haproxy/src/check.c
Willy Tarreau f5566afec6 MEDIUM: dynbuf: generalize the use of b_dequeue() to detach buffer_wait
Now thanks to this the bufq_map field is expected to remain accurate.
2024-05-10 17:18:13 +02:00

2640 lines
81 KiB
C

/*
* Health-checks functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
* Copyright 2007-2009 Krzysztof Piotr Oledzki <ole@ans.pl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <haproxy/action.h>
#include <haproxy/api.h>
#include <haproxy/arg.h>
#include <haproxy/cfgparse.h>
#include <haproxy/check.h>
#include <haproxy/chunk.h>
#include <haproxy/dgram.h>
#include <haproxy/dynbuf.h>
#include <haproxy/extcheck.h>
#include <haproxy/fd.h>
#include <haproxy/global.h>
#include <haproxy/h1.h>
#include <haproxy/http.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/istbuf.h>
#include <haproxy/list.h>
#include <haproxy/log.h>
#include <haproxy/mailers.h>
#include <haproxy/port_range.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/protocol.h>
#include <haproxy/proxy.h>
#include <haproxy/queue.h>
#include <haproxy/regex.h>
#include <haproxy/resolvers.h>
#include <haproxy/sample.h>
#include <haproxy/server.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/stats-t.h>
#include <haproxy/task.h>
#include <haproxy/tcpcheck.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/trace.h>
#include <haproxy/vars.h>
/* trace source and events */
static void check_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* check - check
*
* CHECK_EV_* macros are defined in <haproxy/check.h>
*/
static const struct trace_event check_trace_events[] = {
{ .mask = CHK_EV_TASK_WAKE, .name = "task_wake", .desc = "Check task woken up" },
{ .mask = CHK_EV_HCHK_START, .name = "hchck_start", .desc = "Health-check started" },
{ .mask = CHK_EV_HCHK_WAKE, .name = "hchck_wake", .desc = "Health-check woken up" },
{ .mask = CHK_EV_HCHK_RUN, .name = "hchck_run", .desc = "Health-check running" },
{ .mask = CHK_EV_HCHK_END, .name = "hchck_end", .desc = "Health-check terminated" },
{ .mask = CHK_EV_HCHK_SUCC, .name = "hchck_succ", .desc = "Health-check success" },
{ .mask = CHK_EV_HCHK_ERR, .name = "hchck_err", .desc = "Health-check failure" },
{ .mask = CHK_EV_TCPCHK_EVAL, .name = "tcp_check_eval", .desc = "tcp-check rules evaluation" },
{ .mask = CHK_EV_TCPCHK_ERR, .name = "tcp_check_err", .desc = "tcp-check evaluation error" },
{ .mask = CHK_EV_TCPCHK_CONN, .name = "tcp_check_conn", .desc = "tcp-check connection rule" },
{ .mask = CHK_EV_TCPCHK_SND, .name = "tcp_check_send", .desc = "tcp-check send rule" },
{ .mask = CHK_EV_TCPCHK_EXP, .name = "tcp_check_expect", .desc = "tcp-check expect rule" },
{ .mask = CHK_EV_TCPCHK_ACT, .name = "tcp_check_action", .desc = "tcp-check action rule" },
{ .mask = CHK_EV_RX_DATA, .name = "rx_data", .desc = "receipt of data" },
{ .mask = CHK_EV_RX_BLK, .name = "rx_blk", .desc = "receipt blocked" },
{ .mask = CHK_EV_RX_ERR, .name = "rx_err", .desc = "receipt error" },
{ .mask = CHK_EV_TX_DATA, .name = "tx_data", .desc = "transmission of data" },
{ .mask = CHK_EV_TX_BLK, .name = "tx_blk", .desc = "transmission blocked" },
{ .mask = CHK_EV_TX_ERR, .name = "tx_err", .desc = "transmission error" },
{}
};
static const struct name_desc check_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the check */ },
/* arg2 */ { },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc check_trace_decoding[] = {
#define CHK_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define CHK_VERB_MINIMAL 2
{ .name="minimal", .desc="report info on streams and connectors" },
#define CHK_VERB_SIMPLE 3
{ .name="simple", .desc="add info on request and response channels" },
#define CHK_VERB_ADVANCED 4
{ .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
#define CHK_VERB_COMPLETE 5
{ .name="complete", .desc="add info on channel's buffer" },
{ /* end */ }
};
struct trace_source trace_check = {
.name = IST("check"),
.desc = "Health-check",
.arg_def = TRC_ARG1_CHK, // TRACE()'s first argument is always a stream
.default_cb = check_trace,
.known_events = check_trace_events,
.lockon_args = check_trace_lockon_args,
.decoding = check_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_check
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* Dummy frontend used to create all checks sessions. */
struct proxy checks_fe;
static inline void check_trace_buf(const struct buffer *buf, size_t ofs, size_t len)
{
size_t block1, block2;
int line, ptr, newptr;
block1 = b_contig_data(buf, ofs);
block2 = 0;
if (block1 > len)
block1 = len;
block2 = len - block1;
ofs = b_peek_ofs(buf, ofs);
line = 0;
ptr = ofs;
while (ptr < ofs + block1) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), ofs + block1, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
line = ptr = 0;
while (ptr < block2) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), block2, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
}
/* trace source and events */
static void check_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct check *check = a1;
const struct server *srv = (check ? check->server : NULL);
const size_t *val = a4;
const char *res;
if (!check || src->verbosity < CHK_VERB_CLEAN)
return;
if (srv) {
chunk_appendf(&trace_buf, " : [%c] SRV=%s",
((check->type == PR_O2_EXT_CHK) ? 'E' : (check->state & CHK_ST_AGENT ? 'A' : 'H')),
srv->id);
chunk_appendf(&trace_buf, " status=%d/%d %s",
(check->health >= check->rise) ? check->health - check->rise + 1 : check->health,
(check->health >= check->rise) ? check->fall : check->rise,
(check->health >= check->rise) ? (srv->uweight ? "UP" : "DRAIN") : "DOWN");
}
else
chunk_appendf(&trace_buf, " : [EMAIL]");
switch (check->result) {
case CHK_RES_NEUTRAL: res = "-"; break;
case CHK_RES_FAILED: res = "FAIL"; break;
case CHK_RES_PASSED: res = "PASS"; break;
case CHK_RES_CONDPASS: res = "COND"; break;
default: res = "UNK"; break;
}
if (src->verbosity == CHK_VERB_CLEAN)
return;
chunk_appendf(&trace_buf, " - last=%s(%d)/%s(%d)",
get_check_status_info(check->status), check->status,
res, check->result);
/* Display the value to the 4th argument (level > STATE) */
if (src->level > TRACE_LEVEL_STATE && val)
chunk_appendf(&trace_buf, " - VAL=%lu", (long)*val);
chunk_appendf(&trace_buf, " check=%p(0x%08x)", check, check->state);
if (src->verbosity == CHK_VERB_MINIMAL)
return;
if (check->sc) {
struct connection *conn = sc_conn(check->sc);
chunk_appendf(&trace_buf, " - conn=%p(0x%08x)", conn, conn ? conn->flags : 0);
chunk_appendf(&trace_buf, " sc=%p(0x%08x)", check->sc, check->sc->flags);
}
if (mask & CHK_EV_TCPCHK) {
const char *type;
switch (check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) {
case TCPCHK_RULES_PGSQL_CHK: type = "PGSQL"; break;
case TCPCHK_RULES_REDIS_CHK: type = "REDIS"; break;
case TCPCHK_RULES_SMTP_CHK: type = "SMTP"; break;
case TCPCHK_RULES_HTTP_CHK: type = "HTTP"; break;
case TCPCHK_RULES_MYSQL_CHK: type = "MYSQL"; break;
case TCPCHK_RULES_LDAP_CHK: type = "LDAP"; break;
case TCPCHK_RULES_SSL3_CHK: type = "SSL3"; break;
case TCPCHK_RULES_AGENT_CHK: type = "AGENT"; break;
case TCPCHK_RULES_SPOP_CHK: type = "SPOP"; break;
case TCPCHK_RULES_TCP_CHK: type = "TCP"; break;
default: type = "???"; break;
}
if (check->current_step)
chunk_appendf(&trace_buf, " - tcp-check=(%s,%d)", type, tcpcheck_get_step_id(check, NULL));
else
chunk_appendf(&trace_buf, " - tcp-check=(%s,-)", type);
}
/* Display bi and bo buffer info (level > USER & verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_USER) {
const struct buffer *buf = NULL;
chunk_appendf(&trace_buf, " bi=%u@%p+%u/%u",
(unsigned int)b_data(&check->bi), b_orig(&check->bi),
(unsigned int)b_head_ofs(&check->bi), (unsigned int)b_size(&check->bi));
chunk_appendf(&trace_buf, " bo=%u@%p+%u/%u",
(unsigned int)b_data(&check->bo), b_orig(&check->bo),
(unsigned int)b_head_ofs(&check->bo), (unsigned int)b_size(&check->bo));
if (src->verbosity >= CHK_VERB_ADVANCED && (mask & (CHK_EV_RX)))
buf = (b_is_null(&check->bi) ? NULL : &check->bi);
else if (src->verbosity >= CHK_VERB_ADVANCED && (mask & (CHK_EV_TX)))
buf = (b_is_null(&check->bo) ? NULL : &check->bo);
if (buf) {
if ((check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_HTTP_CHK) {
int full = (src->verbosity == CHK_VERB_COMPLETE);
chunk_memcat(&trace_buf, "\n\t", 2);
htx_dump(&trace_buf, htxbuf(buf), full);
}
else {
int max = ((src->verbosity == CHK_VERB_COMPLETE) ? 1024 : 256);
chunk_memcat(&trace_buf, "\n", 1);
if (b_data(buf) > max) {
check_trace_buf(buf, 0, max);
chunk_memcat(&trace_buf, " ...\n", 6);
}
else
check_trace_buf(buf, 0, b_data(buf));
}
}
}
}
/**************************************************************************/
/************************ Handle check results ****************************/
/**************************************************************************/
struct check_status {
short result; /* one of SRV_CHK_* */
char *info; /* human readable short info */
char *desc; /* long description */
};
struct analyze_status {
char *desc; /* description */
unsigned char lr[HANA_OBS_SIZE]; /* result for l4/l7: 0 = ignore, 1 - error, 2 - OK */
};
static const struct check_status check_statuses[HCHK_STATUS_SIZE] = {
