > 1) && !(y & 3) && ((y % 100) || !(y % 400)))
|
|
days++;
|
|
|
|
days += tm->tm_mday - 1;
|
|
return days * 86400ULL + tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
|
|
}
|
|
|
|
/* This function check a char. It returns true and updates
|
|
* <date> and <len> pointer to the new position if the
|
|
* character is found.
|
|
*/
|
|
static inline int parse_expect_char(const char **date, int *len, char c)
|
|
{
|
|
if (*len < 1 || **date != c)
|
|
return 0;
|
|
(*len)--;
|
|
(*date)++;
|
|
return 1;
|
|
}
|
|
|
|
/* This function expects a string <str> of len <l>. It return true and updates.
|
|
* <date> and <len> if the string matches, otherwise, it returns false.
|
|
*/
|
|
static inline int parse_strcmp(const char **date, int *len, char *str, int l)
|
|
{
|
|
if (*len < l || strncmp(*date, str, l) != 0)
|
|
return 0;
|
|
(*len) -= l;
|
|
(*date) += l;
|
|
return 1;
|
|
}
|
|
|
|
/* This macro converts 3 chars name in integer. */
|
|
#define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c))
|
|
|
|
/* day-name = %x4D.6F.6E ; "Mon", case-sensitive
|
|
* / %x54.75.65 ; "Tue", case-sensitive
|
|
* / %x57.65.64 ; "Wed", case-sensitive
|
|
* / %x54.68.75 ; "Thu", case-sensitive
|
|
* / %x46.72.69 ; "Fri", case-sensitive
|
|
* / %x53.61.74 ; "Sat", case-sensitive
|
|
* / %x53.75.6E ; "Sun", case-sensitive
|
|
*
|
|
* This array must be alphabetically sorted
|
|
*/
|
|
static inline int parse_http_dayname(const char **date, int *len, struct tm *tm)
|
|
{
|
|
if (*len < 3)
|
|
return 0;
|
|
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
|
|
case STR2I3('M','o','n'): tm->tm_wday = 1; break;
|
|
case STR2I3('T','u','e'): tm->tm_wday = 2; break;
|
|
case STR2I3('W','e','d'): tm->tm_wday = 3; break;
|
|
case STR2I3('T','h','u'): tm->tm_wday = 4; break;
|
|
case STR2I3('F','r','i'): tm->tm_wday = 5; break;
|
|
case STR2I3('S','a','t'): tm->tm_wday = 6; break;
|
|
case STR2I3('S','u','n'): tm->tm_wday = 7; break;
|
|
default: return 0;
|
|
}
|
|
*len -= 3;
|
|
*date += 3;
|
|
return 1;
|
|
}
|
|
|
|
/* month = %x4A.61.6E ; "Jan", case-sensitive
|
|
* / %x46.65.62 ; "Feb", case-sensitive
|
|
* / %x4D.61.72 ; "Mar", case-sensitive
|
|
* / %x41.70.72 ; "Apr", case-sensitive
|
|
* / %x4D.61.79 ; "May", case-sensitive
|
|
* / %x4A.75.6E ; "Jun", case-sensitive
|
|
* / %x4A.75.6C ; "Jul", case-sensitive
|
|
* / %x41.75.67 ; "Aug", case-sensitive
|
|
* / %x53.65.70 ; "Sep", case-sensitive
|
|
* / %x4F.63.74 ; "Oct", case-sensitive
|
|
* / %x4E.6F.76 ; "Nov", case-sensitive
|
|
* / %x44.65.63 ; "Dec", case-sensitive
|
|
*
|
|
* This array must be alphabetically sorted
|
|
*/
|
|
static inline int parse_http_monthname(const char **date, int *len, struct tm *tm)
|
|
{
|
|
if (*len < 3)
|
|
return 0;
|
|
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
|
|
case STR2I3('J','a','n'): tm->tm_mon = 0; break;
|
|
case STR2I3('F','e','b'): tm->tm_mon = 1; break;
|
|
case STR2I3('M','a','r'): tm->tm_mon = 2; break;
|
|
case STR2I3('A','p','r'): tm->tm_mon = 3; break;
|
|
case STR2I3('M','a','y'): tm->tm_mon = 4; break;
|
|
case STR2I3('J','u','n'): tm->tm_mon = 5; break;
|
|
case STR2I3('J','u','l'): tm->tm_mon = 6; break;
|
|
case STR2I3('A','u','g'): tm->tm_mon = 7; break;
|
|
case STR2I3('S','e','p'): tm->tm_mon = 8; break;
|
|
case STR2I3('O','c','t'): tm->tm_mon = 9; break;
|
|
case STR2I3('N','o','v'): tm->tm_mon = 10; break;
|
|
case STR2I3('D','e','c'): tm->tm_mon = 11; break;
|
|
default: return 0;
|
|
}
|
|
*len -= 3;
|
|
*date += 3;
|
|
return 1;
|
|
}
|
|
|
|
/* day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive
|
|
* / %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive
|
|
* / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
|
|
* / %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive
|
|
* / %x46.72.69.64.61.79 ; "Friday", case-sensitive
|
|
* / %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive
|
|
* / %x53.75.6E.64.61.79 ; "Sunday", case-sensitive
|
|
*
|
|
* This array must be alphabetically sorted
|
|
*/
|
|
static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm)
|
|
{
|
|
if (*len < 6) /* Minimum length. */
|
|
return 0;
|
|
switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
|
|
case STR2I3('M','o','n'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Monday", 6));
|
|
tm->tm_wday = 1;
|
|
return 1;
|
|
case STR2I3('T','u','e'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7));
|
|
tm->tm_wday = 2;
|
|
return 1;
|
|
case STR2I3('W','e','d'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9));
|
|
tm->tm_wday = 3;
|
|
return 1;
|
|
case STR2I3('T','h','u'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8));
|
|
tm->tm_wday = 4;
|
|
return 1;
|
|
case STR2I3('F','r','i'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Friday", 6));
|
|
tm->tm_wday = 5;
|
|
return 1;
|
|
case STR2I3('S','a','t'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8));
|
|
tm->tm_wday = 6;
|
|
return 1;
|
|
case STR2I3('S','u','n'):
|
|
RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6));
|
|
tm->tm_wday = 7;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function parses exactly 1 digit and returns the numeric value in "digit". */
|
|
static inline int parse_digit(const char **date, int *len, int *digit)
|
|
{
|
|
if (*len < 1 || **date < '0' || **date > '9')
|
|
return 0;
|
|
*digit = (**date - '0');
|
|
(*date)++;
|
|
(*len)--;
|
|
return 1;
|
|
}
|
|
|
|
/* This function parses exactly 2 digits and returns the numeric value in "digit". */
|
|
static inline int parse_2digit(const char **date, int *len, int *digit)
|
|
{
|
|
int value;
|
|
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) = value * 10;
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) += value;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function parses exactly 4 digits and returns the numeric value in "digit". */
|
|
static inline int parse_4digit(const char **date, int *len, int *digit)
|
|
{
|
|
int value;
|
|
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) = value * 1000;
|
|
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) += value * 100;
|
|
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) += value * 10;
|
|
|
|
RET0_UNLESS(parse_digit(date, len, &value));
|
|
(*digit) += value;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* time-of-day = hour ":" minute ":" second
|
|
* ; 00:00:00 - 23:59:60 (leap second)
|
|
*
|
|
* hour = 2DIGIT
|
|
* minute = 2DIGIT
|
|
* second = 2DIGIT
|
|
*/
|
|
static inline int parse_http_time(const char **date, int *len, struct tm *tm)
|
|
{
|
|
RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */
|
|
RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */
|
|
RET0_UNLESS(parse_2digit(date, len, &tm->tm_min)); /* min 2DIGIT */
|
|
RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */
|
|
RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec)); /* sec 2DIGIT */
|
|
return 1;
|
|
}
|
|
|
|
/* From RFC7231
|
|
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
|
|
*
|
|
* IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT
|
|
* ; fixed length/zone/capitalization subset of the format
|
|
* ; see Section 3.3 of [RFC5322]
|
|
*
|
|
*
|
|
* date1 = day SP month SP year
|
|
* ; e.g., 02 Jun 1982
|
|
*
|
|
* day = 2DIGIT
|
|
* year = 4DIGIT
|
|
*
|
|
* GMT = %x47.4D.54 ; "GMT", case-sensitive
|
|
*
|
|
* time-of-day = hour ":" minute ":" second
|
|
* ; 00:00:00 - 23:59:60 (leap second)
|
|
*
|
|
* hour = 2DIGIT
|
|
* minute = 2DIGIT
|
|
* second = 2DIGIT
|
|
*
|
|
* DIGIT = decimal 0-9
|
|
*/
|
|
int parse_imf_date(const char *date, int len, struct tm *tm)
|
|
{
|
|
/* tm_gmtoff, if present, ought to be zero'ed */
|
|
memset(tm, 0, sizeof(*tm));
|
|
|
|
RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
|
|
tm->tm_year -= 1900;
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
|
|
tm->tm_isdst = -1;
|
|
return 1;
|
|
}
|
|
|
|
/* From RFC7231
|
|
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
|
|
*
|
|
* rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
|
|
* date2 = day "-" month "-" 2DIGIT
|
|
* ; e.g., 02-Jun-82
|
|
*
|
|
* day = 2DIGIT
|
|
*/
|
|
int parse_rfc850_date(const char *date, int len, struct tm *tm)
|
|
{
|
|
int year;
|
|
|
|
/* tm_gmtoff, if present, ought to be zero'ed */
|
|
memset(tm, 0, sizeof(*tm));
|
|
|
|
RET0_UNLESS(parse_http_ldayname(&date, &len, tm)); /* Read the day name */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */
|
|
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */
|
|
|
|
/* year = 2DIGIT
|
|
*
|
|
* Recipients of a timestamp value in rfc850-(*date) format, which uses a
|
|
* two-digit year, MUST interpret a timestamp that appears to be more
|
|
* than 50 years in the future as representing the most recent year in
|
|
* the past that had the same last two digits.
