haproxy/src/backend.c
Marcin Deranek d2471c2bdc MINOR: proxy: Add fe_name/be_name fetchers next to existing fe_id/be_id
These 2 patches add ability to fetch frontend/backend name in your
logic, so they can be used later to make routing decisions (fe_name) or
taking some actions based on backend which responded to request (be_name).
In our case we needed a fetcher to be able to extract information we
needed from frontend name.
2016-12-12 15:10:43 +01:00

1858 lines
53 KiB
C

/*
* Backend variables and functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <common/buffer.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/hash.h>
#include <common/ticks.h>
#include <common/time.h>
#include <common/namespace.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/arg.h>
#include <proto/backend.h>
#include <proto/channel.h>
#include <proto/frontend.h>
#include <proto/lb_chash.h>
#include <proto/lb_fas.h>
#include <proto/lb_fwlc.h>
#include <proto/lb_fwrr.h>
#include <proto/lb_map.h>
#include <proto/log.h>
#include <proto/obj_type.h>
#include <proto/payload.h>
#include <proto/protocol.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/sample.h>
#include <proto/server.h>
#include <proto/stream.h>
#include <proto/raw_sock.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
#ifdef USE_OPENSSL
#include <proto/ssl_sock.h>
#endif /* USE_OPENSSL */
int be_lastsession(const struct proxy *be)
{
if (be->be_counters.last_sess)
return now.tv_sec - be->be_counters.last_sess;
return -1;
}
/* helper function to invoke the correct hash method */
static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len)
{
unsigned int hash;
switch (px->lbprm.algo & BE_LB_HASH_FUNC) {
case BE_LB_HFCN_DJB2:
hash = hash_djb2(key, len);
break;
case BE_LB_HFCN_WT6:
hash = hash_wt6(key, len);
break;
case BE_LB_HFCN_CRC32:
hash = hash_crc32(key, len);
break;
case BE_LB_HFCN_SDBM:
/* this is the default hash function */
default:
hash = hash_sdbm(key, len);
break;
}
return hash;
}
/*
* This function recounts the number of usable active and backup servers for
* proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck.
* This function also recomputes the total active and backup weights. However,
* it does not update tot_weight nor tot_used. Use update_backend_weight() for
* this.
*/
void recount_servers(struct proxy *px)
{
struct server *srv;
px->srv_act = px->srv_bck = 0;
px->lbprm.tot_wact = px->lbprm.tot_wbck = 0;
px->lbprm.fbck = NULL;
for (srv = px->srv; srv != NULL; srv = srv->next) {
if (!srv_is_usable(srv))
continue;
if (srv->flags & SRV_F_BACKUP) {
if (!px->srv_bck &&
!(px->options & PR_O_USE_ALL_BK))
px->lbprm.fbck = srv;
px->srv_bck++;
srv->cumulative_weight = px->lbprm.tot_wbck;
px->lbprm.tot_wbck += srv->eweight;
} else {
px->srv_act++;
srv->cumulative_weight = px->lbprm.tot_wact;
px->lbprm.tot_wact += srv->eweight;
}
}
}
/* This function simply updates the backend's tot_weight and tot_used values
* after servers weights have been updated. It is designed to be used after
* recount_servers() or equivalent.
*/
void update_backend_weight(struct proxy *px)
{
if (px->srv_act) {
px->lbprm.tot_weight = px->lbprm.tot_wact;
px->lbprm.tot_used = px->srv_act;
}
else if (px->lbprm.fbck) {
/* use only the first backup server */
px->lbprm.tot_weight = px->lbprm.fbck->eweight;
px->lbprm.tot_used = 1;
}
else {
px->lbprm.tot_weight = px->lbprm.tot_wbck;
px->lbprm.tot_used = px->srv_bck;
}
}
/*
* This function tries to find a running server for the proxy <px> following
* the source hash method. Depending on the number of active/backup servers,
* it will either look for active servers, or for backup servers.
* If any server is found, it will be returned. If no valid server is found,
* NULL is returned.
*/
struct server *get_server_sh(struct proxy *px, const char *addr, int len)
{
unsigned int h, l;
if (px->lbprm.tot_weight == 0)
return NULL;
l = h = 0;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
while ((l + sizeof (int)) <= len) {
h ^= ntohl(*(unsigned int *)(&addr[l]));
l += sizeof (int);
}
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
h = full_hash(h);
hash_done:
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, h);
else
return map_get_server_hash(px, h);
}
/*
* This function tries to find a running server for the proxy <px> following
* the URI hash method. In order to optimize cache hits, the hash computation
* ends at the question mark. Depending on the number of active/backup servers,
* it will either look for active servers, or for backup servers.
* If any server is found, it will be returned. If no valid server is found,
* NULL is returned.
*
* This code was contributed by Guillaume Dallaire, who also selected this hash
* algorithm out of a tens because it gave him the best results.
*
*/
struct server *get_server_uh(struct proxy *px, char *uri, int uri_len)
{
unsigned int hash = 0;
int c;
int slashes = 0;
const char *start, *end;
if (px->lbprm.tot_weight == 0)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
if (px->uri_len_limit)
uri_len = MIN(uri_len, px->uri_len_limit);
start = end = uri;
while (uri_len--) {
c = *end;
if (c == '/') {
slashes++;
if (slashes == px->uri_dirs_depth1) /* depth+1 */
break;
}
else if (c == '?' && !px->uri_whole)
break;
end++;
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash);
else
return map_get_server_hash(px, hash);
}
/*
* This function tries to find a running server for the proxy <px> following
* the URL parameter hash method. It looks for a specific parameter in the
* URL and hashes it to compute the server ID. This is useful to optimize
* performance by avoiding bounces between servers in contexts where sessions
* are shared but cookies are not usable. If the parameter is not found, NULL
* is returned. If any server is found, it will be returned. If no valid server
* is found, NULL is returned.