[HCHK_STATUS_UNKNOWN] = { CHK_RES_UNKNOWN, "UNK", "Unknown" },
[HCHK_STATUS_INI] = { CHK_RES_UNKNOWN, "INI", "Initializing" },
[HCHK_STATUS_START] = { /* SPECIAL STATUS*/ },
/* Below we have finished checks */
[HCHK_STATUS_CHECKED] = { CHK_RES_NEUTRAL, "CHECKED", "No status change" },
[HCHK_STATUS_HANA] = { CHK_RES_FAILED, "HANA", "Health analyze" },
[HCHK_STATUS_SOCKERR] = { CHK_RES_FAILED, "SOCKERR", "Socket error" },
[HCHK_STATUS_L4OK] = { CHK_RES_PASSED, "L4OK", "Layer4 check passed" },
[HCHK_STATUS_L4TOUT] = { CHK_RES_FAILED, "L4TOUT", "Layer4 timeout" },
[HCHK_STATUS_L4CON] = { CHK_RES_FAILED, "L4CON", "Layer4 connection problem" },
[HCHK_STATUS_L6OK] = { CHK_RES_PASSED, "L6OK", "Layer6 check passed" },
[HCHK_STATUS_L6TOUT] = { CHK_RES_FAILED, "L6TOUT", "Layer6 timeout" },
[HCHK_STATUS_L6RSP] = { CHK_RES_FAILED, "L6RSP", "Layer6 invalid response" },
[HCHK_STATUS_L7TOUT] = { CHK_RES_FAILED, "L7TOUT", "Layer7 timeout" },
[HCHK_STATUS_L7RSP] = { CHK_RES_FAILED, "L7RSP", "Layer7 invalid response" },
[HCHK_STATUS_L57DATA] = { /* DUMMY STATUS */ },
[HCHK_STATUS_L7OKD] = { CHK_RES_PASSED, "L7OK", "Layer7 check passed" },
[HCHK_STATUS_L7OKCD] = { CHK_RES_CONDPASS, "L7OKC", "Layer7 check conditionally passed" },
[HCHK_STATUS_L7STS] = { CHK_RES_FAILED, "L7STS", "Layer7 wrong status" },
[HCHK_STATUS_PROCERR] = { CHK_RES_FAILED, "PROCERR", "External check error" },
[HCHK_STATUS_PROCTOUT] = { CHK_RES_FAILED, "PROCTOUT", "External check timeout" },
[HCHK_STATUS_PROCOK] = { CHK_RES_PASSED, "PROCOK", "External check passed" },
};
static const struct analyze_status analyze_statuses[HANA_STATUS_SIZE] = { /* 0: ignore, 1: error, 2: OK */
[HANA_STATUS_UNKNOWN] = { "Unknown", { 0, 0 }},
[HANA_STATUS_L4_OK] = { "L4 successful connection", { 2, 0 }},
[HANA_STATUS_L4_ERR] = { "L4 unsuccessful connection", { 1, 1 }},
[HANA_STATUS_HTTP_OK] = { "Correct http response", { 0, 2 }},
[HANA_STATUS_HTTP_STS] = { "Wrong http response", { 0, 1 }},
[HANA_STATUS_HTTP_HDRRSP] = { "Invalid http response (headers)", { 0, 1 }},
[HANA_STATUS_HTTP_RSP] = { "Invalid http response", { 0, 1 }},
[HANA_STATUS_HTTP_READ_ERROR] = { "Read error (http)", { 0, 1 }},
[HANA_STATUS_HTTP_READ_TIMEOUT] = { "Read timeout (http)", { 0, 1 }},
[HANA_STATUS_HTTP_BROKEN_PIPE] = { "Close from server (http)", { 0, 1 }},
};
/* checks if <err> is a real error for errno or one that can be ignored, and
* return 0 for these ones or <err> for real ones.
*/
static inline int unclean_errno(int err)
{
if (err == EAGAIN || err == EWOULDBLOCK || err == EINPROGRESS ||
err == EISCONN || err == EALREADY)
return 0;
return err;
}
/* Converts check_status code to result code */
short get_check_status_result(short check_status)
{
if (check_status < HCHK_STATUS_SIZE)
return check_statuses[check_status].result;
else
return check_statuses[HCHK_STATUS_UNKNOWN].result;
}
/* Converts check_status code to description */
const char *get_check_status_description(short check_status) {
const char *desc;
if (check_status < HCHK_STATUS_SIZE)
desc = check_statuses[check_status].desc;
else
desc = NULL;
if (desc && *desc)
return desc;
else
return check_statuses[HCHK_STATUS_UNKNOWN].desc;
}
/* Converts check_status code to short info */
const char *get_check_status_info(short check_status)
{
const char *info;
if (check_status < HCHK_STATUS_SIZE)
info = check_statuses[check_status].info;
else
info = NULL;
if (info && *info)
return info;
else
return check_statuses[HCHK_STATUS_UNKNOWN].info;
}
/* Convert analyze_status to description */
const char *get_analyze_status(short analyze_status) {
const char *desc;
if (analyze_status < HANA_STATUS_SIZE)
desc = analyze_statuses[analyze_status].desc;
else
desc = NULL;
if (desc && *desc)
return desc;
else
return analyze_statuses[HANA_STATUS_UNKNOWN].desc;
}
/* append check info to buffer msg */
void check_append_info(struct buffer *msg, struct check *check)
{
if (!check)
return;
chunk_appendf(msg, ", reason: %s", get_check_status_description(check->status));
if (check->status >= HCHK_STATUS_L57DATA)
chunk_appendf(msg, ", code: %d", check->code);
if (check->desc[0]) {
struct buffer src;
chunk_appendf(msg, ", info: \"");
chunk_initlen(&src, check->desc, 0, strlen(check->desc));
chunk_asciiencode(msg, &src, '"');
chunk_appendf(msg, "\"");
}
if (check->duration >= 0)
chunk_appendf(msg, ", check duration: %ldms", check->duration);
}
/* Sets check->status, update check->duration and fill check->result with an
* adequate CHK_RES_* value. The new check->health is computed based on the
* result.
*
* Shows information in logs about failed health check if server is UP or
* succeeded health checks if server is DOWN.
*/
void set_server_check_status(struct check *check, short status, const char *desc)
{
struct server *s = check->server;
short prev_status = check->status;
int report = (status != prev_status) ? 1 : 0;
TRACE_POINT(CHK_EV_HCHK_RUN, check);
if (status == HCHK_STATUS_START) {
check->result = CHK_RES_UNKNOWN; /* no result yet */
check->desc[0] = '\0';
check->start = now_ns;
return;
}
if (!check->status)
return;
if (desc && *desc) {
strncpy(check->desc, desc, HCHK_DESC_LEN-1);
check->desc[HCHK_DESC_LEN-1] = '\0';
} else
check->desc[0] = '\0';
check->status = status;
if (check_statuses[status].result)
check->result = check_statuses[status].result;
if (status == HCHK_STATUS_HANA)
check->duration = -1;
else if (check->start) {
/* set_server_check_status() may be called more than once */
check->duration = ns_to_ms(now_ns - check->start);
check->start = 0;
}
/* no change is expected if no state change occurred */
if (check->result == CHK_RES_NEUTRAL)
return;
/* If the check was really just sending a mail, it won't have an
* associated server, so we're done now.
*/
if (!s)
return;
switch (check->result) {
case CHK_RES_FAILED:
/* Failure to connect to the agent as a secondary check should not
* cause the server to be marked down.
*/
if ((!(check->state & CHK_ST_AGENT) ||
(check->status >= HCHK_STATUS_L57DATA)) &&
(check->health > 0)) {
_HA_ATOMIC_INC(&s->counters.failed_checks);
report = 1;
check->health--;
if (check->health < check->rise)
check->health = 0;
}
break;
case CHK_RES_PASSED:
case CHK_RES_CONDPASS:
if (check->health < check->rise + check->fall - 1) {
report = 1;
check->health++;
if (check->health >= check->rise)
check->health = check->rise + check->fall - 1; /* OK now */
}
/* clear consecutive_errors if observing is enabled */
if (s->onerror)
HA_ATOMIC_STORE(&s->consecutive_errors, 0);
break;
default:
break;
}
if (report)
srv_event_hdl_publish_check(s, check);
if (s->proxy->options2 & PR_O2_LOGHCHKS && report) {
chunk_printf(&trash,
"%s check for %sserver %s/%s %s%s",
(check->state & CHK_ST_AGENT) ? "Agent" : "Health",
s->flags & SRV_F_BACKUP ? "backup " : "",
s->proxy->id, s->id,
(check->result == CHK_RES_CONDPASS) ? "conditionally ":"",
(check->result >= CHK_RES_PASSED) ? "succeeded" : "failed");
check_append_info(&trash, check);
chunk_appendf(&trash, ", status: %d/%d %s",
(check->health >= check->rise) ? check->health - check->rise + 1 : check->health,
(check->health >= check->rise) ? check->fall : check->rise,
(check->health >= check->rise) ? (s->uweight ? "UP" : "DRAIN") : "DOWN");
ha_warning("%s.\n", trash.area);
send_log(s->proxy, LOG_NOTICE, "%s.\n", trash.area);
send_email_alert(s, LOG_INFO, "%s", trash.area);
}
}
static inline enum srv_op_st_chg_cause check_notify_cause(struct check *check)
{
struct server *s = check->server;
/* We only report a cause for the check if we did not do so previously */
if (!s->track && !(s->proxy->options2 & PR_O2_LOGHCHKS))
return (check->state & CHK_ST_AGENT) ? SRV_OP_STCHGC_AGENT : SRV_OP_STCHGC_HEALTH;
return SRV_OP_STCHGC_NONE;
}
/* Marks the check <check>'s server down if the current check is already failed
* and the server is not down yet nor in maintenance.
*/
void check_notify_failure(struct check *check)
{
struct server *s = check->server;
/* The agent secondary check should only cause a server to be marked
* as down if check->status is HCHK_STATUS_L7STS, which indicates
* that the agent returned "fail", "stopped" or "down".
* The implication here is that failure to connect to the agent
* as a secondary check should not cause the server to be marked
* down. */
if ((check->state & CHK_ST_AGENT) && check->status != HCHK_STATUS_L7STS)
return;
if (check->health > 0)
return;
TRACE_STATE("health-check failed, set server DOWN", CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
srv_set_stopped(s, check_notify_cause(check));
}
/* Marks the check <check> as valid and tries to set its server up, provided
* it isn't in maintenance, it is not tracking a down server and other checks
* comply. The rule is simple : by default, a server is up, unless any of the
* following conditions is true :
* - health check failed (check->health < rise)
* - agent check failed (agent->health < rise)
* - the server tracks a down server (track && track->state == STOPPED)
* Note that if the server has a slowstart, it will switch to STARTING instead
* of RUNNING. Also, only the health checks support the nolb mode, so the
* agent's success may not take the server out of this mode.
