mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2024-12-28 07:32:15 +00:00
784063eeb2
Helper functions are used to dump bind, server or filter keywords. These functions are used to report errors during the configuration parsing. To have a coherent API, these functions are now prepared to handle a null pointer as argument. If so, no action is performed and functions immediately return. This patch should fix the issue #631. It is not a bug. There is no reason to backport it.
1596 lines
46 KiB
C
1596 lines
46 KiB
C
/*
|
|
* Listener management functions.
|
|
*
|
|
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <common/cfgparse.h>
|
|
#include <common/config.h>
|
|
#include <common/errors.h>
|
|
#include <common/initcall.h>
|
|
#include <common/mini-clist.h>
|
|
#include <common/standard.h>
|
|
#include <common/time.h>
|
|
|
|
#include <types/global.h>
|
|
#include <types/protocol.h>
|
|
|
|
#include <proto/acl.h>
|
|
#include <proto/connection.h>
|
|
#include <proto/fd.h>
|
|
#include <proto/freq_ctr.h>
|
|
#include <proto/log.h>
|
|
#include <proto/listener.h>
|
|
#include <proto/protocol.h>
|
|
#include <proto/proto_sockpair.h>
|
|
#include <proto/sample.h>
|
|
#include <proto/stream.h>
|
|
#include <proto/task.h>
|
|
|
|
/* List head of all known bind keywords */
|
|
static struct bind_kw_list bind_keywords = {
|
|
.list = LIST_HEAD_INIT(bind_keywords.list)
|
|
};
|
|
|
|
struct xfer_sock_list *xfer_sock_list = NULL;
|
|
|
|
/* there is one listener queue per thread so that a thread unblocking the
|
|
* global queue can wake up listeners bound only to foreign threads by
|
|
* moving them to the remote queues and waking up the associated tasklet.
|
|
*/
|
|
static struct work_list *local_listener_queue;
|
|
|
|
/* list of the temporarily limited listeners because of lack of resource */
|
|
static struct mt_list global_listener_queue = MT_LIST_HEAD_INIT(global_listener_queue);
|
|
static struct task *global_listener_queue_task;
|
|
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state);
|
|
|
|
|
|
#if defined(USE_THREAD)
|
|
|
|
struct accept_queue_ring accept_queue_rings[MAX_THREADS] __attribute__((aligned(64))) = { };
|
|
|
|
/* dequeue and process a pending connection from the local accept queue (single
|
|
* consumer). Returns the accepted fd or -1 if none was found. The listener is
|
|
* placed into *li. The address is copied into *addr for no more than *addr_len
|
|
* bytes, and the address length is returned into *addr_len.
|
|
*/
|
|
int accept_queue_pop_sc(struct accept_queue_ring *ring, struct listener **li, void *addr, int *addr_len)
|
|
{
|
|
struct accept_queue_entry *e;
|
|
unsigned int pos, next;
|
|
struct listener *ptr;
|
|
int len;
|
|
int fd;
|
|
|
|
pos = ring->head;
|
|
|
|
if (pos == ring->tail)
|
|
return -1;
|
|
|
|
next = pos + 1;
|
|
if (next >= ACCEPT_QUEUE_SIZE)
|
|
next = 0;
|
|
|
|
e = &ring->entry[pos];
|
|
|
|
/* wait for the producer to update the listener's pointer */
|
|
while (1) {
|
|
ptr = e->listener;
|
|
__ha_barrier_load();
|
|
if (ptr)
|
|
break;
|
|
pl_cpu_relax();
|
|
}
|
|
|
|
fd = e->fd;
|
|
len = e->addr_len;
|
|
if (len > *addr_len)
|
|
len = *addr_len;
|
|
|
|
if (likely(len > 0))
|
|
memcpy(addr, &e->addr, len);
|
|
|
|
/* release the entry */
|
|
e->listener = NULL;
|
|
|
|
__ha_barrier_store();
|
|
ring->head = next;
|
|
|
|
*addr_len = len;
|
|
*li = ptr;
|
|
|
|
return fd;
|
|
}
|
|
|
|
|
|
/* tries to push a new accepted connection <fd> into ring <ring> for listener
|
|
* <li>, from address <addr> whose length is <addr_len>. Returns non-zero if it
|
|
* succeeds, or zero if the ring is full. Supports multiple producers.
|
|
*/
|
|
int accept_queue_push_mp(struct accept_queue_ring *ring, int fd,
|
|
struct listener *li, const void *addr, int addr_len)
|
|
{
|
|
struct accept_queue_entry *e;
|
|
unsigned int pos, next;
|
|
|
|
pos = ring->tail;
|
|
do {
|
|
next = pos + 1;
|
|
if (next >= ACCEPT_QUEUE_SIZE)
|
|
next = 0;
|
|
if (next == ring->head)
|
|
return 0; // ring full
|
|
} while (unlikely(!_HA_ATOMIC_CAS(&ring->tail, &pos, next)));
|
|
|
|
|
|
e = &ring->entry[pos];
|
|
|
|
if (addr_len > sizeof(e->addr))
|
|
addr_len = sizeof(e->addr);
|
|
|
|
if (addr_len)
|
|
memcpy(&e->addr, addr, addr_len);
|
|
|
|
e->addr_len = addr_len;
|
|
e->fd = fd;
|
|
|
|
__ha_barrier_store();
|
|
/* now commit the change */
|
|
|
|
e->listener = li;
|
|
return 1;
|
|
}
|
|
|
|
/* proceed with accepting new connections */
|
|
static struct task *accept_queue_process(struct task *t, void *context, unsigned short state)
|
|
{
|
|
struct accept_queue_ring *ring = context;
|
|
struct listener *li;
|
|
struct sockaddr_storage addr;
|
|
unsigned int max_accept;
|
|
int addr_len;
|
|
int ret;
|
|
int fd;
|
|
|
|
/* if global.tune.maxaccept is -1, then max_accept is UINT_MAX. It
|
|
* is not really illimited, but it is probably enough.
|
|
*/
|
|
max_accept = global.tune.maxaccept ? global.tune.maxaccept : 64;
|
|
for (; max_accept; max_accept--) {
|
|
addr_len = sizeof(addr);
|
|
fd = accept_queue_pop_sc(ring, &li, &addr, &addr_len);
|
|
if (fd < 0)
|
|
break;
|
|
|
|
_HA_ATOMIC_ADD(&li->thr_conn[tid], 1);
|
|
ret = li->accept(li, fd, &addr);
|
|
if (ret <= 0) {
|
|
/* connection was terminated by the application */
|
|
continue;
|
|
}
|
|
|
|
/* increase the per-process number of cumulated sessions, this
|
|
* may only be done once l->accept() has accepted the connection.