*/
struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len)
{
unsigned int hash = 0;
const char *start, *end;
const char *p;
const char *params;
int plen;
/* when tot_weight is 0 then so is srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
if ((p = memchr(uri, '?', uri_len)) == NULL)
return NULL;
p++;
uri_len -= (p - uri);
plen = px->url_param_len;
params = p;
while (uri_len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->url_param_name, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
start = end = p;
uri_len -= plen + 1;
while (uri_len && *end != '&') {
uri_len--;
end++;
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash);
else
return map_get_server_hash(px, hash);
}
}
/* skip to next parameter */
p = memchr(params, '&', uri_len);
if (!p)
return NULL;
p++;
uri_len -= (p - params);
params = p;
}
return NULL;
}
/*
* this does the same as the previous server_ph, but check the body contents
*/
struct server *get_server_ph_post(struct stream *s)
{
unsigned int hash = 0;
struct http_txn *txn = s->txn;
struct channel *req = &s->req;
struct http_msg *msg = &txn->req;
struct proxy *px = s->be;
unsigned int plen = px->url_param_len;
unsigned long len = http_body_bytes(msg);
const char *params = b_ptr(req->buf, -http_data_rewind(msg));
const char *p = params;
const char *start, *end;
if (len == 0)
return NULL;
if (len > req->buf->data + req->buf->size - p)
len = req->buf->data + req->buf->size - p;
if (px->lbprm.tot_weight == 0)
return NULL;
while (len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->url_param_name, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
start = end = p;
len -= plen + 1;
while (len && *end != '&') {
if (unlikely(!HTTP_IS_TOKEN(*p))) {
/* if in a POST, body must be URI encoded or it's not a URI.
* Do not interpret any possible binary data as a parameter.
*/
if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */
break;
return NULL; /* oh, no; this is not uri-encoded.
* This body does not contain parameters.
*/
}
len--;
end++;
/* should we break if vlen exceeds limit? */
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash);
else
return map_get_server_hash(px, hash);
}
}
/* skip to next parameter */
p = memchr(params, '&', len);
if (!p)
return NULL;
p++;
len -= (p - params);
params = p;
}
return NULL;
}
/*
* This function tries to find a running server for the proxy <px> following
* the Header parameter hash method. It looks for a specific parameter in the
* URL and hashes it to compute the server ID. This is useful to optimize
* performance by avoiding bounces between servers in contexts where sessions
* are shared but cookies are not usable. If the parameter is not found, NULL
* is returned. If any server is found, it will be returned. If no valid server
* is found, NULL is returned.
*/
struct server *get_server_hh(struct stream *s)
{
unsigned int hash = 0;
struct http_txn *txn = s->txn;
struct proxy *px = s->be;
unsigned int plen = px->hh_len;
unsigned long len;
struct hdr_ctx ctx;
const char *p;
const char *start, *end;
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
ctx.idx = 0;
/* if the message is chunked, we skip the chunk size, but use the value as len */
http_find_header2(px->hh_name, plen, b_ptr(s->req.buf, -http_hdr_rewind(&txn->req)), &txn->hdr_idx, &ctx);
/* if the header is not found or empty, let's fallback to round robin */
if (!ctx.idx || !ctx.vlen)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
/* Found a the hh_name in the headers.
* we will compute the hash based on this value ctx.val.
*/
len = ctx.vlen;
p = (char *)ctx.line + ctx.val;
if (!px->hh_match_domain) {
hash = gen_hash(px, p, len);
} else {
int dohash = 0;
p += len;
/* special computation, use only main domain name, not tld/host
* going back from the end of string, start hashing at first
* dot stop at next.
* This is designed to work with the 'Host' header, and requires
* a special option to activate this.
*/
end = p;
while (len) {
if (dohash) {
/* Rewind the pointer until the previous char
* is a dot, this will allow to set the start
* position of the domain. */
if (*(p - 1) == '.')
break;
}
else if (*p == '.') {
/* The pointer is rewinded to the dot before the
* tld, we memorize the end of the domain and
* can enter the domain processing. */
end = p;
dohash = 1;
}
p--;
len--;
}
start = p;
hash = gen_hash(px, start, (end - start));
}
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash);
else
return map_get_server_hash(px, hash);
}
/* RDP Cookie HASH. */
struct server *get_server_rch(struct stream *s)
{
unsigned int hash = 0;
struct proxy *px = s->be;
unsigned long len;
int ret;
struct sample smp;
int rewind;
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
memset(&smp, 0, sizeof(smp));
b_rew(s->req.buf, rewind = s->req.buf->o);
ret = fetch_rdp_cookie_name(s, &smp, px->hh_name, px->hh_len);
len = smp.data.u.str.len;
b_adv(s->req.buf, rewind);
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
/* Found a the hh_name in the headers.
* we will compute the hash based on this value ctx.val.