*/
void check_notify_success(struct check *check)
{
struct server *s = check->server;
if (s->next_admin & SRV_ADMF_MAINT)
return;
if (s->track && s->track->next_state == SRV_ST_STOPPED)
return;
if ((s->check.state & CHK_ST_ENABLED) && (s->check.health < s->check.rise))
return;
if ((s->agent.state & CHK_ST_ENABLED) && (s->agent.health < s->agent.rise))
return;
if ((check->state & CHK_ST_AGENT) && s->next_state == SRV_ST_STOPPING)
return;
TRACE_STATE("health-check succeeded, set server RUNNING", CHK_EV_HCHK_END|CHK_EV_HCHK_SUCC, check);
srv_set_running(s, check_notify_cause(check));
}
/* Marks the check <check> as valid and tries to set its server into stopping mode
* if it was running or starting, and provided it isn't in maintenance and other
* checks comply. The conditions for the server to be marked in stopping mode are
* the same as for it to be turned up. Also, only the health checks support the
* nolb mode.
*/
void check_notify_stopping(struct check *check)
{
struct server *s = check->server;
if (s->next_admin & SRV_ADMF_MAINT)
return;
if (check->state & CHK_ST_AGENT)
return;
if (s->track && s->track->next_state == SRV_ST_STOPPED)
return;
if ((s->check.state & CHK_ST_ENABLED) && (s->check.health < s->check.rise))
return;
if ((s->agent.state & CHK_ST_ENABLED) && (s->agent.health < s->agent.rise))
return;
TRACE_STATE("health-check condionnaly succeeded, set server STOPPING", CHK_EV_HCHK_END|CHK_EV_HCHK_SUCC, check);
srv_set_stopping(s, check_notify_cause(check));
}
/* note: use health_adjust() only, which first checks that the observe mode is
* enabled. This will take the server lock if needed.
*/
void __health_adjust(struct server *s, short status)
{
int failed;
if (s->observe >= HANA_OBS_SIZE)
return;
if (status >= HANA_STATUS_SIZE || !analyze_statuses[status].desc)
return;
switch (analyze_statuses[status].lr[s->observe - 1]) {
case 1:
failed = 1;
break;
case 2:
failed = 0;
break;
default:
return;
}
if (!failed) {
/* good: clear consecutive_errors */
HA_ATOMIC_STORE(&s->consecutive_errors, 0);
return;
}
if (HA_ATOMIC_ADD_FETCH(&s->consecutive_errors, 1) < s->consecutive_errors_limit)
return;
chunk_printf(&trash, "Detected %d consecutive errors, last one was: %s",
HA_ATOMIC_LOAD(&s->consecutive_errors), get_analyze_status(status));
HA_SPIN_LOCK(SERVER_LOCK, &s->lock);
/* force fastinter for upcoming check
* (does nothing if fastinter is not enabled)
*/
s->check.state |= CHK_ST_FASTINTER;
switch (s->onerror) {
case HANA_ONERR_FASTINTER:
/* force fastinter - nothing to do here as all modes force it */
break;
case HANA_ONERR_SUDDTH:
/* simulate a pre-fatal failed health check */
if (s->check.health > s->check.rise)
s->check.health = s->check.rise + 1;
__fallthrough;
case HANA_ONERR_FAILCHK:
/* simulate a failed health check */
set_server_check_status(&s->check, HCHK_STATUS_HANA,
trash.area);
check_notify_failure(&s->check);
break;
case HANA_ONERR_MARKDWN:
/* mark server down */
s->check.health = s->check.rise;
set_server_check_status(&s->check, HCHK_STATUS_HANA,
trash.area);
check_notify_failure(&s->check);
break;
default:
/* write a warning? */
break;
}
HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock);
HA_ATOMIC_STORE(&s->consecutive_errors, 0);
_HA_ATOMIC_INC(&s->counters.failed_hana);
if (s->check.fastinter) {
/* timer might need to be advanced, it might also already be
* running in another thread. Let's just wake the task up, it
* will automatically adjust its timer.
*/
task_wakeup(s->check.task, TASK_WOKEN_MSG);
}
}
/* Checks the connection. If an error has already been reported or the socket is
* closed, keep errno intact as it is supposed to contain the valid error code.
* If no error is reported, check the socket's error queue using getsockopt().
* Warning, this must be done only once when returning from poll, and never
* after an I/O error was attempted, otherwise the error queue might contain
* inconsistent errors. If an error is detected, the CO_FL_ERROR is set on the
* socket. Returns non-zero if an error was reported, zero if everything is
* clean (including a properly closed socket).
*/
static int retrieve_errno_from_socket(struct connection *conn)
{
int skerr;
socklen_t lskerr = sizeof(skerr);
if (conn->flags & CO_FL_ERROR && (unclean_errno(errno) || !conn->ctrl))
return 1;
if (!conn_ctrl_ready(conn))
return 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (getsockopt(conn->handle.fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr) == 0)
errno = skerr;
errno = unclean_errno(errno);
if (!errno) {
/* we could not retrieve an error, that does not mean there is
* none. Just don't change anything and only report the prior
* error if any.
*/
if (conn->flags & CO_FL_ERROR)
return 1;
else
return 0;
}
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_SOCK_RD_SH;
return 1;
}
/* Tries to collect as much information as possible on the connection status,
* and adjust the server status accordingly. It may make use of <errno_bck>
* if non-null when the caller is absolutely certain of its validity (eg:
* checked just after a syscall). If the caller doesn't have a valid errno,
* it can pass zero, and retrieve_errno_from_socket() will be called to try
* to extract errno from the socket. If no error is reported, it will consider
* the <expired> flag. This is intended to be used when a connection error was
* reported in conn->flags or when a timeout was reported in <expired>. The
* function takes care of not updating a server status which was already set.
* All situations where at least one of <expired> or CO_FL_ERROR are set
* produce a status.
*/
void chk_report_conn_err(struct check *check, int errno_bck, int expired)
{
struct stconn *sc = check->sc;
struct connection *conn = sc_conn(sc);
const char *err_msg;
struct buffer *chk;
int step;
if (check->result != CHK_RES_UNKNOWN) {
return;
}
errno = unclean_errno(errno_bck);
if (conn && errno)
retrieve_errno_from_socket(conn);
if (conn && !(conn->flags & CO_FL_ERROR) && !sc_ep_test(sc, SE_FL_ERROR) && !expired)
return;
TRACE_ENTER(CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check, 0, 0, (size_t[]){expired});
/* we'll try to build a meaningful error message depending on the
* context of the error possibly present in conn->err_code, and the
* socket error possibly collected above. This is useful to know the
* exact step of the L6 layer (eg: SSL handshake).
*/
chk = get_trash_chunk();
if (check->type == PR_O2_TCPCHK_CHK &&
(check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_TCP_CHK) {
step = tcpcheck_get_step_id(check, NULL);
if (!step) {
TRACE_DEVEL("initial connection failure", CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
chunk_printf(chk, " at initial connection step of tcp-check");
}
else {
chunk_printf(chk, " at step %d of tcp-check", step);
/* we were looking for a string */
if (check->current_step && check->current_step->action == TCPCHK_ACT_CONNECT) {
if (check->current_step->connect.port)
chunk_appendf(chk, " (connect port %d)" ,check->current_step->connect.port);
else
chunk_appendf(chk, " (connect)");
TRACE_DEVEL("connection failure", CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
}
else if (check->current_step && check->current_step->action == TCPCHK_ACT_EXPECT) {
struct tcpcheck_expect *expect = &check->current_step->expect;
switch (expect->type) {
case TCPCHK_EXPECT_STRING:
chunk_appendf(chk, " (expect string '%.*s')", (unsigned int)istlen(expect->data), istptr(expect->data));
break;
case TCPCHK_EXPECT_BINARY:
chunk_appendf(chk, " (expect binary '");
dump_binary(chk, istptr(expect->data), (int)istlen(expect->data));
chunk_appendf(chk, "')");
break;
case TCPCHK_EXPECT_STRING_REGEX:
chunk_appendf(chk, " (expect regex)");
break;
case TCPCHK_EXPECT_BINARY_REGEX:
chunk_appendf(chk, " (expect binary regex)");
break;
case TCPCHK_EXPECT_STRING_LF:
chunk_appendf(chk, " (expect log-format string)");
break;
case TCPCHK_EXPECT_BINARY_LF:
chunk_appendf(chk, " (expect log-format binary)");
break;
case TCPCHK_EXPECT_HTTP_STATUS:
chunk_appendf(chk, " (expect HTTP status codes)");
break;
case TCPCHK_EXPECT_HTTP_STATUS_REGEX:
chunk_appendf(chk, " (expect HTTP status regex)");
break;
case TCPCHK_EXPECT_HTTP_HEADER:
chunk_appendf(chk, " (expect HTTP header pattern)");
break;
case TCPCHK_EXPECT_HTTP_BODY:
chunk_appendf(chk, " (expect HTTP body content '%.*s')", (unsigned int)istlen(expect->data), istptr(expect->data));
break;
case TCPCHK_EXPECT_HTTP_BODY_REGEX:
chunk_appendf(chk, " (expect HTTP body regex)");
break;
case TCPCHK_EXPECT_HTTP_BODY_LF:
chunk_appendf(chk, " (expect log-format HTTP body)");
break;
case TCPCHK_EXPECT_CUSTOM:
chunk_appendf(chk, " (expect custom function)");
break;
case TCPCHK_EXPECT_UNDEF:
chunk_appendf(chk, " (undefined expect!)");
break;
}
TRACE_DEVEL("expect rule failed", CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
}
else if (check->current_step && check->current_step->action == TCPCHK_ACT_SEND) {
chunk_appendf(chk, " (send)");
TRACE_DEVEL("send rule failed", CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
}
if (check->current_step && check->current_step->comment)
chunk_appendf(chk, " comment: '%s'", check->current_step->comment);
}
}
if (conn && conn->err_code) {
if (unclean_errno(errno))
chunk_printf(&trash, "%s (%s)%s", conn_err_code_str(conn), strerror(errno),
chk->area);
else
chunk_printf(&trash, "%s%s", conn_err_code_str(conn),
chk->area);
err_msg = trash.area;
}
else {
if (unclean_errno(errno)) {
chunk_printf(&trash, "%s%s", strerror(errno),
chk->area);
err_msg = trash.area;
}
else {
err_msg = chk->area;
}
}
if (check->state & CHK_ST_PORT_MISS) {
/* NOTE: this is reported after <fall> tries */
set_server_check_status(check, HCHK_STATUS_SOCKERR, err_msg);
}
if (!conn || !conn->ctrl) {
/* error before any connection attempt (connection allocation error or no control layer) */
set_server_check_status(check, HCHK_STATUS_SOCKERR, err_msg);
}
else if (conn->flags & CO_FL_WAIT_L4_CONN) {
/* L4 not established (yet) */
if (conn->flags & CO_FL_ERROR || sc_ep_test(sc, SE_FL_ERROR))
set_server_check_status(check, HCHK_STATUS_L4CON, err_msg);
else if (expired)
set_server_check_status(check, HCHK_STATUS_L4TOUT, err_msg);
/*
* might be due to a server IP change.