|
|
*/
|
|
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year));
|
|
|
|
/* expect SP */
|
|
if (!parse_expect_char(&date, &len, ' ')) {
|
|
/* Maybe we have the date with 4 digits. */
|
|
RET0_UNLESS(parse_2digit(&date, &len, &year));
|
|
tm->tm_year = (tm->tm_year * 100 + year) - 1900;
|
|
/* expect SP */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' '));
|
|
} else {
|
|
/* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the
|
|
* tm_year is the number of year since 1900, so for +1900, we
|
|
* do nothing, and for +2000, we add 100.
|
|
*/
|
|
if (tm->tm_year <= 60)
|
|
tm->tm_year += 100;
|
|
}
|
|
|
|
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
|
|
tm->tm_isdst = -1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* From RFC7231
|
|
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
|
|
*
|
|
* asctime-date = day-name SP date3 SP time-of-day SP year
|
|
* date3 = month SP ( 2DIGIT / ( SP 1DIGIT ))
|
|
* ; e.g., Jun 2
|
|
*
|
|
* HTTP-date is case sensitive. A sender MUST NOT generate additional
|
|
* whitespace in an HTTP-date beyond that specifically included as SP in
|
|
* the grammar.
|
|
*/
|
|
int parse_asctime_date(const char *date, int len, struct tm *tm)
|
|
{
|
|
/* tm_gmtoff, if present, ought to be zero'ed */
|
|
memset(tm, 0, sizeof(*tm));
|
|
|
|
RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
|
|
/* expect SP and 1DIGIT or 2DIGIT */
|
|
if (parse_expect_char(&date, &len, ' '))
|
|
RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday));
|
|
else
|
|
RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday));
|
|
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */
|
|
RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
|
|
RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
|
|
tm->tm_year -= 1900;
|
|
tm->tm_isdst = -1;
|
|
return 1;
|
|
}
|
|
|
|
/* From RFC7231
|
|
* https://tools.ietf.org/html/rfc7231#section-7.1.1.1
|
|
*
|
|
* HTTP-date = IMF-fixdate / obs-date
|
|
* obs-date = rfc850-date / asctime-date
|
|
*
|
|
* parses an HTTP date in the RFC format and is accepted
|
|
* alternatives. <date> is the strinf containing the date,
|
|
* len is the len of the string. <tm> is filled with the
|
|
* parsed time. We must considers this time as GMT.
|
|
*/
|
|
int parse_http_date(const char *date, int len, struct tm *tm)
|
|
{
|
|
if (parse_imf_date(date, len, tm))
|
|
return 1;
|
|
|
|
if (parse_rfc850_date(date, len, tm))
|
|
return 1;
|
|
|
|
if (parse_asctime_date(date, len, tm))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Dynamically allocates a string of the proper length to hold the formatted
|
|
* output. NULL is returned on error. The caller is responsible for freeing the
|
|
* memory area using free(). The resulting string is returned in <out> if the
|
|
* pointer is not NULL. A previous version of <out> might be used to build the
|
|
* new string, and it will be freed before returning if it is not NULL, which
|
|
* makes it possible to build complex strings from iterative calls without
|
|
* having to care about freeing intermediate values, as in the example below :
|
|
*
|
|
* memprintf(&err, "invalid argument: '%s'", arg);
|
|
* ...
|
|
* memprintf(&err, "parser said : <%s>\n", *err);
|
|
* ...
|
|
* free(*err);
|
|
*
|
|
* This means that <err> must be initialized to NULL before first invocation.
|
|
* The return value also holds the allocated string, which eases error checking
|
|
* and immediate consumption. If the output pointer is not used, NULL must be
|
|
* passed instead and it will be ignored. The returned message will then also
|
|
* be NULL so that the caller does not have to bother with freeing anything.
|
|
*
|
|
* It is also convenient to use it without any free except the last one :
|
|
* err = NULL;
|
|
* if (!fct1(err)) report(*err);
|
|
* if (!fct2(err)) report(*err);
|
|
* if (!fct3(err)) report(*err);
|
|
* free(*err);
|
|
*
|
|
* memprintf relies on memvprintf. This last version can be called from any
|
|
* function with variadic arguments.
|
|
*/
|
|
char *memvprintf(char **out, const char *format, va_list orig_args)
|
|
{
|
|
va_list args;
|
|
char *ret = NULL;
|
|
int allocated = 0;
|
|
int needed = 0;
|
|
|
|
if (!out)
|
|
return NULL;
|
|
|
|
do {
|
|
char buf1;
|
|
|
|
/* vsnprintf() will return the required length even when the
|
|
* target buffer is NULL. We do this in a loop just in case
|
|
* intermediate evaluations get wrong.
|
|
*/
|
|
va_copy(args, orig_args);
|
|
needed = vsnprintf(ret ? ret : &buf1, allocated, format, args);
|
|
va_end(args);
|
|
if (needed < allocated) {
|
|
/* Note: on Solaris 8, the first iteration always
|
|
* returns -1 if allocated is zero, so we force a
|
|
* retry.
|
|
*/
|
|
if (!allocated)
|
|
needed = 0;
|
|
else
|
|
break;
|
|
}
|
|
|
|
allocated = needed + 1;
|
|
ret = my_realloc2(ret, allocated);
|
|
} while (ret);
|
|
|
|
if (needed < 0) {
|
|
/* an error was encountered */
|
|
free(ret);
|
|
ret = NULL;
|
|
}
|
|
|
|
if (out) {
|
|
free(*out);
|
|
*out = ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
char *memprintf(char **out, const char *format, ...)
|
|
{
|
|
va_list args;
|
|
char *ret = NULL;
|
|
|
|
va_start(args, format);
|
|
ret = memvprintf(out, format, args);
|
|
va_end(args);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Used to add <level> spaces before each line of <out>, unless there is only one line.
|
|
* The input argument is automatically freed and reassigned. The result will have to be
|
|
* freed by the caller. It also supports being passed a NULL which results in the same
|
|
* output.
|
|
* Example of use :
|
|
* parse(cmd, &err); (callee: memprintf(&err, ...))