*/
hash = gen_hash(px, smp.data.u.str.str, len);
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if (px->lbprm.algo & BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash);
else
return map_get_server_hash(px, hash);
}
/*
* This function applies the load-balancing algorithm to the stream, as
* defined by the backend it is assigned to. The stream is then marked as
* 'assigned'.
*
* This function MAY NOT be called with SF_ASSIGNED already set. If the stream
* had a server previously assigned, it is rebalanced, trying to avoid the same
* server, which should still be present in target_srv(&s->target) before the call.
* The function tries to keep the original connection slot if it reconnects to
* the same server, otherwise it releases it and tries to offer it.
*
* It is illegal to call this function with a stream in a queue.
*
* It may return :
* SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned.
* SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED
* SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the stream flag SF_ASSIGNED is set to indicate that
* it does not need to be called anymore. This means that target_srv(&s->target)
* can be trusted in balance and direct modes.
*
*/
int assign_server(struct stream *s)
{
struct connection *conn;
struct server *conn_slot;
struct server *srv, *prev_srv;
int err;
DPRINTF(stderr,"assign_server : s=%p\n",s);
err = SRV_STATUS_INTERNAL;
if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED))
goto out_err;
prev_srv = objt_server(s->target);
conn_slot = s->srv_conn;
/* We have to release any connection slot before applying any LB algo,
* otherwise we may erroneously end up with no available slot.
*/
if (conn_slot)
sess_change_server(s, NULL);
/* We will now try to find the good server and store it into <objt_server(s->target)>.
* Note that <objt_server(s->target)> may be NULL in case of dispatch or proxy mode,
* as well as if no server is available (check error code).
*/
srv = NULL;
s->target = NULL;
conn = objt_conn(s->si[1].end);
if (conn &&
(conn->flags & CO_FL_CONNECTED) &&
objt_server(conn->target) && __objt_server(conn->target)->proxy == s->be &&
((s->txn && s->txn->flags & TX_PREFER_LAST) ||
((s->be->options & PR_O_PREF_LAST) &&
(!s->be->max_ka_queue ||
server_has_room(__objt_server(conn->target)) ||
(__objt_server(conn->target)->nbpend + 1) < s->be->max_ka_queue))) &&
srv_is_usable(__objt_server(conn->target))) {
/* This stream was relying on a server in a previous request
* and the proxy has "option prefer-last-server" set, so
* let's try to reuse the same server.
*/
srv = __objt_server(conn->target);
s->target = &srv->obj_type;
}
else if (s->be->lbprm.algo & BE_LB_KIND) {
/* we must check if we have at least one server available */
if (!s->be->lbprm.tot_weight) {
err = SRV_STATUS_NOSRV;
goto out;
}
/* First check whether we need to fetch some data or simply call
* the LB lookup function. Only the hashing functions will need
* some input data in fact, and will support multiple algorithms.
*/
switch (s->be->lbprm.algo & BE_LB_LKUP) {
case BE_LB_LKUP_RRTREE:
srv = fwrr_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_FSTREE:
srv = fas_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_LCTREE:
srv = fwlc_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_CHTREE:
case BE_LB_LKUP_MAP:
if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) {
if (s->be->lbprm.algo & BE_LB_LKUP_CHTREE)
srv = chash_get_next_server(s->be, prev_srv);
else
srv = map_get_server_rr(s->be, prev_srv);
break;
}
else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) {
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
switch (s->be->lbprm.algo & BE_LB_PARM) {
case BE_LB_HASH_SRC:
conn = objt_conn(strm_orig(s));
if (conn && conn->addr.from.ss_family == AF_INET) {
srv = get_server_sh(s->be,
(void *)&((struct sockaddr_in *)&conn->addr.from)->sin_addr,
4);
}
else if (conn && conn->addr.from.ss_family == AF_INET6) {
srv = get_server_sh(s->be,
(void *)&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr,
16);
}
else {
/* unknown IP family */
err = SRV_STATUS_INTERNAL;
goto out;
}
break;
case BE_LB_HASH_URI:
/* URI hashing */
if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY)
break;
srv = get_server_uh(s->be,
b_ptr(s->req.buf, -http_uri_rewind(&s->txn->req)),
s->txn->req.sl.rq.u_l);
break;
case BE_LB_HASH_PRM:
/* URL Parameter hashing */
if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY)
break;
srv = get_server_ph(s->be,
b_ptr(s->req.buf, -http_uri_rewind(&s->txn->req)),
s->txn->req.sl.rq.u_l);
if (!srv && s->txn->meth == HTTP_METH_POST)
srv = get_server_ph_post(s);
break;
case BE_LB_HASH_HDR:
/* Header Parameter hashing */
if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY)
break;
srv = get_server_hh(s);
break;
case BE_LB_HASH_RDP:
/* RDP Cookie hashing */
srv = get_server_rch(s);
break;
default:
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
/* If the hashing parameter was not found, let's fall
* back to round robin on the map.
*/
if (!srv) {
if (s->be->lbprm.algo & BE_LB_LKUP_CHTREE)
srv = chash_get_next_server(s->be, prev_srv);
else
srv = map_get_server_rr(s->be, prev_srv);
}
/* end of map-based LB */
break;
default:
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
if (!srv) {
err = SRV_STATUS_FULL;
goto out;
}
else if (srv != prev_srv) {
s->be->be_counters.cum_lbconn++;
srv->counters.cum_lbconn++;
}
s->target = &srv->obj_type;
}
else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) {
s->target = &s->be->obj_type;
}
else if ((s->be->options & PR_O_HTTP_PROXY) &&
(conn = objt_conn(s->si[1].end)) &&
is_addr(&conn->addr.to)) {
/* in proxy mode, we need a valid destination address */
s->target = &s->be->obj_type;
}
else {
err = SRV_STATUS_NOSRV;
goto out;
}
s->flags |= SF_ASSIGNED;
err = SRV_STATUS_OK;
out:
/* Either we take back our connection slot, or we offer it to someone
* else if we don't need it anymore.