* Let's trigger a DNS resolution if none are currently running.
*/
if (check->server)
resolv_trigger_resolution(check->server->resolv_requester);
}
else if (conn->flags & CO_FL_WAIT_L6_CONN) {
/* L6 not established (yet) */
if (conn->flags & CO_FL_ERROR || sc_ep_test(sc, SE_FL_ERROR))
set_server_check_status(check, HCHK_STATUS_L6RSP, err_msg);
else if (expired)
set_server_check_status(check, HCHK_STATUS_L6TOUT, err_msg);
}
else if (conn->flags & CO_FL_ERROR || sc_ep_test(sc, SE_FL_ERROR)) {
/* I/O error after connection was established and before we could diagnose */
set_server_check_status(check, HCHK_STATUS_SOCKERR, err_msg);
}
else if (expired) {
enum healthcheck_status tout = HCHK_STATUS_L7TOUT;
/* connection established but expired check */
if (check->current_step && check->current_step->action == TCPCHK_ACT_EXPECT &&
check->current_step->expect.tout_status != HCHK_STATUS_UNKNOWN)
tout = check->current_step->expect.tout_status;
set_server_check_status(check, tout, err_msg);
}
TRACE_LEAVE(CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
return;
}
/* Builds the server state header used by HTTP health-checks */
int httpchk_build_status_header(struct server *s, struct buffer *buf)
{
int sv_state;
int ratio;
char addr[46];
char port[6];
const char *srv_hlt_st[7] = { "DOWN", "DOWN %d/%d",
"UP %d/%d", "UP",
"NOLB %d/%d", "NOLB",
"no check" };
if (!(s->check.state & CHK_ST_ENABLED))
sv_state = 6;
else if (s->cur_state != SRV_ST_STOPPED) {
if (s->check.health == s->check.rise + s->check.fall - 1)
sv_state = 3; /* UP */
else
sv_state = 2; /* going down */
if (s->cur_state == SRV_ST_STOPPING)
sv_state += 2;
} else {
if (s->check.health)
sv_state = 1; /* going up */
else
sv_state = 0; /* DOWN */
}
chunk_appendf(buf, srv_hlt_st[sv_state],
(s->cur_state != SRV_ST_STOPPED) ? (s->check.health - s->check.rise + 1) : (s->check.health),
(s->cur_state != SRV_ST_STOPPED) ? (s->check.fall) : (s->check.rise));
addr_to_str(&s->addr, addr, sizeof(addr));
if (s->addr.ss_family == AF_INET || s->addr.ss_family == AF_INET6)
snprintf(port, sizeof(port), "%u", s->svc_port);
else
*port = 0;
chunk_appendf(buf, "; address=%s; port=%s; name=%s/%s; node=%s; weight=%d/%d; scur=%d/%d; qcur=%d",
addr, port, s->proxy->id, s->id,
global.node,
(s->cur_eweight * s->proxy->lbprm.wmult + s->proxy->lbprm.wdiv - 1) / s->proxy->lbprm.wdiv,
(s->proxy->lbprm.tot_weight * s->proxy->lbprm.wmult + s->proxy->lbprm.wdiv - 1) / s->proxy->lbprm.wdiv,
s->cur_sess, s->proxy->beconn - s->proxy->queue.length,
s->queue.length);
if ((s->cur_state == SRV_ST_STARTING) &&
ns_to_sec(now_ns) < s->counters.last_change + s->slowstart &&
ns_to_sec(now_ns) >= s->counters.last_change) {
ratio = MAX(1, 100 * (ns_to_sec(now_ns) - s->counters.last_change) / s->slowstart);
chunk_appendf(buf, "; throttle=%d%%", ratio);
}
return b_data(buf);
}
/**************************************************************************/
/***************** Health-checks based on connections *********************/
/**************************************************************************/
/* This function is used only for server health-checks. It handles connection
* status updates including errors. If necessary, it wakes the check task up.
* It returns 0 on normal cases, <0 if at least one close() has happened on the
* connection (eg: reconnect). It relies on tcpcheck_main().
*/
int wake_srv_chk(struct stconn *sc)
{
struct connection *conn;
struct check *check = __sc_check(sc);
struct email_alertq *q = container_of(check, typeof(*q), check);
int ret = 0;
TRACE_ENTER(CHK_EV_HCHK_WAKE, check);
if (check->result != CHK_RES_UNKNOWN)
goto end;
if (check->server)
HA_SPIN_LOCK(SERVER_LOCK, &check->server->lock);
else
HA_SPIN_LOCK(EMAIL_ALERTS_LOCK, &q->lock);
/* we may have to make progress on the TCP checks */
ret = tcpcheck_main(check);
sc = check->sc;
conn = sc_conn(sc);
if (unlikely(!conn || conn->flags & CO_FL_ERROR || sc_ep_test(sc, SE_FL_ERROR))) {
/* We may get error reports bypassing the I/O handlers, typically
* the case when sending a pure TCP check which fails, then the I/O
* handlers above are not called. This is completely handled by the
* main processing task so let's simply wake it up. If we get here,
* we expect errno to still be valid.
*/
TRACE_ERROR("report connection error", CHK_EV_HCHK_WAKE|CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
chk_report_conn_err(check, errno, 0);
task_wakeup(check->task, TASK_WOKEN_IO);
}
if (check->result != CHK_RES_UNKNOWN || ret == -1) {
/* Check complete or aborted. Wake the check task up to be sure
* the result is handled ASAP. */
ret = -1;
task_wakeup(check->task, TASK_WOKEN_IO);
}
if (check->server)
HA_SPIN_UNLOCK(SERVER_LOCK, &check->server->lock);
else
HA_SPIN_UNLOCK(EMAIL_ALERTS_LOCK, &q->lock);
end:
TRACE_LEAVE(CHK_EV_HCHK_WAKE, check);
return ret;
}
/* This function checks if any I/O is wanted, and if so, attempts to do so */
struct task *srv_chk_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct stconn *sc = ctx;
wake_srv_chk(sc);
return NULL;
}
/* returns <0, 0, >0 if check thread 1 is respectively less loaded than,
* equally as, or more loaded than thread 2. This is made to decide on
* migrations so a margin is applied in either direction. For ease of
* remembering the direction, consider this returns load1 - load2.
*/
static inline int check_thread_cmp_load(int thr1, int thr2)
{
uint t1_load = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr1].rq_total);
uint t1_act = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr1].active_checks);
uint t2_load = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr2].rq_total);
uint t2_act = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr2].active_checks);
/* twice as more active checks is a significant difference */
if (t1_act * 2 < t2_act)
return -1;
if (t2_act * 2 < t1_act)
return 1;
/* twice as more rqload with more checks is also a significant
* difference.
*/
if (t1_act <= t2_act && t1_load * 2 < t2_load)
return -1;
if (t2_act <= t1_act && t2_load * 2 < t1_load)
return 1;
/* otherwise they're roughly equal */
return 0;
}
/* returns <0, 0, >0 if check thread 1's active checks count is respectively
* higher than, equal, or lower than thread 2's. This is made to decide on
* forced migrations upon overload, so only a very little margin is applied
* here (~1%). For ease of remembering the direction, consider this returns
* active1 - active2.
*/
static inline int check_thread_cmp_active(int thr1, int thr2)
{
uint t1_act = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr1].active_checks);
uint t2_act = _HA_ATOMIC_LOAD(&ha_thread_ctx[thr2].active_checks);
if (t1_act * 128 >= t2_act * 129)
return 1;
if (t2_act * 128 >= t1_act * 129)
return -1;
return 0;
}
/* manages a server health-check that uses a connection. Returns
* the time the task accepts to wait, or TIME_ETERNITY for infinity.
*
* Please do NOT place any return statement in this function and only leave
* via the out_unlock label.
*/
struct task *process_chk_conn(struct task *t, void *context, unsigned int state)
{
struct check *check = context;
struct proxy *proxy = check->proxy;
struct stconn *sc;
struct connection *conn;
int rv;
int expired = tick_is_expired(t->expire, now_ms);
TRACE_ENTER(CHK_EV_TASK_WAKE, check);
if (check->state & CHK_ST_SLEEPING) {
/* This check just restarted. It's still time to verify if
* we're on an overloaded thread or if a more suitable one is
* available. This helps spread the load over the available
* threads, without migrating too often. For this we'll check
* our load, and pick a random thread, check if it has less
* than half of the current thread's load, and if so we'll
* bounce the task there. It's possible because it's not yet
* tied to the current thread. The other thread will not bounce
* the task again because we're setting CHK_ST_READY indicating
* a migration.
*/
uint run_checks = _HA_ATOMIC_LOAD(&th_ctx->running_checks);
uint my_load = HA_ATOMIC_LOAD(&th_ctx->rq_total);
uint attempts = MIN(global.nbthread, 3);
if (check->state & CHK_ST_READY) {
/* check was migrated, active already counted */
activity[tid].check_adopted++;
}
else {
/* first wakeup, let's check if another thread is less loaded
* than this one in order to smooth the load. If the current
* thread is not yet overloaded, we attempt an opportunistic
* migration to another thread that is not full and that is
* significantly less loaded. And if the current thread is
* already overloaded, we attempt a forced migration to a
* thread with less active checks. We try at most 3 random
* other thread.
*/
while (attempts-- > 0 &&
(!LIST_ISEMPTY(&th_ctx->queued_checks) || my_load >= 3) &&
_HA_ATOMIC_LOAD(&th_ctx->active_checks) >= 3) {
uint new_tid = statistical_prng_range(global.nbthread);
if (new_tid == tid)
continue;
ALREADY_CHECKED(new_tid);
if (check_thread_cmp_active(tid, new_tid) > 0 &&
(run_checks >= global.tune.max_checks_per_thread ||
check_thread_cmp_load(tid, new_tid) > 0)) {
/* Found one. Let's migrate the task over there. We have to
* remove it from the WQ first and kill its expire time
* otherwise the scheduler will reinsert it and trigger a
* BUG_ON() as we're not allowed to call task_queue() for a
* foreign thread. The recipient will restore the expiration.
