mirror of
http://git.haproxy.org/git/haproxy.git/
synced 2025-04-01 22:48:25 +00:00
A server initiates streams with odd-numbered stream IDs. Also add useful traces when parsing STREAM frames.
4326 lines
131 KiB
C
4326 lines
131 KiB
C
/*
|
|
* QUIC transport layer over SOCK_DGRAM sockets.
|
|
*
|
|
* Copyright 2020 HAProxy Technologies, Frédéric Lécaille <flecaille@haproxy.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <haproxy/buf-t.h>
|
|
#include <haproxy/compat.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/debug.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/ticks.h>
|
|
#include <haproxy/time.h>
|
|
|
|
#include <haproxy/connection.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/freq_ctr.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/pipe.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/quic_cc.h>
|
|
#include <haproxy/quic_frame.h>
|
|
#include <haproxy/quic_loss.h>
|
|
#include <haproxy/quic_tls.h>
|
|
#include <haproxy/ssl_sock.h>
|
|
#include <haproxy/stream_interface.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/trace.h>
|
|
#include <haproxy/xprt_quic.h>
|
|
|
|
struct quic_transport_params quic_dflt_transport_params = {
|
|
.max_packet_size = QUIC_DFLT_MAX_PACKET_SIZE,
|
|
.ack_delay_exponent = QUIC_DFLT_ACK_DELAY_COMPONENT,
|
|
.max_ack_delay = QUIC_DFLT_MAX_ACK_DELAY,
|
|
};
|
|
|
|
/* trace source and events */
|
|
static void quic_trace(enum trace_level level, uint64_t mask, \
|
|
const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4);
|
|
|
|
static const struct trace_event quic_trace_events[] = {
|
|
{ .mask = QUIC_EV_CONN_NEW, .name = "new_conn", .desc = "new QUIC connection" },
|
|
{ .mask = QUIC_EV_CONN_INIT, .name = "new_conn_init", .desc = "new QUIC connection initialization" },
|
|
{ .mask = QUIC_EV_CONN_ISEC, .name = "init_secs", .desc = "initial secrets derivation" },
|
|
{ .mask = QUIC_EV_CONN_RSEC, .name = "read_secs", .desc = "read secrets derivation" },
|
|
{ .mask = QUIC_EV_CONN_WSEC, .name = "write_secs", .desc = "write secrets derivation" },
|
|
{ .mask = QUIC_EV_CONN_LPKT, .name = "lstnr_packet", .desc = "new listener received packet" },
|
|
{ .mask = QUIC_EV_CONN_SPKT, .name = "srv_packet", .desc = "new server received packet" },
|
|
{ .mask = QUIC_EV_CONN_ENCPKT, .name = "enc_hdshk_pkt", .desc = "handhshake packet encrytion" },
|
|
{ .mask = QUIC_EV_CONN_HPKT, .name = "hdshk_pkt", .desc = "handhshake packet building" },
|
|
{ .mask = QUIC_EV_CONN_PAPKT, .name = "phdshk_apkt", .desc = "post handhshake application packet preparation" },
|
|
{ .mask = QUIC_EV_CONN_PAPKTS, .name = "phdshk_apkts", .desc = "post handhshake application packets preparation" },
|
|
{ .mask = QUIC_EV_CONN_HDSHK, .name = "hdshk", .desc = "SSL handhshake processing" },
|
|
{ .mask = QUIC_EV_CONN_RMHP, .name = "rm_hp", .desc = "Remove header protection" },
|
|
{ .mask = QUIC_EV_CONN_PRSHPKT, .name = "parse_hpkt", .desc = "parse handshake packet" },
|
|
{ .mask = QUIC_EV_CONN_PRSAPKT, .name = "parse_apkt", .desc = "parse application packet" },
|
|
{ .mask = QUIC_EV_CONN_PRSFRM, .name = "parse_frm", .desc = "parse frame" },
|
|
{ .mask = QUIC_EV_CONN_PRSAFRM, .name = "parse_ack_frm", .desc = "parse ACK frame" },
|
|
{ .mask = QUIC_EV_CONN_BFRM, .name = "build_frm", .desc = "build frame" },
|
|
{ .mask = QUIC_EV_CONN_PHPKTS, .name = "phdshk_pkts", .desc = "handhshake packets preparation" },
|
|
{ .mask = QUIC_EV_CONN_TRMHP, .name = "rm_hp_try", .desc = "header protection removing try" },
|
|
{ .mask = QUIC_EV_CONN_ELRMHP, .name = "el_rm_hp", .desc = "handshake enc. level header protection removing" },
|
|
{ .mask = QUIC_EV_CONN_ELRXPKTS, .name = "el_treat_rx_pkts", .desc = "handshake enc. level rx packets treatment" },
|
|
{ .mask = QUIC_EV_CONN_SSLDATA, .name = "ssl_provide_data", .desc = "CRYPTO data provision to TLS stack" },
|
|
{ .mask = QUIC_EV_CONN_RXCDATA, .name = "el_treat_rx_cfrms",.desc = "enc. level RX CRYPTO frames processing"},
|
|
{ .mask = QUIC_EV_CONN_ADDDATA, .name = "add_hdshk_data", .desc = "TLS stack ->add_handshake_data() call"},
|
|
{ .mask = QUIC_EV_CONN_FFLIGHT, .name = "flush_flight", .desc = "TLS stack ->flush_flight() call"},
|
|
{ .mask = QUIC_EV_CONN_SSLALERT, .name = "send_alert", .desc = "TLS stack ->send_alert() call"},
|
|
{ .mask = QUIC_EV_CONN_RTTUPDT, .name = "rtt_updt", .desc = "RTT sampling" },
|
|
{ .mask = QUIC_EV_CONN_SPPKTS, .name = "sppkts", .desc = "send prepared packets" },
|
|
{ .mask = QUIC_EV_CONN_PKTLOSS, .name = "pktloss", .desc = "detect packet loss" },
|
|
{ .mask = QUIC_EV_CONN_STIMER, .name = "stimer", .desc = "set timer" },
|
|
{ .mask = QUIC_EV_CONN_PTIMER, .name = "ptimer", .desc = "process timer" },
|
|
{ .mask = QUIC_EV_CONN_SPTO, .name = "spto", .desc = "set PTO" },
|
|
{ .mask = QUIC_EV_CONN_BCFRMS, .name = "bcfrms", .desc = "build CRYPTO data frames" },
|
|
{ /* end */ }
|
|
};
|
|
|
|
static const struct name_desc quic_trace_lockon_args[4] = {
|
|
/* arg1 */ { /* already used by the connection */ },
|
|
/* arg2 */ { .name="quic", .desc="QUIC transport" },
|
|
/* arg3 */ { },
|
|
/* arg4 */ { }
|
|
};
|
|
|
|
static const struct name_desc quic_trace_decoding[] = {
|
|
#define QUIC_VERB_CLEAN 1
|
|
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
|
|
{ /* end */ }
|
|
};
|
|
|
|
|
|
struct trace_source trace_quic = {
|
|
.name = IST("quic"),
|
|
.desc = "QUIC xprt",
|
|
.arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
|
|
.default_cb = quic_trace,
|
|
.known_events = quic_trace_events,
|
|
.lockon_args = quic_trace_lockon_args,
|
|
.decoding = quic_trace_decoding,
|
|
.report_events = ~0, /* report everything by default */
|
|
};
|
|
|
|
#define TRACE_SOURCE &trace_quic
|
|
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
|
|
|
|
static BIO_METHOD *ha_quic_meth;
|
|
|
|
/* QUIC xprt connection context. */
|
|
struct quic_conn_ctx {
|
|
struct connection *conn;
|
|
SSL *ssl;
|
|
BIO *bio;
|
|
int state;
|
|
const struct xprt_ops *xprt;
|
|
void *xprt_ctx;
|
|
struct wait_event wait_event;
|
|
struct wait_event *subs;
|
|
};
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_conn_ctx,
|
|
"quic_conn_ctx_pool", sizeof(struct quic_conn_ctx));
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_conn, "quic_conn", sizeof(struct quic_conn));
|
|
|
|
DECLARE_POOL(pool_head_quic_connection_id,
|
|
"quic_connnection_id_pool", sizeof(struct quic_connection_id));
|
|
|
|
DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet_pool", sizeof(struct quic_rx_packet));
|
|
|
|
DECLARE_POOL(pool_head_quic_tx_packet, "quic_tx_packet_pool", sizeof(struct quic_tx_packet));
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_rx_crypto_frm, "quic_rx_crypto_frm_pool", sizeof(struct quic_rx_crypto_frm));
|
|
|
|
DECLARE_POOL(pool_head_quic_tx_frm, "quic_tx_frm_pool", sizeof(struct quic_tx_frm));
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf_pool", sizeof(struct quic_crypto_buf));
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_frame, "quic_frame_pool", sizeof(struct quic_frame));
|
|
|
|
DECLARE_STATIC_POOL(pool_head_quic_arng, "quic_arng_pool", sizeof(struct quic_arng_node));
|
|
|
|
static ssize_t qc_build_hdshk_pkt(struct q_buf *buf, struct quic_conn *qc, int pkt_type,
|
|
struct quic_enc_level *qel);
|
|
|
|
int qc_prep_phdshk_pkts(struct quic_conn *qc);
|
|
|
|
/* Add traces to <buf> depending on <frm> TX frame type. */
|
|
static inline void chunk_tx_frm_appendf(struct buffer *buf,
|
|
const struct quic_tx_frm *frm)
|
|
{
|
|
switch (frm->type) {
|
|
case QUIC_FT_CRYPTO:
|
|
chunk_appendf(buf, " cfoff=%llu cflen=%llu",
|
|
(unsigned long long)frm->crypto.offset,
|
|
(unsigned long long)frm->crypto.len);
|
|
break;
|
|
default:
|
|
chunk_appendf(buf, " %s", quic_frame_type_string(frm->type));
|
|
}
|
|
}
|
|
|
|
/* Only for debug purpose */
|
|
struct enc_debug_info {
|
|
unsigned char *payload;
|
|
size_t payload_len;
|
|
unsigned char *aad;
|
|
size_t aad_len;
|
|
uint64_t pn;
|
|
};
|
|
|
|
/* Initializes a enc_debug_info struct (only for debug purpose) */
|
|
static inline void enc_debug_info_init(struct enc_debug_info *edi,
|
|
unsigned char *payload, size_t payload_len,
|
|
unsigned char *aad, size_t aad_len, uint64_t pn)
|
|
{
|
|
edi->payload = payload;
|
|
edi->payload_len = payload_len;
|
|
edi->aad = aad;
|
|
edi->aad_len = aad_len;
|
|
edi->pn = pn;
|
|
}
|
|
|
|
/* Trace callback for QUIC.
|
|
* These traces always expect that arg1, if non-null, is of type connection.