*/
if (conn_slot) {
if (conn_slot == srv) {
sess_change_server(s, srv);
} else {
if (may_dequeue_tasks(conn_slot, s->be))
process_srv_queue(conn_slot);
}
}
out_err:
return err;
}
/*
* This function assigns a server address to a stream, and sets SF_ADDR_SET.
* The address is taken from the currently assigned server, or from the
* dispatch or transparent address.
*
* It may return :
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the stream flag SF_ADDR_SET is set. This flag is
* not cleared, so it's to the caller to clear it if required.
*
* The caller is responsible for having already assigned a connection
* to si->end.
*
*/
int assign_server_address(struct stream *s)
{
struct connection *cli_conn = objt_conn(strm_orig(s));
struct connection *srv_conn = objt_conn(s->si[1].end);
#ifdef DEBUG_FULL
fprintf(stderr,"assign_server_address : s=%p\n",s);
#endif
if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) {
/* A server is necessarily known for this stream */
if (!(s->flags & SF_ASSIGNED))
return SRV_STATUS_INTERNAL;
srv_conn->addr.to = objt_server(s->target)->addr;
if (!is_addr(&srv_conn->addr.to) && cli_conn) {
/* if the server has no address, we use the same address
* the client asked, which is handy for remapping ports
* locally on multiple addresses at once. Nothing is done
* for AF_UNIX addresses.
*/
conn_get_to_addr(cli_conn);
if (cli_conn->addr.to.ss_family == AF_INET) {
((struct sockaddr_in *)&srv_conn->addr.to)->sin_addr = ((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr;
} else if (cli_conn->addr.to.ss_family == AF_INET6) {
((struct sockaddr_in6 *)&srv_conn->addr.to)->sin6_addr = ((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_addr;
}
}
/* if this server remaps proxied ports, we'll use
* the port the client connected to with an offset. */
if ((objt_server(s->target)->flags & SRV_F_MAPPORTS) && cli_conn) {
int base_port;
conn_get_to_addr(cli_conn);
/* First, retrieve the port from the incoming connection */
base_port = get_host_port(&cli_conn->addr.to);
/* Second, assign the outgoing connection's port */
base_port += get_host_port(&srv_conn->addr.to);
set_host_port(&srv_conn->addr.to, base_port);
}
}
else if (s->be->options & PR_O_DISPATCH) {
/* connect to the defined dispatch addr */
srv_conn->addr.to = s->be->dispatch_addr;
}
else if ((s->be->options & PR_O_TRANSP) && cli_conn) {
/* in transparent mode, use the original dest addr if no dispatch specified */
conn_get_to_addr(cli_conn);
if (cli_conn->addr.to.ss_family == AF_INET || cli_conn->addr.to.ss_family == AF_INET6)
srv_conn->addr.to = cli_conn->addr.to;
}
else if (s->be->options & PR_O_HTTP_PROXY) {
/* If HTTP PROXY option is set, then server is already assigned
* during incoming client request parsing. */
}
else {
/* no server and no LB algorithm ! */
return SRV_STATUS_INTERNAL;
}
/* Copy network namespace from client connection */
srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL;
s->flags |= SF_ADDR_SET;
return SRV_STATUS_OK;
}
/* This function assigns a server to stream <s> if required, and can add the
* connection to either the assigned server's queue or to the proxy's queue.
* If ->srv_conn is set, the stream is first released from the server.
* It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will
* be called before any connection and after any retry or redispatch occurs.
*
* It is not allowed to call this function with a stream in a queue.
*
* Returns :
*
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL.
* SRV_STATUS_QUEUED if the connection has been queued.
* SRV_STATUS_FULL if the server(s) is/are saturated and the
* connection could not be queued at the server's,
* which may be NULL if we queue on the backend.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
*/
int assign_server_and_queue(struct stream *s)
{
struct pendconn *p;
struct server *srv;
int err;
if (s->pend_pos)
return SRV_STATUS_INTERNAL;
err = SRV_STATUS_OK;
if (!(s->flags & SF_ASSIGNED)) {
struct server *prev_srv = objt_server(s->target);
err = assign_server(s);
if (prev_srv) {
/* This stream was previously assigned to a server. We have to
* update the stream's and the server's stats :
* - if the server changed :
* - set TX_CK_DOWN if txn.flags was TX_CK_VALID
* - set SF_REDISP if it was successfully redispatched
* - increment srv->redispatches and be->redispatches
* - if the server remained the same : update retries.
*/
if (prev_srv != objt_server(s->target)) {
if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) {
s->txn->flags &= ~TX_CK_MASK;
s->txn->flags |= TX_CK_DOWN;
}
s->flags |= SF_REDISP;
prev_srv->counters.redispatches++;
s->be->be_counters.redispatches++;
} else {
prev_srv->counters.retries++;
s->be->be_counters.retries++;
}
}
}
switch (err) {
case SRV_STATUS_OK:
/* we have SF_ASSIGNED set */
srv = objt_server(s->target);
if (!srv)
return SRV_STATUS_OK; /* dispatch or proxy mode */
/* If we already have a connection slot, no need to check any queue */
if (s->srv_conn == srv)
return SRV_STATUS_OK;
/* OK, this stream already has an assigned server, but no
* connection slot yet. Either it is a redispatch, or it was
* assigned from persistence information (direct mode).