*/
check->state |= CHK_ST_READY;
HA_ATOMIC_INC(&ha_thread_ctx[new_tid].active_checks);
task_unlink_wq(t);
t->expire = TICK_ETERNITY;
task_set_thread(t, new_tid);
task_wakeup(t, TASK_WOKEN_MSG);
TRACE_LEAVE(CHK_EV_TASK_WAKE, check);
return t;
}
}
/* check just woke up, count it as active */
_HA_ATOMIC_INC(&th_ctx->active_checks);
}
/* OK we're keeping it so this check is ours now */
task_set_thread(t, tid);
check->state &= ~CHK_ST_SLEEPING;
/* if we just woke up and the thread is full of running, or
* already has others waiting, we might have to wait in queue
* (for health checks only). This means !SLEEPING && !READY.
*/
if (check->server &&
(!LIST_ISEMPTY(&th_ctx->queued_checks) ||
(global.tune.max_checks_per_thread &&
_HA_ATOMIC_LOAD(&th_ctx->running_checks) >= global.tune.max_checks_per_thread))) {
TRACE_DEVEL("health-check queued", CHK_EV_TASK_WAKE, check);
t->expire = TICK_ETERNITY;
LIST_APPEND(&th_ctx->queued_checks, &check->check_queue);
/* reset fastinter flag (if set) so that srv_getinter()
* only returns fastinter if server health is degraded
*/
check->state &= ~CHK_ST_FASTINTER;
goto out_leave;
}
/* OK let's run, now we cannot roll back anymore */
check->state |= CHK_ST_READY;
activity[tid].check_started++;
_HA_ATOMIC_INC(&th_ctx->running_checks);
}
/* at this point, CHK_ST_SLEEPING = 0 and CHK_ST_READY = 1*/
if (check->server)
HA_SPIN_LOCK(SERVER_LOCK, &check->server->lock);
if (!(check->state & (CHK_ST_INPROGRESS|CHK_ST_IN_ALLOC|CHK_ST_OUT_ALLOC))) {
/* This task might have bounced from another overloaded thread, it
* needs an expiration timer that was supposed to be now, but that
* was erased during the bounce.
*/
if (!tick_isset(t->expire)) {
t->expire = now_ms;
expired = 0;
}
}
if (unlikely(check->state & CHK_ST_PURGE)) {
TRACE_STATE("health-check state to purge", CHK_EV_TASK_WAKE, check);
}
else if (!(check->state & (CHK_ST_INPROGRESS))) {
/* no check currently running, but we might have been woken up
* before the timer's expiration to update it according to a
* new state (e.g. fastinter), in which case we'll reprogram
* the new timer.
*/
if (!tick_is_expired(t->expire, now_ms)) { /* woke up too early */
if (check->server) {
int new_exp = tick_add(now_ms, MS_TO_TICKS(srv_getinter(check)));
if (tick_is_expired(new_exp, t->expire)) {
TRACE_STATE("health-check was advanced", CHK_EV_TASK_WAKE, check);
goto update_timer;
}
}
TRACE_STATE("health-check wake up too early", CHK_EV_TASK_WAKE, check);
goto out_unlock;
}
/* we don't send any health-checks when the proxy is
* stopped, the server should not be checked or the check
* is disabled.
*/
if (((check->state & (CHK_ST_ENABLED | CHK_ST_PAUSED)) != CHK_ST_ENABLED) ||
(proxy->flags & (PR_FL_DISABLED|PR_FL_STOPPED))) {
TRACE_STATE("health-check paused or disabled", CHK_EV_TASK_WAKE, check);
goto reschedule;
}
/* we'll initiate a new check */
set_server_check_status(check, HCHK_STATUS_START, NULL);
check->state |= CHK_ST_INPROGRESS;
TRACE_STATE("init new health-check", CHK_EV_TASK_WAKE|CHK_EV_HCHK_START, check);
check->current_step = NULL;
check->sc = sc_new_from_check(check, SC_FL_NONE);
if (!check->sc) {
set_server_check_status(check, HCHK_STATUS_SOCKERR, NULL);
goto end;
}
tcpcheck_main(check);
expired = 0;
}
/* there was a test running.
* First, let's check whether there was an uncaught error,
* which can happen on connect timeout or error.
*/
if (check->result == CHK_RES_UNKNOWN && likely(!(check->state & CHK_ST_PURGE))) {
sc = check->sc;
conn = sc_conn(sc);
/* Here the connection must be defined. Otherwise the
* error would have already been detected
*/
if ((conn && ((conn->flags & CO_FL_ERROR) || sc_ep_test(sc, SE_FL_ERROR))) || expired) {
TRACE_ERROR("report connection error", CHK_EV_TASK_WAKE|CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
chk_report_conn_err(check, 0, expired);
}
else {
if (check->state & CHK_ST_CLOSE_CONN) {
TRACE_DEVEL("closing current connection", CHK_EV_TASK_WAKE|CHK_EV_HCHK_RUN, check);
check->state &= ~CHK_ST_CLOSE_CONN;
if (!sc_reset_endp(check->sc)) {
/* error will be handled by tcpcheck_main().
* On success, remove all flags except SE_FL_DETACHED
*/
sc_ep_clr(check->sc, ~SE_FL_DETACHED);
}
tcpcheck_main(check);
}
if (check->result == CHK_RES_UNKNOWN) {
TRACE_DEVEL("health-check not expired", CHK_EV_TASK_WAKE|CHK_EV_HCHK_RUN, check);
goto out_unlock; /* timeout not reached, wait again */
}
}
}
/* check complete or aborted */
TRACE_STATE("health-check complete or aborted", CHK_EV_TASK_WAKE|CHK_EV_HCHK_END, check);
/* check->sc may be NULL when the healthcheck is purged */
check->current_step = NULL;
sc = check->sc;
conn = (sc ? sc_conn(sc) : NULL);
if (conn && conn->xprt) {
/* The check was aborted and the connection was not yet closed.
* This can happen upon timeout, or when an external event such
* as a failed response coupled with "observe layer7" caused the
* server state to be suddenly changed.
*/
se_shutdown(sc->sedesc, SE_SHR_DRAIN|SE_SHW_SILENT);
}
if (sc) {
sc_destroy(sc);
check->sc = NULL;
}
if (check->sess != NULL) {
vars_prune(&check->vars, check->sess, NULL);
session_free(check->sess);
check->sess = NULL;
}
end:
if (check->server && likely(!(check->state & CHK_ST_PURGE))) {
if (check->result == CHK_RES_FAILED) {
/* a failure or timeout detected */
TRACE_DEVEL("report failure", CHK_EV_TASK_WAKE|CHK_EV_HCHK_END|CHK_EV_HCHK_ERR, check);
check_notify_failure(check);
}
else if (check->result == CHK_RES_CONDPASS) {
/* check is OK but asks for stopping mode */
TRACE_DEVEL("report conditional success", CHK_EV_TASK_WAKE|CHK_EV_HCHK_END|CHK_EV_HCHK_SUCC, check);
check_notify_stopping(check);
}
else if (check->result == CHK_RES_PASSED) {
/* a success was detected */
TRACE_DEVEL("report success", CHK_EV_TASK_WAKE|CHK_EV_HCHK_END|CHK_EV_HCHK_SUCC, check);
check_notify_success(check);
}
}
b_dequeue(&check->buf_wait);
check_release_buf(check, &check->bi);
check_release_buf(check, &check->bo);
_HA_ATOMIC_DEC(&th_ctx->running_checks);
_HA_ATOMIC_DEC(&th_ctx->active_checks);
check->state &= ~(CHK_ST_INPROGRESS|CHK_ST_IN_ALLOC|CHK_ST_OUT_ALLOC);
check->state &= ~CHK_ST_READY;
check->state |= CHK_ST_SLEEPING;
update_timer:
/* when going to sleep, we need to check if other checks are waiting
* for a slot. If so we pick them out of the queue and wake them up.
*/
if (check->server && (check->state & CHK_ST_SLEEPING)) {
if (!LIST_ISEMPTY(&th_ctx->queued_checks) &&
_HA_ATOMIC_LOAD(&th_ctx->running_checks) < global.tune.max_checks_per_thread) {
struct check *next_chk = LIST_ELEM(th_ctx->queued_checks.n, struct check *, check_queue);
/* wake up pending task */
LIST_DEL_INIT(&next_chk->check_queue);
activity[tid].check_started++;
_HA_ATOMIC_INC(&th_ctx->running_checks);
next_chk->state |= CHK_ST_READY;
/* now running */
task_wakeup(next_chk->task, TASK_WOKEN_RES);
}
}
if (check->server) {
rv = 0;
if (global.spread_checks > 0) {
rv = srv_getinter(check) * global.spread_checks / 100;
rv -= (int) (2 * rv * (statistical_prng() / 4294967295.0));
}
t->expire = tick_add(now_ms, MS_TO_TICKS(srv_getinter(check) + rv));
/* reset fastinter flag (if set) so that srv_getinter()
* only returns fastinter if server health is degraded
*/
check->state &= ~CHK_ST_FASTINTER;
}
reschedule:
if (proxy->flags & (PR_FL_DISABLED|PR_FL_STOPPED))
t->expire = TICK_ETERNITY;
else {
while (tick_is_expired(t->expire, now_ms))
t->expire = tick_add(t->expire, MS_TO_TICKS(check->inter));
}
out_unlock:
if (check->server)
HA_SPIN_UNLOCK(SERVER_LOCK, &check->server->lock);
out_leave:
TRACE_LEAVE(CHK_EV_TASK_WAKE, check);
/* Free the check if set to PURGE. After this, the check instance may be
* freed via the srv_drop invocation, so it must not be accessed after
* this point.
*/
if (unlikely(check->state & CHK_ST_PURGE)) {
free_check(check);
if (check->server)
srv_drop(check->server);
t = NULL;
}
return t;
}
/**************************************************************************/
/************************** Init/deinit checks ****************************/
/**************************************************************************/
/*
* Tries to grab a buffer and to re-enables processing on check <target>. The
* check flags are used to figure what buffer was requested. It returns 1 if the
* allocation succeeds, in which case the I/O tasklet is woken up, or 0 if it's
* impossible to wake up and we prefer to be woken up later.
