mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-01-10 07:49:54 +00:00
ab28b8b9fd
added "wt_hash" which shows only 60 collisions in 575k values, which sets it between hashword() and djbx33(). It's also between both in terms of performance, but the most important part is that its variable length rotation mechanism should make it really harder to predict and attack than the other ones.
560 lines
15 KiB
C
560 lines
15 KiB
C
/*
|
|
This file only show how many operations a hash is able to handle.
|
|
It don't show the distribution nor collisions.
|
|
|
|
gcc -Wall -O3 -o test_hashes test_hashes.c
|
|
./test_hashes |sort -k 3 -r
|
|
*/
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
//#include <stdint.h>
|
|
|
|
|
|
static struct timeval timeval_current(void)
|
|
{
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
return tv;
|
|
}
|
|
|
|
static double timeval_elapsed(struct timeval *tv)
|
|
{
|
|
struct timeval tv2 = timeval_current();
|
|
return (tv2.tv_sec - tv->tv_sec) +
|
|
(tv2.tv_usec - tv->tv_usec)*1.0e-6;
|
|
}
|
|
|
|
#define HAPROXY_BACKENDS 4
|
|
|
|
unsigned long haproxy_uri_hash(char *uri, int uri_len){
|
|
|
|
unsigned long hash = 0;
|
|
int c;
|
|
|
|
while (uri_len--) {
|
|
c = *uri++;
|
|
if (c == '?')
|
|
break;
|
|
hash = c + (hash << 6) + (hash << 16) - hash;
|
|
}
|
|
|
|
return hash%HAPROXY_BACKENDS; /* I assume 4 active backends */
|
|
} /* end haproxy_hash() */
|
|
|
|
/*
|
|
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
|
|
*/
|
|
unsigned sax_hash ( void *key, int len )
|
|
{
|
|
unsigned char *p = key;
|
|
unsigned h = 0;
|
|
int i;
|
|
|
|
for ( i = 0; i < len; i++ )
|
|
h ^= ( h << 5 ) + ( h >> 2 ) + p[i];
|
|
|
|
return h;
|
|
}
|
|
|
|
#include <arpa/inet.h>
|
|
/* len 4 for ipv4 and 16 for ipv6 */
|
|
unsigned int haproxy_server_hash(const char *addr, int len){
|
|
unsigned int h, l;
|
|
l = h = 0;
|
|
|
|
while ((l + sizeof (int)) <= len) {
|
|
h ^= ntohl(*(unsigned int *)(&addr[l]));
|
|
l += sizeof (int);
|
|
}
|
|
return h %= HAPROXY_BACKENDS;
|
|
}/* end haproxy_server_hash() */
|
|
|
|
|
|
int hashpjw(const void *key) {
|
|
|
|
const char *ptr;
|
|
unsigned int val;
|
|
/*********************************************************************
|
|
* *
|
|
* Hash the key by performing a number of bit operations on it. *
|
|
* *
|
|
*********************************************************************/
|
|
|
|
val = 0;
|
|
ptr = key;
|
|
|
|
while (*ptr != '\0') {
|
|
|
|
int tmp;
|
|
|
|
val = (val << 4) + (*ptr);
|
|
|
|
if((tmp = (val & 0xf0000000))) {
|
|
val = val ^ (tmp >> 24);
|
|
val = val ^ tmp;
|
|
}
|
|
ptr++;
|
|
}/* end while */
|
|
|
|
return val;
|
|
}/* end hashpjw */
|
|
|
|
static unsigned long
|
|
hash_djbx33(
|
|
register unsigned char *key,
|
|
register size_t len)
|
|
{
|
|
register unsigned long hash = 5381;
|
|
|
|
/* the hash unrolled eight times */
|
|
for (; len >= 8; len -= 8) {
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
hash = ((hash << 5) + hash) + *key++;
|
|
}
|
|
switch (len) {
|
|
case 7: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 6: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 5: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 4: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 3: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 2: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
|
|
case 1: hash = ((hash << 5) + hash) + *key++; break;