*/
if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) {
/* server scheduled for redirection, and already assigned. We
* don't want to go further nor check the queue.
*/
sess_change_server(s, srv); /* not really needed in fact */
return SRV_STATUS_OK;
}
/* We might have to queue this stream if the assigned server is full.
* We know we have to queue it into the server's queue, so if a maxqueue
* is set on the server, we must also check that the server's queue is
* not full, in which case we have to return FULL.
*/
if (srv->maxconn &&
(srv->nbpend || srv->served >= srv_dynamic_maxconn(srv))) {
if (srv->maxqueue > 0 && srv->nbpend >= srv->maxqueue)
return SRV_STATUS_FULL;
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
}
/* OK, we can use this server. Let's reserve our place */
sess_change_server(s, srv);
return SRV_STATUS_OK;
case SRV_STATUS_FULL:
/* queue this stream into the proxy's queue */
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
case SRV_STATUS_NOSRV:
return err;
case SRV_STATUS_INTERNAL:
return err;
default:
return SRV_STATUS_INTERNAL;
}
}
/* If an explicit source binding is specified on the server and/or backend, and
* this source makes use of the transparent proxy, then it is extracted now and
* assigned to the stream's pending connection. This function assumes that an
* outgoing connection has already been assigned to s->si[1].end.
*/
static void assign_tproxy_address(struct stream *s)
{
#if defined(CONFIG_HAP_TRANSPARENT)
struct server *srv = objt_server(s->target);
struct conn_src *src;
struct connection *cli_conn;
struct connection *srv_conn = objt_conn(s->si[1].end);
if (srv && srv->conn_src.opts & CO_SRC_BIND)
src = &srv->conn_src;
else if (s->be->conn_src.opts & CO_SRC_BIND)
src = &s->be->conn_src;
else
return;
switch (src->opts & CO_SRC_TPROXY_MASK) {
case CO_SRC_TPROXY_ADDR:
srv_conn->addr.from = src->tproxy_addr;
break;
case CO_SRC_TPROXY_CLI:
case CO_SRC_TPROXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 or unix socket ? */
cli_conn = objt_conn(strm_orig(s));
if (cli_conn)
srv_conn->addr.from = cli_conn->addr.from;
else
memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from));
break;
case CO_SRC_TPROXY_DYN:
if (src->bind_hdr_occ && s->txn) {
char *vptr;
int vlen;
int rewind;
/* bind to the IP in a header */
((struct sockaddr_in *)&srv_conn->addr.from)->sin_family = AF_INET;
((struct sockaddr_in *)&srv_conn->addr.from)->sin_port = 0;
((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = 0;
b_rew(s->req.buf, rewind = http_hdr_rewind(&s->txn->req));
if (http_get_hdr(&s->txn->req, src->bind_hdr_name, src->bind_hdr_len,
&s->txn->hdr_idx, src->bind_hdr_occ, NULL, &vptr, &vlen)) {
((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr =
htonl(inetaddr_host_lim(vptr, vptr + vlen));
}
b_adv(s->req.buf, rewind);
}
break;
default:
memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from));
}
#endif
}
/*
* This function initiates a connection to the server assigned to this stream
* (s->target, s->si[1].addr.to). It will assign a server if none
* is assigned yet.
* It can return one of :
* - SF_ERR_NONE if everything's OK
* - SF_ERR_SRVTO if there are no more servers
* - SF_ERR_SRVCL if the connection was refused by the server
* - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SF_ERR_INTERNAL for any other purely internal errors
* Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted.
* The server-facing stream interface is expected to hold a pre-allocated connection
* in s->si[1].conn.
*/
int connect_server(struct stream *s)
{
struct connection *cli_conn;
struct connection *srv_conn;
struct connection *old_conn;
struct server *srv;
int reuse = 0;
int err;
srv = objt_server(s->target);
srv_conn = objt_conn(s->si[1].end);
if (srv_conn)
reuse = s->target == srv_conn->target;
if (srv && !reuse) {
old_conn = srv_conn;
if (old_conn) {
srv_conn = NULL;
old_conn->owner = NULL;
si_detach_endpoint(&s->si[1]);
/* note: if the connection was in a server's idle
* queue, it doesn't get dequeued.
*/
}
/* Below we pick connections from the safe or idle lists based
* on the strategy, the fact that this is a first or second
* (retryable) request, with the indicated priority (1 or 2) :
*
* SAFE AGGR ALWS
*
* +-----+-----+ +-----+-----+ +-----+-----+
* req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
* safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
* idle| - | 1 | idle| - | 1 | idle| 2 | 1 |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
*/
if (!LIST_ISEMPTY(&srv->idle_conns) &&
((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR &&
s->txn && (s->txn->flags & TX_NOT_FIRST))) {
srv_conn = LIST_ELEM(srv->idle_conns.n, struct connection *, list);
}
else if (!LIST_ISEMPTY(&srv->safe_conns) &&
((s->txn && (s->txn->flags & TX_NOT_FIRST)) ||
(s->be->options & PR_O_REUSE_MASK) >= PR_O_REUSE_AGGR)) {
srv_conn = LIST_ELEM(srv->safe_conns.n, struct connection *, list);
}
else if (!LIST_ISEMPTY(&srv->idle_conns) &&
(s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) {
srv_conn = LIST_ELEM(srv->idle_conns.n, struct connection *, list);
}
/* If we've picked a connection from the pool, we now have to
* detach it. We may have to get rid of the previous idle
* connection we had, so for this we try to swap it with the
* other owner's. That way it may remain alive for others to
* pick.