|
|
*/
|
|
static void quic_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4)
|
|
{
|
|
const struct connection *conn = a1;
|
|
|
|
if (conn) {
|
|
struct quic_tls_secrets *secs;
|
|
struct quic_conn *qc;
|
|
|
|
qc = conn->qc;
|
|
chunk_appendf(&trace_buf, " : conn@%p", conn);
|
|
if ((mask & QUIC_EV_CONN_INIT) && qc) {
|
|
chunk_appendf(&trace_buf, "\n odcid");
|
|
quic_cid_dump(&trace_buf, &qc->odcid);
|
|
chunk_appendf(&trace_buf, "\n dcid");
|
|
quic_cid_dump(&trace_buf, &qc->dcid);
|
|
chunk_appendf(&trace_buf, "\n scid");
|
|
quic_cid_dump(&trace_buf, &qc->scid);
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_ADDDATA) {
|
|
const enum ssl_encryption_level_t *level = a2;
|
|
const size_t *len = a3;
|
|
|
|
if (level) {
|
|
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
|
|
|
|
chunk_appendf(&trace_buf, " el=%c(%d)", quic_enc_level_char(lvl), lvl);
|
|
}
|
|
if (len)
|
|
chunk_appendf(&trace_buf, " len=%llu", (unsigned long long)*len);
|
|
}
|
|
if ((mask & QUIC_EV_CONN_ISEC) && qc) {
|
|
/* Initial read & write secrets. */
|
|
enum quic_tls_enc_level level = QUIC_TLS_ENC_LEVEL_INITIAL;
|
|
const unsigned char *rx_sec = a2;
|
|
const unsigned char *tx_sec = a3;
|
|
|
|
secs = &qc->els[level].tls_ctx.rx;
|
|
if (secs->flags & QUIC_FL_TLS_SECRETS_SET) {
|
|
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(level));
|
|
if (rx_sec)
|
|
quic_tls_secret_hexdump(&trace_buf, rx_sec, 32);
|
|
quic_tls_keys_hexdump(&trace_buf, secs);
|
|
}
|
|
secs = &qc->els[level].tls_ctx.tx;
|
|
if (secs->flags & QUIC_FL_TLS_SECRETS_SET) {
|
|
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(level));
|
|
if (tx_sec)
|
|
quic_tls_secret_hexdump(&trace_buf, tx_sec, 32);
|
|
quic_tls_keys_hexdump(&trace_buf, secs);
|
|
}
|
|
}
|
|
if (mask & (QUIC_EV_CONN_RSEC|QUIC_EV_CONN_RWSEC)) {
|
|
const enum ssl_encryption_level_t *level = a2;
|
|
const unsigned char *secret = a3;
|
|
const size_t *secret_len = a4;
|
|
|
|
if (level) {
|
|
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
|
|
|
|
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(lvl));
|
|
if (secret && secret_len)
|
|
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
|
|
secs = &qc->els[lvl].tls_ctx.rx;
|
|
if (secs->flags & QUIC_FL_TLS_SECRETS_SET)
|
|
quic_tls_keys_hexdump(&trace_buf, secs);
|
|
}
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_WSEC|QUIC_EV_CONN_RWSEC)) {
|
|
const enum ssl_encryption_level_t *level = a2;
|
|
const unsigned char *secret = a3;
|
|
const size_t *secret_len = a4;
|
|
|
|
if (level) {
|
|
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
|
|
|
|
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(lvl));
|
|
if (secret && secret_len)
|
|
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
|
|
secs = &qc->els[lvl].tls_ctx.tx;
|
|
if (secs->flags & QUIC_FL_TLS_SECRETS_SET)
|
|
quic_tls_keys_hexdump(&trace_buf, secs);
|
|
}
|
|
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_HPKT|QUIC_EV_CONN_PAPKT)) {
|
|
const struct quic_tx_packet *pkt = a2;
|
|
const struct quic_enc_level *qel = a3;
|
|
const ssize_t *room = a4;
|
|
|
|
if (qel) {
|
|
struct quic_pktns *pktns;
|
|
|
|
pktns = qc->pktns;
|
|
chunk_appendf(&trace_buf, " qel=%c cwnd=%llu ppif=%lld pif=%llu "
|
|
"if=%llu pp=%u pdg=%d",
|
|
quic_enc_level_char_from_qel(qel, qc),
|
|
(unsigned long long)qc->path->cwnd,
|
|
(unsigned long long)qc->path->prep_in_flight,
|
|
(unsigned long long)qc->path->in_flight,
|
|
(unsigned long long)pktns->tx.in_flight,
|
|
pktns->tx.pto_probe, qc->tx.nb_pto_dgrams);
|
|
}
|
|
if (pkt) {
|
|
const struct quic_tx_frm *frm;
|
|
chunk_appendf(&trace_buf, " pn=%llu cdlen=%u",
|
|
(unsigned long long)pkt->pn_node.key, pkt->cdata_len);
|
|
list_for_each_entry(frm, &pkt->frms, list)
|
|
chunk_tx_frm_appendf(&trace_buf, frm);
|
|
chunk_appendf(&trace_buf, " tx.bytes=%llu", (unsigned long long)qc->tx.bytes);
|
|
}
|
|
|
|
if (room) {
|
|
chunk_appendf(&trace_buf, " room=%lld", (long long)*room);
|
|
chunk_appendf(&trace_buf, " dcid.len=%llu scid.len=%llu",
|
|
(unsigned long long)qc->dcid.len, (unsigned long long)qc->scid.len);
|
|
}
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_HDSHK) {
|
|
const enum quic_handshake_state *state = a2;
|
|
const int *err = a3;
|
|
|
|
if (state)
|
|
chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(*state));
|
|
if (err)
|
|
chunk_appendf(&trace_buf, " err=%s", ssl_error_str(*err));
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_TRMHP|QUIC_EV_CONN_ELRMHP|QUIC_EV_CONN_SPKT)) {
|
|
const struct quic_rx_packet *pkt = a2;
|
|
const unsigned long *pktlen = a3;
|
|
const SSL *ssl = a4;
|
|
|
|
if (pkt) {
|
|
chunk_appendf(&trace_buf, " pkt@%p el=%c",
|
|
pkt, quic_packet_type_enc_level_char(pkt->type));
|
|
if (pkt->pnl)
|
|
chunk_appendf(&trace_buf, " pnl=%u pn=%llu", pkt->pnl,
|
|
(unsigned long long)pkt->pn);
|
|
if (pkt->token_len)
|
|
chunk_appendf(&trace_buf, " toklen=%llu",
|
|
(unsigned long long)pkt->token_len);
|
|
if (pkt->aad_len)
|
|
chunk_appendf(&trace_buf, " aadlen=%llu",
|
|
(unsigned long long)pkt->aad_len);
|
|
chunk_appendf(&trace_buf, " flags=0x%x len=%llu",
|
|
pkt->flags, (unsigned long long)pkt->len);
|
|
}
|
|
if (pktlen)
|
|
chunk_appendf(&trace_buf, " (%ld)", *pktlen);
|
|
if (ssl) {
|
|
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
|
|
chunk_appendf(&trace_buf, " el=%c",
|
|
quic_enc_level_char(ssl_to_quic_enc_level(level)));
|
|
}
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_ELRXPKTS|QUIC_EV_CONN_PRSHPKT|QUIC_EV_CONN_SSLDATA)) {
|
|
const struct quic_rx_packet *pkt = a2;
|
|
const struct quic_rx_crypto_frm *cf = a3;
|
|
const SSL *ssl = a4;
|
|
|
|
if (pkt)
|
|
chunk_appendf(&trace_buf, " pkt@%p el=%c pn=%llu", pkt,
|
|
quic_packet_type_enc_level_char(pkt->type),
|
|
(unsigned long long)pkt->pn);
|
|
if (cf)
|
|
chunk_appendf(&trace_buf, " cfoff=%llu cflen=%llu",
|
|
(unsigned long long)cf->offset_node.key,
|
|
(unsigned long long)cf->len);
|
|
if (ssl) {
|
|
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
|
|
chunk_appendf(&trace_buf, " el=%c",
|
|
quic_enc_level_char(ssl_to_quic_enc_level(level)));
|
|
}
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_PRSFRM|QUIC_EV_CONN_BFRM)) {
|
|
const struct quic_frame *frm = a2;
|
|
|
|
if (frm)
|
|
chunk_appendf(&trace_buf, " %s", quic_frame_type_string(frm->type));
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_PHPKTS) {
|
|
const struct quic_enc_level *qel = a2;
|
|
|
|
if (qel) {
|
|
struct quic_pktns *pktns;
|
|
|
|
pktns = qc->pktns;
|
|
chunk_appendf(&trace_buf,
|
|
" qel=%c ack?%d cwnd=%llu ppif=%lld pif=%llu if=%llu pp=%u pdg=%llu",
|
|
quic_enc_level_char_from_qel(qel, qc),
|
|
!!(pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED),
|
|
(unsigned long long)qc->path->cwnd,
|
|
(unsigned long long)qc->path->prep_in_flight,
|
|
(unsigned long long)qc->path->in_flight,
|
|
(unsigned long long)pktns->tx.in_flight, pktns->tx.pto_probe,
|
|
(unsigned long long)qc->tx.nb_pto_dgrams);
|
|
}
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_ENCPKT) {
|
|
const struct enc_debug_info *edi = a2;
|
|
|
|
if (edi)
|
|
chunk_appendf(&trace_buf,
|
|
" payload=@%p payload_len=%llu"
|
|
" aad=@%p aad_len=%llu pn=%llu",
|
|
edi->payload, (unsigned long long)edi->payload_len,
|
|
edi->aad, (unsigned long long)edi->aad_len,
|
|
(unsigned long long)edi->pn);
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_RMHP) {
|
|
const struct quic_rx_packet *pkt = a2;
|
|
|
|
if (pkt) {
|
|
const int *ret = a3;
|
|
|
|
chunk_appendf(&trace_buf, " pkt@%p", pkt);
|
|
if (ret && *ret)
|
|
chunk_appendf(&trace_buf, " pnl=%u pn=%llu",
|
|
pkt->pnl, (unsigned long long)pkt->pn);
|
|
}
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_PRSAFRM) {
|
|
const struct quic_tx_frm *frm = a2;
|
|
const unsigned long *val1 = a3;
|
|
const unsigned long *val2 = a4;
|
|
|
|
if (frm)
|
|
chunk_tx_frm_appendf(&trace_buf, frm);
|
|
if (val1)
|
|
chunk_appendf(&trace_buf, " %lu", *val1);
|
|
if (val2)
|
|
chunk_appendf(&trace_buf, "..%lu", *val2);
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_RTTUPDT) {
|
|
const unsigned int *rtt_sample = a2;
|
|
const unsigned int *ack_delay = a3;
|
|
const struct quic_loss *ql = a4;
|
|
|
|
if (rtt_sample)
|
|
chunk_appendf(&trace_buf, " rtt_sample=%ums", *rtt_sample);
|
|
if (ack_delay)
|
|
chunk_appendf(&trace_buf, " ack_delay=%ums", *ack_delay);
|
|
if (ql)
|
|
chunk_appendf(&trace_buf,
|
|
" srtt=%ums rttvar=%ums min_rtt=%ums",
|
|
ql->srtt >> 3, ql->rtt_var >> 2, ql->rtt_min);
|
|
}
|
|
if (mask & QUIC_EV_CONN_CC) {
|
|
const struct quic_cc_event *ev = a2;
|
|
const struct quic_cc *cc = a3;
|
|
|
|
if (a2)
|
|
quic_cc_event_trace(&trace_buf, ev);
|
|
if (a3)
|
|
quic_cc_state_trace(&trace_buf, cc);
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_PKTLOSS) {
|
|
const struct quic_pktns *pktns = a2;
|
|
const struct list *lost_pkts = a3;
|
|
struct quic_conn *qc = conn->qc;
|
|
|
|
if (pktns) {
|
|
chunk_appendf(&trace_buf, " pktns=%s",
|
|
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
|
|
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H");
|
|
if (pktns->tx.loss_time)
|
|
chunk_appendf(&trace_buf, " loss_time=%dms",
|
|
TICKS_TO_MS(tick_remain(now_ms, pktns->tx.loss_time)));
|
|
}
|
|
if (lost_pkts && !LIST_ISEMPTY(lost_pkts)) {
|
|
struct quic_tx_packet *pkt;
|
|
|
|
chunk_appendf(&trace_buf, " lost_pkts:");
|
|
list_for_each_entry(pkt, lost_pkts, list)
|
|
chunk_appendf(&trace_buf, " %lu", (unsigned long)pkt->pn_node.key);
|
|
}
|
|
}
|
|
|
|
if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_PTIMER|QUIC_EV_CONN_SPTO)) {
|
|
struct quic_conn *qc = conn->qc;
|
|
const struct quic_pktns *pktns = a2;
|
|
const int *duration = a3;
|
|
const uint64_t *ifae_pkts = a4;
|
|
|
|
if (ifae_pkts)
|
|
chunk_appendf(&trace_buf, " ifae_pkts=%llu",
|
|
(unsigned long long)*ifae_pkts);
|
|
if (pktns) {
|
|
chunk_appendf(&trace_buf, " pktns=%s pp=%d",
|
|
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
|
|
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
|
|
pktns->tx.pto_probe);
|
|
if (mask & QUIC_EV_CONN_STIMER) {
|
|
if (pktns->tx.loss_time)
|
|
chunk_appendf(&trace_buf, " loss_time=%dms",
|
|
TICKS_TO_MS(pktns->tx.loss_time - now_ms));
|
|
}
|
|
if (mask & QUIC_EV_CONN_SPTO) {
|
|
if (pktns->tx.time_of_last_eliciting)
|
|
chunk_appendf(&trace_buf, " tole=%dms",
|
|
TICKS_TO_MS(pktns->tx.time_of_last_eliciting - now_ms));
|
|
if (duration)
|
|
chunk_appendf(&trace_buf, " dur=%dms", TICKS_TO_MS(*duration));
|
|
}
|
|
}
|
|
|
|
if (!(mask & QUIC_EV_CONN_SPTO) && qc->timer_task) {
|
|
chunk_appendf(&trace_buf,
|
|
" expire=%dms", TICKS_TO_MS(qc->timer - now_ms));
|
|
}
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_SPPKTS) {
|
|
const struct quic_tx_packet *pkt = a2;
|
|
|
|
chunk_appendf(&trace_buf, " cwnd=%llu ppif=%llu pif=%llu",
|
|
(unsigned long long)qc->path->cwnd,
|
|
(unsigned long long)qc->path->prep_in_flight,
|
|
(unsigned long long)qc->path->in_flight);
|
|
if (pkt) {
|
|
chunk_appendf(&trace_buf, " pn=%lu(%s) iflen=%llu cdlen=%llu",
|
|
(unsigned long)pkt->pn_node.key,
|
|
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
|
|
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
|
|
(unsigned long long)pkt->in_flight_len,
|
|
(unsigned long long)pkt->cdata_len);
|
|
}
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_SSLALERT) {
|
|
const uint8_t *alert = a2;
|
|
const enum ssl_encryption_level_t *level = a3;
|
|
|
|
if (alert)
|
|
chunk_appendf(&trace_buf, " alert=0x%02x", *alert);
|
|
if (level)
|
|
chunk_appendf(&trace_buf, " el=%c",
|
|
quic_enc_level_char(ssl_to_quic_enc_level(*level)));
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_BCFRMS) {
|
|
const size_t *sz1 = a2;
|
|
const size_t *sz2 = a3;
|
|
const size_t *sz3 = a4;
|
|
|
|
if (sz1)
|
|
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz1);
|
|
if (sz2)
|
|
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz2);
|
|
if (sz3)
|
|
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz3);
|
|
}
|
|
|
|
if (mask & QUIC_EV_CONN_PSTRM) {
|
|
const struct quic_frame *frm = a2;
|
|
const struct quic_stream *s = &frm->stream;
|
|
|
|
chunk_appendf(&trace_buf, " uni=%d fin=%d id=%llu off=%llu len=%llu",
|
|
!!(s->id & QUIC_STREAM_FRAME_ID_DIR_BIT),
|
|
!!(frm->type & QUIC_STREAM_FRAME_TYPE_FIN_BIT),
|
|
(unsigned long long)s->id,
|
|
(unsigned long long)s->offset,
|
|
(unsigned long long)s->len);
|
|
}
|
|
}
|
|
if (mask & QUIC_EV_CONN_LPKT) {
|
|
const struct quic_rx_packet *pkt = a2;
|
|
|
|
if (conn)
|
|
chunk_appendf(&trace_buf, " xprt_ctx@%p", conn->xprt_ctx);
|
|
if (pkt)
|
|
chunk_appendf(&trace_buf, " type=0x%02x %s",
|
|
pkt->type, qc_pkt_long(pkt) ? "long" : "short");
|
|
}
|
|
|
|
}
|
|
|
|
/* Returns 1 if the peer has validated <qc> QUIC connection address, 0 if not. */
|
|
static inline int quic_peer_validated_addr(struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_conn *qc;
|
|
|
|
qc = ctx->conn->qc;
|
|
if (objt_server(qc->conn->target))
|
|
return 1;
|
|
|
|
if ((qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns->flags & QUIC_FL_PKTNS_ACK_RECEIVED) ||
|
|
(qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns->flags & QUIC_FL_PKTNS_ACK_RECEIVED) ||
|
|
(ctx->state & QUIC_HS_ST_COMPLETE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set the timer attached to the QUIC connection with <ctx> as I/O handler and used for
|
|
* both loss detection and PTO and schedule the task assiated to this timer if needed.
|
|
*/
|
|
static inline void qc_set_timer(struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_conn *qc;
|
|
struct quic_pktns *pktns;
|
|
unsigned int pto;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_STIMER, ctx->conn,
|
|
NULL, NULL, &ctx->conn->qc->path->ifae_pkts);
|
|
qc = ctx->conn->qc;
|
|
pktns = quic_loss_pktns(qc);
|
|
if (tick_isset(pktns->tx.loss_time)) {
|
|
qc->timer = pktns->tx.loss_time;
|
|
goto out;
|
|
}
|
|
|
|
/* XXX TODO: anti-amplification: the timer must be
|
|
* cancelled for a server which reached the anti-amplification limit.