|
|
* fprintf(stderr, "Parser said: %s\n", indent_error(&err));
|
|
* free(err);
|
|
*/
|
|
char *indent_msg(char **out, int level)
|
|
{
|
|
char *ret, *in, *p;
|
|
int needed = 0;
|
|
int lf = 0;
|
|
int lastlf = 0;
|
|
int len;
|
|
|
|
if (!out || !*out)
|
|
return NULL;
|
|
|
|
in = *out - 1;
|
|
while ((in = strchr(in + 1, '\n')) != NULL) {
|
|
lastlf = in - *out;
|
|
lf++;
|
|
}
|
|
|
|
if (!lf) /* single line, no LF, return it as-is */
|
|
return *out;
|
|
|
|
len = strlen(*out);
|
|
|
|
if (lf == 1 && lastlf == len - 1) {
|
|
/* single line, LF at end, strip it and return as-is */
|
|
(*out)[lastlf] = 0;
|
|
return *out;
|
|
}
|
|
|
|
/* OK now we have at least one LF, we need to process the whole string
|
|
* as a multi-line string. What we'll do :
|
|
* - prefix with an LF if there is none
|
|
* - add <level> spaces before each line
|
|
* This means at most ( 1 + level + (len-lf) + lf*<1+level) ) =
|
|
* 1 + level + len + lf * level = 1 + level * (lf + 1) + len.
|
|
*/
|
|
|
|
needed = 1 + level * (lf + 1) + len + 1;
|
|
p = ret = malloc(needed);
|
|
in = *out;
|
|
|
|
/* skip initial LFs */
|
|
while (*in == '\n')
|
|
in++;
|
|
|
|
/* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */
|
|
while (*in) {
|
|
*p++ = '\n';
|
|
memset(p, ' ', level);
|
|
p += level;
|
|
do {
|
|
*p++ = *in++;
|
|
} while (*in && *in != '\n');
|
|
if (*in)
|
|
in++;
|
|
}
|
|
*p = 0;
|
|
|
|
free(*out);
|
|
*out = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* makes a copy of message <in> into <out>, with each line prefixed with <pfx>
|
|
* and end of lines replaced with <eol> if not 0. The first line to indent has
|
|
* to be indicated in <first> (starts at zero), so that it is possible to skip
|
|
* indenting the first line if it has to be appended after an existing message.
|
|
* Empty strings are never indented, and NULL strings are considered empty both
|
|
* for <in> and <pfx>. It returns non-zero if an EOL was appended as the last
|
|
* character, non-zero otherwise.
|
|
*/
|
|
int append_prefixed_str(struct buffer *out, const char *in, const char *pfx, char eol, int first)
|
|
{
|
|
int bol, lf;
|
|
int pfxlen = pfx ? strlen(pfx) : 0;
|
|
|
|
if (!in)
|
|
return 0;
|
|
|
|
bol = 1;
|
|
lf = 0;
|
|
while (*in) {
|
|
if (bol && pfxlen) {
|
|
if (first > 0)
|
|
first--;
|
|
else
|
|
b_putblk(out, pfx, pfxlen);
|
|
bol = 0;
|
|
}
|
|
|
|
lf = (*in == '\n');
|
|
bol |= lf;
|
|
b_putchr(out, (lf && eol) ? eol : *in);
|
|
in++;
|
|
}
|
|
return lf;
|
|
}
|
|
|
|
/* removes environment variable <name> from the environment as found in
|
|
* environ. This is only provided as an alternative for systems without
|
|
* unsetenv() (old Solaris and AIX versions). THIS IS NOT THREAD SAFE.
|
|
* The principle is to scan environ for each occurrence of variable name
|
|
* <name> and to replace the matching pointers with the last pointer of
|
|
* the array (since variables are not ordered).
|
|
* It always returns 0 (success).
|
|
*/
|
|
int my_unsetenv(const char *name)
|
|
{
|
|
extern char **environ;
|
|
char **p = environ;
|
|
int vars;
|
|
int next;
|
|
int len;
|
|
|
|
len = strlen(name);
|
|
for (vars = 0; p[vars]; vars++)
|
|
;
|
|
next = 0;
|
|
while (next < vars) {
|
|
if (strncmp(p[next], name, len) != 0 || p[next][len] != '=') {
|
|
next++;
|
|
continue;
|
|
}
|
|
if (next < vars - 1)
|
|
p[next] = p[vars - 1];
|
|
p[--vars] = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Convert occurrences of environment variables in the input string to their
|
|
* corresponding value. A variable is identified as a series of alphanumeric
|
|
* characters or underscores following a '$' sign. The <in> string must be
|
|
* free()able. NULL returns NULL. The resulting string might be reallocated if
|
|
* some expansion is made. Variable names may also be enclosed into braces if
|
|
* needed (eg: to concatenate alphanum characters).
|
|
*/
|
|
char *env_expand(char *in)
|
|
{
|
|
char *txt_beg;
|
|
char *out;
|
|
char *txt_end;
|
|
char *var_beg;
|
|
char *var_end;
|
|
char *value;
|
|
char *next;
|
|
int out_len;
|
|
int val_len;
|
|
|
|
if (!in)
|
|
return in;
|
|
|
|
value = out = NULL;
|
|
out_len = 0;
|
|
|
|
txt_beg = in;
|
|
do {
|
|
/* look for next '$' sign in <in> */
|
|
for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++);
|
|
|
|
if (!*txt_end && !out) /* end and no expansion performed */
|
|
return in;
|
|
|
|
val_len = 0;
|
|
next = txt_end;
|
|
if (*txt_end == '$') {
|
|
char save;
|
|
|
|
var_beg = txt_end + 1;
|
|
if (*var_beg == '{')
|
|
var_beg++;
|
|
|
|
var_end = var_beg;
|
|
while (isalnum((unsigned char)*var_end) || *var_end == '_') {
|
|
var_end++;
|
|
}
|
|
|
|
next = var_end;
|
|
if (*var_end == '}' && (var_beg > txt_end + 1))
|
|
next++;
|
|
|
|
/* get value of the variable name at this location */
|
|
save = *var_end;
|
|
*var_end = '\0';
|
|
value = getenv(var_beg);
|
|
*var_end = save;
|
|
val_len = value ? strlen(value) : 0;
|
|
}
|
|
|
|
out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1);
|
|
if (txt_end > txt_beg) {
|
|
memcpy(out + out_len, txt_beg, txt_end - txt_beg);
|
|
out_len += txt_end - txt_beg;
|
|
}
|
|
if (val_len) {
|
|
memcpy(out + out_len, value, val_len);
|
|
out_len += val_len;
|
|
}
|
|
out[out_len] = 0;
|
|
txt_beg = next;
|
|
} while (*txt_beg);
|
|
|
|
/* here we know that <out> was allocated and that we don't need <in> anymore */
|
|
free(in);
|
|
return out;
|
|
}
|
|
|
|
|
|
/* same as strstr() but case-insensitive and with limit length */
|
|
const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2)
|
|
{
|
|
char *pptr, *sptr, *start;
|
|
unsigned int slen, plen;
|
|
unsigned int tmp1, tmp2;
|
|
|
|
if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found
|
|
return NULL;
|
|
|
|
if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match
|
|
return str1;
|
|
|
|
if (len_str1 < len_str2) // pattern is longer than string => search is not found
|
|
return NULL;
|
|
|
|
for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) {
|
|
while (toupper((unsigned char)*start) != toupper((unsigned char)*str2)) {
|
|
start++;
|
|
slen--;
|
|
tmp1++;
|
|
|
|
if (tmp1 >= len_str1)
|
|
return NULL;
|
|
|
|
/* if pattern longer than string */
|
|
if (slen < plen)
|
|
return NULL;
|
|
}
|
|
|
|
sptr = start;
|
|
pptr = (char *)str2;
|
|
|
|
tmp2 = 0;
|
|
while (toupper((unsigned char)*sptr) == toupper((unsigned char)*pptr)) {
|
|
sptr++;
|
|
pptr++;
|
|
tmp2++;
|
|
|
|
if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */
|
|
return start;
|
|
if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */
|
|
return NULL;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This function read the next valid utf8 char.
|
|
* <s> is the byte srray to be decode, <len> is its length.
|
|
* The function returns decoded char encoded like this:
|
|
* The 4 msb are the return code (UTF8_CODE_*), the 4 lsb
|
|
* are the length read. The decoded character is stored in <c>.