*/
if (srv_conn) {
LIST_DEL(&srv_conn->list);
LIST_INIT(&srv_conn->list);
if (srv_conn->owner) {
si_detach_endpoint(srv_conn->owner);
if (old_conn && !(old_conn->flags & CO_FL_PRIVATE)) {
si_attach_conn(srv_conn->owner, old_conn);
si_idle_conn(srv_conn->owner, NULL);
}
}
si_attach_conn(&s->si[1], srv_conn);
reuse = 1;
}
/* we may have to release our connection if we couldn't swap it */
if (old_conn && !old_conn->owner) {
LIST_DEL(&old_conn->list);
conn_force_close(old_conn);
conn_free(old_conn);
}
}
if (reuse) {
/* Disable connection reuse if a dynamic source is used.
* As long as we don't share connections between servers,
* we don't need to disable connection reuse on no-idempotent
* requests nor when PROXY protocol is used.
*/
if (srv && srv->conn_src.opts & CO_SRC_BIND) {
if ((srv->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN)
reuse = 0;
}
else if (s->be->conn_src.opts & CO_SRC_BIND) {
if ((s->be->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN)
reuse = 0;
}
}
if (!reuse)
srv_conn = si_alloc_conn(&s->si[1]);
else {
/* reusing our connection, take it out of the idle list */
LIST_DEL(&srv_conn->list);
LIST_INIT(&srv_conn->list);
}
if (!srv_conn)
return SF_ERR_RESOURCE;
if (!(s->flags & SF_ADDR_SET)) {
err = assign_server_address(s);
if (err != SRV_STATUS_OK)
return SF_ERR_INTERNAL;
}
if (!conn_xprt_ready(srv_conn)) {
/* the target was only on the stream, assign it to the SI now */
srv_conn->target = s->target;
/* set the correct protocol on the output stream interface */
if (srv) {
conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), srv->xprt);
}
else if (obj_type(s->target) == OBJ_TYPE_PROXY) {
/* proxies exclusively run on raw_sock right now */
conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), &raw_sock);
if (!objt_conn(s->si[1].end) || !objt_conn(s->si[1].end)->ctrl)
return SF_ERR_INTERNAL;
}
else
return SF_ERR_INTERNAL; /* how did we get there ? */
/* process the case where the server requires the PROXY protocol to be sent */
srv_conn->send_proxy_ofs = 0;
if (srv && srv->pp_opts) {
srv_conn->flags |= CO_FL_PRIVATE;
srv_conn->send_proxy_ofs = 1; /* must compute size */
cli_conn = objt_conn(strm_orig(s));
if (cli_conn)
conn_get_to_addr(cli_conn);
}
si_attach_conn(&s->si[1], srv_conn);
assign_tproxy_address(s);
}
else {
/* the connection is being reused, just re-attach it */
si_attach_conn(&s->si[1], srv_conn);
s->flags |= SF_SRV_REUSED;
}
/* flag for logging source ip/port */
if (strm_fe(s)->options2 & PR_O2_SRC_ADDR)
s->si[1].flags |= SI_FL_SRC_ADDR;
/* disable lingering */
if (s->be->options & PR_O_TCP_NOLING)
s->si[1].flags |= SI_FL_NOLINGER;
err = si_connect(&s->si[1]);
if (err != SF_ERR_NONE)
return err;
/* set connect timeout */
s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.connect);
if (srv) {
s->flags |= SF_CURR_SESS;
srv->cur_sess++;
if (srv->cur_sess > srv->counters.cur_sess_max)
srv->counters.cur_sess_max = srv->cur_sess;
if (s->be->lbprm.server_take_conn)
s->be->lbprm.server_take_conn(srv);
#ifdef USE_OPENSSL
if (srv->ssl_ctx.sni) {
struct sample *smp;
int rewind;
/* Tricky case : we have already scheduled the pending
* HTTP request or TCP data for leaving. So in HTTP we
* rewind exactly the headers, otherwise we rewind the
* output data.
*/
rewind = s->txn ? http_hdr_rewind(&s->txn->req) : s->req.buf->o;
b_rew(s->req.buf, rewind);
smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, srv->ssl_ctx.sni, SMP_T_STR);
/* restore the pointers */
b_adv(s->req.buf, rewind);
if (smp_make_safe(smp)) {
ssl_sock_set_servername(srv_conn, smp->data.u.str.str);
srv_conn->flags |= CO_FL_PRIVATE;
}
}
#endif /* USE_OPENSSL */
}
return SF_ERR_NONE; /* connection is OK */
}
/* This function performs the "redispatch" part of a connection attempt. It
* will assign a server if required, queue the connection if required, and
* handle errors that might arise at this level. It can change the server
* state. It will return 1 if it encounters an error, switches the server
* state, or has to queue a connection. Otherwise, it will return 0 indicating
* that the connection is ready to use.