|
|
*/
|
|
|
|
if (!qc->path->ifae_pkts && quic_peer_validated_addr(ctx)) {
|
|
TRACE_PROTO("timer cancellation", QUIC_EV_CONN_STIMER, ctx->conn);
|
|
/* Timer cancellation. */
|
|
qc->timer = TICK_ETERNITY;
|
|
goto out;
|
|
}
|
|
|
|
pktns = quic_pto_pktns(qc, ctx->state & QUIC_HS_ST_COMPLETE, &pto);
|
|
if (tick_isset(pto))
|
|
qc->timer = pto;
|
|
out:
|
|
task_schedule(qc->timer_task, qc->timer);
|
|
TRACE_LEAVE(QUIC_EV_CONN_STIMER, ctx->conn, pktns);
|
|
}
|
|
|
|
#ifndef OPENSSL_IS_BORINGSSL
|
|
int ha_quic_set_encryption_secrets(SSL *ssl, enum ssl_encryption_level_t level,
|
|
const uint8_t *read_secret,
|
|
const uint8_t *write_secret, size_t secret_len)
|
|
{
|
|
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
struct quic_tls_ctx *tls_ctx =
|
|
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
|
|
const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl);
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RWSEC, conn);
|
|
tls_ctx->rx.aead = tls_ctx->tx.aead = tls_aead(cipher);
|
|
tls_ctx->rx.md = tls_ctx->tx.md = tls_md(cipher);
|
|
tls_ctx->rx.hp = tls_ctx->tx.hp = tls_hp(cipher);
|
|
|
|
if (!quic_tls_derive_keys(tls_ctx->rx.aead, tls_ctx->rx.hp, tls_ctx->rx.md,
|
|
tls_ctx->rx.key, sizeof tls_ctx->rx.key,
|
|
tls_ctx->rx.iv, sizeof tls_ctx->rx.iv,
|
|
tls_ctx->rx.hp_key, sizeof tls_ctx->rx.hp_key,
|
|
read_secret, secret_len)) {
|
|
TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RWSEC, conn);
|
|
return 0;
|
|
}
|
|
|
|
tls_ctx->rx.flags |= QUIC_FL_TLS_SECRETS_SET;
|
|
if (!quic_tls_derive_keys(tls_ctx->tx.aead, tls_ctx->tx.hp, tls_ctx->tx.md,
|
|
tls_ctx->tx.key, sizeof tls_ctx->tx.key,
|
|
tls_ctx->tx.iv, sizeof tls_ctx->tx.iv,
|
|
tls_ctx->tx.hp_key, sizeof tls_ctx->tx.hp_key,
|
|
write_secret, secret_len)) {
|
|
TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_RWSEC, conn);
|
|
return 0;
|
|
}
|
|
|
|
tls_ctx->tx.flags |= QUIC_FL_TLS_SECRETS_SET;
|
|
if (objt_server(conn->target) && level == ssl_encryption_application) {
|
|
const unsigned char *buf;
|
|
size_t buflen;
|
|
|
|
SSL_get_peer_quic_transport_params(ssl, &buf, &buflen);
|
|
if (!buflen)
|
|
return 0;
|
|
|
|
if (!quic_transport_params_store(conn->qc, 1, buf, buf + buflen))
|
|
return 0;
|
|
}
|
|
TRACE_LEAVE(QUIC_EV_CONN_RWSEC, conn, &level);
|
|
|
|
return 1;
|
|
}
|
|
#else
|
|
/* ->set_read_secret callback to derive the RX secrets at <level> encryption
|
|
* level.
|
|
* Returns 1 if succedded, 0 if not.
|
|
*/
|
|
int ha_set_rsec(SSL *ssl, enum ssl_encryption_level_t level,
|
|
const SSL_CIPHER *cipher,
|
|
const uint8_t *secret, size_t secret_len)
|
|
{
|
|
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
struct quic_tls_ctx *tls_ctx =
|
|
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RSEC, conn);
|
|
tls_ctx->rx.aead = tls_aead(cipher);
|
|
tls_ctx->rx.md = tls_md(cipher);
|
|
tls_ctx->rx.hp = tls_hp(cipher);
|
|
|
|
if (!quic_tls_derive_keys(tls_ctx->rx.aead, tls_ctx->rx.hp, tls_ctx->rx.md,
|
|
tls_ctx->rx.key, sizeof tls_ctx->rx.key,
|
|
tls_ctx->rx.iv, sizeof tls_ctx->rx.iv,
|
|
tls_ctx->rx.hp_key, sizeof tls_ctx->rx.hp_key,
|
|
secret, secret_len)) {
|
|
TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RSEC, conn);
|
|
goto err;
|
|
}
|
|
|
|
if (objt_server(conn->target) && level == ssl_encryption_application) {
|
|
const unsigned char *buf;
|
|
size_t buflen;
|
|
|
|
SSL_get_peer_quic_transport_params(ssl, &buf, &buflen);
|
|
if (!buflen)
|
|
goto err;
|
|
|
|
if (!quic_transport_params_store(conn->qc, 1, buf, buf + buflen))
|
|
goto err;
|
|
}
|
|
|
|
tls_ctx->rx.flags |= QUIC_FL_TLS_SECRETS_SET;
|
|
TRACE_LEAVE(QUIC_EV_CONN_RSEC, conn, &level, secret, &secret_len);
|
|
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RSEC, conn);
|
|
return 0;
|
|
}
|
|
|
|
/* ->set_write_secret callback to derive the TX secrets at <level>
|
|
* encryption level.
|
|
* Returns 1 if succedded, 0 if not.
|
|
*/
|
|
int ha_set_wsec(SSL *ssl, enum ssl_encryption_level_t level,
|
|
const SSL_CIPHER *cipher,
|
|
const uint8_t *secret, size_t secret_len)
|
|
{
|
|
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
struct quic_tls_ctx *tls_ctx =
|
|
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_WSEC, conn);
|
|
tls_ctx->tx.aead = tls_aead(cipher);
|
|
tls_ctx->tx.md = tls_md(cipher);
|
|
tls_ctx->tx.hp = tls_hp(cipher);
|
|
|
|
if (!quic_tls_derive_keys(tls_ctx->tx.aead, tls_ctx->tx.hp, tls_ctx->tx.md,
|
|
tls_ctx->tx.key, sizeof tls_ctx->tx.key,
|
|
tls_ctx->tx.iv, sizeof tls_ctx->tx.iv,
|
|
tls_ctx->tx.hp_key, sizeof tls_ctx->tx.hp_key,
|
|
secret, secret_len)) {
|
|
TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_WSEC, conn);
|
|
goto err;
|
|
}
|
|
|
|
tls_ctx->tx.flags |= QUIC_FL_TLS_SECRETS_SET;
|
|
TRACE_LEAVE(QUIC_EV_CONN_WSEC, conn, &level, secret, &secret_len);
|
|
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_WSEC, conn);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* This function copies the CRYPTO data provided by the TLS stack found at <data>
|
|
* with <len> as size in CRYPTO buffers dedicated to store the information about
|
|
* outgoing CRYPTO frames so that to be able to replay the CRYPTO data streams.
|
|
* It fails only if it could not managed to allocate enough CRYPTO buffers to
|
|
* store all the data.
|
|
* Note that CRYPTO data may exist at any encryption level except at 0-RTT.
|
|
*/
|
|
static int quic_crypto_data_cpy(struct quic_enc_level *qel,
|
|
const unsigned char *data, size_t len)
|
|
{
|
|
struct quic_crypto_buf **qcb;
|
|
/* The remaining byte to store in CRYPTO buffers. */
|
|
size_t cf_offset, cf_len, *nb_buf;
|
|
unsigned char *pos;
|
|
|
|
nb_buf = &qel->tx.crypto.nb_buf;
|
|
qcb = &qel->tx.crypto.bufs[*nb_buf - 1];
|
|
cf_offset = (*nb_buf - 1) * QUIC_CRYPTO_BUF_SZ + (*qcb)->sz;
|
|
cf_len = len;
|
|
|
|
while (len) {
|
|
size_t to_copy, room;
|
|
|
|
pos = (*qcb)->data + (*qcb)->sz;
|
|
room = QUIC_CRYPTO_BUF_SZ - (*qcb)->sz;
|
|
to_copy = len > room ? room : len;
|
|
if (to_copy) {
|
|
memcpy(pos, data, to_copy);
|
|
/* Increment the total size of this CRYPTO buffers by <to_copy>. */
|
|
qel->tx.crypto.sz += to_copy;
|
|
(*qcb)->sz += to_copy;
|
|
pos += to_copy;
|
|
len -= to_copy;
|
|
data += to_copy;
|
|
}
|
|
else {
|
|
struct quic_crypto_buf **tmp;
|
|
|
|
tmp = realloc(qel->tx.crypto.bufs,
|
|
(*nb_buf + 1) * sizeof *qel->tx.crypto.bufs);
|
|
if (tmp) {
|
|
qel->tx.crypto.bufs = tmp;
|
|
qcb = &qel->tx.crypto.bufs[*nb_buf];
|
|
*qcb = pool_alloc(pool_head_quic_crypto_buf);
|
|
if (!*qcb)
|
|
return 0;
|
|
|
|
(*qcb)->sz = 0;
|
|
++*nb_buf;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate a TX CRYPTO frame only if all the CRYPTO data
|
|
* have been buffered.
|
|
*/
|
|
if (!len) {
|
|
struct quic_tx_frm *frm;
|
|
|
|
frm = pool_alloc(pool_head_quic_tx_frm);
|
|
if (!frm)
|
|
return 0;
|
|
|
|
frm->type = QUIC_FT_CRYPTO;
|
|
frm->crypto.offset = cf_offset;
|
|
frm->crypto.len = cf_len;
|
|
LIST_ADDQ(&qel->pktns->tx.frms, &frm->list);
|
|
}
|
|
|
|
return len == 0;
|
|
}
|
|
|
|
|
|
/* ->add_handshake_data QUIC TLS callback used by the QUIC TLS stack when it
|
|
* wants to provide the QUIC layer with CRYPTO data.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
int ha_quic_add_handshake_data(SSL *ssl, enum ssl_encryption_level_t level,
|
|
const uint8_t *data, size_t len)
|
|
{
|
|
struct connection *conn;
|
|
enum quic_tls_enc_level tel;
|
|
struct quic_enc_level *qel;
|
|
|
|
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
TRACE_ENTER(QUIC_EV_CONN_ADDDATA, conn);
|
|
tel = ssl_to_quic_enc_level(level);
|
|
qel = &conn->qc->els[tel];
|
|
|
|
if (tel == -1) {
|
|
TRACE_PROTO("Wrong encryption level", QUIC_EV_CONN_ADDDATA, conn);
|
|
goto err;
|
|
}
|
|
|
|
if (!quic_crypto_data_cpy(qel, data, len)) {
|
|
TRACE_PROTO("Could not bufferize", QUIC_EV_CONN_ADDDATA, conn);
|
|
goto err;
|
|
}
|
|
|
|
TRACE_PROTO("CRYPTO data buffered", QUIC_EV_CONN_ADDDATA,
|
|
conn, &level, &len);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ADDDATA, conn);
|
|
return 0;
|
|
}
|
|
|
|
int ha_quic_flush_flight(SSL *ssl)
|
|
{
|
|
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_FFLIGHT, conn);
|
|
TRACE_LEAVE(QUIC_EV_CONN_FFLIGHT, conn);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ha_quic_send_alert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert)
|
|
{
|
|
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
|
|
|
|
TRACE_DEVEL("SSL alert", QUIC_EV_CONN_SSLALERT, conn, &alert, &level);
|
|
return 1;
|
|
}
|
|
|
|
/* QUIC TLS methods */
|
|
static SSL_QUIC_METHOD ha_quic_method = {
|
|
#ifdef OPENSSL_IS_BORINGSSL
|
|
.set_read_secret = ha_set_rsec,
|
|
.set_write_secret = ha_set_wsec,
|
|
#else
|
|
.set_encryption_secrets = ha_quic_set_encryption_secrets,
|
|
#endif
|
|
.add_handshake_data = ha_quic_add_handshake_data,
|
|
.flush_flight = ha_quic_flush_flight,
|
|
.send_alert = ha_quic_send_alert,
|
|
};
|
|
|
|
/* Initialize the TLS context of a listener with <bind_conf> as configuration.
|
|
* Returns an error count.
|
|
*/
|
|
int ssl_quic_initial_ctx(struct bind_conf *bind_conf)
|
|
{
|
|
struct proxy *curproxy = bind_conf->frontend;
|
|
struct ssl_bind_conf __maybe_unused *ssl_conf_cur;
|
|
int cfgerr = 0;
|
|
|
|
#if 0
|
|
/* XXX Did not manage to use this. */
|
|
const char *ciphers =
|
|
"TLS_AES_128_GCM_SHA256:"
|
|
"TLS_AES_256_GCM_SHA384:"
|
|
"TLS_CHACHA20_POLY1305_SHA256:"
|
|
"TLS_AES_128_CCM_SHA256";
|
|
#endif
|
|
const char *groups = "P-256:X25519:P-384:P-521";
|
|
long options =
|
|
(SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) |
|
|
SSL_OP_SINGLE_ECDH_USE |
|
|
SSL_OP_CIPHER_SERVER_PREFERENCE;
|
|
SSL_CTX *ctx;
|
|
|
|
ctx = SSL_CTX_new(TLS_server_method());
|
|
bind_conf->initial_ctx = ctx;
|
|
|
|
SSL_CTX_set_options(ctx, options);
|
|
#if 0
|
|
if (SSL_CTX_set_cipher_list(ctx, ciphers) != 1) {
|
|
ha_alert("Proxy '%s': unable to set TLS 1.3 cipher list to '%s' "
|
|
"for bind '%s' at [%s:%d].\n",
|
|
curproxy->id, ciphers,
|
|
bind_conf->arg, bind_conf->file, bind_conf->line);
|
|
cfgerr++;
|
|
}
|
|
#endif
|
|
|
|
if (SSL_CTX_set1_curves_list(ctx, groups) != 1) {
|
|
ha_alert("Proxy '%s': unable to set TLS 1.3 curves list to '%s' "
|
|
"for bind '%s' at [%s:%d].\n",
|
|
curproxy->id, groups,
|
|
bind_conf->arg, bind_conf->file, bind_conf->line);
|
|
cfgerr++;
|
|
}
|
|
|
|
SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
|
|
SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION);
|
|
SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION);
|
|
SSL_CTX_set_default_verify_paths(ctx);
|
|
|
|
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
|
|
#ifdef OPENSSL_IS_BORINGSSL
|
|
SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk);
|
|
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
|
|
#elif (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
|
|
if (bind_conf->ssl_conf.early_data) {
|
|
SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY);
|
|
SSL_CTX_set_max_early_data(ctx, global.tune.bufsize - global.tune.maxrewrite);
|
|
}
|
|
SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL);
|
|
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
|
|
#else
|
|
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
|
|
#endif
|
|
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
|
|
#endif
|
|
SSL_CTX_set_quic_method(ctx, &ha_quic_method);
|
|
|
|
return cfgerr;
|
|
}
|
|
|
|
/* Decode an expected packet number from <truncated_on> its truncated value,
|
|
* depending on <largest_pn> the largest received packet number, and <pn_nbits>
|
|
* the number of bits used to encode this packet number (its length in bytes * 8).