|
|
*/
|
|
unsigned char utf8_next(const char *s, int len, unsigned int *c)
|
|
{
|
|
const unsigned char *p = (unsigned char *)s;
|
|
int dec;
|
|
unsigned char code = UTF8_CODE_OK;
|
|
|
|
if (len < 1)
|
|
return UTF8_CODE_OK;
|
|
|
|
/* Check the type of UTF8 sequence
|
|
*
|
|
* 0... .... 0x00 <= x <= 0x7f : 1 byte: ascii char
|
|
* 10.. .... 0x80 <= x <= 0xbf : invalid sequence
|
|
* 110. .... 0xc0 <= x <= 0xdf : 2 bytes
|
|
* 1110 .... 0xe0 <= x <= 0xef : 3 bytes
|
|
* 1111 0... 0xf0 <= x <= 0xf7 : 4 bytes
|
|
* 1111 10.. 0xf8 <= x <= 0xfb : 5 bytes
|
|
* 1111 110. 0xfc <= x <= 0xfd : 6 bytes
|
|
* 1111 111. 0xfe <= x <= 0xff : invalid sequence
|
|
*/
|
|
switch (*p) {
|
|
case 0x00 ... 0x7f:
|
|
*c = *p;
|
|
return UTF8_CODE_OK | 1;
|
|
|
|
case 0x80 ... 0xbf:
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
|
|
case 0xc0 ... 0xdf:
|
|
if (len < 2) {
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
*c = *p & 0x1f;
|
|
dec = 1;
|
|
break;
|
|
|
|
case 0xe0 ... 0xef:
|
|
if (len < 3) {
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
*c = *p & 0x0f;
|
|
dec = 2;
|
|
break;
|
|
|
|
case 0xf0 ... 0xf7:
|
|
if (len < 4) {
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
*c = *p & 0x07;
|
|
dec = 3;
|
|
break;
|
|
|
|
case 0xf8 ... 0xfb:
|
|
if (len < 5) {
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
*c = *p & 0x03;
|
|
dec = 4;
|
|
break;
|
|
|
|
case 0xfc ... 0xfd:
|
|
if (len < 6) {
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
*c = *p & 0x01;
|
|
dec = 5;
|
|
break;
|
|
|
|
case 0xfe ... 0xff:
|
|
default:
|
|
*c = *p;
|
|
return UTF8_CODE_BADSEQ | 1;
|
|
}
|
|
|
|
p++;
|
|
|
|
while (dec > 0) {
|
|
|
|
/* need 0x10 for the 2 first bits */
|
|
if ( ( *p & 0xc0 ) != 0x80 )
|
|
return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff);
|
|
|
|
/* add data at char */
|
|
*c = ( *c << 6 ) | ( *p & 0x3f );
|
|
|
|
dec--;
|
|
p++;
|
|
}
|
|
|
|
/* Check ovelong encoding.
|
|
* 1 byte : 5 + 6 : 11 : 0x80 ... 0x7ff
|
|
* 2 bytes : 4 + 6 + 6 : 16 : 0x800 ... 0xffff
|
|
* 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff
|
|
*/
|
|
if (( *c <= 0x7f && (p-(unsigned char *)s) > 1) ||
|
|
(*c >= 0x80 && *c <= 0x7ff && (p-(unsigned char *)s) > 2) ||
|
|
(*c >= 0x800 && *c <= 0xffff && (p-(unsigned char *)s) > 3) ||
|
|
(*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4))
|
|
code |= UTF8_CODE_OVERLONG;
|
|
|
|
/* Check invalid UTF8 range. */
|
|
if ((*c >= 0xd800 && *c <= 0xdfff) ||
|
|
(*c >= 0xfffe && *c <= 0xffff))
|
|
code |= UTF8_CODE_INVRANGE;
|
|
|
|
return code | ((p-(unsigned char *)s)&0x0f);
|
|
}
|
|
|
|
/* append a copy of string <str> (in a wordlist) at the end of the list <li>
|
|
* On failure : return 0 and <err> filled with an error message.
|
|
* The caller is responsible for freeing the <err> and <str> copy
|
|
* memory area using free()
|
|
*/
|
|
int list_append_word(struct list *li, const char *str, char **err)
|
|
{
|
|
struct wordlist *wl;
|
|
|
|
wl = calloc(1, sizeof(*wl));
|
|
if (!wl) {
|
|
memprintf(err, "out of memory");
|
|
goto fail_wl;
|
|
}
|
|
|
|
wl->s = strdup(str);
|
|
if (!wl->s) {
|
|
memprintf(err, "out of memory");
|
|
goto fail_wl_s;
|
|
}
|
|
|
|
LIST_ADDQ(li, &wl->list);
|
|
|
|
return 1;
|
|
|
|
fail_wl_s:
|
|
free(wl->s);
|
|
fail_wl:
|
|
free(wl);
|
|
return 0;
|
|
}
|
|
|
|
/* indicates if a memory location may safely be read or not. The trick consists
|
|
* in performing a harmless syscall using this location as an input and letting
|
|
* the operating system report whether it's OK or not. For this we have the
|
|
* stat() syscall, which will return EFAULT when the memory location supposed
|
|
* to contain the file name is not readable. If it is readable it will then
|
|
* either return 0 if the area contains an existing file name, or -1 with
|
|
* another code. This must not be abused, and some audit systems might detect
|
|
* this as abnormal activity. It's used only for unsafe dumps.
|
|
*/
|
|
int may_access(const void *ptr)
|
|
{
|
|
struct stat buf;
|
|
|
|
if (stat(ptr, &buf) == 0)
|
|
return 1;
|
|
if (errno == EFAULT)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* print a string of text buffer to <out>. The format is :
|
|
* Non-printable chars \t, \n, \r and \e are * encoded in C format.
|
|
* Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped.
|
|
* Print stopped if null char or <bsize> is reached, or if no more place in the chunk.
|
|
*/
|
|
int dump_text(struct buffer *out, const char *buf, int bsize)
|
|
{
|
|
unsigned char c;
|
|
int ptr = 0;
|
|
|
|
while (buf[ptr] && ptr < bsize) {
|
|
c = buf[ptr];
|
|
if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\' && c != ' ' && c != '=') {
|
|
if (out->data > out->size - 1)
|
|
break;
|
|
out->area[out->data++] = c;
|
|
}
|
|
else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') {
|
|
if (out->data > out->size - 2)
|
|
break;
|
|
out->area[out->data++] = '\\';
|
|
switch (c) {
|
|
case ' ': c = ' '; break;
|
|
case '\t': c = 't'; break;
|
|
case '\n': c = 'n'; break;
|
|
case '\r': c = 'r'; break;
|
|
case '\e': c = 'e'; break;
|
|
case '\\': c = '\\'; break;
|
|
case '=': c = '='; break;
|
|
}
|
|
out->area[out->data++] = c;
|
|
}
|
|
else {
|
|
if (out->data > out->size - 4)
|
|
break;
|
|
out->area[out->data++] = '\\';
|
|
out->area[out->data++] = 'x';
|
|
out->area[out->data++] = hextab[(c >> 4) & 0xF];
|
|
out->area[out->data++] = hextab[c & 0xF];
|
|
}
|
|
ptr++;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/* print a buffer in hexa.
|
|
* Print stopped if <bsize> is reached, or if no more place in the chunk.
|
|
*/
|
|
int dump_binary(struct buffer *out, const char *buf, int bsize)
|
|
{
|
|
unsigned char c;
|
|
int ptr = 0;
|
|
|
|
while (ptr < bsize) {
|
|
c = buf[ptr];
|
|
|
|
if (out->data > out->size - 2)
|
|
break;
|
|
out->area[out->data++] = hextab[(c >> 4) & 0xF];
|
|
out->area[out->data++] = hextab[c & 0xF];
|
|
|
|
ptr++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/* Appends into buffer <out> a hex dump of memory area <buf> for <len> bytes,
|
|
* prepending each line with prefix <pfx>. The output is *not* initialized.
|
|
* The output will not wrap pas the buffer's end so it is more optimal if the
|
|
* caller makes sure the buffer is aligned first. A trailing zero will always
|
|
* be appended (and not counted) if there is room for it. The caller must make
|
|
* sure that the area is dumpable first. If <unsafe> is non-null, the memory
|
|
* locations are checked first for being readable.