*/
int srv_redispatch_connect(struct stream *s)
{
struct server *srv;
int conn_err;
/* We know that we don't have any connection pending, so we will
* try to get a new one, and wait in this state if it's queued
*/
redispatch:
conn_err = assign_server_and_queue(s);
srv = objt_server(s->target);
switch (conn_err) {
case SRV_STATUS_OK:
break;
case SRV_STATUS_FULL:
/* The server has reached its maxqueue limit. Either PR_O_REDISP is set
* and we can redispatch to another server, or it is not and we return
* 503. This only makes sense in DIRECT mode however, because normal LB
* algorithms would never select such a server, and hash algorithms
* would bring us on the same server again. Note that s->target is set
* in this case.
*/
if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) &&
(s->be->options & PR_O_REDISP)) {
s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
goto redispatch;
}
if (!s->si[1].err_type) {
s->si[1].err_type = SI_ET_QUEUE_ERR;
}
srv->counters.failed_conns++;
s->be->be_counters.failed_conns++;
return 1;
case SRV_STATUS_NOSRV:
/* note: it is guaranteed that srv == NULL here */
if (!s->si[1].err_type) {
s->si[1].err_type = SI_ET_CONN_ERR;
}
s->be->be_counters.failed_conns++;
return 1;
case SRV_STATUS_QUEUED:
s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.queue);
s->si[1].state = SI_ST_QUE;
/* do nothing else and do not wake any other stream up */
return 1;
case SRV_STATUS_INTERNAL:
default:
if (!s->si[1].err_type) {
s->si[1].err_type = SI_ET_CONN_OTHER;
}
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
if (srv)
srv->counters.failed_conns++;
s->be->be_counters.failed_conns++;
/* release other streams waiting for this server */
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
return 1;
}
/* if we get here, it's because we got SRV_STATUS_OK, which also
* means that the connection has not been queued.
*/
return 0;
}
/* sends a log message when a backend goes down, and also sets last
* change date.
*/
void set_backend_down(struct proxy *be)
{
be->last_change = now.tv_sec;
be->down_trans++;
if (!(global.mode & MODE_STARTING)) {
Alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id);
send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id);
}
}
/* Apply RDP cookie persistence to the current stream. For this, the function
* tries to extract an RDP cookie from the request buffer, and look for the
* matching server in the list. If the server is found, it is assigned to the
* stream. This always returns 1, and the analyser removes itself from the
* list. Nothing is performed if a server was already assigned.
*/
int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
int ret;
struct sample smp;
struct server *srv = px->srv;
struct sockaddr_in addr;
char *p;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
if (s->flags & SF_ASSIGNED)
goto no_cookie;
memset(&smp, 0, sizeof(smp));
ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len);
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.len == 0)
goto no_cookie;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
/* Considering an rdp cookie detected using acl, str ended with <cr><lf> and should return */
addr.sin_addr.s_addr = strtoul(smp.data.u.str.str, &p, 10);
if (*p != '.')
goto no_cookie;
p++;
addr.sin_port = (unsigned short)strtoul(p, &p, 10);
if (*p != '.')
goto no_cookie;
s->target = NULL;
while (srv) {
if (srv->addr.ss_family == AF_INET &&
memcmp(&addr, &(srv->addr), sizeof(addr)) == 0) {
if ((srv->state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) {
/* we found the server and it is usable */
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
}
}
srv = srv->next;
}
no_cookie:
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
}
int be_downtime(struct proxy *px) {
if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time
return px->down_time;
return now.tv_sec - px->last_change + px->down_time;
}
/*
* This function returns a string containing the balancing
* mode of the proxy in a format suitable for stats.
*/
const char *backend_lb_algo_str(int algo) {
if (algo == BE_LB_ALGO_RR)
return "roundrobin";
else if (algo == BE_LB_ALGO_SRR)
return "static-rr";
else if (algo == BE_LB_ALGO_FAS)
return "first";
else if (algo == BE_LB_ALGO_LC)
return "leastconn";
else if (algo == BE_LB_ALGO_SH)
return "source";
else if (algo == BE_LB_ALGO_UH)
return "uri";
else if (algo == BE_LB_ALGO_PH)
return "url_param";
else if (algo == BE_LB_ALGO_HH)
return "hdr";
else if (algo == BE_LB_ALGO_RCH)
return "rdp-cookie";
else if (algo == BE_LB_ALGO_NONE)
return "none";
else
return "unknown";
}
/* This function parses a "balance" statement in a backend section describing
* <curproxy>. It returns -1 if there is any error, otherwise zero. If it
* returns -1, it will write an error message into the <err> buffer which will
* automatically be allocated and must be passed as NULL. The trailing '\n'
* will not be written. The function must be called with <args> pointing to the
* first word after "balance".
*/
int backend_parse_balance(const char **args, char **err, struct proxy *curproxy)
{
if (!*(args[0])) {
/* if no option is set, use round-robin by default */
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
return 0;
}
if (!strcmp(args[0], "roundrobin")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
}
else if (!strcmp(args[0], "static-rr")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SRR;
}
else if (!strcmp(args[0], "first")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_FAS;
}
else if (!strcmp(args[0], "leastconn")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_LC;
}
else if (!strcmp(args[0], "source")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SH;
}
else if (!strcmp(args[0], "uri")) {
int arg = 1;
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_UH;
curproxy->uri_whole = 0;
while (*args[arg]) {
if (!strcmp(args[arg], "len")) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
return -1;
}
curproxy->uri_len_limit = atoi(args[arg+1]);
arg += 2;
}
else if (!strcmp(args[arg], "depth")) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
return -1;
}
/* hint: we store the position of the ending '/' (depth+1) so
* that we avoid a comparison while computing the hash.