|
|
* See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding
|
|
*/
|
|
static uint64_t decode_packet_number(uint64_t largest_pn,
|
|
uint32_t truncated_pn, unsigned int pn_nbits)
|
|
{
|
|
uint64_t expected_pn = largest_pn + 1;
|
|
uint64_t pn_win = (uint64_t)1 << pn_nbits;
|
|
uint64_t pn_hwin = pn_win / 2;
|
|
uint64_t pn_mask = pn_win - 1;
|
|
uint64_t candidate_pn;
|
|
|
|
|
|
candidate_pn = (expected_pn & ~pn_mask) | truncated_pn;
|
|
/* Note that <pn_win> > <pn_hwin>. */
|
|
if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win &&
|
|
candidate_pn + pn_hwin <= expected_pn)
|
|
return candidate_pn + pn_win;
|
|
|
|
if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win)
|
|
return candidate_pn - pn_win;
|
|
|
|
return candidate_pn;
|
|
}
|
|
|
|
/* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS
|
|
* cryptographic context.
|
|
* <largest_pn> is the largest received packet number and <pn> the address of
|
|
* the packet number field for this packet with <byte0> address of its first byte.
|
|
* <end> points to one byte past the end of this packet.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int qc_do_rm_hp(struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx,
|
|
int64_t largest_pn, unsigned char *pn,
|
|
unsigned char *byte0, const unsigned char *end,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
int ret, outlen, i, pnlen;
|
|
uint64_t packet_number;
|
|
uint32_t truncated_pn = 0;
|
|
unsigned char mask[5] = {0};
|
|
unsigned char *sample;
|
|
EVP_CIPHER_CTX *cctx;
|
|
unsigned char *hp_key;
|
|
|
|
/* Check there is enough data in this packet. */
|
|
if (end - pn < QUIC_PACKET_PN_MAXLEN + sizeof mask) {
|
|
TRACE_DEVEL("too short packet", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
|
|
return 0;
|
|
}
|
|
|
|
cctx = EVP_CIPHER_CTX_new();
|
|
if (!cctx) {
|
|
TRACE_DEVEL("memory allocation failed", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
|
|
return 0;
|
|
}
|
|
|
|
ret = 0;
|
|
sample = pn + QUIC_PACKET_PN_MAXLEN;
|
|
|
|
hp_key = tls_ctx->rx.hp_key;
|
|
if (!EVP_DecryptInit_ex(cctx, tls_ctx->rx.hp, NULL, hp_key, sample) ||
|
|
!EVP_DecryptUpdate(cctx, mask, &outlen, mask, sizeof mask) ||
|
|
!EVP_DecryptFinal_ex(cctx, mask, &outlen)) {
|
|
TRACE_DEVEL("decryption failed", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
|
|
goto out;
|
|
}
|
|
|
|
*byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
|
|
pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1;
|
|
for (i = 0; i < pnlen; i++) {
|
|
pn[i] ^= mask[i + 1];
|
|
truncated_pn = (truncated_pn << 8) | pn[i];
|
|
}
|
|
|
|
packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8);
|
|
/* Store remaining information for this unprotected header */
|
|
pkt->pn = packet_number;
|
|
pkt->pnl = pnlen;
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
EVP_CIPHER_CTX_free(cctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Encrypt the payload of a QUIC packet with <pn> as number found at <payload>
|
|
* address, with <payload_len> as payload length, <aad> as address of
|
|
* the ADD and <aad_len> as AAD length depending on the <tls_ctx> QUIC TLS
|
|
* context.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int quic_packet_encrypt(unsigned char *payload, size_t payload_len,
|
|
unsigned char *aad, size_t aad_len, uint64_t pn,
|
|
struct quic_tls_ctx *tls_ctx, struct connection *conn)
|
|
{
|
|
unsigned char iv[12];
|
|
unsigned char *tx_iv = tls_ctx->tx.iv;
|
|
size_t tx_iv_sz = sizeof tls_ctx->tx.iv;
|
|
struct enc_debug_info edi;
|
|
|
|
if (!quic_aead_iv_build(iv, sizeof iv, tx_iv, tx_iv_sz, pn)) {
|
|
TRACE_DEVEL("AEAD IV building for encryption failed", QUIC_EV_CONN_HPKT, conn);
|
|
goto err;
|
|
}
|
|
|
|
if (!quic_tls_encrypt(payload, payload_len, aad, aad_len,
|
|
tls_ctx->tx.aead, tls_ctx->tx.key, iv)) {
|
|
TRACE_DEVEL("QUIC packet encryption failed", QUIC_EV_CONN_HPKT, conn);
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
enc_debug_info_init(&edi, payload, payload_len, aad, aad_len, pn);
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ENCPKT, conn, &edi);
|
|
return 0;
|
|
}
|
|
|
|
/* Decrypt <pkt> QUIC packet with <tls_ctx> as QUIC TLS cryptographic context.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int qc_pkt_decrypt(struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx)
|
|
{
|
|
int ret;
|
|
unsigned char iv[12];
|
|
unsigned char *rx_iv = tls_ctx->rx.iv;
|
|
size_t rx_iv_sz = sizeof tls_ctx->rx.iv;
|
|
|
|
if (!quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn))
|
|
return 0;
|
|
|
|
ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len,
|
|
pkt->data, pkt->aad_len,
|
|
tls_ctx->rx.aead, tls_ctx->rx.key, iv);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
/* Update the packet length (required to parse the frames). */
|
|
pkt->len = pkt->aad_len + ret;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Treat <frm> frame whose packet it is attached to has just been acknowledged. */
|
|
static inline void qc_treat_acked_tx_frm(struct quic_tx_frm *frm,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
TRACE_PROTO("Removing frame", QUIC_EV_CONN_PRSAFRM, ctx->conn, frm);
|
|
LIST_DEL(&frm->list);
|
|
pool_free(pool_head_quic_tx_frm, frm);
|
|
}
|
|
|
|
/* Remove <largest> down to <smallest> node entries from <pkts> tree of TX packet,
|
|
* deallocating them, and their TX frames.
|
|
* Returns the last node reached to be used for the next range.
|
|
* May be NULL if <largest> node could not be found.
|
|
*/
|
|
static inline struct eb64_node *qc_ackrng_pkts(struct eb_root *pkts, unsigned int *pkt_flags,
|
|
struct list *newly_acked_pkts,
|
|
struct eb64_node *largest_node,
|
|
uint64_t largest, uint64_t smallest,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
struct eb64_node *node;
|
|
struct quic_tx_packet *pkt;
|
|
|
|
if (largest_node)
|
|
node = largest_node;
|
|
else {
|
|
node = eb64_lookup(pkts, largest);
|
|
while (!node && largest > smallest) {
|
|
node = eb64_lookup(pkts, --largest);
|
|
}
|
|
}
|
|
|
|
while (node && node->key >= smallest) {
|
|
struct quic_tx_frm *frm, *frmbak;
|
|
|
|
pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node);
|
|
*pkt_flags |= pkt->flags;
|
|
LIST_ADD(newly_acked_pkts, &pkt->list);
|
|
TRACE_PROTO("Removing packet #", QUIC_EV_CONN_PRSAFRM, ctx->conn,, &pkt->pn_node.key);
|
|
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list)
|
|
qc_treat_acked_tx_frm(frm, ctx);
|
|
node = eb64_prev(node);
|
|
eb64_delete(&pkt->pn_node);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Treat <frm> frame whose packet it is attached to has just been detected as non
|
|
* acknowledged.
|
|
*/
|
|
static inline void qc_treat_nacked_tx_frm(struct quic_tx_frm *frm,
|
|
struct quic_pktns *pktns,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
TRACE_PROTO("to resend frame", QUIC_EV_CONN_PRSAFRM, ctx->conn, frm);
|
|
LIST_DEL(&frm->list);
|
|
LIST_ADD(&pktns->tx.frms, &frm->list);
|
|
}
|
|
|
|
|
|
/* Free the TX packets of <pkts> list */
|
|
static inline void free_quic_tx_pkts(struct list *pkts)
|
|
{
|
|
struct quic_tx_packet *pkt, *tmp;
|
|
|
|
list_for_each_entry_safe(pkt, tmp, pkts, list) {
|
|
LIST_DEL(&pkt->list);
|
|
eb64_delete(&pkt->pn_node);
|
|
pool_free(pool_head_quic_tx_packet, pkt);
|
|
}
|
|
}
|
|
|
|
/* Send a packet loss event nofification to the congestion controller
|
|
* attached to <qc> connection with <lost_bytes> the number of lost bytes,
|
|
* <oldest_lost>, <newest_lost> the oldest lost packet and newest lost packet
|
|
* at <now_us> current time.
|
|
* Always succeeds.
|
|
*/
|
|
static inline void qc_cc_loss_event(struct quic_conn *qc,
|
|
unsigned int lost_bytes,
|
|
unsigned int newest_time_sent,
|
|
unsigned int period,
|
|
unsigned int now_us)
|
|
{
|
|
struct quic_cc_event ev = {
|
|
.type = QUIC_CC_EVT_LOSS,
|
|
.loss.now_ms = now_ms,
|
|
.loss.max_ack_delay = qc->max_ack_delay,
|
|
.loss.lost_bytes = lost_bytes,
|
|
.loss.newest_time_sent = newest_time_sent,
|
|
.loss.period = period,
|
|
};
|
|
|
|
quic_cc_event(&qc->path->cc, &ev);
|
|
}
|
|
|
|
/* Send a packet ack event nofication for each newly acked packet of
|
|
* <newly_acked_pkts> list and free them.
|
|
* Always succeeds.
|
|
*/
|
|
static inline void qc_treat_newly_acked_pkts(struct quic_conn_ctx *ctx,
|
|
struct list *newly_acked_pkts)
|
|
{
|
|
struct quic_conn *qc = ctx->conn->qc;
|
|
struct quic_tx_packet *pkt, *tmp;
|
|
struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, };
|
|
|
|
list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) {
|
|
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
|
|
qc->path->prep_in_flight -= pkt->in_flight_len;
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
|
|
qc->path->ifae_pkts--;
|
|
ev.ack.acked = pkt->in_flight_len;
|
|
ev.ack.time_sent = pkt->time_sent;
|
|
quic_cc_event(&qc->path->cc, &ev);
|
|
LIST_DEL(&pkt->list);
|
|
eb64_delete(&pkt->pn_node);
|
|
pool_free(pool_head_quic_tx_packet, pkt);
|
|
}
|
|
|
|
}
|
|
|
|
/* Handle <pkts> list of lost packets detected at <now_us> handling
|
|
* their TX frames.
|
|
* Send a packet loss event to the congestion controller if
|
|
* in flight packet have been lost.
|
|
* Also frees the packet in <pkts> list.
|
|
* Never fails.
|
|
*/
|
|
static inline void qc_release_lost_pkts(struct quic_pktns *pktns,
|
|
struct quic_conn_ctx *ctx,
|
|
struct list *pkts,
|
|
uint64_t now_us)
|
|
{
|
|
struct quic_conn *qc = ctx->conn->qc;
|
|
struct quic_tx_packet *pkt, *tmp, *oldest_lost, *newest_lost;
|
|
struct quic_tx_frm *frm, *frmbak;
|
|
uint64_t lost_bytes;
|
|
|
|
lost_bytes = 0;
|
|
oldest_lost = newest_lost = NULL;
|
|
list_for_each_entry_safe(pkt, tmp, pkts, list) {
|
|
lost_bytes += pkt->in_flight_len;
|
|
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
|
|
qc->path->prep_in_flight -= pkt->in_flight_len;
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
|
|
qc->path->ifae_pkts--;
|
|
/* Treat the frames of this lost packet. */
|
|
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list)
|
|
qc_treat_nacked_tx_frm(frm, pktns, ctx);
|
|
LIST_DEL(&pkt->list);
|
|
if (!oldest_lost) {
|
|
oldest_lost = newest_lost = pkt;
|
|
}
|
|
else {
|
|
if (newest_lost != oldest_lost)
|
|
pool_free(pool_head_quic_tx_packet, newest_lost);
|
|
newest_lost = pkt;
|
|
}
|
|
}
|
|
|
|
if (lost_bytes) {
|
|
/* Sent a packet loss event to the congestion controller. */
|
|
qc_cc_loss_event(ctx->conn->qc, lost_bytes, newest_lost->time_sent,
|
|
newest_lost->time_sent - oldest_lost->time_sent, now_us);
|
|
pool_free(pool_head_quic_tx_packet, oldest_lost);
|
|
if (newest_lost != oldest_lost)
|
|
pool_free(pool_head_quic_tx_packet, newest_lost);
|
|
}
|
|
}
|
|
|
|
/* Look for packet loss from sent packets for <qel> encryption level of a
|
|
* connection with <ctx> as I/O handler context. If remove is true, remove them from
|
|
* their tree if deemed as lost or set the <loss_time> value the packet number
|
|
* space if any not deemed lost.
|
|
* Should be called after having received an ACK frame with newly acknowledged
|
|
* packets or when the the loss detection timer has expired.
|
|
* Always succeeds.
|
|
*/
|
|
static void qc_packet_loss_lookup(struct quic_pktns *pktns,
|
|
struct quic_conn *qc,
|
|
struct list *lost_pkts)
|
|
{
|
|
struct eb_root *pkts;
|
|
struct eb64_node *node;
|
|
struct quic_loss *ql;
|
|
unsigned int loss_delay;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PKTLOSS, qc->conn, pktns);
|
|
pkts = &pktns->tx.pkts;
|
|
pktns->tx.loss_time = TICK_ETERNITY;
|
|
if (eb_is_empty(pkts))
|
|
goto out;
|
|
|
|
ql = &qc->path->loss;
|
|
loss_delay = QUIC_MAX(ql->latest_rtt, ql->srtt >> 3);
|
|
loss_delay += loss_delay >> 3;
|
|
loss_delay = QUIC_MAX(loss_delay, MS_TO_TICKS(QUIC_TIMER_GRANULARITY));
|
|
|
|
node = eb64_first(pkts);
|
|
while (node) {
|
|
struct quic_tx_packet *pkt;
|
|
int64_t largest_acked_pn;
|
|
unsigned int loss_time_limit, time_sent;
|
|
|
|
pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node);
|
|
largest_acked_pn = pktns->tx.largest_acked_pn;
|
|
node = eb64_next(node);
|
|
if ((int64_t)pkt->pn_node.key > largest_acked_pn)
|
|
break;
|
|
|
|
time_sent = pkt->time_sent;
|
|
loss_time_limit = tick_add(time_sent, loss_delay);
|
|
if (tick_is_le(time_sent, now_ms) ||
|
|
(int64_t)largest_acked_pn >= pkt->pn_node.key + QUIC_LOSS_PACKET_THRESHOLD) {
|
|
eb64_delete(&pkt->pn_node);
|
|
LIST_ADDQ(lost_pkts, &pkt->list);
|
|
}
|
|
else {
|
|
pktns->tx.loss_time = tick_first(pktns->tx.loss_time, loss_time_limit);
|
|
}
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PKTLOSS, qc->conn, pktns, lost_pkts);
|
|
}
|
|
|
|
/* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at
|
|
* one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e.