|
|
*/
|
|
void dump_hex(struct buffer *out, const char *pfx, const void *buf, int len, int unsafe)
|
|
{
|
|
const unsigned char *d = buf;
|
|
int i, j, start;
|
|
|
|
d = (const unsigned char *)(((unsigned long)buf) & -16);
|
|
start = ((unsigned long)buf) & 15;
|
|
|
|
for (i = 0; i < start + len; i += 16) {
|
|
chunk_appendf(out, (sizeof(void *) == 4) ? "%s%8p: " : "%s%16p: ", pfx, d + i);
|
|
|
|
// 0: unchecked, 1: checked safe, 2: danger
|
|
unsafe = !!unsafe;
|
|
if (unsafe && !may_access(d + i))
|
|
unsafe = 2;
|
|
|
|
for (j = 0; j < 16; j++) {
|
|
if ((i + j < start) || (i + j >= start + len))
|
|
chunk_strcat(out, "'' ");
|
|
else if (unsafe > 1)
|
|
chunk_strcat(out, "** ");
|
|
else
|
|
chunk_appendf(out, "%02x ", d[i + j]);
|
|
|
|
if (j == 7)
|
|
chunk_strcat(out, "- ");
|
|
}
|
|
chunk_strcat(out, " ");
|
|
for (j = 0; j < 16; j++) {
|
|
if ((i + j < start) || (i + j >= start + len))
|
|
chunk_strcat(out, "'");
|
|
else if (unsafe > 1)
|
|
chunk_strcat(out, "*");
|
|
else if (isprint((unsigned char)d[i + j]))
|
|
chunk_appendf(out, "%c", d[i + j]);
|
|
else
|
|
chunk_strcat(out, ".");
|
|
}
|
|
chunk_strcat(out, "\n");
|
|
}
|
|
}
|
|
|
|
/* dumps <pfx> followed by <n> bytes from <addr> in hex form into buffer <buf>
|
|
* enclosed in brackets after the address itself, formatted on 14 chars
|
|
* including the "0x" prefix. This is meant to be used as a prefix for code
|
|
* areas. For example:
|
|
* "0x7f10b6557690 [48 c7 c0 0f 00 00 00 0f]"
|
|
* It relies on may_access() to know if the bytes are dumpable, otherwise "--"
|
|
* is emitted. A NULL <pfx> will be considered empty.
|
|
*/
|
|
void dump_addr_and_bytes(struct buffer *buf, const char *pfx, const void *addr, int n)
|
|
{
|
|
int ok = 0;
|
|
int i;
|
|
|
|
chunk_appendf(buf, "%s%#14lx [", pfx ? pfx : "", (long)addr);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (i == 0 || (((long)(addr + i) ^ (long)(addr)) & 4096))
|
|
ok = may_access(addr + i);
|
|
if (ok)
|
|
chunk_appendf(buf, "%02x%s", ((uint8_t*)addr)[i], (i<n-1) ? " " : "]");
|
|
else
|
|
chunk_appendf(buf, "--%s", (i<n-1) ? " " : "]");
|
|
}
|
|
}
|
|
|
|
/* print a line of text buffer (limited to 70 bytes) to <out>. The format is :
|
|
* <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n>
|
|
* which is 60 chars per line. Non-printable chars \t, \n, \r and \e are
|
|
* encoded in C format. Other non-printable chars are encoded "\xHH". Original
|
|
* lines are respected within the limit of 70 output chars. Lines that are
|
|
* continuation of a previous truncated line begin with "+" instead of " "
|
|
* after the offset. The new pointer is returned.
|
|
*/
|
|
int dump_text_line(struct buffer *out, const char *buf, int bsize, int len,
|
|
int *line, int ptr)
|
|
{
|
|
int end;
|
|
unsigned char c;
|
|
|
|
end = out->data + 80;
|
|
if (end > out->size)
|
|
return ptr;
|
|
|
|
chunk_appendf(out, " %05d%c ", ptr, (ptr == *line) ? ' ' : '+');
|
|
|
|
while (ptr < len && ptr < bsize) {
|
|
c = buf[ptr];
|
|
if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\') {
|
|
if (out->data > end - 2)
|
|
break;
|
|
out->area[out->data++] = c;
|
|
} else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') {
|
|
if (out->data > end - 3)
|
|
break;
|
|
out->area[out->data++] = '\\';
|
|
switch (c) {
|
|
case '\t': c = 't'; break;
|
|
case '\n': c = 'n'; break;
|
|
case '\r': c = 'r'; break;
|
|
case '\e': c = 'e'; break;
|
|
case '\\': c = '\\'; break;
|
|
}
|
|
out->area[out->data++] = c;
|
|
} else {
|
|
if (out->data > end - 5)
|
|
break;
|
|
out->area[out->data++] = '\\';
|
|
out->area[out->data++] = 'x';
|
|
out->area[out->data++] = hextab[(c >> 4) & 0xF];
|
|
out->area[out->data++] = hextab[c & 0xF];
|
|
}
|
|
if (buf[ptr++] == '\n') {
|
|
/* we had a line break, let's return now */
|
|
out->area[out->data++] = '\n';
|
|
*line = ptr;
|
|
return ptr;
|
|
}
|
|
}
|
|
/* we have an incomplete line, we return it as-is */
|
|
out->area[out->data++] = '\n';
|
|
return ptr;
|
|
}
|
|
|
|
/* displays a <len> long memory block at <buf>, assuming first byte of <buf>
|
|
* has address <baseaddr>. String <pfx> may be placed as a prefix in front of
|
|
* each line. It may be NULL if unused. The output is emitted to file <out>.
|
|
*/
|
|
void debug_hexdump(FILE *out, const char *pfx, const char *buf,
|
|
unsigned int baseaddr, int len)
|
|
{
|
|
unsigned int i;
|
|
int b, j;
|
|
|
|
for (i = 0; i < (len + (baseaddr & 15)); i += 16) {
|
|
b = i - (baseaddr & 15);
|
|
fprintf(out, "%s%08x: ", pfx ? pfx : "", i + (baseaddr & ~15));
|
|
for (j = 0; j < 8; j++) {
|
|
if (b + j >= 0 && b + j < len)
|
|
fprintf(out, "%02x ", (unsigned char)buf[b + j]);
|
|
else
|
|
fprintf(out, " ");
|
|
}
|
|
|
|
if (b + j >= 0 && b + j < len)
|
|
fputc('-', out);
|
|
else
|
|
fputc(' ', out);
|
|
|
|
for (j = 8; j < 16; j++) {
|
|
if (b + j >= 0 && b + j < len)
|
|
fprintf(out, " %02x", (unsigned char)buf[b + j]);
|
|
else
|
|
fprintf(out, " ");
|
|
}
|
|
|
|
fprintf(out, " ");
|
|
for (j = 0; j < 16; j++) {
|
|
if (b + j >= 0 && b + j < len) {
|
|
if (isprint((unsigned char)buf[b + j]))
|
|
fputc((unsigned char)buf[b + j], out);
|
|
else
|
|
fputc('.', out);
|
|
}
|
|
else
|
|
fputc(' ', out);
|
|
}
|
|
fputc('\n', out);
|
|
}
|
|
}
|
|
|
|
/* Tries to report the executable path name on platforms supporting this. If
|
|
* not found or not possible, returns NULL.
|
|
*/
|
|
const char *get_exec_path()
|
|
{
|
|
const char *ret = NULL;
|
|
|
|
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
|
|
long execfn = getauxval(AT_EXECFN);
|
|
|
|
if (execfn && execfn != ENOENT)
|
|
ret = (const char *)execfn;
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
|
|
/* calls dladdr() or dladdr1() on <addr> and <dli>. If dladdr1 is available,
|
|
* also returns the symbol size in <size>, otherwise returns 0 there.