*/
curproxy->uri_dirs_depth1 = atoi(args[arg+1]) + 1;
arg += 2;
}
else if (!strcmp(args[arg], "whole")) {
curproxy->uri_whole = 1;
arg += 1;
}
else {
memprintf(err, "%s only accepts parameters 'len', 'depth', and 'whole' (got '%s').", args[0], args[arg]);
return -1;
}
}
}
else if (!strcmp(args[0], "url_param")) {
if (!*args[1]) {
memprintf(err, "%s requires an URL parameter name.", args[0]);
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_PH;
free(curproxy->url_param_name);
curproxy->url_param_name = strdup(args[1]);
curproxy->url_param_len = strlen(args[1]);
if (*args[2]) {
if (strcmp(args[2], "check_post")) {
memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]);
return -1;
}
}
}
else if (!strncmp(args[0], "hdr(", 4)) {
const char *beg, *end;
beg = args[0] + 4;
end = strchr(beg, ')');
if (!end || end == beg) {
memprintf(err, "hdr requires an http header field name.");
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_HH;
free(curproxy->hh_name);
curproxy->hh_len = end - beg;
curproxy->hh_name = my_strndup(beg, end - beg);
curproxy->hh_match_domain = 0;
if (*args[1]) {
if (strcmp(args[1], "use_domain_only")) {
memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]);
return -1;
}
curproxy->hh_match_domain = 1;
}
}
else if (!strncmp(args[0], "rdp-cookie", 10)) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RCH;
if ( *(args[0] + 10 ) == '(' ) { /* cookie name */
const char *beg, *end;
beg = args[0] + 11;
end = strchr(beg, ')');
if (!end || end == beg) {
memprintf(err, "rdp-cookie : missing cookie name.");
return -1;
}
free(curproxy->hh_name);
curproxy->hh_name = my_strndup(beg, end - beg);
curproxy->hh_len = end - beg;
}
else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */
free(curproxy->hh_name);
curproxy->hh_name = strdup("mstshash");
curproxy->hh_len = strlen(curproxy->hh_name);
}
else { /* syntax */
memprintf(err, "rdp-cookie : missing cookie name.");
return -1;
}
}
else {
memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options.");
return -1;
}
return 0;
}
/************************************************************************/
/* All supported sample and ACL keywords must be declared here. */
/************************************************************************/
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
px = args->data.prx;
if (px->srv_act)
smp->data.u.sint = px->srv_act;
else if (px->lbprm.fbck)
smp->data.u.sint = 1;
else
smp->data.u.sint = px->srv_bck;
return 1;
}
/* report in smp->flags a success or failure depending on the designated
* server's state. There is no match function involved since there's no pattern.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *srv = args->data.srv;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_BOOL;
if (!(srv->admin & SRV_ADMF_MAINT) &&
(!(srv->check.state & CHK_ST_CONFIGURED) || (srv->state != SRV_ST_STOPPED)))
smp->data.u.sint = 1;
else
smp->data.u.sint = 0;
return 1;
}
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *iterator;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) {
if (iterator->state == SRV_ST_STOPPED)
continue;
if (iterator->maxconn == 0 || iterator->maxqueue == 0) {
/* configuration is stupid */
smp->data.u.sint = -1; /* FIXME: stupid value! */
return 1;
}
smp->data.u.sint += (iterator->maxconn - iterator->cur_sess)
+ (iterator->maxqueue - iterator->nbpend);
}
return 1;
}
/* set temp integer to the id of the backend */
static int
smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->be->uuid;
return 1;
}
/* set string to the name of the backend */
static int
smp_fetch_be_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.u.str.str = (char *)smp->strm->be->id;
if (!smp->data.u.str.str)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.len = strlen(smp->data.u.str.str);
return 1;
}
/* set temp integer to the id of the server */
static int
smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
if (!objt_server(smp->strm->target))
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = objt_server(smp->strm->target)->puid;
return 1;
}
/* set temp integer to the number of connections per second reaching the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = read_freq_ctr(&args->data.prx->be_sess_per_sec);
return 1;
}
/* set temp integer to the number of concurrent connections on the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.prx->beconn;
return 1;
}
/* set temp integer to the total number of queued connections on the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.prx->totpend;
return 1;
}
/* set temp integer to the total number of queued connections on the backend divided
* by the number of running servers and rounded up. If there is no running
* server, we return twice the total, just as if we had half a running server.
* This is more or less correct anyway, since we expect the last server to come
* back soon.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int nbsrv;
struct proxy *px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
px = args->data.prx;
if (px->srv_act)
nbsrv = px->srv_act;
else if (px->lbprm.fbck)
nbsrv = 1;
else
nbsrv = px->srv_bck;
if (nbsrv > 0)
smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv;
else
smp->data.u.sint = px->totpend * 2;
return 1;
}
/* set temp integer to the number of concurrent connections on the server in the backend.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.srv->cur_sess;
return 1;
}
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec);
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "be_name", smp_fetch_be_name, 0, NULL, SMP_T_STR, SMP_USE_BKEND, },
{ "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, },
{ "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ /* END */ },
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
__attribute__((constructor))
static void __backend_init(void)
{
sample_register_fetches(&smp_kws);
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/