|
|
* if the largest acked packet was newly acked and if there was at leas one newly
|
|
* acked ack-eliciting packet.
|
|
* Return 1, if succeeded, 0 if not.
|
|
*/
|
|
static inline int qc_parse_ack_frm(struct quic_frame *frm, struct quic_conn_ctx *ctx,
|
|
struct quic_enc_level *qel,
|
|
unsigned int *rtt_sample,
|
|
const unsigned char **pos, const unsigned char *end)
|
|
{
|
|
struct quic_ack *ack = &frm->ack;
|
|
uint64_t smallest, largest;
|
|
struct eb_root *pkts;
|
|
struct eb64_node *largest_node;
|
|
unsigned int time_sent, pkt_flags;
|
|
struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts);
|
|
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
|
|
|
|
if (ack->largest_ack > qel->pktns->tx.next_pn) {
|
|
TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &ack->largest_ack);
|
|
goto err;
|
|
}
|
|
|
|
if (ack->first_ack_range > ack->largest_ack) {
|
|
TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &ack->first_ack_range);
|
|
goto err;
|
|
}
|
|
|
|
largest = ack->largest_ack;
|
|
smallest = largest - ack->first_ack_range;
|
|
pkts = &qel->pktns->tx.pkts;
|
|
pkt_flags = 0;
|
|
largest_node = NULL;
|
|
time_sent = 0;
|
|
|
|
if ((int64_t)ack->largest_ack > qel->pktns->tx.largest_acked_pn) {
|
|
largest_node = eb64_lookup(pkts, largest);
|
|
if (!largest_node) {
|
|
TRACE_DEVEL("Largest acked packet not found",
|
|
QUIC_EV_CONN_PRSAFRM, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
time_sent = eb64_entry(&largest_node->node,
|
|
struct quic_tx_packet, pn_node)->time_sent;
|
|
}
|
|
|
|
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &largest, &smallest);
|
|
do {
|
|
uint64_t gap, ack_range;
|
|
|
|
qc_ackrng_pkts(pkts, &pkt_flags, &newly_acked_pkts,
|
|
largest_node, largest, smallest, ctx);
|
|
if (!ack->ack_range_num--)
|
|
break;
|
|
|
|
if (!quic_dec_int(&gap, pos, end))
|
|
goto err;
|
|
|
|
if (smallest < gap + 2) {
|
|
TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &gap, &smallest);
|
|
goto err;
|
|
}
|
|
|
|
largest = smallest - gap - 2;
|
|
if (!quic_dec_int(&ack_range, pos, end))
|
|
goto err;
|
|
|
|
if (largest < ack_range) {
|
|
TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &largest, &ack_range);
|
|
goto err;
|
|
}
|
|
|
|
/* Do not use this node anymore. */
|
|
largest_node = NULL;
|
|
/* Next range */
|
|
smallest = largest - ack_range;
|
|
|
|
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
|
|
ctx->conn,, &largest, &smallest);
|
|
} while (1);
|
|
|
|
/* Flag this packet number space as having received an ACK. */
|
|
qel->pktns->flags |= QUIC_FL_PKTNS_ACK_RECEIVED;
|
|
|
|
if (time_sent && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) {
|
|
*rtt_sample = tick_remain(time_sent, now_ms);
|
|
qel->pktns->tx.largest_acked_pn = ack->largest_ack;
|
|
}
|
|
|
|
if (!LIST_ISEMPTY(&newly_acked_pkts)) {
|
|
if (!eb_is_empty(&qel->pktns->tx.pkts)) {
|
|
qc_packet_loss_lookup(qel->pktns, ctx->conn->qc, &lost_pkts);
|
|
if (!LIST_ISEMPTY(&lost_pkts))
|
|
qc_release_lost_pkts(qel->pktns, ctx, &lost_pkts, now_ms);
|
|
}
|
|
qc_treat_newly_acked_pkts(ctx, &newly_acked_pkts);
|
|
if (quic_peer_validated_addr(ctx))
|
|
ctx->conn->qc->path->loss.pto_count = 0;
|
|
qc_set_timer(ctx);
|
|
}
|
|
|
|
|
|
return 1;
|
|
|
|
err:
|
|
free_quic_tx_pkts(&newly_acked_pkts);
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSAFRM, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Provide CRYPTO data to the TLS stack found at <data> with <len> as length
|
|
* from <qel> encryption level with <ctx> as QUIC connection context.
|
|
* Remaining parameter are there for debuging purposes.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int qc_provide_cdata(struct quic_enc_level *el,
|
|
struct quic_conn_ctx *ctx,
|
|
const unsigned char *data, size_t len,
|
|
struct quic_rx_packet *pkt,
|
|
struct quic_rx_crypto_frm *cf)
|
|
{
|
|
int ssl_err;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_SSLDATA, ctx->conn);
|
|
ssl_err = SSL_ERROR_NONE;
|
|
if (SSL_provide_quic_data(ctx->ssl, el->level, data, len) != 1) {
|
|
TRACE_PROTO("SSL_provide_quic_data() error",
|
|
QUIC_EV_CONN_SSLDATA, ctx->conn, pkt, cf, ctx->ssl);
|
|
goto err;
|
|
}
|
|
|
|
el->rx.crypto.offset += len;
|
|
TRACE_PROTO("in order CRYPTO data",
|
|
QUIC_EV_CONN_SSLDATA, ctx->conn,, cf, ctx->ssl);
|
|
|
|
if (ctx->state < QUIC_HS_ST_COMPLETE) {
|
|
ssl_err = SSL_do_handshake(ctx->ssl);
|
|
if (ssl_err != 1) {
|
|
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
|
|
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
|
|
TRACE_PROTO("SSL handshake",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
goto out;
|
|
}
|
|
|
|
TRACE_DEVEL("SSL handshake error",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
goto err;
|
|
}
|
|
|
|
TRACE_PROTO("SSL handshake OK", QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state);
|
|
if (objt_listener(ctx->conn->target))
|
|
ctx->state = QUIC_HS_ST_CONFIRMED;
|
|
else
|
|
ctx->state = QUIC_HS_ST_COMPLETE;
|
|
} else {
|
|
ssl_err = SSL_process_quic_post_handshake(ctx->ssl);
|
|
if (ssl_err != 1) {
|
|
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
|
|
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
|
|
TRACE_DEVEL("SSL post handshake",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
goto out;
|
|
}
|
|
|
|
TRACE_DEVEL("SSL post handshake error",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
goto err;
|
|
}
|
|
|
|
TRACE_PROTO("SSL post handshake succeeded",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state);
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_SSLDATA, ctx->conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_SSLDATA, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse all the frames of <pkt> QUIC packet for QUIC connection with <ctx>
|
|
* as I/O handler context and <qel> as encryption level.
|
|
* Returns 1 if succeeded, 0 if failed.
|
|
*/
|
|
static int qc_parse_pkt_frms(struct quic_rx_packet *pkt, struct quic_conn_ctx *ctx,
|
|
struct quic_enc_level *qel)
|
|
{
|
|
struct quic_frame frm;
|
|
const unsigned char *pos, *end;
|
|
struct quic_conn *conn = ctx->conn->qc;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, ctx->conn);
|
|
/* Skip the AAD */
|
|
pos = pkt->data + pkt->aad_len;
|
|
end = pkt->data + pkt->len;
|
|
|
|
while (pos < end) {
|
|
if (!qc_parse_frm(&frm, pkt, &pos, end, conn))
|
|
goto err;
|
|
|
|
switch (frm.type) {
|
|
case QUIC_FT_PADDING:
|
|
if (pos != end) {
|
|
TRACE_DEVEL("wrong frame", QUIC_EV_CONN_PRSHPKT, ctx->conn, pkt);
|
|
goto err;
|
|
}
|
|
break;
|
|
case QUIC_FT_PING:
|
|
break;
|
|
case QUIC_FT_ACK:
|
|
{
|
|
unsigned int rtt_sample;
|
|
|
|
rtt_sample = 0;
|
|
if (!qc_parse_ack_frm(&frm, ctx, qel, &rtt_sample, &pos, end))
|
|
goto err;
|
|
|
|
if (rtt_sample) {
|
|
unsigned int ack_delay;
|
|
|
|
ack_delay = !quic_application_pktns(qel->pktns, conn) ? 0 :
|
|
MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm.ack, conn), conn->max_ack_delay));
|
|
quic_loss_srtt_update(&conn->path->loss, rtt_sample, ack_delay, conn);
|
|
}
|
|
tasklet_wakeup(ctx->wait_event.tasklet);
|
|
break;
|
|
}
|
|
case QUIC_FT_CRYPTO:
|
|
if (frm.crypto.offset != qel->rx.crypto.offset) {
|
|
struct quic_rx_crypto_frm *cf;
|
|
|
|
cf = pool_alloc(pool_head_quic_rx_crypto_frm);
|
|
if (!cf) {
|
|
TRACE_DEVEL("CRYPTO frame allocation failed",
|
|
QUIC_EV_CONN_PRSHPKT, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
cf->offset_node.key = frm.crypto.offset;
|
|
cf->len = frm.crypto.len;
|
|
cf->data = frm.crypto.data;
|
|
cf->pkt = pkt;
|
|
eb64_insert(&qel->rx.crypto.frms, &cf->offset_node);
|
|
quic_rx_packet_refinc(pkt);
|
|
}
|
|
else {
|
|
/* XXX TO DO: <cf> is used only for the traces. */
|
|
struct quic_rx_crypto_frm cf = { };
|
|
|
|
cf.offset_node.key = frm.crypto.offset;
|
|
cf.len = frm.crypto.len;
|
|
if (!qc_provide_cdata(qel, ctx,
|
|
frm.crypto.data, frm.crypto.len,
|
|
pkt, &cf))
|
|
goto err;
|
|
}
|
|
break;
|
|
case QUIC_FT_STREAM_8:
|
|
case QUIC_FT_STREAM_9:
|
|
case QUIC_FT_STREAM_A:
|
|
case QUIC_FT_STREAM_B:
|
|
case QUIC_FT_STREAM_C:
|
|
case QUIC_FT_STREAM_D:
|
|
case QUIC_FT_STREAM_E:
|
|
case QUIC_FT_STREAM_F:
|
|
{
|
|
struct quic_stream *stream = &frm.stream;
|
|
|
|
TRACE_PROTO("STREAM frame", QUIC_EV_CONN_PSTRM, ctx->conn, &frm);
|
|
if (objt_listener(ctx->conn->target)) {
|
|
if (stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT)
|
|
goto err;
|
|
} else if (!(stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT))
|
|
goto err;
|
|
break;
|
|
}
|
|
case QUIC_FT_NEW_CONNECTION_ID:
|
|
break;
|
|
case QUIC_FT_CONNECTION_CLOSE:
|
|
case QUIC_FT_CONNECTION_CLOSE_APP:
|
|
break;
|
|
case QUIC_FT_HANDSHAKE_DONE:
|
|
if (objt_listener(ctx->conn->target))
|
|
goto err;
|
|
|
|
ctx->state = QUIC_HS_ST_CONFIRMED;
|
|
break;
|
|
default:
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* The server must switch from INITIAL to HANDSHAKE handshake state when it
|
|
* has successfully parse a Handshake packet. The Initial encryption must also
|
|
* be discarded.
|
|
*/
|
|
if (ctx->state == QUIC_HS_ST_SERVER_INITIAL &&
|
|
pkt->type == QUIC_PACKET_TYPE_HANDSHAKE) {
|
|
quic_tls_discard_keys(&conn->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
|
|
quic_pktns_discard(conn->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, conn);
|
|
qc_set_timer(ctx);
|
|
ctx->state = QUIC_HS_ST_SERVER_HANDSHAKE;
|
|
}
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, ctx->conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSHPKT, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Prepare as much as possible handshake packets for the QUIC connection
|
|
* with <ctx> as I/O handler context.
|
|
* Returns 1 if succeeded, or 0 if something wrong happened.
|
|
*/
|
|
static int qc_prep_hdshk_pkts(struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_conn *qc;
|
|
enum quic_tls_enc_level tel, next_tel;
|
|
struct quic_enc_level *qel;
|
|
struct q_buf *wbuf;
|
|
/* A boolean to flag <wbuf> as reusable, even if not empty. */
|
|
int reuse_wbuf;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PHPKTS, ctx->conn);
|
|
qc = ctx->conn->qc;
|
|
if (!quic_get_tls_enc_levels(&tel, &next_tel, ctx->state)) {
|
|
TRACE_DEVEL("unknown enc. levels",
|
|
QUIC_EV_CONN_PHPKTS, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
reuse_wbuf = 0;
|
|
wbuf = q_wbuf(qc);
|
|
qel = &qc->els[tel];
|
|
/* When entering this function, the writter buffer must be empty.
|
|
* Most of the time it points to the reader buffer.
|
|
*/
|
|
while ((q_buf_empty(wbuf) || reuse_wbuf)) {
|
|
ssize_t ret;
|
|
enum quic_pkt_type pkt_type;
|
|
|
|
TRACE_POINT(QUIC_EV_CONN_PHPKTS, ctx->conn, qel);
|
|
/* Do not build any more packet f the TX secrets are not available or
|
|
* f there is nothing to send, i.e. if no ACK are required
|
|
* and if there is no more packets to send upon PTO expiration
|
|
* and if there is no more CRYPTO data available or in flight
|
|
* congestion control limit is reached for prepared data
|
|
*/
|
|
if (!(qel->tls_ctx.tx.flags & QUIC_FL_TLS_SECRETS_SET) ||
|
|
(!(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) &&
|
|
!qc->tx.nb_pto_dgrams &&
|
|
(LIST_ISEMPTY(&qel->pktns->tx.frms) ||
|
|
qc->path->prep_in_flight >= qc->path->cwnd))) {
|
|
TRACE_DEVEL("nothing more to do", QUIC_EV_CONN_PHPKTS, ctx->conn);
|
|
/* Consume the buffer if we were supposed to reuse it. */
|
|
if (reuse_wbuf)
|
|
wbuf = q_next_wbuf(qc);
|
|
break;
|
|
}
|
|
|
|
pkt_type = quic_tls_level_pkt_type(tel);
|
|
ret = qc_build_hdshk_pkt(wbuf, qc, pkt_type, qel);
|
|
switch (ret) {
|
|
case -2:
|
|
goto err;
|
|
case -1:
|
|
if (!reuse_wbuf)
|
|
goto out;
|
|
|
|
/* Not enough room in <wbuf>. */
|
|
wbuf = q_next_wbuf(qc);
|
|
reuse_wbuf = 0;
|
|
continue;
|
|
case 0:
|
|
goto out;
|
|
default:
|
|
reuse_wbuf = 0;
|
|
/* Discard the Initial encryption keys as soon as
|
|
* a handshake packet could be built.