|
|
*/
|
|
if (!(li->options & LI_O_UNLIMITED)) {
|
|
HA_ATOMIC_UPDATE_MAX(&global.sps_max,
|
|
update_freq_ctr(&global.sess_per_sec, 1));
|
|
if (li->bind_conf && li->bind_conf->is_ssl) {
|
|
HA_ATOMIC_UPDATE_MAX(&global.ssl_max,
|
|
update_freq_ctr(&global.ssl_per_sec, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ran out of budget ? Let's come here ASAP */
|
|
if (!max_accept)
|
|
tasklet_wakeup(ring->tasklet);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Initializes the accept-queues. Returns 0 on success, otherwise ERR_* flags */
|
|
static int accept_queue_init()
|
|
{
|
|
struct tasklet *t;
|
|
int i;
|
|
|
|
for (i = 0; i < global.nbthread; i++) {
|
|
t = tasklet_new();
|
|
if (!t) {
|
|
ha_alert("Out of memory while initializing accept queue for thread %d\n", i);
|
|
return ERR_FATAL|ERR_ABORT;
|
|
}
|
|
t->tid = i;
|
|
t->process = accept_queue_process;
|
|
t->context = &accept_queue_rings[i];
|
|
accept_queue_rings[i].tasklet = t;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_CONFIG_POSTPARSER("multi-threaded accept queue", accept_queue_init);
|
|
|
|
#endif // USE_THREAD
|
|
|
|
/* This function adds the specified listener's file descriptor to the polling
|
|
* lists if it is in the LI_LISTEN state. The listener enters LI_READY or
|
|
* LI_FULL state depending on its number of connections. In daemon mode, we
|
|
* also support binding only the relevant processes to their respective
|
|
* listeners. We don't do that in debug mode however.
|
|
*/
|
|
static void enable_listener(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
|
|
if (listener->state == LI_LISTEN) {
|
|
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
|
|
!(proc_mask(listener->bind_conf->bind_proc) & pid_bit)) {
|
|
/* we don't want to enable this listener and don't
|
|
* want any fd event to reach it.
|
|
*/
|
|
if (!(global.tune.options & GTUNE_SOCKET_TRANSFER))
|
|
do_unbind_listener(listener, 1);
|
|
else {
|
|
do_unbind_listener(listener, 0);
|
|
listener->state = LI_LISTEN;
|
|
}
|
|
}
|
|
else if (!listener->maxconn || listener->nbconn < listener->maxconn) {
|
|
fd_want_recv(listener->fd);
|
|
listener->state = LI_READY;
|
|
}
|
|
else {
|
|
listener->state = LI_FULL;
|
|
}
|
|
}
|
|
/* if this listener is supposed to be only in the master, close it in the workers */
|
|
if ((global.mode & MODE_MWORKER) &&
|
|
(listener->options & LI_O_MWORKER) &&
|
|
master == 0) {
|
|
do_unbind_listener(listener, 1);
|
|
}
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/* This function removes the specified listener's file descriptor from the
|
|
* polling lists if it is in the LI_READY or in the LI_FULL state. The listener
|
|
* enters LI_LISTEN.
|
|
*/
|
|
static void disable_listener(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
|
|
if (listener->state < LI_READY)
|
|
goto end;
|
|
if (listener->state == LI_READY)
|
|
fd_stop_recv(listener->fd);
|
|
MT_LIST_DEL(&listener->wait_queue);
|
|
listener->state = LI_LISTEN;
|
|
end:
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/* This function tries to temporarily disable a listener, depending on the OS
|
|
* capabilities. Linux unbinds the listen socket after a SHUT_RD, and ignores
|
|
* SHUT_WR. Solaris refuses either shutdown(). OpenBSD ignores SHUT_RD but
|
|
* closes upon SHUT_WR and refuses to rebind. So a common validation path
|
|
* involves SHUT_WR && listen && SHUT_RD. In case of success, the FD's polling
|
|
* is disabled. It normally returns non-zero, unless an error is reported.
|
|
*/
|
|
int pause_listener(struct listener *l)
|
|
{
|
|
int ret = 1;
|
|
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
if (l->state <= LI_ZOMBIE)
|
|
goto end;
|
|
|
|
if (l->proto->pause) {
|
|
/* Returns < 0 in case of failure, 0 if the listener
|
|
* was totally stopped, or > 0 if correctly paused.
|
|
*/
|
|
int ret = l->proto->pause(l);
|
|
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
else if (ret == 0)
|
|
goto end;
|
|
}
|
|
|
|
MT_LIST_DEL(&l->wait_queue);
|
|
|
|
fd_stop_recv(l->fd);
|
|
l->state = LI_PAUSED;
|
|
end:
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
|
|
return ret;
|
|
}
|
|
|
|
/* This function tries to resume a temporarily disabled listener. Paused, full,
|
|
* limited and disabled listeners are handled, which means that this function
|
|
* may replace enable_listener(). The resulting state will either be LI_READY
|
|
* or LI_FULL. 0 is returned in case of failure to resume (eg: dead socket).
|
|
* Listeners bound to a different process are not woken up unless we're in
|
|
* foreground mode, and are ignored. If the listener was only in the assigned
|
|
* state, it's totally rebound. This can happen if a pause() has completely
|
|
* stopped it. If the resume fails, 0 is returned and an error might be
|
|
* displayed.
|
|
*/
|
|
int resume_listener(struct listener *l)
|
|
{
|
|
int ret = 1;
|
|
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
|
|
|
|
/* check that another thread didn't to the job in parallel (e.g. at the
|
|
* end of listen_accept() while we'd come from dequeue_all_listeners().
|
|
*/
|
|
if (MT_LIST_ADDED(&l->wait_queue))
|
|
goto end;
|
|
|
|
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
|
|
!(proc_mask(l->bind_conf->bind_proc) & pid_bit))
|
|
goto end;
|
|
|
|
if (l->state == LI_ASSIGNED) {
|
|
char msg[100];
|
|
int err;
|
|
|
|
err = l->proto->bind(l, msg, sizeof(msg));
|
|
if (err & ERR_ALERT)
|
|
ha_alert("Resuming listener: %s\n", msg);
|
|
else if (err & ERR_WARN)
|
|
ha_warning("Resuming listener: %s\n", msg);
|
|
|
|
if (err & (ERR_FATAL | ERR_ABORT)) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (l->state < LI_PAUSED || l->state == LI_ZOMBIE) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
|
|
if (l->proto->sock_prot == IPPROTO_TCP &&
|
|
l->state == LI_PAUSED &&
|
|
listen(l->fd, listener_backlog(l)) != 0) {
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
|
|
if (l->state == LI_READY)
|
|
goto end;
|
|
|
|
MT_LIST_DEL(&l->wait_queue);
|
|
|
|
if (l->maxconn && l->nbconn >= l->maxconn) {
|
|
l->state = LI_FULL;
|
|
goto end;
|
|
}
|
|
|
|
if (!(thread_mask(l->bind_conf->bind_thread) & tid_bit)) {
|
|
/* we're not allowed to touch this listener's FD, let's requeue
|
|
* the listener into one of its owning thread's queue instead.