|
|
default: /* case 0: */ break;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
typedef unsigned long int ub4; /* unsigned 4-byte quantities */
|
|
typedef unsigned char ub1; /* unsigned 1-byte quantities */
|
|
|
|
ub4 bernstein(ub1 *key, ub4 len, ub4 level){
|
|
ub4 hash = level;
|
|
ub4 i;
|
|
for (i=0; i<len; ++i) hash = 33*hash + key[i];
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* http://www.azillionmonkeys.com/qed/hash.html
|
|
*/
|
|
#undef get16bits
|
|
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
|
|
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
|
|
#define get16bits(d) (*((const uint16_t *) (d)))
|
|
#endif
|
|
|
|
#if !defined (get16bits)
|
|
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8)\
|
|
+(uint32_t)(((const uint8_t *)(d))[0]) )
|
|
#endif
|
|
|
|
uint32_t SuperFastHash (const char * data, int len) {
|
|
uint32_t hash = len, tmp;
|
|
int rem;
|
|
|
|
if (len <= 0 || data == NULL) return 0;
|
|
|
|
rem = len & 3;
|
|
len >>= 2;
|
|
|
|
/* Main loop */
|
|
for (;len > 0; len--) {
|
|
hash += get16bits (data);
|
|
tmp = (get16bits (data+2) << 11) ^ hash;
|
|
hash = (hash << 16) ^ tmp;
|
|
data += 2*sizeof (uint16_t);
|
|
hash += hash >> 11;
|
|
}
|
|
|
|
/* Handle end cases */
|
|
switch (rem) {
|
|
case 3: hash += get16bits (data);
|
|
hash ^= hash << 16;
|
|
hash ^= data[sizeof (uint16_t)] << 18;
|
|
hash += hash >> 11;
|
|
break;
|
|
case 2: hash += get16bits (data);
|
|
hash ^= hash << 11;
|
|
hash += hash >> 17;
|
|
break;
|
|
case 1: hash += *data;
|
|
hash ^= hash << 10;
|
|
hash += hash >> 1;
|
|
}
|
|
|
|
/* Force "avalanching" of final 127 bits */
|
|
hash ^= hash << 3;
|
|
hash += hash >> 5;
|
|
hash ^= hash << 4;
|
|
hash += hash >> 17;
|
|
hash ^= hash << 25;
|
|
hash += hash >> 6;
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* This variant is about 15% faster.
|
|
*/
|
|
uint32_t SuperFastHash2 (const char * data, int len) {
|
|
uint32_t hash = len, tmp;
|
|
int rem;
|
|
|
|
if (len <= 0 || data == NULL) return 0;
|
|
|
|
rem = len & 3;
|
|
len >>= 2;
|
|
|
|
/* Main loop */
|
|
for (;len > 0; len--) {
|
|
register uint32_t next;
|
|
next = get16bits(data+2);
|
|
hash += get16bits(data);
|
|
tmp = (next << 11) ^ hash;
|
|
hash = (hash << 16) ^ tmp;
|
|
data += 2*sizeof (uint16_t);
|
|
hash += hash >> 11;
|
|
}
|
|
|
|
/* Handle end cases */
|
|
switch (rem) {
|
|
case 3: hash += get16bits (data);
|
|
hash ^= hash << 16;
|
|
hash ^= data[sizeof (uint16_t)] << 18;
|
|
hash += hash >> 11;
|
|
break;
|
|
case 2: hash += get16bits (data);
|
|
hash ^= hash << 11;
|
|
hash += hash >> 17;
|
|
break;
|
|
case 1: hash += *data;
|
|
hash ^= hash << 10;
|
|
hash += hash >> 1;
|
|
}
|
|
|
|
/* Force "avalanching" of final 127 bits */
|
|
hash ^= hash << 3;
|
|
hash += hash >> 5;
|
|
hash ^= hash << 4;
|
|
hash += hash >> 17;
|
|
hash ^= hash << 25;
|
|
hash += hash >> 6;
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* 32 bit FNV-0 hash type
|
|
*/
|
|
typedef unsigned long Fnv32_t;
|
|
|
|
/*
|
|
* fnv_32a_str - perform a 32 bit Fowler/Noll/Vo FNV-1a hash on a string
|
|
*
|
|
* input:
|
|
* str - string to hash
|
|
* hval - previous hash value or 0 if first call
|
|
*
|
|
* returns:
|
|
* 32 bit hash as a static hash type
|
|
*
|
|
* NOTE: To use the recommended 32 bit FNV-1a hash, use FNV1_32A_INIT as the
|
|
* hval arg on the first call to either fnv_32a_buf() or fnv_32a_str().