|
|
*/
|
|
if (ctx->state == QUIC_HS_ST_CLIENT_INITIAL &&
|
|
pkt_type == QUIC_PACKET_TYPE_HANDSHAKE) {
|
|
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
|
|
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc);
|
|
qc_set_timer(ctx);
|
|
ctx->state = QUIC_HS_ST_CLIENT_HANDSHAKE;
|
|
}
|
|
/* Special case for Initial packets: when they have all
|
|
* been sent, select the next level.
|
|
*/
|
|
if ((LIST_ISEMPTY(&qel->pktns->tx.frms) || qc->els[next_tel].pktns->tx.in_flight) &&
|
|
tel == QUIC_TLS_ENC_LEVEL_INITIAL) {
|
|
tel = next_tel;
|
|
qel = &qc->els[tel];
|
|
if (LIST_ISEMPTY(&qel->pktns->tx.frms)) {
|
|
/* If there is no more data for the next level, let's
|
|
* consume a buffer. This is the case for a client
|
|
* which sends only one Initial packet, then wait
|
|
* for additional CRYPTO data from the server to enter the
|
|
* next level.
|
|
*/
|
|
wbuf = q_next_wbuf(qc);
|
|
}
|
|
else {
|
|
/* Let's try to reuse this buffer. */
|
|
reuse_wbuf = 1;
|
|
}
|
|
}
|
|
else {
|
|
wbuf = q_next_wbuf(qc);
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, ctx->conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Send the QUIC packets which have been prepared for QUIC connections
|
|
* with <ctx> as I/O handler context.
|
|
*/
|
|
int qc_send_ppkts(struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_conn *qc;
|
|
struct buffer tmpbuf = { };
|
|
struct q_buf *rbuf;
|
|
|
|
qc = ctx->conn->qc;
|
|
for (rbuf = q_rbuf(qc); !q_buf_empty(rbuf) ; rbuf = q_next_rbuf(qc)) {
|
|
struct quic_tx_packet *p, *q;
|
|
unsigned int time_sent;
|
|
|
|
tmpbuf.area = (char *)rbuf->area;
|
|
tmpbuf.size = tmpbuf.data = rbuf->data;
|
|
TRACE_PROTO("to send", QUIC_EV_CONN_SPPKTS, ctx->conn);
|
|
if (ctx->xprt->snd_buf(qc->conn, qc->conn->xprt_ctx,
|
|
&tmpbuf, tmpbuf.data, 0) <= 0)
|
|
break;
|
|
|
|
qc->tx.bytes += tmpbuf.data;
|
|
time_sent = now_ms;
|
|
/* Reset this buffer to make it available for the next packet to prepare. */
|
|
q_buf_reset(rbuf);
|
|
/* Remove from <rbuf> the packets which have just been sent. */
|
|
list_for_each_entry_safe(p, q, &rbuf->pkts, list) {
|
|
p->time_sent = time_sent;
|
|
if (p->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) {
|
|
p->pktns->tx.time_of_last_eliciting = time_sent;
|
|
qc->path->ifae_pkts++;
|
|
}
|
|
qc->path->in_flight += p->in_flight_len;
|
|
p->pktns->tx.in_flight += p->in_flight_len;
|
|
if (p->in_flight_len)
|
|
qc_set_timer(ctx);
|
|
TRACE_PROTO("sent pkt", QUIC_EV_CONN_SPPKTS, ctx->conn, p);
|
|
LIST_DEL(&p->list);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Build all the frames which must be sent just after the handshake have succeeded.
|
|
* This is essentially NEW_CONNECTION_ID frames. A QUIC server must also send
|
|
* a HANDSHAKE_DONE frame.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static int quic_build_post_handshake_frames(struct quic_conn *conn)
|
|
{
|
|
int i;
|
|
struct quic_frame *frm;
|
|
|
|
/* Only servers must send a HANDSHAKE_DONE frame. */
|
|
if (!objt_server(conn->conn->target)) {
|
|
frm = pool_alloc(pool_head_quic_frame);
|
|
frm->type = QUIC_FT_HANDSHAKE_DONE;
|
|
LIST_ADDQ(&conn->tx.frms_to_send, &frm->list);
|
|
}
|
|
|
|
for (i = 1; i < conn->rx_tps.active_connection_id_limit; i++) {
|
|
struct quic_connection_id *cid;
|
|
|
|
frm = pool_alloc(pool_head_quic_frame);
|
|
memset(frm, 0, sizeof *frm);
|
|
cid = new_quic_cid(&conn->cids, i);
|
|
if (!frm || !cid)
|
|
goto err;
|
|
|
|
quic_connection_id_to_frm_cpy(frm, cid);
|
|
LIST_ADDQ(&conn->tx.frms_to_send, &frm->list);
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
free_quic_conn_cids(conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Deallocate <l> list of ACK ranges. */
|
|
void free_quic_arngs(struct quic_arngs *arngs)
|
|
{
|
|
struct eb64_node *n;
|
|
struct quic_arng_node *ar;
|
|
|
|
n = eb64_first(&arngs->root);
|
|
while (n) {
|
|
struct eb64_node *next;
|
|
|
|
ar = eb64_entry(&n->node, struct quic_arng_node, first);
|
|
next = eb64_next(n);
|
|
eb64_delete(n);
|
|
free(ar);
|
|
n = next;
|
|
}
|
|
}
|
|
|
|
/* Return the gap value between <p> and <q> ACK ranges where <q> follows <p> in
|
|
* descending order.
|
|
*/
|
|
static inline size_t sack_gap(struct quic_arng_node *p,
|
|
struct quic_arng_node *q)
|
|
{
|
|
return p->first.key - q->last - 2;
|
|
}
|
|
|
|
|
|
/* Remove the last elements of <ack_ranges> list of ack range updating its
|
|
* encoded size until it goes below <limit>.
|
|
* Returns 1 if succeded, 0 if not (no more element to remove).
|
|
*/
|
|
static int quic_rm_last_ack_ranges(struct quic_arngs *arngs, size_t limit)
|
|
{
|
|
struct eb64_node *last, *prev;
|
|
|
|
last = eb64_last(&arngs->root);
|
|
while (last && arngs->enc_sz > limit) {
|
|
struct quic_arng_node *last_node, *prev_node;
|
|
|
|
prev = eb64_prev(last);
|
|
if (!prev)
|
|
return 0;
|
|
|
|
last_node = eb64_entry(&last->node, struct quic_arng_node, first);
|
|
prev_node = eb64_entry(&prev->node, struct quic_arng_node, first);
|
|
arngs->enc_sz -= quic_int_getsize(last_node->last - last_node->first.key);
|
|
arngs->enc_sz -= quic_int_getsize(sack_gap(prev_node, last_node));
|
|
arngs->enc_sz -= quic_decint_size_diff(arngs->sz);
|
|
--arngs->sz;
|
|
eb64_delete(last);
|
|
pool_free(pool_head_quic_arng, last);
|
|
last = prev;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Set the encoded size of <arngs> QUIC ack ranges. */
|
|
static void quic_arngs_set_enc_sz(struct quic_arngs *arngs)
|
|
{
|
|
struct eb64_node *node, *next;
|
|
struct quic_arng_node *ar, *ar_next;
|
|
|
|
node = eb64_last(&arngs->root);
|
|
if (!node)
|
|
return;
|
|
|
|
ar = eb64_entry(&node->node, struct quic_arng_node, first);
|
|
arngs->enc_sz = quic_int_getsize(ar->last) +
|
|
quic_int_getsize(ar->last - ar->first.key) + quic_int_getsize(arngs->sz - 1);
|
|
|
|
while ((next = eb64_prev(node))) {
|
|
ar_next = eb64_entry(&next->node, struct quic_arng_node, first);
|
|
arngs->enc_sz += quic_int_getsize(sack_gap(ar, ar_next)) +
|
|
quic_int_getsize(ar_next->last - ar_next->first.key);
|
|
node = next;
|
|
ar = eb64_entry(&node->node, struct quic_arng_node, first);
|
|
}
|
|
}
|
|
|
|
/* Insert in <root> ebtree <node> node with <ar> as range value.
|
|
* Returns the ebtree node which has been inserted.
|
|
*/
|
|
static inline
|
|
struct eb64_node *quic_insert_new_range(struct eb_root *root,
|
|
struct quic_arng_node *node,
|
|
struct quic_arng *ar)
|
|
{
|
|
node->first.key = ar->first;
|
|
node->last = ar->last;
|
|
return eb64_insert(root, &node->first);
|
|
}
|
|
|
|
/* Update <arngs> tree of ACK ranges with <ar> as new ACK range value.
|
|
* Note that this function computes the number of bytes required to encode
|
|
* this tree of ACK ranges in descending order.
|
|
*
|
|
* Descending order
|
|
* ------------->
|
|
* range1 range2
|
|
* ..........|--------|..............|--------|
|
|
* ^ ^ ^ ^
|
|
* | | | |
|
|
* last1 first1 last2 first2
|
|
* ..........+--------+--------------+--------+......
|
|
* diff1 gap12 diff2
|
|
*
|
|
* To encode the previous list of ranges we must encode integers as follows in
|
|
* descending order:
|
|
* enc(last2),enc(diff2),enc(gap12),enc(diff1)
|
|
* with diff1 = last1 - first1
|
|
* diff2 = last2 - first2
|
|
* gap12 = first1 - last2 - 2 (>= 0)
|
|
*
|
|
*/
|
|
int quic_update_ack_ranges_list(struct quic_arngs *arngs,
|
|
struct quic_arng *ar)
|
|
{
|
|
struct eb64_node *le;
|
|
struct quic_arng_node *new_node;
|
|
struct eb64_node *new;
|
|
|
|
new = NULL;
|
|
if (eb_is_empty(&arngs->root)) {
|
|
/* First range insertion. */
|
|
new_node = pool_alloc(pool_head_quic_arng);
|
|
if (!new_node)
|
|
return 0;
|
|
|
|
quic_insert_new_range(&arngs->root, new_node, ar);
|
|
/* Increment the size of these ranges. */
|
|
arngs->sz++;
|
|
goto out;
|
|
}
|
|
|
|
le = eb64_lookup_le(&arngs->root, ar->first);
|
|
if (!le) {
|
|
/* New insertion */
|
|
new_node = pool_alloc(pool_head_quic_arng);
|
|
if (!new_node)
|
|
return 0;
|
|
|
|
new = quic_insert_new_range(&arngs->root, new_node, ar);
|
|
/* Increment the size of these ranges. */
|
|
arngs->sz++;
|
|
}
|
|
else {
|
|
struct quic_arng_node *le_ar =
|
|
eb64_entry(&le->node, struct quic_arng_node, first);
|
|
|
|
/* Already existing range */
|
|
if (le_ar->first.key <= ar->first && le_ar->last >= ar->last)
|
|
return 1;
|
|
|
|
if (le_ar->last + 1 >= ar->first) {
|
|
le_ar->last = ar->last;
|
|
new = le;
|
|
new_node = le_ar;
|
|
}
|
|
else {
|
|
/* New insertion */
|
|
new_node = pool_alloc(pool_head_quic_arng);
|
|
if (!new_node)
|
|
return 0;
|
|
|
|
new = quic_insert_new_range(&arngs->root, new_node, ar);
|
|
/* Increment the size of these ranges. */
|
|
arngs->sz++;
|
|
}
|
|
}
|
|
|
|
/* Verify that the new inserted node does not overlap the nodes
|
|
* which follow it.
|
|
*/
|
|
if (new) {
|
|
uint64_t new_node_last;
|
|
struct eb64_node *next;
|
|
struct quic_arng_node *next_node;
|
|
|
|
new_node_last = new_node->last;
|
|
while ((next = eb64_next(new))) {
|
|
next_node =
|
|
eb64_entry(&next->node, struct quic_arng_node, first);
|
|
if (new_node_last + 1 < next_node->first.key)
|
|
break;
|
|
|
|
if (next_node->last > new_node->last)
|
|
new_node->last = next_node->last;
|
|
eb64_delete(next);
|
|
free(next_node);
|
|
/* Decrement the size of these ranges. */
|
|
arngs->sz--;
|
|
}
|
|
}
|
|
|
|
quic_arngs_set_enc_sz(arngs);
|
|
|
|
out:
|
|
return 1;
|
|
}
|
|
/* Remove the header protection of packets at <el> encryption level.
|
|
* Always succeeds.