*/
int check_buf_available(void *target)
{
struct check *check = target;
BUG_ON(!check->sc);
if ((check->state & CHK_ST_IN_ALLOC) && b_alloc(&check->bi, DB_CHANNEL)) {
TRACE_STATE("unblocking check, input buffer allocated", CHK_EV_TCPCHK_EXP|CHK_EV_RX_BLK, check);
check->state &= ~CHK_ST_IN_ALLOC;
tasklet_wakeup(check->sc->wait_event.tasklet);
return 1;
}
if ((check->state & CHK_ST_OUT_ALLOC) && b_alloc(&check->bo, DB_CHANNEL)) {
TRACE_STATE("unblocking check, output buffer allocated", CHK_EV_TCPCHK_SND|CHK_EV_TX_BLK, check);
check->state &= ~CHK_ST_OUT_ALLOC;
tasklet_wakeup(check->sc->wait_event.tasklet);
return 1;
}
return 0;
}
/*
* Allocate a buffer. If it fails, it adds the check in buffer wait queue.
*/
struct buffer *check_get_buf(struct check *check, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(!LIST_INLIST(&check->buf_wait.list)) &&
unlikely((buf = b_alloc(bptr, DB_CHANNEL)) == NULL)) {
b_queue(DB_CHANNEL, &check->buf_wait, check, check_buf_available);
}
return buf;
}
/*
* Release a buffer, if any, and try to wake up entities waiting in the buffer
* wait queue.
*/
void check_release_buf(struct check *check, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(check->buf_wait.target, 1);
}
}
const char *init_check(struct check *check, int type)
{
check->type = type;
check->bi = BUF_NULL;
check->bo = BUF_NULL;
LIST_INIT(&check->buf_wait.list);
LIST_INIT(&check->check_queue);
return NULL;
}
/* Liberates the resources allocated for a check.
*
* This function must only be run by the thread owning the check.
*/
void free_check(struct check *check)
{
/* For agent-check, free the rules / vars from the server. This is not
* done for health-check : the proxy is the owner of the rules / vars
* in this case.
*/
if (check->state & CHK_ST_AGENT) {
free_tcpcheck_vars(&check->tcpcheck_rules->preset_vars);
ha_free(&check->tcpcheck_rules);
}
task_destroy(check->task);
check_release_buf(check, &check->bi);
check_release_buf(check, &check->bo);
if (check->sc) {
sc_destroy(check->sc);
check->sc = NULL;
}
}
/* This function must be used in order to free a started check. The check will
* be scheduled for a next execution in order to properly close and free all
* check elements.
*
* Non thread-safe.
*/
void check_purge(struct check *check)
{
check->state |= CHK_ST_PURGE;
task_wakeup(check->task, TASK_WOKEN_OTHER);
}
/* manages a server health-check. Returns the time the task accepts to wait, or
* TIME_ETERNITY for infinity.
*/
struct task *process_chk(struct task *t, void *context, unsigned int state)
{
struct check *check = context;
if (check->type == PR_O2_EXT_CHK)
return process_chk_proc(t, context, state);
return process_chk_conn(t, context, state);
}
int start_check_task(struct check *check, int mininter,
int nbcheck, int srvpos)
{
struct task *t;
/* task for the check. Process-based checks exclusively run on thread 1. */
if (check->type == PR_O2_EXT_CHK)
t = task_new_on(0);
else
t = task_new_anywhere();
if (!t)
goto fail_alloc_task;
check->task = t;
t->process = process_chk;
t->context = check;
if (mininter < srv_getinter(check))
mininter = srv_getinter(check);
if (global.spread_checks > 0) {
int rnd;
rnd = srv_getinter(check) * global.spread_checks / 100;
rnd -= (int) (2 * rnd * (ha_random32() / 4294967295.0));
mininter += rnd;
}
if (global.max_spread_checks && mininter > global.max_spread_checks)
mininter = global.max_spread_checks;
/* check this every ms */
t->expire = tick_add(now_ms, MS_TO_TICKS(mininter * srvpos / nbcheck));
check->start = now_ns;
task_queue(t);
return 1;
fail_alloc_task:
ha_alert("Starting [%s:%s] check: out of memory.\n",
check->server->proxy->id, check->server->id);
return 0;
}
/*
* Start health-check.
* Returns 0 if OK, ERR_FATAL on error, and prints the error in this case.
*/
static int start_checks()
{
struct proxy *px;
struct server *s;
int nbcheck=0, mininter=0, srvpos=0;
/* 0- init the dummy frontend used to create all checks sessions */
init_new_proxy(&checks_fe);
checks_fe.id = strdup("CHECKS-FE");
checks_fe.cap = PR_CAP_FE | PR_CAP_BE;
checks_fe.mode = PR_MODE_TCP;
checks_fe.maxconn = 0;
checks_fe.conn_retries = CONN_RETRIES;
checks_fe.options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC;
checks_fe.timeout.client = TICK_ETERNITY;
/* 1- count the checkers to run simultaneously.
* We also determine the minimum interval among all of those which
* have an interval larger than SRV_CHK_INTER_THRES. This interval
* will be used to spread their start-up date. Those which have
* a shorter interval will start independently and will not dictate
* too short an interval for all others.
*/
for (px = proxies_list; px; px = px->next) {
for (s = px->srv; s; s = s->next) {
if (s->check.state & CHK_ST_CONFIGURED) {
nbcheck++;
if ((srv_getinter(&s->check) >= SRV_CHK_INTER_THRES) &&
(!mininter || mininter > srv_getinter(&s->check)))
mininter = srv_getinter(&s->check);
}
if (s->agent.state & CHK_ST_CONFIGURED) {
nbcheck++;
if ((srv_getinter(&s->agent) >= SRV_CHK_INTER_THRES) &&
(!mininter || mininter > srv_getinter(&s->agent)))
mininter = srv_getinter(&s->agent);
}
}
}
if (!nbcheck)
return ERR_NONE;
srand((unsigned)time(NULL));
/* 2- start them as far as possible from each other. For this, we will
* start them after their interval is set to the min interval divided
* by the number of servers, weighted by the server's position in the
* list.
*/
for (px = proxies_list; px; px = px->next) {
if ((px->options2 & PR_O2_CHK_ANY) == PR_O2_EXT_CHK) {
if (init_pid_list()) {
ha_alert("Starting [%s] check: out of memory.\n", px->id);
return ERR_ALERT | ERR_FATAL;
}
}
for (s = px->srv; s; s = s->next) {
/* A task for the main check */
if (s->check.state & CHK_ST_CONFIGURED) {
if (s->check.type == PR_O2_EXT_CHK) {
if (!prepare_external_check(&s->check))
return ERR_ALERT | ERR_FATAL;
}
if (!start_check_task(&s->check, mininter, nbcheck, srvpos))
return ERR_ALERT | ERR_FATAL;
srvpos++;
}
/* A task for a auxiliary agent check */
if (s->agent.state & CHK_ST_CONFIGURED) {
if (!start_check_task(&s->agent, mininter, nbcheck, srvpos)) {
return ERR_ALERT | ERR_FATAL;
}
srvpos++;
}
}
}
return ERR_NONE;
}
/*
* Return value:
* the port to be used for the health check
* 0 in case no port could be found for the check
*/
static int srv_check_healthcheck_port(struct check *chk)
{
int i = 0;
struct server *srv = NULL;
srv = chk->server;
/* by default, we use the health check port configured */
if (chk->port > 0)
return chk->port;
/* try to get the port from check_core.addr if check.port not set */
i = get_host_port(&chk->addr);
if (i > 0)
return i;
/* try to get the port from server address */
/* prevent MAPPORTS from working at this point, since checks could
* not be performed in such case (MAPPORTS impose a relative ports
* based on live traffic)
*/
if (srv->flags & SRV_F_MAPPORTS)
return 0;
i = srv->svc_port; /* by default */
if (i > 0)
return i;
return 0;
}
/* Initializes an health-check attached to the server <srv>. Non-zero is returned
* if an error occurred.
*/
int init_srv_check(struct server *srv)
{
const char *err;
struct tcpcheck_rule *r;
int ret = ERR_NONE;
int check_type;
if (!srv->do_check || !(srv->proxy->cap & PR_CAP_BE))
goto out;
check_type = srv->check.tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK;
if (!(srv->flags & SRV_F_DYNAMIC)) {
/* If neither a port nor an addr was specified and no check
* transport layer is forced, then the transport layer used by
* the checks is the same as for the production traffic.
* Otherwise we use raw_sock by default, unless one is
* specified.
*/
if (!srv->check.port && !is_addr(&srv->check.addr)) {
if (!srv->check.use_ssl && srv->use_ssl != -1) {
srv->check.use_ssl = srv->use_ssl;
srv->check.xprt = srv->xprt;
}
else if (srv->check.use_ssl == 1)
srv->check.xprt = xprt_get(XPRT_SSL);
srv->check.send_proxy |= (srv->pp_opts);
}
else if (srv->check.use_ssl == 1)
srv->check.xprt = xprt_get(XPRT_SSL);
}
else {
/* For dynamic servers, check-ssl and check-send-proxy must be
* explicitly defined even if the check port was not
* overridden.
*/
if (srv->check.use_ssl == 1)
srv->check.xprt = xprt_get(XPRT_SSL);
}
/* Inherit the mux protocol from the server if not already defined for
* the check
*/
if (srv->mux_proto && !srv->check.mux_proto &&
((srv->mux_proto->mode == PROTO_MODE_HTTP && check_type == TCPCHK_RULES_HTTP_CHK) ||
(srv->mux_proto->mode == PROTO_MODE_TCP && check_type != TCPCHK_RULES_HTTP_CHK))) {
srv->check.mux_proto = srv->mux_proto;
}
/* test that check proto is valid if explicitly defined */
else if (srv->check.mux_proto &&
((srv->check.mux_proto->mode == PROTO_MODE_HTTP && check_type != TCPCHK_RULES_HTTP_CHK) ||
(srv->check.mux_proto->mode == PROTO_MODE_TCP && check_type == TCPCHK_RULES_HTTP_CHK))) {
ha_alert("config: %s '%s': server '%s' uses an incompatible MUX protocol for the selected check type\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id);
ret |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* validate <srv> server health-check settings */
/* We need at least a service port, a check port or the first tcp-check
* rule must be a 'connect' one when checking an IPv4/IPv6 server.