|
|
*/
|
|
Fnv32_t
|
|
fnv_32a_str(char *str, Fnv32_t hval)
|
|
{
|
|
unsigned char *s = (unsigned char *)str; /* unsigned string */
|
|
|
|
/*
|
|
* FNV-1a hash each octet in the buffer
|
|
*/
|
|
while (*s) {
|
|
|
|
/* xor the bottom with the current octet */
|
|
hval ^= (Fnv32_t)*s++;
|
|
|
|
/* #define NO_FNV_GCC_OPTIMIZATION */
|
|
/* multiply by the 32 bit FNV magic prime mod 2^32 */
|
|
#if defined(NO_FNV_GCC_OPTIMIZATION)
|
|
/*
|
|
* 32 bit magic FNV-1a prime
|
|
*/
|
|
#define FNV_32_PRIME ((Fnv32_t)0x01000193)
|
|
hval *= FNV_32_PRIME;
|
|
#else
|
|
hval += (hval<<1) + (hval<<4) + (hval<<7) + (hval<<8) + (hval<<24);
|
|
#endif
|
|
}
|
|
|
|
/* return our new hash value */
|
|
return hval;
|
|
}
|
|
|
|
/*
|
|
* from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|
*/
|
|
|
|
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
mix -- mix 3 32-bit values reversibly.
|
|
|
|
This is reversible, so any information in (a,b,c) before mix() is
|
|
still in (a,b,c) after mix().
|
|
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through
|
|
mix() in reverse, there are at least 32 bits of the output that
|
|
are sometimes the same for one pair and different for another pair.
|
|
This was tested for:
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
(a,b,c).
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
difference.
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
all zero plus a counter that starts at zero.
|
|
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
|
satisfy this are
|
|
4 6 8 16 19 4
|
|
9 15 3 18 27 15
|
|
14 9 3 7 17 3
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
|
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
|
the operations, constants, and arrangements of the variables.
|
|
|
|
This does not achieve avalanche. There are input bits of (a,b,c)
|
|
that fail to affect some output bits of (a,b,c), especially of a. The
|
|
most thoroughly mixed value is c, but it doesn't really even achieve
|
|
avalanche in c.
|
|
|
|
This allows some parallelism. Read-after-writes are good at doubling
|
|
the number of bits affected, so the goal of mixing pulls in the opposite
|
|
direction as the goal of parallelism. I did what I could. Rotates
|
|
seem to cost as much as shifts on every machine I could lay my hands
|
|
on, and rotates are much kinder to the top and bottom bits, so I used
|
|
rotates.
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
#define mix(a,b,c) \
|
|
{ \
|
|
a -= c; a ^= rot(c, 4); c += b; \
|
|
b -= a; b ^= rot(a, 6); a += c; \
|
|
c -= b; c ^= rot(b, 8); b += a; \
|
|
a -= c; a ^= rot(c,16); c += b; \
|
|
b -= a; b ^= rot(a,19); a += c; \
|
|
c -= b; c ^= rot(b, 4); b += a; \
|
|
}
|
|
|
|
/*
|
|
-------------------------------------------------------------------------------
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c
|
|
|
|
Pairs of (a,b,c) values differing in only a few bits will usually
|
|
produce values of c that look totally different. This was tested for
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
(a,b,c).
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
difference.
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
all zero plus a counter that starts at zero.
|
|
|
|
These constants passed:
|
|
14 11 25 16 4 14 24
|
|
12 14 25 16 4 14 24
|
|
and these came close:
|
|
4 8 15 26 3 22 24
|
|
10 8 15 26 3 22 24
|
|
11 8 15 26 3 22 24
|
|
-------------------------------------------------------------------------------
|
|
*/
|
|
#define final(a,b,c) \
|
|
{ \
|
|
c ^= b; c -= rot(b,14); \
|
|
a ^= c; a -= rot(c,11); \
|
|
b ^= a; b -= rot(a,25); \
|
|
c ^= b; c -= rot(b,16); \
|
|
a ^= c; a -= rot(c,4); \
|
|
b ^= a; b -= rot(a,14); \
|
|
c ^= b; c -= rot(b,24); \
|
|
}
|
|
|
|
/*
|
|
--------------------------------------------------------------------
|
|
This works on all machines. To be useful, it requires
|
|
-- that the key be an array of uint32_t's, and
|
|
-- that the length be the number of uint32_t's in the key
|
|
|
|
The function hashword() is identical to hashlittle() on little-endian
|
|
machines, and identical to hashbig() on big-endian machines,
|
|
except that the length has to be measured in uint32_ts rather than in
|
|
bytes. hashlittle() is more complicated than hashword() only because
|
|
hashlittle() has to dance around fitting the key bytes into registers.