|
|
*/
|
|
static inline void qc_rm_hp_pkts(struct quic_enc_level *el, struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_tls_ctx *tls_ctx;
|
|
struct quic_rx_packet *pqpkt, *qqpkt;
|
|
struct quic_enc_level *app_qel;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_ELRMHP, ctx->conn);
|
|
app_qel = &ctx->conn->qc->els[QUIC_TLS_ENC_LEVEL_APP];
|
|
/* A server must not process incoming 1-RTT packets before the handshake is complete. */
|
|
if (el == app_qel && objt_listener(ctx->conn->target) && ctx->state < QUIC_HS_ST_COMPLETE) {
|
|
TRACE_PROTO("hp not removed (handshake not completed)",
|
|
QUIC_EV_CONN_ELRMHP, ctx->conn);
|
|
goto out;
|
|
}
|
|
tls_ctx = &el->tls_ctx;
|
|
list_for_each_entry_safe(pqpkt, qqpkt, &el->rx.pqpkts, list) {
|
|
if (!qc_do_rm_hp(pqpkt, tls_ctx, el->pktns->rx.largest_pn,
|
|
pqpkt->data + pqpkt->pn_offset,
|
|
pqpkt->data, pqpkt->data + pqpkt->len, ctx)) {
|
|
TRACE_PROTO("hp removing error", QUIC_EV_CONN_ELRMHP, ctx->conn);
|
|
/* XXX TO DO XXX */
|
|
}
|
|
else {
|
|
/* The AAD includes the packet number field */
|
|
pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl;
|
|
/* Store the packet into the tree of packets to decrypt. */
|
|
pqpkt->pn_node.key = pqpkt->pn;
|
|
quic_rx_packet_eb64_insert(&el->rx.pkts, &pqpkt->pn_node);
|
|
TRACE_PROTO("hp removed", QUIC_EV_CONN_ELRMHP, ctx->conn, pqpkt);
|
|
}
|
|
quic_rx_packet_list_del(pqpkt);
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, ctx->conn);
|
|
}
|
|
|
|
/* Process all the CRYPTO frame at <el> encryption level.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int qc_treat_rx_crypto_frms(struct quic_enc_level *el,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
struct eb64_node *node;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RXCDATA, ctx->conn);
|
|
node = eb64_first(&el->rx.crypto.frms);
|
|
while (node) {
|
|
struct quic_rx_crypto_frm *cf;
|
|
|
|
cf = eb64_entry(&node->node, struct quic_rx_crypto_frm, offset_node);
|
|
if (cf->offset_node.key != el->rx.crypto.offset)
|
|
break;
|
|
|
|
if (!qc_provide_cdata(el, ctx, cf->data, cf->len, cf->pkt, cf))
|
|
goto err;
|
|
|
|
node = eb64_next(node);
|
|
quic_rx_packet_refdec(cf->pkt);
|
|
eb64_delete(&cf->offset_node);
|
|
pool_free(pool_head_quic_rx_crypto_frm, cf);
|
|
}
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_RXCDATA, ctx->conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RXCDATA, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Process all the packets at <el> encryption level.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int qc_treat_rx_pkts(struct quic_enc_level *el, struct quic_conn_ctx *ctx)
|
|
{
|
|
struct quic_tls_ctx *tls_ctx;
|
|
struct eb64_node *node;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_ELRXPKTS, ctx->conn);
|
|
tls_ctx = &el->tls_ctx;
|
|
node = eb64_first(&el->rx.pkts);
|
|
while (node) {
|
|
struct quic_rx_packet *pkt;
|
|
|
|
pkt = eb64_entry(&node->node, struct quic_rx_packet, pn_node);
|
|
if (!qc_pkt_decrypt(pkt, tls_ctx)) {
|
|
/* Drop the packet */
|
|
TRACE_PROTO("packet decryption failed -> dropped",
|
|
QUIC_EV_CONN_ELRXPKTS, ctx->conn, pkt);
|
|
}
|
|
else {
|
|
int drop;
|
|
|
|
drop = 0;
|
|
if (!qc_parse_pkt_frms(pkt, ctx, el))
|
|
drop = 1;
|
|
|
|
if (drop) {
|
|
/* Drop the packet */
|
|
TRACE_PROTO("packet parsing failed -> dropped",
|
|
QUIC_EV_CONN_ELRXPKTS, ctx->conn, pkt);
|
|
}
|
|
else {
|
|
struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn };
|
|
|
|
if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING) {
|
|
el->pktns->rx.nb_ack_eliciting++;
|
|
if (!(el->pktns->rx.nb_ack_eliciting & 1))
|
|
el->pktns->flags |= QUIC_FL_PKTNS_ACK_REQUIRED;
|
|
}
|
|
|
|
/* Update the largest packet number. */
|
|
if (pkt->pn > el->pktns->rx.largest_pn)
|
|
el->pktns->rx.largest_pn = pkt->pn;
|
|
|
|
/* Update the list of ranges to acknowledge. */
|
|
if (!quic_update_ack_ranges_list(&el->pktns->rx.arngs, &ar)) {
|
|
TRACE_DEVEL("Could not update ack range list",
|
|
QUIC_EV_CONN_ELRXPKTS, ctx->conn);
|
|
node = eb64_next(node);
|
|
quic_rx_packet_eb64_delete(&pkt->pn_node);
|
|
free_quic_rx_packet(pkt);
|
|
goto err;
|
|
}
|
|
|
|
}
|
|
}
|
|
node = eb64_next(node);
|
|
quic_rx_packet_eb64_delete(&pkt->pn_node);
|
|
free_quic_rx_packet(pkt);
|
|
}
|
|
|
|
if (!qc_treat_rx_crypto_frms(el, ctx))
|
|
goto err;
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_ELRXPKTS, ctx->conn);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ELRXPKTS, ctx->conn);
|
|
return 0;
|
|
}
|
|
|
|
/* Called during handshakes to parse and build Initial and Handshake packets for QUIC
|
|
* connections with <ctx> as I/O handler context.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
int qc_do_hdshk(struct quic_conn_ctx *ctx)
|
|
{
|
|
int ssl_err;
|
|
struct quic_conn *quic_conn;
|
|
enum quic_tls_enc_level tel, next_tel;
|
|
struct quic_enc_level *qel, *next_qel;
|
|
struct quic_tls_ctx *tls_ctx;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state);
|
|
|
|
ssl_err = SSL_ERROR_NONE;
|
|
quic_conn = ctx->conn->qc;
|
|
if (!quic_get_tls_enc_levels(&tel, &next_tel, ctx->state))
|
|
goto err;
|
|
|
|
qel = &quic_conn->els[tel];
|
|
next_qel = &quic_conn->els[next_tel];
|
|
|
|
next_level:
|
|
tls_ctx = &qel->tls_ctx;
|
|
|
|
/* If the header protection key for this level has been derived,
|
|
* remove the packet header protections.
|
|
*/
|
|
if (!LIST_ISEMPTY(&qel->rx.pqpkts) &&
|
|
(tls_ctx->rx.flags & QUIC_FL_TLS_SECRETS_SET))
|
|
qc_rm_hp_pkts(qel, ctx);
|
|
|
|
if (!eb_is_empty(&qel->rx.pkts) &&
|
|
!qc_treat_rx_pkts(qel, ctx))
|
|
goto err;
|
|
|
|
if (!qc_prep_hdshk_pkts(ctx))
|
|
goto err;
|
|
|
|
if (!qc_send_ppkts(ctx))
|
|
goto err;
|
|
|
|
/* Check if there is something to do for the next level.
|
|
*/
|
|
if ((next_qel->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_SET) &&
|
|
(!LIST_ISEMPTY(&next_qel->rx.pqpkts) || !eb_is_empty(&next_qel->rx.pkts))) {
|
|
qel = next_qel;
|
|
goto next_level;
|
|
}
|
|
|
|
/* If the handshake has not been completed -> out! */
|
|
if (ctx->state < QUIC_HS_ST_COMPLETE)
|
|
goto out;
|
|
|
|
/* Discard the Handshake keys. */
|
|
quic_tls_discard_keys(&quic_conn->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]);
|
|
quic_pktns_discard(quic_conn->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns, quic_conn);
|
|
qc_set_timer(ctx);
|
|
if (!quic_build_post_handshake_frames(quic_conn) ||
|
|
!qc_prep_phdshk_pkts(quic_conn) ||
|
|
!qc_send_ppkts(ctx))
|
|
goto err;
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate a new QUIC connection and return it if succeeded, NULL if not. */
|
|
struct quic_conn *new_quic_conn(uint32_t version)
|
|
{
|
|
struct quic_conn *quic_conn;
|
|
|
|
quic_conn = pool_alloc(pool_head_quic_conn);
|
|
if (quic_conn) {
|
|
memset(quic_conn, 0, sizeof *quic_conn);
|
|
quic_conn->version = version;
|
|
}
|
|
|
|
return quic_conn;
|
|
}
|
|
|
|
/* Unitialize <qel> QUIC encryption level. Never fails. */
|
|
static void quic_conn_enc_level_uninit(struct quic_enc_level *qel)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < qel->tx.crypto.nb_buf; i++) {
|
|
if (qel->tx.crypto.bufs[i]) {
|
|
pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]);
|
|
qel->tx.crypto.bufs[i] = NULL;
|
|
}
|
|
}
|
|
free(qel->tx.crypto.bufs);
|
|
qel->tx.crypto.bufs = NULL;
|
|
}
|
|
|
|
/* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC
|
|
* connetion allocating everything needed.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int quic_conn_enc_level_init(struct quic_conn *qc,
|
|
enum quic_tls_enc_level level)
|
|
{
|
|
struct quic_enc_level *qel;
|
|
|
|
qel = &qc->els[level];
|
|
qel->level = quic_to_ssl_enc_level(level);
|
|
qel->tls_ctx.rx.aead = qel->tls_ctx.tx.aead = NULL;
|
|
qel->tls_ctx.rx.md = qel->tls_ctx.tx.md = NULL;
|
|
qel->tls_ctx.rx.hp = qel->tls_ctx.tx.hp = NULL;
|
|
qel->tls_ctx.rx.flags = 0;
|
|
qel->tls_ctx.tx.flags = 0;
|
|
|
|
qel->rx.pkts = EB_ROOT;
|
|
LIST_INIT(&qel->rx.pqpkts);
|
|
|
|
/* Allocate only one buffer. */
|
|
qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs);
|
|
if (!qel->tx.crypto.bufs)
|
|
goto err;
|
|
|
|
qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf);
|
|
if (!qel->tx.crypto.bufs[0])
|
|
goto err;
|
|
|
|
qel->tx.crypto.bufs[0]->sz = 0;
|
|
qel->tx.crypto.nb_buf = 1;
|
|
|
|
qel->tx.crypto.sz = 0;
|
|
qel->tx.crypto.offset = 0;
|
|
|
|
return 1;
|
|
|
|
err:
|
|
free(qel->tx.crypto.bufs);
|
|
qel->tx.crypto.bufs = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* Release the memory allocated for <buf> array of buffers, with <nb> as size.
|
|
* Never fails.
|
|
*/
|
|
static inline void free_quic_conn_tx_bufs(struct q_buf **bufs, size_t nb)
|
|
{
|
|
struct q_buf **p;
|
|
|
|
if (!bufs)
|
|
return;
|
|
|
|
p = bufs;
|
|
while (--nb) {
|
|
if (!*p) {
|
|
p++;
|
|
continue;
|
|
}
|
|
free((*p)->area);
|
|
(*p)->area = NULL;
|
|
free(*p);
|
|
*p = NULL;
|
|
p++;
|
|
}
|
|
free(bufs);
|
|
}
|
|
|
|
/* Allocate an array or <nb> buffers of <sz> bytes each.
|
|
* Return this array if succeeded, NULL if failed.
|
|
*/
|
|
static inline struct q_buf **quic_conn_tx_bufs_alloc(size_t nb, size_t sz)
|
|
{
|
|
int i;
|
|
struct q_buf **bufs, **p;
|
|
|
|
bufs = calloc(nb, sizeof *bufs);
|
|
if (!bufs)
|
|
return NULL;
|
|
|
|
i = 0;
|
|
p = bufs;
|
|
while (i++ < nb) {
|
|
*p = calloc(1, sizeof **p);
|
|
if (!*p)
|
|
goto err;
|
|
|
|
(*p)->area = malloc(sz);
|
|
if (!(*p)->area)
|
|
goto err;
|
|
|
|
(*p)->pos = (*p)->area;
|
|
(*p)->end = (*p)->area + sz;
|
|
(*p)->data = 0;
|
|
LIST_INIT(&(*p)->pkts);
|
|
p++;
|
|
}
|
|
|
|
return bufs;
|
|
|
|
err:
|
|
free_quic_conn_tx_bufs(bufs, nb);
|
|
return NULL;
|
|
}
|
|
|
|
/* Release all the memory allocated for <conn> QUIC connection. */
|
|
static void quic_conn_free(struct quic_conn *conn)
|
|
{
|
|
int i;
|
|
|
|
free_quic_conn_cids(conn);
|
|
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++)
|
|
quic_conn_enc_level_uninit(&conn->els[i]);
|
|
free_quic_conn_tx_bufs(conn->tx.bufs, conn->tx.nb_buf);
|
|
if (conn->timer_task)
|
|
task_destroy(conn->timer_task);
|
|
pool_free(pool_head_quic_conn, conn);
|
|
}
|
|
|
|
/* Callback called upon loss detection and PTO timer expirations. */
|
|
static struct task *process_timer(struct task *task, void *ctx, unsigned short state)
|
|
{
|
|
struct quic_conn_ctx *conn_ctx;
|
|
struct quic_conn *qc;
|
|
struct quic_pktns *pktns;
|
|
|
|
|
|
conn_ctx = task->context;
|
|
qc = conn_ctx->conn->qc;
|
|
TRACE_ENTER(QUIC_EV_CONN_PTIMER, conn_ctx->conn,
|
|
NULL, NULL, &qc->path->ifae_pkts);
|
|
task->expire = TICK_ETERNITY;
|
|
pktns = quic_loss_pktns(qc);
|
|
if (tick_isset(pktns->tx.loss_time)) {
|
|
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
|
|
|
|
qc_packet_loss_lookup(pktns, qc, &lost_pkts);
|
|
if (!LIST_ISEMPTY(&lost_pkts))
|
|
qc_release_lost_pkts(pktns, ctx, &lost_pkts, now_ms);
|
|
qc_set_timer(conn_ctx);
|
|
goto out;
|
|
}
|
|
|
|
if (qc->path->in_flight) {
|
|
pktns = quic_pto_pktns(qc, conn_ctx->state >= QUIC_HS_ST_COMPLETE, NULL);
|
|
pktns->tx.pto_probe = 1;
|
|
}
|
|
else if (objt_server(qc->conn->target) && conn_ctx->state <= QUIC_HS_ST_COMPLETE) {
|
|
struct quic_enc_level *iel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
|
|
struct quic_enc_level *hel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
|
|
|
|
if (hel->tls_ctx.rx.flags == QUIC_FL_TLS_SECRETS_SET)
|
|
hel->pktns->tx.pto_probe = 1;
|
|
if (iel->tls_ctx.rx.flags == QUIC_FL_TLS_SECRETS_SET)
|
|
iel->pktns->tx.pto_probe = 1;
|
|
}
|
|
qc->tx.nb_pto_dgrams = QUIC_MAX_NB_PTO_DGRAMS;
|
|
tasklet_wakeup(conn_ctx->wait_event.tasklet);
|
|
qc->path->loss.pto_count++;
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PTIMER, conn_ctx->conn, pktns);
|
|
|
|
return task;
|
|
}
|
|
|
|
/* Initialize <conn> QUIC connection with <quic_initial_clients> as root of QUIC
|
|
* connections used to identify the first Initial packets of client connecting
|
|
* to listeners. This parameter must be NULL for QUIC connections attached
|
|
* to listeners. <dcid> is the destination connection ID with <dcid_len> as length.