|
|
*/
|
|
int first_thread = my_flsl(thread_mask(l->bind_conf->bind_thread) & all_threads_mask) - 1;
|
|
work_list_add(&local_listener_queue[first_thread], &l->wait_queue);
|
|
goto end;
|
|
}
|
|
|
|
fd_want_recv(l->fd);
|
|
l->state = LI_READY;
|
|
end:
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Marks a ready listener as full so that the stream code tries to re-enable
|
|
* it upon next close() using resume_listener().
|
|
*/
|
|
static void listener_full(struct listener *l)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->state >= LI_READY) {
|
|
MT_LIST_DEL(&l->wait_queue);
|
|
if (l->state != LI_FULL) {
|
|
fd_stop_recv(l->fd);
|
|
l->state = LI_FULL;
|
|
}
|
|
}
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
|
|
}
|
|
|
|
/* Marks a ready listener as limited so that we only try to re-enable it when
|
|
* resources are free again. It will be queued into the specified queue.
|
|
*/
|
|
static void limit_listener(struct listener *l, struct mt_list *list)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->state == LI_READY) {
|
|
MT_LIST_ADDQ(list, &l->wait_queue);
|
|
fd_stop_recv(l->fd);
|
|
l->state = LI_LIMITED;
|
|
}
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
|
|
}
|
|
|
|
/* This function adds all of the protocol's listener's file descriptors to the
|
|
* polling lists when they are in the LI_LISTEN state. It is intended to be
|
|
* used as a protocol's generic enable_all() primitive, for use after the
|
|
* fork(). It puts the listeners into LI_READY or LI_FULL states depending on
|
|
* their number of connections. It always returns ERR_NONE.
|
|
*
|
|
* Must be called with proto_lock held.
|
|
*
|
|
*/
|
|
int enable_all_listeners(struct protocol *proto)
|
|
{
|
|
struct listener *listener;
|
|
|
|
list_for_each_entry(listener, &proto->listeners, proto_list)
|
|
enable_listener(listener);
|
|
return ERR_NONE;
|
|
}
|
|
|
|
/* This function removes all of the protocol's listener's file descriptors from
|
|
* the polling lists when they are in the LI_READY or LI_FULL states. It is
|
|
* intended to be used as a protocol's generic disable_all() primitive. It puts
|
|
* the listeners into LI_LISTEN, and always returns ERR_NONE.
|
|
*
|
|
* Must be called with proto_lock held.
|
|
*
|
|
*/
|
|
int disable_all_listeners(struct protocol *proto)
|
|
{
|
|
struct listener *listener;
|
|
|
|
list_for_each_entry(listener, &proto->listeners, proto_list)
|
|
disable_listener(listener);
|
|
return ERR_NONE;
|
|
}
|
|
|
|
/* Dequeues all listeners waiting for a resource the global wait queue */
|
|
void dequeue_all_listeners()
|
|
{
|
|
struct listener *listener;
|
|
|
|
while ((listener = MT_LIST_POP(&global_listener_queue, struct listener *, wait_queue))) {
|
|
/* This cannot fail because the listeners are by definition in
|
|
* the LI_LIMITED state.
|
|
*/
|
|
resume_listener(listener);
|
|
}
|
|
}
|
|
|
|
/* Dequeues all listeners waiting for a resource in proxy <px>'s queue */
|
|
void dequeue_proxy_listeners(struct proxy *px)
|
|
{
|
|
struct listener *listener;
|
|
|
|
while ((listener = MT_LIST_POP(&px->listener_queue, struct listener *, wait_queue))) {
|
|
/* This cannot fail because the listeners are by definition in
|
|
* the LI_LIMITED state.
|
|
*/
|
|
resume_listener(listener);
|
|
}
|
|
}
|
|
|
|
/* Must be called with the lock held. Depending on <do_close> value, it does
|
|
* what unbind_listener or unbind_listener_no_close should do.
|
|
*/
|
|
void do_unbind_listener(struct listener *listener, int do_close)
|
|
{
|
|
if (listener->state == LI_READY && fd_updt)
|
|
fd_stop_recv(listener->fd);
|
|
|
|
MT_LIST_DEL(&listener->wait_queue);
|
|
|
|
if (listener->state >= LI_PAUSED) {
|
|
if (do_close) {
|
|
fd_delete(listener->fd);
|
|
listener->fd = -1;
|
|
}
|
|
else
|
|
fd_remove(listener->fd);
|
|
listener->state = LI_ASSIGNED;
|
|
}
|
|
}
|
|
|
|
/* This function closes the listening socket for the specified listener,
|
|
* provided that it's already in a listening state. The listener enters the
|
|
* LI_ASSIGNED state. This function is intended to be used as a generic
|
|
* function for standard protocols.
|
|
*/
|
|
void unbind_listener(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
|
|
do_unbind_listener(listener, 1);
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/* This function pretends the listener is dead, but keeps the FD opened, so
|
|
* that we can provide it, for conf reloading.
|
|
*/
|
|
void unbind_listener_no_close(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
|
|
do_unbind_listener(listener, 0);
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
|
|
}
|
|
|
|
/* This function closes all listening sockets bound to the protocol <proto>,
|
|
* and the listeners end in LI_ASSIGNED state if they were higher. It does not
|
|
* detach them from the protocol. It always returns ERR_NONE.
|
|
*
|
|
* Must be called with proto_lock held.
|
|
*
|
|
*/
|
|
int unbind_all_listeners(struct protocol *proto)
|
|
{
|
|
struct listener *listener;
|
|
|
|
list_for_each_entry(listener, &proto->listeners, proto_list)
|
|
unbind_listener(listener);
|
|
return ERR_NONE;
|
|
}
|
|
|
|
/* creates one or multiple listeners for bind_conf <bc> on sockaddr <ss> on port
|
|
* range <portl> to <porth>, and possibly attached to fd <fd> (or -1 for auto
|
|
* allocation). The address family is taken from ss->ss_family. The number of
|
|
* jobs and listeners is automatically increased by the number of listeners
|
|
* created. If the <inherited> argument is set to 1, it specifies that the FD
|
|
* was obtained from a parent process.
|
|
* It returns non-zero on success, zero on error with the error message
|
|
* set in <err>.