|
|
--------------------------------------------------------------------
|
|
*/
|
|
uint32_t hashword(
|
|
const uint32_t *k, /* the key, an array of uint32_t values */
|
|
size_t length, /* the length of the key, in uint32_ts */
|
|
uint32_t initval) /* the previous hash, or an arbitrary value */
|
|
{
|
|
uint32_t a,b,c;
|
|
|
|
/* Set up the internal state */
|
|
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
|
|
|
|
/*------------------------------------------------- handle most of the key */
|
|
while (length > 3)
|
|
{
|
|
a += k[0];
|
|
b += k[1];
|
|
c += k[2];
|
|
mix(a,b,c);
|
|
length -= 3;
|
|
k += 3;
|
|
}
|
|
|
|
/*------------------------------------------- handle the last 3 uint32_t's */
|
|
switch(length) /* all the case statements fall through */
|
|
{
|
|
case 3 : c+=k[2];
|
|
case 2 : b+=k[1];
|
|
case 1 : a+=k[0];
|
|
final(a,b,c);
|
|
case 0: /* case 0: nothing left to add */
|
|
break;
|
|
}
|
|
/*------------------------------------------------------ report the result */
|
|
return c;
|
|
}
|
|
|
|
/* from K&R book site 139 */
|
|
#define HASHSIZE 101
|
|
|
|
unsigned kr_hash(char *s){
|
|
unsigned hashval;
|
|
|
|
for(hashval = 0; *s != '\0';s++)
|
|
hashval = *s + 31 * hashval;
|
|
|
|
return hashval % HASHSIZE;
|
|
|
|
} /* end kr_hash() */
|
|
|
|
unsigned fnv_hash ( void *key, int len )
|
|
{
|
|
unsigned char *p = key;
|
|
unsigned h = 2166136261;
|
|
int i;
|
|
|
|
for ( i = 0; i < len; i++ )
|
|
h = ( h * 16777619 ) ^ p[i];
|
|
|
|
return h;
|
|
}
|
|
|
|
unsigned oat_hash ( void *key, int len )
|
|
{
|
|
unsigned char *p = key;
|
|
unsigned h = 0;
|
|
int i;
|
|
|
|
for ( i = 0; i < len; i++ ) {
|
|
h += p[i];
|
|
h += ( h << 10 );
|
|
h ^= ( h >> 6 );
|
|
}
|
|
|
|
h += ( h << 3 );
|
|
h ^= ( h >> 11 );
|
|
h += ( h << 15 );
|
|
|
|
return h;
|
|
}
|
|
|
|
unsigned wt_hash ( void *key, int len )
|
|
{
|
|
unsigned char *p = key;
|
|
unsigned h = 0x783c965aUL;
|
|
unsigned step = 16;
|
|
|
|
for (; len > 0; len--) {
|
|
h ^= *p * 9;
|
|
p++;
|
|
h = (h << step) | (h >> (32-step));
|
|
step ^= h;
|
|
step &= 0x1F;
|
|
}
|
|
|
|
return h;
|
|
}
|
|
|
|
|
|
#define run_test(fct, args) { \
|
|
unsigned long loop, count; \
|
|
volatile unsigned long result; \
|
|
double delta; \
|
|
struct timeval tv; \
|
|
fprintf(stderr, "Starting %s\n", #fct); \
|
|
tv = timeval_current(); \
|
|
count = 0; \
|
|
do { \
|
|
delta = timeval_elapsed(&tv); \
|
|
for (loop = 0; loop < 1000; loop++) { \
|
|
result = fct args; \
|
|
count++; \
|
|
} \
|
|
} while (delta < 1.0); \
|
|
fprintf(stdout, "%-20s : %10.0f run/sec\n", #fct, count/delta); \
|
|
fflush(stdout); \
|
|
}
|
|
|
|
int main(){
|
|
|
|
char **start;
|
|
int len;
|
|
|
|
char *urls[] = {
|
|
"http://www.microsoft.com/shared/core/1/webservice/navigation.asmx/DisplayDownlevelNavHtml",
|
|
NULL
|
|
};
|
|
|
|
start = urls;
|
|
len = strlen(*urls);
|
|
|
|
run_test(wt_hash, (*urls, len));
|
|
run_test(SuperFastHash2, (*urls, len));
|
|
run_test(SuperFastHash, (*urls, len));
|
|
run_test(haproxy_uri_hash, (*urls, len));
|
|
run_test(haproxy_server_hash, (*urls, len));
|
|
run_test(hashpjw, (*urls));
|
|
run_test(hash_djbx33, ((unsigned char *)*urls, len));
|
|
run_test(bernstein, ((unsigned char *)*urls, len, 4));
|
|
run_test(fnv_32a_str, (*urls, 0));
|
|
run_test(hashword, ((const uint32_t *)*urls,strlen(*urls),0));
|
|
run_test(kr_hash, (*urls));
|
|
run_test(sax_hash, (*urls, len));
|
|
run_test(fnv_hash, (*urls, len));
|
|
run_test(oat_hash, (*urls, len));
|
|
|
|
return 0;
|
|
|
|
}/* end main() */
|