|
|
*/
|
|
static int dladdr_and_size(const void *addr, Dl_info *dli, size_t *size)
|
|
{
|
|
int ret;
|
|
#if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) // most detailed one
|
|
const ElfW(Sym) *sym;
|
|
|
|
ret = dladdr1(addr, dli, (void **)&sym, RTLD_DL_SYMENT);
|
|
if (ret)
|
|
*size = sym ? sym->st_size : 0;
|
|
#else
|
|
ret = dladdr(addr, dli);
|
|
*size = 0;
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* Tries to append to buffer <buf> some indications about the symbol at address
|
|
* <addr> using the following form:
|
|
* lib:+0xoffset (unresolvable address from lib's base)
|
|
* main+0xoffset (unresolvable address from main (+/-))
|
|
* lib:main+0xoffset (unresolvable lib address from main (+/-))
|
|
* name (resolved exact exec address)
|
|
* lib:name (resolved exact lib address)
|
|
* name+0xoffset/0xsize (resolved address within exec symbol)
|
|
* lib:name+0xoffset/0xsize (resolved address within lib symbol)
|
|
*
|
|
* The file name (lib or executable) is limited to what lies between the last
|
|
* '/' and the first following '.'. An optional prefix <pfx> is prepended before
|
|
* the output if not null. The file is not dumped when it's the same as the one
|
|
* that contains the "main" symbol, or when __ELF__ && USE_DL are not set.
|
|
*
|
|
* The symbol's base address is returned, or NULL when unresolved, in order to
|
|
* allow the caller to match it against known ones.
|
|
*/
|
|
const void *resolve_sym_name(struct buffer *buf, const char *pfx, const void *addr)
|
|
{
|
|
const struct {
|
|
const void *func;
|
|
const char *name;
|
|
} fcts[] = {
|
|
{ .func = process_stream, .name = "process_stream" },
|
|
{ .func = task_run_applet, .name = "task_run_applet" },
|
|
{ .func = si_cs_io_cb, .name = "si_cs_io_cb" },
|
|
{ .func = sock_conn_iocb, .name = "sock_conn_iocb" },
|
|
{ .func = dgram_fd_handler, .name = "dgram_fd_handler" },
|
|
{ .func = listener_accept, .name = "listener_accept" },
|
|
{ .func = poller_pipe_io_handler, .name = "poller_pipe_io_handler" },
|
|
{ .func = mworker_accept_wrapper, .name = "mworker_accept_wrapper" },
|
|
#ifdef USE_LUA
|
|
{ .func = hlua_process_task, .name = "hlua_process_task" },
|
|
#endif
|
|
#ifdef SSL_MODE_ASYNC
|
|
{ .func = ssl_async_fd_free, .name = "ssl_async_fd_free" },
|
|
{ .func = ssl_async_fd_handler, .name = "ssl_async_fd_handler" },
|
|
#endif
|
|
};
|
|
|
|
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
|
|
Dl_info dli, dli_main;
|
|
size_t size;
|
|
const char *fname, *p;
|
|
#endif
|
|
int i;
|
|
|
|
if (pfx)
|
|
chunk_appendf(buf, "%s", pfx);
|
|
|
|
for (i = 0; i < sizeof(fcts) / sizeof(fcts[0]); i++) {
|
|
if (addr == fcts[i].func) {
|
|
chunk_appendf(buf, "%s", fcts[i].name);
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
#if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
|
|
/* Now let's try to be smarter */
|
|
if (!dladdr_and_size(addr, &dli, &size))
|
|
goto unknown;
|
|
|
|
/* 1. prefix the library name if it's not the same object as the one
|
|
* that contains the main function. The name is picked between last '/'
|
|
* and first following '.'.
|
|
*/
|
|
if (!dladdr(main, &dli_main))
|
|
dli_main.dli_fbase = NULL;
|
|
|
|
if (dli_main.dli_fbase != dli.dli_fbase) {
|
|
fname = dli.dli_fname;
|
|
p = strrchr(fname, '/');
|
|
if (p++)
|
|
fname = p;
|
|
p = strchr(fname, '.');
|
|
if (!p)
|
|
p = fname + strlen(fname);
|
|
|
|
chunk_appendf(buf, "%.*s:", (int)(long)(p - fname), fname);
|
|
}
|
|
|
|
/* 2. symbol name */
|
|
if (dli.dli_sname) {
|
|
/* known, dump it and return symbol's address (exact or relative) */
|
|
chunk_appendf(buf, "%s", dli.dli_sname);
|
|
if (addr != dli.dli_saddr) {
|
|
chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_saddr));
|
|
if (size)
|
|
chunk_appendf(buf, "/%#lx", (long)size);
|
|
}
|
|
return dli.dli_saddr;
|
|
}
|
|
else if (dli_main.dli_fbase != dli.dli_fbase) {
|
|
/* unresolved symbol from a known library, report relative offset */
|
|
chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_fbase));
|
|
return NULL;
|
|
}
|
|
#endif /* __ELF__ && !__linux__ || USE_DL */
|
|
unknown:
|
|
/* unresolved symbol from the main file, report relative offset to main */
|
|
if ((void*)addr < (void*)main)
|
|
chunk_appendf(buf, "main-%#lx", (long)((void*)main - addr));
|
|
else
|
|
chunk_appendf(buf, "main+%#lx", (long)(addr - (void*)main));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate an array of unsigned int with <nums> as address from <str> string
|
|
* made of integer separated by dot characters.
|
|
*
|
|
* First, initializes the value with <sz> as address to 0 and initializes the
|
|
* array with <nums> as address to NULL. Then allocates the array with <nums> as
|
|
* address updating <sz> pointed value to the size of this array.
|
|
*
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
int parse_dotted_uints(const char *str, unsigned int **nums, size_t *sz)
|
|
{
|
|
unsigned int *n;
|
|
const char *s, *end;
|
|
|
|
s = str;
|
|
*sz = 0;
|
|
end = str + strlen(str);
|
|
*nums = n = NULL;
|
|
|
|
while (1) {
|
|
unsigned int r;
|
|
|
|
if (s >= end)
|
|
break;
|
|
|
|
r = read_uint(&s, end);
|
|
/* Expected characters after having read an uint: '\0' or '.',
|
|
* if '.', must not be terminal.
|
|
*/
|
|
if (*s != '\0'&& (*s++ != '.' || s == end))
|
|
return 0;
|
|
|
|
n = my_realloc2(n, (*sz + 1) * sizeof *n);
|
|
if (!n)
|
|
return 0;
|
|
|
|
n[(*sz)++] = r;
|
|
}
|
|
*nums = n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* returns the number of bytes needed to encode <v> as a varint. An inline
|
|
* version exists for use with constants (__varint_bytes()).
|
|
*/
|
|
int varint_bytes(uint64_t v)
|
|
{
|
|
int len = 1;
|
|
|
|
if (v >= 240) {
|
|
v = (v - 240) >> 4;
|
|
while (1) {
|
|
len++;
|
|
if (v < 128)
|
|
break;
|
|
v = (v - 128) >> 7;
|
|
}
|
|
}
|
|
return len;
|
|
}
|
|
|
|
|
|
/* Random number generator state, see below */
|
|
static uint64_t ha_random_state[2] ALIGNED(2*sizeof(uint64_t));
|
|
|
|
/* This is a thread-safe implementation of xoroshiro128** described below:
|
|
* http://prng.di.unimi.it/
|
|
* It features a 2^128 long sequence, returns 64 high-quality bits on each call,
|
|
* supports fast jumps and passes all common quality tests. It is thread-safe,
|
|
* uses a double-cas on 64-bit architectures supporting it, and falls back to a
|
|
* local lock on other ones.
|
|
*/
|
|
uint64_t ha_random64()
|
|
{
|
|
uint64_t result;
|
|
uint64_t old[2] ALIGNED(2*sizeof(uint64_t));
|
|
uint64_t new[2] ALIGNED(2*sizeof(uint64_t));
|
|
|
|
#if defined(USE_THREAD) && (!defined(HA_CAS_IS_8B) || !defined(HA_HAVE_CAS_DW))
|
|
static HA_SPINLOCK_T rand_lock;
|
|
|
|
HA_SPIN_LOCK(OTHER_LOCK, &rand_lock);
|
|
#endif
|
|
|
|
old[0] = ha_random_state[0];
|
|
old[1] = ha_random_state[1];
|
|
|
|
#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
|
|
do {
|
|
#endif
|
|
result = rotl64(old[0] * 5, 7) * 9;
|
|
new[1] = old[0] ^ old[1];
|
|
new[0] = rotl64(old[0], 24) ^ new[1] ^ (new[1] << 16); // a, b
|
|
new[1] = rotl64(new[1], 37); // c
|
|
|
|
#if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
|
|
} while (unlikely(!_HA_ATOMIC_DWCAS(ha_random_state, old, new)));
|
|
#else
|
|
ha_random_state[0] = new[0];
|
|
ha_random_state[1] = new[1];
|
|
#if defined(USE_THREAD)
|
|
HA_SPIN_UNLOCK(OTHER_LOCK, &rand_lock);
|
|
#endif
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
/* seeds the random state using up to <len> bytes from <seed>, starting with
|
|
* the first non-zero byte.