|
|
*/
|
|
int create_listeners(struct bind_conf *bc, const struct sockaddr_storage *ss,
|
|
int portl, int porth, int fd, int inherited, char **err)
|
|
{
|
|
struct protocol *proto = protocol_by_family(ss->ss_family);
|
|
struct listener *l;
|
|
int port;
|
|
|
|
if (!proto) {
|
|
memprintf(err, "unsupported protocol family %d", ss->ss_family);
|
|
return 0;
|
|
}
|
|
|
|
for (port = portl; port <= porth; port++) {
|
|
l = calloc(1, sizeof(*l));
|
|
if (!l) {
|
|
memprintf(err, "out of memory");
|
|
return 0;
|
|
}
|
|
l->obj_type = OBJ_TYPE_LISTENER;
|
|
LIST_ADDQ(&bc->frontend->conf.listeners, &l->by_fe);
|
|
LIST_ADDQ(&bc->listeners, &l->by_bind);
|
|
l->bind_conf = bc;
|
|
|
|
l->fd = fd;
|
|
memcpy(&l->addr, ss, sizeof(*ss));
|
|
MT_LIST_INIT(&l->wait_queue);
|
|
l->state = LI_INIT;
|
|
|
|
proto->add(l, port);
|
|
|
|
if (inherited)
|
|
l->options |= LI_O_INHERITED;
|
|
|
|
HA_SPIN_INIT(&l->lock);
|
|
_HA_ATOMIC_ADD(&jobs, 1);
|
|
_HA_ATOMIC_ADD(&listeners, 1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Delete a listener from its protocol's list of listeners. The listener's
|
|
* state is automatically updated from LI_ASSIGNED to LI_INIT. The protocol's
|
|
* number of listeners is updated, as well as the global number of listeners
|
|
* and jobs. Note that the listener must have previously been unbound. This
|
|
* is the generic function to use to remove a listener.
|
|
*
|
|
* Will grab the proto_lock.
|
|
*
|
|
*/
|
|
void delete_listener(struct listener *listener)
|
|
{
|
|
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
|
|
if (listener->state == LI_ASSIGNED) {
|
|
listener->state = LI_INIT;
|
|
LIST_DEL(&listener->proto_list);
|
|
listener->proto->nb_listeners--;
|
|
_HA_ATOMIC_SUB(&jobs, 1);
|
|
_HA_ATOMIC_SUB(&listeners, 1);
|
|
}
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
|
|
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
|
|
}
|
|
|
|
/* Returns a suitable value for a listener's backlog. It uses the listener's,
|
|
* otherwise the frontend's backlog, otherwise the listener's maxconn,
|
|
* otherwise the frontend's maxconn, otherwise 1024.
|
|
*/
|
|
int listener_backlog(const struct listener *l)
|
|
{
|
|
if (l->backlog)
|
|
return l->backlog;
|
|
|
|
if (l->bind_conf->frontend->backlog)
|
|
return l->bind_conf->frontend->backlog;
|
|
|
|
if (l->maxconn)
|
|
return l->maxconn;
|
|
|
|
if (l->bind_conf->frontend->maxconn)
|
|
return l->bind_conf->frontend->maxconn;
|
|
|
|
return 1024;
|
|
}
|
|
|
|
/* This function is called on a read event from a listening socket, corresponding
|
|
* to an accept. It tries to accept as many connections as possible, and for each
|
|
* calls the listener's accept handler (generally the frontend's accept handler).
|
|
*/
|
|
void listener_accept(int fd)
|
|
{
|
|
struct listener *l = fdtab[fd].owner;
|
|
struct proxy *p;
|
|
unsigned int max_accept;
|
|
int next_conn = 0;
|
|
int next_feconn = 0;
|
|
int next_actconn = 0;
|
|
int expire;
|
|
int cfd;
|
|
int ret;
|
|
#ifdef USE_ACCEPT4
|
|
static int accept4_broken;
|
|
#endif
|
|
|
|
if (!l)
|
|
return;
|
|
p = l->bind_conf->frontend;
|
|
|
|
/* if l->maxaccept is -1, then max_accept is UINT_MAX. It is not really
|
|
* illimited, but it is probably enough.
|
|
*/
|
|
max_accept = l->maxaccept ? l->maxaccept : 1;
|
|
|
|
if (!(l->options & LI_O_UNLIMITED) && global.sps_lim) {
|
|
int max = freq_ctr_remain(&global.sess_per_sec, global.sps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.sess_per_sec, global.sps_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
|
|
if (!(l->options & LI_O_UNLIMITED) && global.cps_lim) {
|
|
int max = freq_ctr_remain(&global.conn_per_sec, global.cps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.conn_per_sec, global.cps_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
#ifdef USE_OPENSSL
|
|
if (!(l->options & LI_O_UNLIMITED) && global.ssl_lim && l->bind_conf && l->bind_conf->is_ssl) {
|
|
int max = freq_ctr_remain(&global.ssl_per_sec, global.ssl_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&global.ssl_per_sec, global.ssl_lim, 0));
|
|
goto limit_global;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
#endif
|
|
if (p && p->fe_sps_lim) {
|
|
int max = freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0);
|
|
|
|
if (unlikely(!max)) {
|
|
/* frontend accept rate limit was reached */
|
|
expire = tick_add(now_ms, next_event_delay(&p->fe_sess_per_sec, p->fe_sps_lim, 0));
|
|
goto limit_proxy;
|
|
}
|
|
|
|
if (max_accept > max)
|
|
max_accept = max;
|
|
}
|
|
|
|
/* Note: if we fail to allocate a connection because of configured
|
|
* limits, we'll schedule a new attempt worst 1 second later in the
|
|
* worst case. If we fail due to system limits or temporary resource
|
|
* shortage, we try again 100ms later in the worst case.
|
|
*/
|
|
for (; max_accept; next_conn = next_feconn = next_actconn = 0, max_accept--) {
|
|
struct sockaddr_storage addr;
|
|
socklen_t laddr = sizeof(addr);
|
|
unsigned int count;
|
|
__decl_hathreads(unsigned long mask);
|
|
|
|
/* pre-increase the number of connections without going too far.
|
|
* We process the listener, then the proxy, then the process.
|
|
* We know which ones to unroll based on the next_xxx value.
|
|
*/
|
|
do {
|
|
count = l->nbconn;
|
|
if (unlikely(l->maxconn && count >= l->maxconn)) {
|
|
/* the listener was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_conn = 0;
|
|
listener_full(l);
|
|
goto end;
|
|
}
|
|
next_conn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&l->nbconn, (int *)(&count), next_conn));
|
|
|
|
if (p) {
|
|
do {
|
|
count = p->feconn;
|
|
if (unlikely(count >= p->maxconn)) {
|
|
/* the frontend was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_feconn = 0;
|
|
expire = TICK_ETERNITY;
|
|
goto limit_proxy;
|
|
}
|
|
next_feconn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&p->feconn, &count, next_feconn));
|
|
}
|
|
|
|
if (!(l->options & LI_O_UNLIMITED)) {
|
|
do {
|
|
count = actconn;
|
|
if (unlikely(count >= global.maxconn)) {
|
|
/* the process was marked full or another
|
|
* thread is going to do it.