*/
if ((srv_check_healthcheck_port(&srv->check) != 0) ||
(!is_inet_addr(&srv->check.addr) && (is_addr(&srv->check.addr) || !is_inet_addr(&srv->addr))))
goto init;
if (!srv->proxy->tcpcheck_rules.list || LIST_ISEMPTY(srv->proxy->tcpcheck_rules.list)) {
ha_alert("config: %s '%s': server '%s' has neither service port nor check port.\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id);
ret |= ERR_ALERT | ERR_ABORT;
goto out;
}
/* search the first action (connect / send / expect) in the list */
r = get_first_tcpcheck_rule(&srv->proxy->tcpcheck_rules);
if (!r || (r->action != TCPCHK_ACT_CONNECT) || (!r->connect.port && !get_host_port(&r->connect.addr))) {
ha_alert("config: %s '%s': server '%s' has neither service port nor check port "
"nor tcp_check rule 'connect' with port information.\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id);
ret |= ERR_ALERT | ERR_ABORT;
goto out;
}
/* scan the tcp-check ruleset to ensure a port has been configured */
list_for_each_entry(r, srv->proxy->tcpcheck_rules.list, list) {
if ((r->action == TCPCHK_ACT_CONNECT) && (!r->connect.port && !get_host_port(&r->connect.addr))) {
ha_alert("config: %s '%s': server '%s' has neither service port nor check port, "
"and a tcp_check rule 'connect' with no port information.\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id);
ret |= ERR_ALERT | ERR_ABORT;
goto out;
}
}
init:
err = init_check(&srv->check, srv->proxy->options2 & PR_O2_CHK_ANY);
if (err) {
ha_alert("config: %s '%s': unable to init check for server '%s' (%s).\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id, err);
ret |= ERR_ALERT | ERR_ABORT;
goto out;
}
srv->check.state |= CHK_ST_CONFIGURED | CHK_ST_ENABLED | CHK_ST_SLEEPING;
srv_take(srv);
/* Only increment maxsock for servers from the configuration. Dynamic
* servers at the moment are not taken into account for the estimation
* of the resources limits.
*/
if (global.mode & MODE_STARTING)
global.maxsock++;
out:
return ret;
}
/* Initializes an agent-check attached to the server <srv>. Non-zero is returned
* if an error occurred.
*/
int init_srv_agent_check(struct server *srv)
{
struct tcpcheck_rule *chk;
const char *err;
int ret = ERR_NONE;
if (!srv->do_agent || !(srv->proxy->cap & PR_CAP_BE))
goto out;
/* If there is no connect rule preceding all send / expect rules, an
* implicit one is inserted before all others.
*/
chk = get_first_tcpcheck_rule(srv->agent.tcpcheck_rules);
if (!chk || chk->action != TCPCHK_ACT_CONNECT) {
chk = calloc(1, sizeof(*chk));
if (!chk) {
ha_alert("%s '%s': unable to add implicit tcp-check connect rule"
" to agent-check for server '%s' (out of memory).\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id);
ret |= ERR_ALERT | ERR_FATAL;
goto out;
}
chk->action = TCPCHK_ACT_CONNECT;
chk->connect.options = (TCPCHK_OPT_DEFAULT_CONNECT|TCPCHK_OPT_IMPLICIT);
LIST_INSERT(srv->agent.tcpcheck_rules->list, &chk->list);
}
/* <chk> is always defined here and it is a CONNECT action. If there is
* a preset variable, it means there is an agent string defined and data
* will be sent after the connect.
*/
if (!LIST_ISEMPTY(&srv->agent.tcpcheck_rules->preset_vars))
chk->connect.options |= TCPCHK_OPT_HAS_DATA;
err = init_check(&srv->agent, PR_O2_TCPCHK_CHK);
if (err) {
ha_alert("config: %s '%s': unable to init agent-check for server '%s' (%s).\n",
proxy_type_str(srv->proxy), srv->proxy->id, srv->id, err);
ret |= ERR_ALERT | ERR_ABORT;
goto out;
}
if (!srv->agent.inter)
srv->agent.inter = srv->check.inter;
srv->agent.state |= CHK_ST_CONFIGURED | CHK_ST_ENABLED | CHK_ST_SLEEPING | CHK_ST_AGENT;
srv_take(srv);
/* Only increment maxsock for servers from the configuration. Dynamic
* servers at the moment are not taken into account for the estimation
* of the resources limits.
*/
if (global.mode & MODE_STARTING)
global.maxsock++;
out:
return ret;
}
static void deinit_srv_check(struct server *srv)
{
if (srv->check.state & CHK_ST_CONFIGURED) {
free_check(&srv->check);
/* it is safe to drop now since the main server reference is still held by the proxy */
srv_drop(srv);
}
srv->check.state &= ~CHK_ST_CONFIGURED & ~CHK_ST_ENABLED;
srv->do_check = 0;
}
static void deinit_srv_agent_check(struct server *srv)
{
if (srv->agent.state & CHK_ST_CONFIGURED) {
free_check(&srv->agent);
/* it is safe to drop now since the main server reference is still held by the proxy */
srv_drop(srv);
}
srv->agent.state &= ~CHK_ST_CONFIGURED & ~CHK_ST_ENABLED & ~CHK_ST_AGENT;
srv->do_agent = 0;
}
REGISTER_POST_SERVER_CHECK(init_srv_check);
REGISTER_POST_SERVER_CHECK(init_srv_agent_check);
REGISTER_POST_CHECK(start_checks);
REGISTER_SERVER_DEINIT(deinit_srv_check);
REGISTER_SERVER_DEINIT(deinit_srv_agent_check);
/* perform minimal initializations */
static void init_checks()
{
int i;
for (i = 0; i < MAX_THREADS; i++)
LIST_INIT(&ha_thread_ctx[i].queued_checks);
}
INITCALL0(STG_PREPARE, init_checks);
/**************************************************************************/
/************************** Check sample fetches **************************/
/**************************************************************************/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/**************************************************************************/
/************************ Check's parsing functions ***********************/
/**************************************************************************/
/* Parse the "addr" server keyword */
static int srv_parse_addr(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
struct sockaddr_storage *sk;
int port1, port2, err_code = 0;
if (!*args[*cur_arg+1]) {
memprintf(errmsg, "'%s' expects <ipv4|ipv6> as argument.", args[*cur_arg]);
goto error;
}
sk = str2sa_range(args[*cur_arg+1], NULL, &port1, &port2, NULL, NULL, NULL, errmsg, NULL, NULL,
PA_O_RESOLVE | PA_O_PORT_OK | PA_O_STREAM | PA_O_CONNECT);
if (!sk) {
memprintf(errmsg, "'%s' : %s", args[*cur_arg], *errmsg);
goto error;
}
srv->check.addr = *sk;
/* if agentaddr was never set, we can use addr */
if (!(srv->flags & SRV_F_AGENTADDR))
srv->agent.addr = *sk;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "agent-addr" server keyword */
static int srv_parse_agent_addr(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
struct sockaddr_storage sk;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects an address as argument.", args[*cur_arg]);
goto error;
}
memset(&sk, 0, sizeof(sk));
if (str2ip(args[*cur_arg + 1], &sk) == NULL) {
memprintf(errmsg, "parsing agent-addr failed. Check if '%s' is correct address.", args[*cur_arg+1]);
goto error;
}
set_srv_agent_addr(srv, &sk);
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "agent-check" server keyword */
static int srv_parse_agent_check(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
struct tcpcheck_ruleset *rs = NULL;
struct tcpcheck_rules *rules = srv->agent.tcpcheck_rules;
struct tcpcheck_rule *chk;
int err_code = 0;
if (srv->do_agent)
goto out;
if (!(curpx->cap & PR_CAP_BE)) {
memprintf(errmsg, "'%s' ignored because %s '%s' has no backend capability",
args[*cur_arg], proxy_type_str(curpx), curpx->id);
return ERR_WARN;
}
if (!rules) {
rules = calloc(1, sizeof(*rules));
if (!rules) {
memprintf(errmsg, "out of memory.");
goto error;
}
LIST_INIT(&rules->preset_vars);
srv->agent.tcpcheck_rules = rules;
}
rules->list = NULL;
rules->flags = 0;
rs = find_tcpcheck_ruleset("*agent-check");
if (rs)
goto ruleset_found;
rs = create_tcpcheck_ruleset("*agent-check");
if (rs == NULL) {
memprintf(errmsg, "out of memory.");
goto error;
}
chk = parse_tcpcheck_send((char *[]){"tcp-check", "send-lf", "%[var(check.agent_string)]", ""},
1, curpx, &rs->rules, srv->conf.file, srv->conf.line, errmsg);
if (!chk) {
memprintf(errmsg, "'%s': %s", args[*cur_arg], *errmsg);
goto error;
}
chk->index = 0;
LIST_APPEND(&rs->rules, &chk->list);
chk = parse_tcpcheck_expect((char *[]){"tcp-check", "expect", "custom", ""},
1, curpx, &rs->rules, TCPCHK_RULES_AGENT_CHK,
srv->conf.file, srv->conf.line, errmsg);
if (!chk) {
memprintf(errmsg, "'%s': %s", args[*cur_arg], *errmsg);
goto error;
}
chk->expect.custom = tcpcheck_agent_expect_reply;
chk->index = 1;
LIST_APPEND(&rs->rules, &chk->list);
ruleset_found:
rules->list = &rs->rules;
rules->flags &= ~(TCPCHK_RULES_PROTO_CHK|TCPCHK_RULES_UNUSED_RS);
rules->flags |= TCPCHK_RULES_AGENT_CHK;
srv->do_agent = 1;
out:
return err_code;
error:
deinit_srv_agent_check(srv);
free_tcpcheck_ruleset(rs);
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "agent-inter" server keyword */
static int srv_parse_agent_inter(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
const char *err = NULL;
unsigned int delay;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a delay as argument.", args[*cur_arg]);
goto error;
}
err = parse_time_err(args[*cur_arg+1], &delay, TIME_UNIT_MS);
if (err == PARSE_TIME_OVER) {
memprintf(errmsg, "timer overflow in argument <%s> to <%s> of server %s, maximum value is 2147483647 ms (~24.8 days).",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err == PARSE_TIME_UNDER) {
memprintf(errmsg, "timer underflow in argument <%s> to <%s> of server %s, minimum non-null value is 1 ms.",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err) {
memprintf(errmsg, "unexpected character '%c' in 'agent-inter' argument of server %s.",
*err, srv->id);
goto error;
}
if (delay <= 0) {
memprintf(errmsg, "invalid value %d for argument '%s' of server %s.",
delay, args[*cur_arg], srv->id);
goto error;
}
srv->agent.inter = delay;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "agent-port" server keyword */
static int srv_parse_agent_port(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a port number as argument.", args[*cur_arg]);
goto error;
}
/* Only increment maxsock for servers from the configuration. Dynamic
* servers at the moment are not taken into account for the estimation
* of the resources limits.