|
|
*/
|
|
void ha_random_seed(const unsigned char *seed, size_t len)
|
|
{
|
|
size_t pos;
|
|
|
|
/* the seed must not be all zeroes, so we pre-fill it with alternating
|
|
* bits and overwrite part of them with the block starting at the first
|
|
* non-zero byte from the seed.
|
|
*/
|
|
memset(ha_random_state, 0x55, sizeof(ha_random_state));
|
|
|
|
for (pos = 0; pos < len; pos++)
|
|
if (seed[pos] != 0)
|
|
break;
|
|
|
|
if (pos == len)
|
|
return;
|
|
|
|
seed += pos;
|
|
len -= pos;
|
|
|
|
if (len > sizeof(ha_random_state))
|
|
len = sizeof(ha_random_state);
|
|
|
|
memcpy(ha_random_state, seed, len);
|
|
}
|
|
|
|
/* This causes a jump to (dist * 2^96) places in the pseudo-random sequence,
|
|
* and is equivalent to calling ha_random64() as many times. It is used to
|
|
* provide non-overlapping sequences of 2^96 numbers (~7*10^28) to up to 2^32
|
|
* different generators (i.e. different processes after a fork). The <dist>
|
|
* argument is the distance to jump to and is used in a loop so it rather not
|
|
* be too large if the processing time is a concern.
|
|
*
|
|
* BEWARE: this function is NOT thread-safe and must not be called during
|
|
* concurrent accesses to ha_random64().
|
|
*/
|
|
void ha_random_jump96(uint32_t dist)
|
|
{
|
|
while (dist--) {
|
|
uint64_t s0 = 0;
|
|
uint64_t s1 = 0;
|
|
int b;
|
|
|
|
for (b = 0; b < 64; b++) {
|
|
if ((0xd2a98b26625eee7bULL >> b) & 1) {
|
|
s0 ^= ha_random_state[0];
|
|
s1 ^= ha_random_state[1];
|
|
}
|
|
ha_random64();
|
|
}
|
|
|
|
for (b = 0; b < 64; b++) {
|
|
if ((0xdddf9b1090aa7ac1ULL >> b) & 1) {
|
|
s0 ^= ha_random_state[0];
|
|
s1 ^= ha_random_state[1];
|
|
}
|
|
ha_random64();
|
|
}
|
|
ha_random_state[0] = s0;
|
|
ha_random_state[1] = s1;
|
|
}
|
|
}
|
|
|
|
/* Generates an RFC4122 UUID into chunk <output> which must be at least 37
|
|
* bytes large.
|
|
*/
|
|
void ha_generate_uuid(struct buffer *output)
|
|
{
|
|
uint32_t rnd[4];
|
|
uint64_t last;
|
|
|
|
last = ha_random64();
|
|
rnd[0] = last;
|
|
rnd[1] = last >> 32;
|
|
|
|
last = ha_random64();
|
|
rnd[2] = last;
|
|
rnd[3] = last >> 32;
|
|
|
|
chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx",
|
|
rnd[0],
|
|
rnd[1] & 0xFFFF,
|
|
((rnd[1] >> 16u) & 0xFFF) | 0x4000, // highest 4 bits indicate the uuid version
|
|
(rnd[2] & 0x3FFF) | 0x8000, // the highest 2 bits indicate the UUID variant (10),
|
|
(long long)((rnd[2] >> 14u) | ((uint64_t) rnd[3] << 18u)) & 0xFFFFFFFFFFFFull);
|
|
}
|
|
|
|
|
|
/* only used by parse_line() below. It supports writing in place provided that
|
|
* <in> is updated to the next location before calling it. In that case, the
|
|
* char at <in> may be overwritten.
|
|
*/
|
|
#define EMIT_CHAR(x) \
|
|
do { \
|
|
char __c = (char)(x); \
|
|
if ((opts & PARSE_OPT_INPLACE) && out+outpos > in) \
|
|
err |= PARSE_ERR_OVERLAP; \
|
|
if (outpos >= outmax) \
|
|
err |= PARSE_ERR_TOOLARGE; \
|
|
if (!err) \
|
|
out[outpos] = __c; \
|
|
outpos++; \
|
|
} while (0)
|
|
|
|
/* Parse <in>, copy it into <out> split into isolated words whose pointers
|
|
* are put in <args>. If more than <outlen> bytes have to be emitted, the
|
|
* extraneous ones are not emitted but <outlen> is updated so that the caller
|
|
* knows how much to realloc. Similarly, <args> are not updated beyond <nbargs>
|
|
* but the returned <nbargs> indicates how many were found. All trailing args
|
|
* up to <nbargs> point to the trailing zero, and as long as <nbargs> is > 0,
|
|
* it is guaranteed that at least one arg will point to the zero. It is safe
|
|
* to call it with a NULL <args> if <nbargs> is 0.
|
|
*
|
|
* <out> may overlap with <in> provided that it never goes further, in which
|
|
* case the parser will accept to perform in-place parsing and unquoting/
|
|
* unescaping but only if environment variables do not lead to expansion that
|
|
* causes overlapping, otherwise the input string being destroyed, the error
|
|
* will not be recoverable. Note that even during out-of-place <in> will
|
|
* experience temporary modifications in-place for variable resolution and must
|
|
* be writable, and will also receive zeroes to delimit words when using
|
|
* in-place copy. Parsing options <opts> taken from PARSE_OPT_*. Return value
|
|
* is zero on success otherwise a bitwise-or of PARSE_ERR_*. Upon error, the
|
|
* starting point of the first invalid character sequence or unmatched
|
|
* quote/brace is reported in <errptr> if not NULL. When using in-place parsing
|
|
* error reporting might be difficult since zeroes will have been inserted into
|
|
* the string. One solution for the caller may consist in replacing all args
|
|
* delimiters with spaces in this case.
|
|
*/
|
|
uint32_t parse_line(char *in, char *out, size_t *outlen, char **args, int *nbargs, uint32_t opts, char **errptr)
|
|
{
|
|
char *quote = NULL;
|
|
char *brace = NULL;
|
|
char *word_expand = NULL;
|
|
unsigned char hex1, hex2;
|
|
size_t outmax = *outlen;
|
|
int argsmax = *nbargs - 1;
|
|
size_t outpos = 0;
|
|
int squote = 0;
|
|
int dquote = 0;
|
|
int arg = 0;
|
|
uint32_t err = 0;
|
|
|
|
*nbargs = 0;
|
|
*outlen = 0;
|
|
|
|
/* argsmax may be -1 here, protecting args[] from any write */
|
|
if (arg < argsmax)
|
|
args[arg] = out;
|
|
|
|
while (1) {
|
|
if (*in >= '-' && *in != '\\') {
|
|
/* speedup: directly send all regular chars starting
|
|
* with '-', '.', '/', alnum etc...
|
|
*/
|
|
EMIT_CHAR(*in++);
|
|
continue;
|
|
}
|
|
else if (*in == '\0' || *in == '\n' || *in == '\r') {
|
|
/* end of line */
|
|
break;
|
|
}
|
|
else if (*in == '#' && (opts & PARSE_OPT_SHARP) && !squote && !dquote) {
|
|
/* comment */
|
|
break;
|
|
}
|
|
else if (*in == '"' && !squote && (opts & PARSE_OPT_DQUOTE)) { /* double quote outside single quotes */
|
|
if (dquote) {
|
|
dquote = 0;
|
|
quote = NULL;
|
|
}
|
|
else {
|
|
dquote = 1;
|
|
quote = in;
|
|
}
|
|
in++;
|
|
continue;
|
|
}
|
|
else if (*in == '\'' && !dquote && (opts & PARSE_OPT_SQUOTE)) { /* single quote outside double quotes */
|
|
if (squote) {
|
|
squote = 0;
|
|
quote = NULL;
|
|
}
|
|
else {
|
|
squote = 1;
|
|
quote = in;
|
|
}
|
|
in++;
|
|
continue;
|
|
}
|
|
else if (*in == '\\' && !squote && (opts & PARSE_OPT_BKSLASH)) {
|
|
/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
|
|
* C equivalent value but only when they have a special meaning and within
|
|
* double quotes for some of them. Other combinations left unchanged (eg: \1).