|
|
*/
|
|
next_actconn = 0;
|
|
expire = tick_add(now_ms, 1000); /* try again in 1 second */
|
|
goto limit_global;
|
|
}
|
|
next_actconn = count + 1;
|
|
} while (!_HA_ATOMIC_CAS(&actconn, (int *)(&count), next_actconn));
|
|
}
|
|
|
|
/* with sockpair@ we don't want to do an accept */
|
|
if (unlikely(l->addr.ss_family == AF_CUST_SOCKPAIR)) {
|
|
if ((cfd = recv_fd_uxst(fd)) != -1)
|
|
fcntl(cfd, F_SETFL, O_NONBLOCK);
|
|
/* just like with UNIX sockets, only the family is filled */
|
|
addr.ss_family = AF_UNIX;
|
|
laddr = sizeof(addr.ss_family);
|
|
} else
|
|
|
|
#ifdef USE_ACCEPT4
|
|
/* only call accept4() if it's known to be safe, otherwise
|
|
* fallback to the legacy accept() + fcntl().
|
|
*/
|
|
if (unlikely(accept4_broken ||
|
|
((cfd = accept4(fd, (struct sockaddr *)&addr, &laddr, SOCK_NONBLOCK)) == -1 &&
|
|
(errno == ENOSYS || errno == EINVAL || errno == EBADF) &&
|
|
(accept4_broken = 1))))
|
|
#endif
|
|
if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) != -1)
|
|
fcntl(cfd, F_SETFL, O_NONBLOCK);
|
|
|
|
if (unlikely(cfd == -1)) {
|
|
switch (errno) {
|
|
case EAGAIN:
|
|
if (fdtab[fd].ev & (FD_POLL_HUP|FD_POLL_ERR)) {
|
|
/* the listening socket might have been disabled in a shared
|
|
* process and we're a collateral victim. We'll just pause for
|
|
* a while in case it comes back. In the mean time, we need to
|
|
* clear this sticky flag.
|
|
*/
|
|
_HA_ATOMIC_AND(&fdtab[fd].ev, ~(FD_POLL_HUP|FD_POLL_ERR));
|
|
goto transient_error;
|
|
}
|
|
goto end; /* nothing more to accept */
|
|
case EINVAL:
|
|
/* might be trying to accept on a shut fd (eg: soft stop) */
|
|
goto transient_error;
|
|
case EINTR:
|
|
case ECONNABORTED:
|
|
_HA_ATOMIC_SUB(&l->nbconn, 1);
|
|
if (p)
|
|
_HA_ATOMIC_SUB(&p->feconn, 1);
|
|
if (!(l->options & LI_O_UNLIMITED))
|
|
_HA_ATOMIC_SUB(&actconn, 1);
|
|
continue;
|
|
case ENFILE:
|
|
if (p)
|
|
send_log(p, LOG_EMERG,
|
|
"Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n",
|
|
p->id, global.maxsock);
|
|
goto transient_error;
|
|
case EMFILE:
|
|
if (p)
|
|
send_log(p, LOG_EMERG,
|
|
"Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n",
|
|
p->id, global.maxsock);
|
|
goto transient_error;
|
|
case ENOBUFS:
|
|
case ENOMEM:
|
|
if (p)
|
|
send_log(p, LOG_EMERG,
|
|
"Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n",
|
|
p->id, global.maxsock);
|
|
goto transient_error;
|
|
default:
|
|
/* unexpected result, let's give up and let other tasks run */
|
|
max_accept = 0;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* we don't want to leak the FD upon reload if it's in the master */
|
|
if (unlikely(master == 1))
|
|
fcntl(cfd, F_SETFD, FD_CLOEXEC);
|
|
|
|
/* The connection was accepted, it must be counted as such */
|
|
if (l->counters)
|
|
HA_ATOMIC_UPDATE_MAX(&l->counters->conn_max, next_conn);
|
|
|
|
if (p)
|
|
HA_ATOMIC_UPDATE_MAX(&p->fe_counters.conn_max, next_feconn);
|
|
|
|
proxy_inc_fe_conn_ctr(l, p);
|
|
|
|
if (!(l->options & LI_O_UNLIMITED)) {
|
|
count = update_freq_ctr(&global.conn_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.cps_max, count);
|
|
}
|
|
|
|
_HA_ATOMIC_ADD(&activity[tid].accepted, 1);
|
|
|
|
if (unlikely(cfd >= global.maxsock)) {
|
|
send_log(p, LOG_EMERG,
|
|
"Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n",
|
|
p->id);
|
|
close(cfd);
|
|
expire = tick_add(now_ms, 1000); /* try again in 1 second */
|
|
goto limit_global;
|
|
}
|
|
|
|
/* past this point, l->accept() will automatically decrement
|
|
* l->nbconn, feconn and actconn once done. Setting next_*conn=0
|
|
* allows the error path not to rollback on nbconn. It's more
|
|
* convenient than duplicating all exit labels.
|
|
*/
|
|
next_conn = 0;
|
|
next_feconn = 0;
|
|
next_actconn = 0;
|
|
|
|
#if defined(USE_THREAD)
|
|
mask = thread_mask(l->bind_conf->bind_thread) & all_threads_mask;
|
|
if (atleast2(mask) && (global.tune.options & GTUNE_LISTENER_MQ) && !stopping) {
|
|
struct accept_queue_ring *ring;
|
|
unsigned int t, t0, t1, t2;
|
|
|
|
/* The principle is that we have two running indexes,
|
|
* each visiting in turn all threads bound to this
|
|
* listener. The connection will be assigned to the one
|
|
* with the least connections, and the other one will
|
|
* be updated. This provides a good fairness on short
|
|
* connections (round robin) and on long ones (conn
|
|
* count), without ever missing any idle thread.
|
|
*/
|
|
|
|
/* keep a copy for the final update. thr_idx is composite
|
|
* and made of (t2<<16) + t1.
|
|
*/
|
|
t0 = l->thr_idx;
|
|
do {
|
|
unsigned long m1, m2;
|
|
int q1, q2;
|
|
|
|
t2 = t1 = t0;
|
|
t2 >>= 16;
|
|
t1 &= 0xFFFF;
|
|
|
|
/* t1 walks low to high bits ;
|
|
* t2 walks high to low.