*/
if (global.mode & MODE_STARTING)
global.maxsock++;
set_srv_agent_port(srv, atol(args[*cur_arg + 1]));
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
int set_srv_agent_send(struct server *srv, const char *send)
{
struct tcpcheck_rules *rules = srv->agent.tcpcheck_rules;
struct tcpcheck_var *var = NULL;
char *str;
str = strdup(send);
var = create_tcpcheck_var(ist("check.agent_string"));
if (str == NULL || var == NULL)
goto error;
free_tcpcheck_vars(&rules->preset_vars);
var->data.type = SMP_T_STR;
var->data.u.str.area = str;
var->data.u.str.data = strlen(str);
LIST_INIT(&var->list);
LIST_APPEND(&rules->preset_vars, &var->list);
return 1;
error:
free(str);
free(var);
return 0;
}
/* Parse the "agent-send" server keyword */
static int srv_parse_agent_send(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
struct tcpcheck_rules *rules = srv->agent.tcpcheck_rules;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a string as argument.", args[*cur_arg]);
goto error;
}
if (!rules) {
rules = calloc(1, sizeof(*rules));
if (!rules) {
memprintf(errmsg, "out of memory.");
goto error;
}
LIST_INIT(&rules->preset_vars);
srv->agent.tcpcheck_rules = rules;
}
if (!set_srv_agent_send(srv, args[*cur_arg+1])) {
memprintf(errmsg, "out of memory.");
goto error;
}
out:
return err_code;
error:
deinit_srv_agent_check(srv);
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "no-agent-send" server keyword */
static int srv_parse_no_agent_check(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
deinit_srv_agent_check(srv);
return 0;
}
/* Parse the "check" server keyword */
static int srv_parse_check(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
if (!(curpx->cap & PR_CAP_BE)) {
memprintf(errmsg, "'%s' ignored because %s '%s' has no backend capability",
args[*cur_arg], proxy_type_str(curpx), curpx->id);
return ERR_WARN;
}
srv->do_check = 1;
return 0;
}
/* Parse the "check-send-proxy" server keyword */
static int srv_parse_check_send_proxy(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
srv->check.send_proxy = 1;
return 0;
}
/* Parse the "check-via-socks4" server keyword */
static int srv_parse_check_via_socks4(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
srv->check.via_socks4 = 1;
return 0;
}
/* Parse the "no-check" server keyword */
static int srv_parse_no_check(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
deinit_srv_check(srv);
return 0;
}
/* Parse the "no-check-send-proxy" server keyword */
static int srv_parse_no_check_send_proxy(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
srv->check.send_proxy = 0;
return 0;
}
/* parse the "check-proto" server keyword */
static int srv_parse_check_proto(char **args, int *cur_arg,
struct proxy *px, struct server *newsrv, char **err)
{
int err_code = 0;
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[*cur_arg]);
goto error;
}
newsrv->check.mux_proto = get_mux_proto(ist(args[*cur_arg + 1]));
if (!newsrv->check.mux_proto) {
memprintf(err, "'%s' : unknown MUX protocol '%s'", args[*cur_arg], args[*cur_arg+1]);
goto error;
}
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "rise" server keyword */
static int srv_parse_check_rise(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
int err_code = 0;
if (!*args[*cur_arg + 1]) {
memprintf(errmsg, "'%s' expects an integer argument.", args[*cur_arg]);
goto error;
}
srv->check.rise = atol(args[*cur_arg+1]);
if (srv->check.rise <= 0) {
memprintf(errmsg, "'%s' has to be > 0.", args[*cur_arg]);
goto error;
}
if (srv->check.health)
srv->check.health = srv->check.rise;
out:
return err_code;
error:
deinit_srv_agent_check(srv);
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "fall" server keyword */
static int srv_parse_check_fall(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
int err_code = 0;
if (!*args[*cur_arg + 1]) {
memprintf(errmsg, "'%s' expects an integer argument.", args[*cur_arg]);
goto error;
}
srv->check.fall = atol(args[*cur_arg+1]);
if (srv->check.fall <= 0) {
memprintf(errmsg, "'%s' has to be > 0.", args[*cur_arg]);
goto error;
}
out:
return err_code;
error:
deinit_srv_agent_check(srv);
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "inter" server keyword */
static int srv_parse_check_inter(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
const char *err = NULL;
unsigned int delay;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a delay as argument.", args[*cur_arg]);
goto error;
}
err = parse_time_err(args[*cur_arg+1], &delay, TIME_UNIT_MS);
if (err == PARSE_TIME_OVER) {
memprintf(errmsg, "timer overflow in argument <%s> to <%s> of server %s, maximum value is 2147483647 ms (~24.8 days).",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err == PARSE_TIME_UNDER) {
memprintf(errmsg, "timer underflow in argument <%s> to <%s> of server %s, minimum non-null value is 1 ms.",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err) {
memprintf(errmsg, "unexpected character '%c' in 'agent-inter' argument of server %s.",
*err, srv->id);
goto error;
}
if (delay <= 0) {
memprintf(errmsg, "invalid value %d for argument '%s' of server %s.",
delay, args[*cur_arg], srv->id);
goto error;
}
srv->check.inter = delay;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "fastinter" server keyword */
static int srv_parse_check_fastinter(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
const char *err = NULL;
unsigned int delay;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a delay as argument.", args[*cur_arg]);
goto error;
}
err = parse_time_err(args[*cur_arg+1], &delay, TIME_UNIT_MS);
if (err == PARSE_TIME_OVER) {
memprintf(errmsg, "timer overflow in argument <%s> to <%s> of server %s, maximum value is 2147483647 ms (~24.8 days).",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err == PARSE_TIME_UNDER) {
memprintf(errmsg, "timer underflow in argument <%s> to <%s> of server %s, minimum non-null value is 1 ms.",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err) {
memprintf(errmsg, "unexpected character '%c' in 'agent-inter' argument of server %s.",
*err, srv->id);
goto error;
}
if (delay <= 0) {
memprintf(errmsg, "invalid value %d for argument '%s' of server %s.",
delay, args[*cur_arg], srv->id);
goto error;
}
srv->check.fastinter = delay;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "downinter" server keyword */
static int srv_parse_check_downinter(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
const char *err = NULL;
unsigned int delay;
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a delay as argument.", args[*cur_arg]);
goto error;
}
err = parse_time_err(args[*cur_arg+1], &delay, TIME_UNIT_MS);
if (err == PARSE_TIME_OVER) {
memprintf(errmsg, "timer overflow in argument <%s> to <%s> of server %s, maximum value is 2147483647 ms (~24.8 days).",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err == PARSE_TIME_UNDER) {
memprintf(errmsg, "timer underflow in argument <%s> to <%s> of server %s, minimum non-null value is 1 ms.",
args[*cur_arg+1], args[*cur_arg], srv->id);
goto error;
}
else if (err) {
memprintf(errmsg, "unexpected character '%c' in 'agent-inter' argument of server %s.",
*err, srv->id);
goto error;
}
if (delay <= 0) {
memprintf(errmsg, "invalid value %d for argument '%s' of server %s.",
delay, args[*cur_arg], srv->id);
goto error;
}
srv->check.downinter = delay;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* Parse the "port" server keyword */
static int srv_parse_check_port(char **args, int *cur_arg, struct proxy *curpx, struct server *srv,
char **errmsg)
{
int err_code = 0;
if (!*(args[*cur_arg+1])) {
memprintf(errmsg, "'%s' expects a port number as argument.", args[*cur_arg]);
goto error;
}
/* Only increment maxsock for servers from the configuration. Dynamic
* servers at the moment are not taken into account for the estimation
* of the resources limits.
*/
if (global.mode & MODE_STARTING)
global.maxsock++;
srv->check.port = atol(args[*cur_arg+1]);
/* if agentport was never set, we can use port */
if (!(srv->flags & SRV_F_AGENTPORT))
srv->agent.port = srv->check.port;
out:
return err_code;
error:
err_code |= ERR_ALERT | ERR_FATAL;
goto out;
}
/* config parser for global "tune.max-checks-per-thread" */
static int check_parse_global_max_checks(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
global.tune.max_checks_per_thread = atoi(args[1]);
return 0;
}
/* register "global" section keywords */
static struct cfg_kw_list chk_cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.max-checks-per-thread", check_parse_global_max_checks },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &chk_cfg_kws);
/* register "server" line keywords */
static struct srv_kw_list srv_kws = { "CHK", { }, {
{ "addr", srv_parse_addr, 1, 1, 1 }, /* IP address to send health to or to probe from agent-check */
{ "agent-addr", srv_parse_agent_addr, 1, 1, 1 }, /* Enable an auxiliary agent check */
{ "agent-check", srv_parse_agent_check, 0, 1, 1 }, /* Enable agent checks */
{ "agent-inter", srv_parse_agent_inter, 1, 1, 1 }, /* Set the interval between two agent checks */
{ "agent-port", srv_parse_agent_port, 1, 1, 1 }, /* Set the TCP port used for agent checks. */
{ "agent-send", srv_parse_agent_send, 1, 1, 1 }, /* Set string to send to agent. */
{ "check", srv_parse_check, 0, 1, 1 }, /* Enable health checks */
{ "check-proto", srv_parse_check_proto, 1, 1, 1 }, /* Set the mux protocol for health checks */
{ "check-send-proxy", srv_parse_check_send_proxy, 0, 1, 1 }, /* Enable PROXY protocol for health checks */
{ "check-via-socks4", srv_parse_check_via_socks4, 0, 1, 1 }, /* Enable socks4 proxy for health checks */
{ "no-agent-check", srv_parse_no_agent_check, 0, 1, 0 }, /* Do not enable any auxiliary agent check */
{ "no-check", srv_parse_no_check, 0, 1, 0 }, /* Disable health checks */
{ "no-check-send-proxy", srv_parse_no_check_send_proxy, 0, 1, 0 }, /* Disable PROXY protocol for health checks */
{ "rise", srv_parse_check_rise, 1, 1, 1 }, /* Set rise value for health checks */
{ "fall", srv_parse_check_fall, 1, 1, 1 }, /* Set fall value for health checks */
{ "inter", srv_parse_check_inter, 1, 1, 1 }, /* Set inter value for health checks */
{ "fastinter", srv_parse_check_fastinter, 1, 1, 1 }, /* Set fastinter value for health checks */
{ "downinter", srv_parse_check_downinter, 1, 1, 1 }, /* Set downinter value for health checks */
{ "port", srv_parse_check_port, 1, 1, 1 }, /* Set the TCP port used for health checks. */
{ NULL, NULL, 0 },
}};
INITCALL1(STG_REGISTER, srv_register_keywords, &srv_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/