|
|
*/
|
|
char tosend = *in;
|
|
|
|
switch (in[1]) {
|
|
case ' ':
|
|
case '\\':
|
|
tosend = in[1];
|
|
in++;
|
|
break;
|
|
|
|
case 't':
|
|
tosend = '\t';
|
|
in++;
|
|
break;
|
|
|
|
case 'n':
|
|
tosend = '\n';
|
|
in++;
|
|
break;
|
|
|
|
case 'r':
|
|
tosend = '\r';
|
|
in++;
|
|
break;
|
|
|
|
case '#':
|
|
/* escaping of "#" only if comments are supported */
|
|
if (opts & PARSE_OPT_SHARP)
|
|
in++;
|
|
tosend = *in;
|
|
break;
|
|
|
|
case '\'':
|
|
/* escaping of "'" only outside single quotes and only if single quotes are supported */
|
|
if (opts & PARSE_OPT_SQUOTE && !squote)
|
|
in++;
|
|
tosend = *in;
|
|
break;
|
|
|
|
case '"':
|
|
/* escaping of '"' only outside single quotes and only if double quotes are supported */
|
|
if (opts & PARSE_OPT_DQUOTE && !squote)
|
|
in++;
|
|
tosend = *in;
|
|
break;
|
|
|
|
case '$':
|
|
/* escaping of '$' only inside double quotes and only if env supported */
|
|
if (opts & PARSE_OPT_ENV && dquote)
|
|
in++;
|
|
tosend = *in;
|
|
break;
|
|
|
|
case 'x':
|
|
if (!ishex(in[2]) || !ishex(in[3])) {
|
|
/* invalid or incomplete hex sequence */
|
|
err |= PARSE_ERR_HEX;
|
|
if (errptr)
|
|
*errptr = in;
|
|
goto leave;
|
|
}
|
|
hex1 = toupper((unsigned char)in[2]) - '0';
|
|
hex2 = toupper((unsigned char)in[3]) - '0';
|
|
if (hex1 > 9) hex1 -= 'A' - '9' - 1;
|
|
if (hex2 > 9) hex2 -= 'A' - '9' - 1;
|
|
tosend = (hex1 << 4) + hex2;
|
|
in += 3;
|
|
break;
|
|
|
|
default:
|
|
/* other combinations are not escape sequences */
|
|
break;
|
|
}
|
|
|
|
in++;
|
|
EMIT_CHAR(tosend);
|
|
}
|
|
else if (isspace((unsigned char)*in) && !squote && !dquote) {
|
|
/* a non-escaped space is an argument separator */
|
|
while (isspace((unsigned char)*in))
|
|
in++;
|
|
EMIT_CHAR(0);
|
|
arg++;
|
|
if (arg < argsmax)
|
|
args[arg] = out + outpos;
|
|
else
|
|
err |= PARSE_ERR_TOOMANY;
|
|
}
|
|
else if (*in == '$' && (opts & PARSE_OPT_ENV) && (dquote || !(opts & PARSE_OPT_DQUOTE))) {
|
|
/* environment variables are evaluated anywhere, or only
|
|
* inside double quotes if they are supported.
|
|
*/
|
|
char *var_name;
|
|
char save_char;
|
|
char *value;
|
|
|
|
in++;
|
|
|
|
if (*in == '{')
|
|
brace = in++;
|
|
|
|
if (!isalpha((unsigned char)*in) && *in != '_') {
|
|
/* unacceptable character in variable name */
|
|
err |= PARSE_ERR_VARNAME;
|
|
if (errptr)
|
|
*errptr = in;
|
|
goto leave;
|
|
}
|
|
|
|
var_name = in;
|
|
while (isalnum((unsigned char)*in) || *in == '_')
|
|
in++;
|
|
|
|
save_char = *in;
|
|
*in = '\0';
|
|
value = getenv(var_name);
|
|
*in = save_char;
|
|
|
|
/* support for '[*]' sequence to force word expansion,
|
|
* only available inside braces */
|
|
if (*in == '[' && brace && (opts & PARSE_OPT_WORD_EXPAND)) {
|
|
word_expand = in++;
|
|
|
|
if (*in++ != '*' || *in++ != ']') {
|
|
err |= PARSE_ERR_WRONG_EXPAND;
|
|
if (errptr)
|
|
*errptr = word_expand;
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
if (brace) {
|
|
if (*in != '}') {
|
|
/* unmatched brace */
|
|
err |= PARSE_ERR_BRACE;
|
|
if (errptr)
|
|
*errptr = brace;
|
|
goto leave;
|
|
}
|
|
in++;
|
|
brace = NULL;
|
|
}
|
|
|
|
if (value) {
|
|
while (*value) {
|
|
/* expand as individual parameters on a space character */
|
|
if (word_expand && isspace((unsigned char)*value)) {
|
|
EMIT_CHAR(0);
|
|
++arg;
|
|
if (arg < argsmax)
|
|
args[arg] = out + outpos;
|
|
else
|
|
err |= PARSE_ERR_TOOMANY;
|
|
|
|
/* skip consecutive spaces */
|
|
while (isspace((unsigned char)*++value))
|
|
;
|
|
} else {
|
|
EMIT_CHAR(*value++);
|
|
}
|
|
}
|
|
}
|
|
word_expand = NULL;
|
|
}
|
|
else {
|
|
/* any other regular char */
|
|
EMIT_CHAR(*in++);
|
|
}
|
|
}
|
|
|
|
/* end of output string */
|
|
EMIT_CHAR(0);
|
|
arg++;
|
|
|
|
if (quote) {
|
|
/* unmatched quote */
|
|
err |= PARSE_ERR_QUOTE;
|
|
if (errptr)
|
|
*errptr = quote;
|
|
goto leave;
|
|
}
|
|
leave:
|
|
*nbargs = arg;
|
|
*outlen = outpos;
|
|
|
|
/* empty all trailing args by making them point to the trailing zero,
|
|
* at least the last one in any case.
|
|
*/
|
|
if (arg > argsmax)
|
|
arg = argsmax;
|
|
|
|
while (arg >= 0 && arg <= argsmax)
|
|
args[arg++] = out + outpos - 1;
|
|
|
|
return err;
|
|
}
|
|
#undef EMIT_CHAR
|
|
|
|
/* This is used to sanitize an input line that's about to be used for error reporting.
|
|
* It will adjust <line> to print approximately <width> chars around <pos>, trying to
|
|
* preserve the beginning, with leading or trailing "..." when the line is truncated.
|
|
* If non-printable chars are present in the output. It returns the new offset <pos>
|
|
* in the modified line. Non-printable characters are replaced with '?'. <width> must
|
|
* be at least 6 to support two "..." otherwise the result is undefined. The line
|
|
* itself must have at least 7 chars allocated for the same reason.
|
|
*/
|
|
size_t sanitize_for_printing(char *line, size_t pos, size_t width)
|
|
{
|
|
size_t shift = 0;
|
|
char *out = line;
|
|
char *in = line;
|
|
char *end = line + width;
|
|
|
|
if (pos >= width) {
|
|
/* if we have to shift, we'll be out of context, so let's
|
|
* try to put <pos> at the center of width.
|
|
*/
|
|
shift = pos - width / 2;
|
|
in += shift + 3;
|
|
end = out + width - 3;
|
|
out[0] = out[1] = out[2] = '.';
|
|
out += 3;
|
|
}
|
|
|
|
while (out < end && *in) {
|
|
if (isspace((unsigned char)*in))
|
|
*out++ = ' ';
|
|
else if (isprint((unsigned char)*in))
|
|
*out++ = *in;
|
|
else
|
|
*out++ = '?';
|
|
in++;
|
|
}
|
|
|
|
if (end < line + width) {
|
|
out[0] = out[1] = out[2] = '.';
|
|
out += 3;
|
|
}
|
|
|
|
*out++ = 0;
|
|
return pos - shift;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|