|
|
*/
|
|
m1 = mask >> t1;
|
|
m2 = mask & (t2 ? nbits(t2 + 1) : ~0UL);
|
|
|
|
if (unlikely(!(m1 & 1))) {
|
|
m1 &= ~1UL;
|
|
if (!m1) {
|
|
m1 = mask;
|
|
t1 = 0;
|
|
}
|
|
t1 += my_ffsl(m1) - 1;
|
|
}
|
|
|
|
if (unlikely(!(m2 & (1UL << t2)) || t1 == t2)) {
|
|
/* highest bit not set */
|
|
if (!m2)
|
|
m2 = mask;
|
|
|
|
t2 = my_flsl(m2) - 1;
|
|
}
|
|
|
|
/* now we have two distinct thread IDs belonging to the mask */
|
|
q1 = accept_queue_rings[t1].tail - accept_queue_rings[t1].head + ACCEPT_QUEUE_SIZE;
|
|
if (q1 >= ACCEPT_QUEUE_SIZE)
|
|
q1 -= ACCEPT_QUEUE_SIZE;
|
|
|
|
q2 = accept_queue_rings[t2].tail - accept_queue_rings[t2].head + ACCEPT_QUEUE_SIZE;
|
|
if (q2 >= ACCEPT_QUEUE_SIZE)
|
|
q2 -= ACCEPT_QUEUE_SIZE;
|
|
|
|
/* we have 3 possibilities now :
|
|
* q1 < q2 : t1 is less loaded than t2, so we pick it
|
|
* and update t2 (since t1 might still be
|
|
* lower than another thread)
|
|
* q1 > q2 : t2 is less loaded than t1, so we pick it
|
|
* and update t1 (since t2 might still be
|
|
* lower than another thread)
|
|
* q1 = q2 : both are equally loaded, thus we pick t1
|
|
* and update t1 as it will become more loaded
|
|
* than t2.
|
|
*/
|
|
|
|
q1 += l->thr_conn[t1];
|
|
q2 += l->thr_conn[t2];
|
|
|
|
if (q1 - q2 < 0) {
|
|
t = t1;
|
|
t2 = t2 ? t2 - 1 : LONGBITS - 1;
|
|
}
|
|
else if (q1 - q2 > 0) {
|
|
t = t2;
|
|
t1++;
|
|
if (t1 >= LONGBITS)
|
|
t1 = 0;
|
|
}
|
|
else {
|
|
t = t1;
|
|
t1++;
|
|
if (t1 >= LONGBITS)
|
|
t1 = 0;
|
|
}
|
|
|
|
/* new value for thr_idx */
|
|
t1 += (t2 << 16);
|
|
} while (unlikely(!_HA_ATOMIC_CAS(&l->thr_idx, &t0, t1)));
|
|
|
|
/* We successfully selected the best thread "t" for this
|
|
* connection. We use deferred accepts even if it's the
|
|
* local thread because tests show that it's the best
|
|
* performing model, likely due to better cache locality
|
|
* when processing this loop.
|
|
*/
|
|
ring = &accept_queue_rings[t];
|
|
if (accept_queue_push_mp(ring, cfd, l, &addr, laddr)) {
|
|
_HA_ATOMIC_ADD(&activity[t].accq_pushed, 1);
|
|
tasklet_wakeup(ring->tasklet);
|
|
continue;
|
|
}
|
|
/* If the ring is full we do a synchronous accept on
|
|
* the local thread here.
|
|
*/
|
|
_HA_ATOMIC_ADD(&activity[t].accq_full, 1);
|
|
}
|
|
#endif // USE_THREAD
|
|
|
|
_HA_ATOMIC_ADD(&l->thr_conn[tid], 1);
|
|
ret = l->accept(l, cfd, &addr);
|
|
if (unlikely(ret <= 0)) {
|
|
/* The connection was closed by stream_accept(). Either
|
|
* we just have to ignore it (ret == 0) or it's a critical
|
|
* error due to a resource shortage, and we must stop the
|
|
* listener (ret < 0).
|
|
*/
|
|
if (ret == 0) /* successful termination */
|
|
continue;
|
|
|
|
goto transient_error;
|
|
}
|
|
|
|
/* increase the per-process number of cumulated sessions, this
|
|
* may only be done once l->accept() has accepted the connection.
|
|
*/
|
|
if (!(l->options & LI_O_UNLIMITED)) {
|
|
count = update_freq_ctr(&global.sess_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.sps_max, count);
|
|
}
|
|
#ifdef USE_OPENSSL
|
|
if (!(l->options & LI_O_UNLIMITED) && l->bind_conf && l->bind_conf->is_ssl) {
|
|
count = update_freq_ctr(&global.ssl_per_sec, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&global.ssl_max, count);
|
|
}
|
|
#endif
|
|
|
|
ti->flags &= ~TI_FL_STUCK; // this thread is still running
|
|
} /* end of for (max_accept--) */
|
|
|
|
end:
|
|
if (next_conn)
|
|
_HA_ATOMIC_SUB(&l->nbconn, 1);
|
|
|
|
if (p && next_feconn)
|
|
_HA_ATOMIC_SUB(&p->feconn, 1);
|
|
|
|
if (next_actconn)
|
|
_HA_ATOMIC_SUB(&actconn, 1);
|
|
|
|
if ((l->state == LI_FULL && (!l->maxconn || l->nbconn < l->maxconn)) ||
|
|
(l->state == LI_LIMITED &&
|
|
((!p || p->feconn < p->maxconn) && (actconn < global.maxconn) &&
|
|
(!tick_isset(global_listener_queue_task->expire) ||
|
|
tick_is_expired(global_listener_queue_task->expire, now_ms))))) {
|
|
/* at least one thread has to this when quitting */
|
|
resume_listener(l);
|
|
|
|
/* Dequeues all of the listeners waiting for a resource */
|
|
dequeue_all_listeners();
|
|
|
|
if (p && !MT_LIST_ISEMPTY(&p->listener_queue) &&
|
|
(!p->fe_sps_lim || freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0) > 0))
|
|
dequeue_proxy_listeners(p);
|
|
}
|
|
|
|
/* Now it's getting tricky. The listener was supposed to be in LI_READY
|
|
* state but in the mean time we might have changed it to LI_FULL or
|
|
* LI_LIMITED, and another thread might also have turned it to
|
|
* LI_PAUSED, LI_LISTEN or even LI_INI when stopping a proxy. We must
|
|
* be certain to keep the FD enabled when in the READY state but we
|
|
* must also stop it for other states that we might have switched to
|
|
* while others re-enabled polling.
|
|
*/
|
|
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
|
|
if (l->state == LI_READY) {
|
|
if (max_accept > 0)
|
|
fd_cant_recv(fd);
|
|
else
|
|
fd_done_recv(fd);
|
|
} else if (l->state > LI_ASSIGNED) {
|
|
fd_stop_recv(l->fd);
|
|
}
|
|
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
|
|
return;
|
|
|
|
transient_error:
|
|
/* pause the listener for up to 100 ms */
|
|
expire = tick_add(now_ms, 100);
|
|
|
|
limit_global:
|
|
/* (re-)queue the listener to the global queue and set it to expire no
|
|
* later than <expire> ahead. The listener turns to LI_LIMITED.
|
|
*/
|
|
limit_listener(l, &global_listener_queue);
|
|
task_schedule(global_listener_queue_task, expire);
|
|
goto end;
|
|
|
|
limit_proxy:
|
|
/* (re-)queue the listener to the proxy's queue and set it to expire no
|
|
* later than <expire> ahead. The listener turns to LI_LIMITED.
|
|
*/
|
|
limit_listener(l, &p->listener_queue);
|
|
if (p->task && tick_isset(expire))
|
|
task_schedule(p->task, expire);
|
|
goto end;
|
|
}
|
|
|
|
/* Notify the listener that a connection initiated from it was released. This
|
|
* is used to keep the connection count consistent and to possibly re-open
|
|
* listening when it was limited.
|
|
*/
|
|
void listener_release(struct listener *l)
|
|
{
|
|
struct proxy *fe = l->bind_conf->frontend;
|
|
|
|
if (!(l->options & LI_O_UNLIMITED))
|
|
_HA_ATOMIC_SUB(&actconn, 1);
|
|
if (fe)
|
|
_HA_ATOMIC_SUB(&fe->feconn, 1);
|
|
_HA_ATOMIC_SUB(&l->nbconn, 1);
|
|
_HA_ATOMIC_SUB(&l->thr_conn[tid], 1);
|
|
|
|
if (l->state == LI_FULL || l->state == LI_LIMITED)
|
|
resume_listener(l);
|
|
|
|
/* Dequeues all of the listeners waiting for a resource */
|
|
dequeue_all_listeners();
|
|
|
|
if (!MT_LIST_ISEMPTY(&fe->listener_queue) &&
|
|
(!fe->fe_sps_lim || freq_ctr_remain(&fe->fe_sess_per_sec, fe->fe_sps_lim, 0) > 0))
|
|
dequeue_proxy_listeners(fe);
|
|
}
|
|
|
|
/* resume listeners waiting in the local listener queue. They are still in LI_LIMITED state */
|
|
static struct task *listener_queue_process(struct task *t, void *context, unsigned short state)
|
|
{
|
|
struct work_list *wl = context;
|
|
struct listener *l;
|
|
|
|
while ((l = MT_LIST_POP(&wl->head, struct listener *, wait_queue))) {
|
|
/* The listeners are still in the LI_LIMITED state */
|
|
resume_listener(l);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* Initializes the listener queues. Returns 0 on success, otherwise ERR_* flags */
|
|
static int listener_queue_init()
|
|
{
|
|
local_listener_queue = work_list_create(global.nbthread, listener_queue_process, NULL);
|
|
if (!local_listener_queue) {
|
|
ha_alert("Out of memory while initializing listener queues.\n");
|
|
return ERR_FATAL|ERR_ABORT;
|
|
}
|
|
|
|
global_listener_queue_task = task_new(MAX_THREADS_MASK);
|
|
if (!global_listener_queue_task) {
|
|
ha_alert("Out of memory when initializing global listener queue\n");
|
|
return ERR_FATAL|ERR_ABORT;
|
|
}
|
|
/* very simple initialization, users will queue the task if needed */
|
|
global_listener_queue_task->context = NULL; /* not even a context! */
|
|
global_listener_queue_task->process = manage_global_listener_queue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void listener_queue_deinit()
|
|
{
|
|
work_list_destroy(local_listener_queue, global.nbthread);
|
|
task_destroy(global_listener_queue_task);
|
|
global_listener_queue_task = NULL;
|
|
}
|
|
|
|
REGISTER_CONFIG_POSTPARSER("multi-threaded listener queue", listener_queue_init);
|
|
REGISTER_POST_DEINIT(listener_queue_deinit);
|
|
|
|
|
|
/* This is the global management task for listeners. It enables listeners waiting
|
|
* for global resources when there are enough free resource, or at least once in
|
|
* a while. It is designed to be called as a task.
|
|
*/
|
|
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state)
|
|
{
|
|
/* If there are still too many concurrent connections, let's wait for
|
|
* some of them to go away. We don't need to re-arm the timer because
|
|
* each of them will scan the queue anyway.
|
|
*/
|
|
if (unlikely(actconn >= global.maxconn))
|
|
goto out;
|
|
|
|
/* We should periodically try to enable listeners waiting for a global
|
|
* resource here, because it is possible, though very unlikely, that
|
|
* they have been blocked by a temporary lack of global resource such
|
|
* as a file descriptor or memory and that the temporary condition has
|
|
* disappeared.
|
|
*/
|
|
dequeue_all_listeners();
|
|
|
|
out:
|
|
t->expire = TICK_ETERNITY;
|
|
task_queue(t);
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Registers the bind keyword list <kwl> as a list of valid keywords for next
|
|
* parsing sessions.
|
|
*/
|
|
void bind_register_keywords(struct bind_kw_list *kwl)
|
|
{
|
|
LIST_ADDQ(&bind_keywords.list, &kwl->list);
|
|
}
|
|
|
|
/* Return a pointer to the bind keyword <kw>, or NULL if not found. If the
|
|
* keyword is found with a NULL ->parse() function, then an attempt is made to
|
|
* find one with a valid ->parse() function. This way it is possible to declare
|
|
* platform-dependant, known keywords as NULL, then only declare them as valid
|
|
* if some options are met. Note that if the requested keyword contains an
|
|
* opening parenthesis, everything from this point is ignored.
|
|
*/
|
|
struct bind_kw *bind_find_kw(const char *kw)
|
|
{
|
|
int index;
|
|
const char *kwend;
|
|
struct bind_kw_list *kwl;
|
|
struct bind_kw *ret = NULL;
|
|
|
|
kwend = strchr(kw, '(');
|
|
if (!kwend)
|
|
kwend = kw + strlen(kw);
|
|
|
|
list_for_each_entry(kwl, &bind_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
|
|
kwl->kw[index].kw[kwend-kw] == 0) {
|
|
if (kwl->kw[index].parse)
|
|
return &kwl->kw[index]; /* found it !*/
|
|
else
|
|
ret = &kwl->kw[index]; /* may be OK */
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Dumps all registered "bind" keywords to the <out> string pointer. The
|
|
* unsupported keywords are only dumped if their supported form was not
|
|
* found.
|
|
*/
|
|
void bind_dump_kws(char **out)
|
|
{
|
|
struct bind_kw_list *kwl;
|
|
int index;
|
|
|
|
if (!out)
|
|
return;
|
|
|
|
*out = NULL;
|
|
list_for_each_entry(kwl, &bind_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if (kwl->kw[index].parse ||
|
|
bind_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) {
|
|
memprintf(out, "%s[%4s] %s%s%s\n", *out ? *out : "",
|
|
kwl->scope,
|
|
kwl->kw[index].kw,
|
|
kwl->kw[index].skip ? " <arg>" : "",
|
|
kwl->kw[index].parse ? "" : " (not supported)");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported sample and ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* set temp integer to the number of connexions to the same listening socket */
|
|
static int
|
|
smp_fetch_dconn(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->sess->listener->nbconn;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the id of the socket (listener) */
|
|
static int
|
|
smp_fetch_so_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = smp->sess->listener->luid;
|
|
return 1;
|
|
}
|
|
static int
|
|
smp_fetch_so_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->data.u.str.area = smp->sess->listener->name;
|
|
if (!smp->data.u.str.area)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.data = strlen(smp->data.u.str.area);
|
|
return 1;
|
|
}
|
|
|
|
/* parse the "accept-proxy" bind keyword */
|
|
static int bind_parse_accept_proxy(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->options |= LI_O_ACC_PROXY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "accept-netscaler-cip" bind keyword */
|
|
static int bind_parse_accept_netscaler_cip(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
uint32_t val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val <= 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind) {
|
|
l->options |= LI_O_ACC_CIP;
|
|
conf->ns_cip_magic = val;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "backlog" bind keyword */
|
|
static int bind_parse_backlog(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be > 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->backlog = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "id" bind keyword */
|
|
static int bind_parse_id(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct eb32_node *node;
|
|
struct listener *l, *new;
|
|
char *error;
|
|
|
|
if (conf->listeners.n != conf->listeners.p) {
|
|
memprintf(err, "'%s' can only be used with a single socket", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : expects an integer argument", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
new = LIST_NEXT(&conf->listeners, struct listener *, by_bind);
|
|
new->luid = strtol(args[cur_arg + 1], &error, 10);
|
|
if (*error != '\0') {
|
|
memprintf(err, "'%s' : expects an integer argument, found '%s'", args[cur_arg], args[cur_arg + 1]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
new->conf.id.key = new->luid;
|
|
|
|
if (new->luid <= 0) {
|
|
memprintf(err, "'%s' : custom id has to be > 0", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
node = eb32_lookup(&px->conf.used_listener_id, new->luid);
|
|
if (node) {
|
|
l = container_of(node, struct listener, conf.id);
|
|
memprintf(err, "'%s' : custom id %d already used at %s:%d ('bind %s')",
|
|
args[cur_arg], l->luid, l->bind_conf->file, l->bind_conf->line,
|
|
l->bind_conf->arg);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
eb32_insert(&px->conf.used_listener_id, &new->conf.id);
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "maxconn" bind keyword */
|
|
static int bind_parse_maxconn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < 0) {
|
|
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->maxconn = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "name" bind keyword */
|
|
static int bind_parse_name(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing name", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->name = strdup(args[cur_arg + 1]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "nice" bind keyword */
|
|
static int bind_parse_nice(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct listener *l;
|
|
int val;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
val = atol(args[cur_arg + 1]);
|
|
if (val < -1024 || val > 1024) {
|
|
memprintf(err, "'%s' : invalid value %d, allowed range is -1024..1024", args[cur_arg], val);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
list_for_each_entry(l, &conf->listeners, by_bind)
|
|
l->nice = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "process" bind keyword */
|
|
static int bind_parse_process(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
char *slash;
|
|
unsigned long proc = 0, thread = 0;
|
|
|
|
if ((slash = strchr(args[cur_arg + 1], '/')) != NULL)
|
|
*slash = 0;
|
|
|
|
if (parse_process_number(args[cur_arg + 1], &proc, MAX_PROCS, NULL, err)) {
|
|
memprintf(err, "'%s' : %s", args[cur_arg], *err);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
if (slash) {
|
|
if (parse_process_number(slash+1, &thread, MAX_THREADS, NULL, err)) {
|
|
memprintf(err, "'%s' : %s", args[cur_arg], *err);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
*slash = '/';
|
|
}
|
|
|
|
conf->bind_proc |= proc;
|
|
conf->bind_thread |= thread;
|
|
return 0;
|
|
}
|
|
|
|
/* parse the "proto" bind keyword */
|
|
static int bind_parse_proto(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
|
|
{
|
|
struct ist proto;
|
|
|
|
if (!*args[cur_arg + 1]) {
|
|
memprintf(err, "'%s' : missing value", args[cur_arg]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
|
|
proto = ist2(args[cur_arg + 1], strlen(args[cur_arg + 1]));
|
|
conf->mux_proto = get_mux_proto(proto);
|
|
if (!conf->mux_proto) {
|
|
memprintf(err, "'%s' : unknown MUX protocol '%s'", args[cur_arg], args[cur_arg+1]);
|
|
return ERR_ALERT | ERR_FATAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* config parser for global "tune.listener.multi-queue", accepts "on" or "off" */
|
|
static int cfg_parse_tune_listener_mq(char **args, int section_type, struct proxy *curpx,
|
|
struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (strcmp(args[1], "on") == 0)
|
|
global.tune.options |= GTUNE_LISTENER_MQ;
|
|
else if (strcmp(args[1], "off") == 0)
|
|
global.tune.options &= ~GTUNE_LISTENER_MQ;
|
|
else {
|
|
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "dst_conn", smp_fetch_dconn, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
|
|
{ "so_id", smp_fetch_so_id, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
|
|
{ "so_name", smp_fetch_so_name, 0, NULL, SMP_T_STR, SMP_USE_FTEND, },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted, doing so helps
|
|
* all code contributors.
|
|
* Optional keywords are also declared with a NULL ->parse() function so that
|
|
* the config parser can report an appropriate error when a known keyword was
|
|
* not enabled.
|
|
*/
|
|
static struct bind_kw_list bind_kws = { "ALL", { }, {
|
|
{ "accept-netscaler-cip", bind_parse_accept_netscaler_cip, 1 }, /* enable NetScaler Client IP insertion protocol */
|
|
{ "accept-proxy", bind_parse_accept_proxy, 0 }, /* enable PROXY protocol */
|
|
{ "backlog", bind_parse_backlog, 1 }, /* set backlog of listening socket */
|
|
{ "id", bind_parse_id, 1 }, /* set id of listening socket */
|
|
{ "maxconn", bind_parse_maxconn, 1 }, /* set maxconn of listening socket */
|
|
{ "name", bind_parse_name, 1 }, /* set name of listening socket */
|
|
{ "nice", bind_parse_nice, 1 }, /* set nice of listening socket */
|
|
{ "process", bind_parse_process, 1 }, /* set list of allowed process for this socket */
|
|
{ "proto", bind_parse_proto, 1 }, /* set the proto to use for all incoming connections */
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
|
|
|
|
/* config keyword parsers */
|
|
static struct cfg_kw_list cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.listener.multi-queue", cfg_parse_tune_listener_mq },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|