|
|
* <scid> is the source connection ID with <scid_len> as length.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
int qc_new_conn_init(struct quic_conn *qc, int ipv4,
|
|
struct eb_root *quic_initial_clients,
|
|
struct eb_root *quic_clients,
|
|
unsigned char *dcid, size_t dcid_len,
|
|
unsigned char *scid, size_t scid_len)
|
|
{
|
|
int i;
|
|
/* Initial CID. */
|
|
struct quic_connection_id *icid;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_INIT, qc->conn);
|
|
qc->cids = EB_ROOT;
|
|
/* QUIC Server (or listener). */
|
|
if (objt_listener(qc->conn->target)) {
|
|
/* Copy the initial DCID. */
|
|
qc->odcid.len = dcid_len;
|
|
if (qc->odcid.len)
|
|
memcpy(qc->odcid.data, dcid, dcid_len);
|
|
|
|
/* Copy the SCID as our DCID for this connection. */
|
|
if (scid_len)
|
|
memcpy(qc->dcid.data, scid, scid_len);
|
|
qc->dcid.len = scid_len;
|
|
}
|
|
/* QUIC Client (outgoing connection to servers) */
|
|
else {
|
|
if (dcid_len)
|
|
memcpy(qc->dcid.data, dcid, dcid_len);
|
|
qc->dcid.len = dcid_len;
|
|
}
|
|
|
|
/* Initialize the output buffer */
|
|
qc->obuf.pos = qc->obuf.data;
|
|
|
|
icid = new_quic_cid(&qc->cids, 0);
|
|
if (!icid)
|
|
return 0;
|
|
|
|
/* Select our SCID which is the first CID with 0 as sequence number. */
|
|
qc->scid = icid->cid;
|
|
|
|
/* Insert the DCID the QUIC client has choosen (only for listeners) */
|
|
if (objt_listener(qc->conn->target))
|
|
ebmb_insert(quic_initial_clients, &qc->odcid_node, qc->odcid.len);
|
|
|
|
/* Insert our SCID, the connection ID for the QUIC client. */
|
|
ebmb_insert(quic_clients, &qc->scid_node, qc->scid.len);
|
|
|
|
/* Packet number spaces initialization. */
|
|
for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++)
|
|
quic_pktns_init(&qc->pktns[i]);
|
|
/* QUIC encryption level context initialization. */
|
|
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) {
|
|
if (!quic_conn_enc_level_init(qc, i))
|
|
goto err;
|
|
/* Initialize the packet number space. */
|
|
qc->els[i].pktns = &qc->pktns[quic_tls_pktns(i)];
|
|
}
|
|
|
|
/* TX part. */
|
|
LIST_INIT(&qc->tx.frms_to_send);
|
|
qc->tx.bufs = quic_conn_tx_bufs_alloc(QUIC_CONN_TX_BUFS_NB, QUIC_CONN_TX_BUF_SZ);
|
|
if (!qc->tx.bufs)
|
|
goto err;
|
|
|
|
qc->tx.nb_buf = QUIC_CONN_TX_BUFS_NB;
|
|
qc->tx.wbuf = qc->tx.rbuf = 0;
|
|
qc->tx.bytes = 0;
|
|
qc->tx.nb_pto_dgrams = 0;
|
|
/* RX part. */
|
|
qc->rx.bytes = 0;
|
|
|
|
/* XXX TO DO: Only one path at this time. */
|
|
qc->path = &qc->paths[0];
|
|
quic_path_init(qc->path, ipv4, default_quic_cc_algo, qc);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_INIT, qc->conn);
|
|
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_INIT, qc->conn);
|
|
quic_conn_free(qc);
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the timer task of <qc> QUIC connection.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int quic_conn_init_timer(struct quic_conn *qc)
|
|
{
|
|
qc->timer_task = task_new(MAX_THREADS_MASK);
|
|
if (!qc->timer_task)
|
|
return 0;
|
|
|
|
qc->timer = TICK_ETERNITY;
|
|
qc->timer_task->process = process_timer;
|
|
qc->timer_task->context = qc->conn->xprt_ctx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Parse into <pkt> a long header located at <*buf> buffer, <end> begin a pointer to the end
|
|
* past one byte of this buffer.
|
|
*/
|
|
static inline int quic_packet_read_long_header(unsigned char **buf, const unsigned char *end,
|
|
struct quic_rx_packet *pkt)
|
|
{
|
|
unsigned char dcid_len, scid_len;
|
|
|
|
/* Version */
|
|
if (!quic_read_uint32(&pkt->version, (const unsigned char **)buf, end))
|
|
return 0;
|
|
|
|
if (!pkt->version) { /* XXX TO DO XXX Version negotiation packet */ };
|
|
|
|
/* Destination Connection ID Length */
|
|
dcid_len = *(*buf)++;
|
|
/* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */
|
|
if (dcid_len > QUIC_CID_MAXLEN || end - *buf < dcid_len + 1)
|
|
/* XXX MUST BE DROPPED */
|
|
return 0;
|
|
|
|
if (dcid_len) {
|
|
/* Check that the length of this received DCID matches the CID lengths
|
|
* of our implementation for non Initials packets only.
|
|
*/
|
|
if (pkt->type != QUIC_PACKET_TYPE_INITIAL && dcid_len != QUIC_CID_LEN)
|
|
return 0;
|
|
|
|
memcpy(pkt->dcid.data, *buf, dcid_len);
|
|
}
|
|
|
|
pkt->dcid.len = dcid_len;
|
|
*buf += dcid_len;
|
|
|
|
/* Source Connection ID Length */
|
|
scid_len = *(*buf)++;
|
|
if (scid_len > QUIC_CID_MAXLEN || end - *buf < scid_len)
|
|
/* XXX MUST BE DROPPED */
|
|
return 0;
|
|
|
|
if (scid_len)
|
|
memcpy(pkt->scid.data, *buf, scid_len);
|
|
pkt->scid.len = scid_len;
|
|
*buf += scid_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Try to remove the header protecttion of <pkt> QUIC packet attached to <conn>
|
|
* QUIC connection with <buf> as packet number field address, <end> a pointer to one
|
|
* byte past the end of the buffer containing this packet and <beg> the address of
|
|
* the packet first byte.
|
|
* If succeeded, this function updates <*buf> to point to the next packet in the buffer.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int qc_try_rm_hp(struct quic_rx_packet *pkt,
|
|
unsigned char **buf, unsigned char *beg,
|
|
const unsigned char *end,
|
|
struct quic_conn_ctx *ctx)
|
|
{
|
|
unsigned char *pn = NULL; /* Packet number field */
|
|
enum quic_tls_enc_level tel;
|
|
struct quic_enc_level *qel;
|
|
/* Only for traces. */
|
|
struct quic_rx_packet *qpkt_trace;
|
|
|
|
qpkt_trace = NULL;
|
|
TRACE_ENTER(QUIC_EV_CONN_TRMHP, ctx->conn);
|
|
/* The packet number is here. This is also the start minus
|
|
* QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header
|
|
* protection.
|
|
*/
|
|
pn = *buf;
|
|
tel = quic_packet_type_enc_level(pkt->type);
|
|
if (tel == QUIC_TLS_ENC_LEVEL_NONE) {
|
|
TRACE_DEVEL("Wrong enc. level", QUIC_EV_CONN_TRMHP, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
qel = &ctx->conn->qc->els[tel];
|
|
|
|
if (qel->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_DCD) {
|
|
TRACE_DEVEL("Discarded keys", QUIC_EV_CONN_TRMHP, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
if ((qel->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_SET) &&
|
|
(tel != QUIC_TLS_ENC_LEVEL_APP || ctx->state >= QUIC_HS_ST_COMPLETE)) {
|
|
/* Note that the following function enables us to unprotect the packet
|
|
* number and its length subsequently used to decrypt the entire
|
|
* packets.
|
|
*/
|
|
if (!qc_do_rm_hp(pkt, &qel->tls_ctx,
|
|
qel->pktns->rx.largest_pn, pn, beg, end, ctx)) {
|
|
TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, ctx->conn);
|
|
goto err;
|
|
}
|
|
|
|
/* The AAD includes the packet number field found at <pn>. */
|
|
pkt->aad_len = pn - beg + pkt->pnl;
|
|
qpkt_trace = pkt;
|
|
/* Store the packet */
|
|
pkt->pn_node.key = pkt->pn;
|
|
quic_rx_packet_eb64_insert(&qel->rx.pkts, &pkt->pn_node);
|
|
}
|
|
else {
|
|
TRACE_PROTO("hp not removed", QUIC_EV_CONN_TRMHP, ctx->conn, pkt);
|
|
pkt->pn_offset = pn - beg;
|
|
quic_rx_packet_list_addq(&qel->rx.pqpkts, pkt);
|
|
}
|
|
|
|
memcpy(pkt->data, beg, pkt->len);
|
|
/* Updtate the offset of <*buf> for the next QUIC packet. */
|
|
*buf = beg + pkt->len;
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_TRMHP, ctx->conn, qpkt_trace);
|
|
return 1;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TRMHP, ctx->conn, qpkt_trace);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the header form from <byte0> first byte of <pkt> pacekt to set type.
|
|
* Also set <*long_header> to 1 if this form is long, 0 if not.
|
|
*/
|
|
static inline void qc_parse_hd_form(struct quic_rx_packet *pkt,
|
|
unsigned char byte0, int *long_header)
|
|
{
|
|
if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) {
|
|
pkt->type =
|
|
(byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK;
|
|
*long_header = 1;
|
|
}
|
|
else {
|
|
pkt->type = QUIC_PACKET_TYPE_SHORT;
|
|
*long_header = 0;
|
|
}
|
|
}
|
|
|
|
static ssize_t qc_srv_pkt_rcv(unsigned char **buf, const unsigned char *end,
|
|
struct quic_rx_packet *pkt,
|
|
struct quic_dgram_ctx *dgram_ctx,
|
|
struct sockaddr_storage *saddr)
|
|
{
|
|
unsigned char *beg;
|
|
uint64_t len;
|
|
struct quic_conn *qc;
|
|
struct eb_root *cids;
|
|
struct ebmb_node *node;
|
|
struct connection *srv_conn;
|
|
struct quic_conn_ctx *conn_ctx;
|
|
int long_header;
|
|
|
|
qc = NULL;
|
|
TRACE_ENTER(QUIC_EV_CONN_SPKT);
|
|
if (end <= *buf)
|
|
goto err;
|
|
|
|
/* Fixed bit */
|
|
if (!(**buf & QUIC_PACKET_FIXED_BIT))
|
|
/* XXX TO BE DISCARDED */
|
|
goto err;
|
|
|
|
srv_conn = dgram_ctx->owner;
|
|
beg = *buf;
|
|
/* Header form */
|
|
qc_parse_hd_form(pkt, *(*buf)++, &long_header);
|
|
if (long_header) {
|
|
size_t cid_lookup_len;
|
|
|
|
if (!quic_packet_read_long_header(buf, end, pkt))
|
|
goto err;
|
|
|
|
/* For Initial packets, and for servers (QUIC clients connections),
|
|
* there is no Initial connection IDs storage.
|
|
*/
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
|
|
cid_lookup_len = pkt->dcid.len;
|
|
}
|
|
else {
|
|
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
|
|
cid_lookup_len = QUIC_CID_LEN;
|
|
}
|
|
|
|
node = ebmb_lookup(cids, pkt->dcid.data, cid_lookup_len);
|
|
if (!node)
|
|
goto err;
|
|
|
|
qc = ebmb_entry(node, struct quic_conn, scid_node);
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
qc->dcid.len = pkt->scid.len;
|
|
if (pkt->scid.len)
|
|
memcpy(qc->dcid.data, pkt->scid.data, pkt->scid.len);
|
|
}
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
uint64_t token_len;
|
|
|
|
if (!quic_dec_int(&token_len, (const unsigned char **)buf, end) || end - *buf < token_len)
|
|
goto err;
|
|
|
|
/* XXX TO DO XXX 0 value means "the token is not present".
|
|
* A server which sends an Initial packet must not set the token.
|
|
* So, a client which receives an Initial packet with a token
|
|
* MUST discard the packet or generate a connection error with
|
|
* PROTOCOL_VIOLATION as type.
|
|
* The token must be provided in a Retry packet or NEW_TOKEN frame.
|
|
*/
|
|
pkt->token_len = token_len;
|
|
}
|
|
}
|
|
else {
|
|
/* XXX TO DO: Short header XXX */
|
|
if (end - *buf < QUIC_CID_LEN)
|
|
goto err;
|
|
|
|
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
|
|
node = ebmb_lookup(cids, *buf, QUIC_CID_LEN);
|
|
if (!node)
|
|
goto err;
|
|
|
|
qc = ebmb_entry(node, struct quic_conn, scid_node);
|
|
*buf += QUIC_CID_LEN;
|
|
}
|
|
/* Store the DCID used for this packet to check the packet which
|
|
* come in this UDP datagram match with it.
|
|
*/
|
|
if (!dgram_ctx->dcid_node)
|
|
dgram_ctx->dcid_node = node;
|
|
/* Only packets packets with long headers and not RETRY or VERSION as type
|
|
* have a length field.
|
|
*/
|
|
if (long_header && pkt->type != QUIC_PACKET_TYPE_RETRY && pkt->version) {
|
|
if (!quic_dec_int(&len, (const unsigned char **)buf, end) || end - *buf < len)
|
|
goto err;
|
|
|
|
pkt->len = len;
|
|
}
|
|
else if (!long_header) {
|
|
/* A short packet is the last one of an UDP datagram. */
|
|
pkt->len = end - *buf;
|
|
}
|
|
|
|
conn_ctx = qc->conn->xprt_ctx;
|
|
|
|
/* Increase the total length of this packet by the header length. */
|
|
pkt->len += *buf - beg;
|
|
/* Do not check the DCID node before the length. */
|
|
if (dgram_ctx->dcid_node != node) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_SPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
if (pkt->len > sizeof pkt->data) {
|
|
TRACE_PROTO("Too big packet", QUIC_EV_CONN_SPKT, qc->conn, pkt, &pkt->len);
|
|
goto err;
|
|
}
|
|
|
|
if (!qc_try_rm_hp(pkt, buf, beg, end, conn_ctx))
|
|
goto err;
|
|
|
|
/* Wake the tasklet of the QUIC connection packet handler. */
|
|
if (conn_ctx)
|
|
tasklet_wakeup(conn_ctx->wait_event.tasklet);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_SPKT, qc->conn);
|
|
|
|
return pkt->len;
|
|
|
|
err:
|
|
TRACE_DEVEL("Leaing in error", QUIC_EV_CONN_SPKT, qc ? qc->conn : NULL);
|
|
return -1;
|
|
}
|
|
|
|
static ssize_t qc_lstnr_pkt_rcv(unsigned char **buf, const unsigned char *end,
|
|
struct quic_rx_packet *pkt,
|
|
struct quic_dgram_ctx *dgram_ctx,
|
|
struct sockaddr_storage *saddr)
|
|
{
|
|
unsigned char *beg;
|
|
uint64_t len;
|
|
struct quic_conn *qc;
|
|
struct eb_root *cids;
|
|
struct ebmb_node *node;
|
|
struct listener *l;
|
|
struct quic_conn_ctx *conn_ctx;
|
|
int long_header = 0;
|
|
|
|
qc = NULL;
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT);
|
|
if (end <= *buf)
|
|
goto err;
|
|
|
|
/* Fixed bit */
|
|
if (!(**buf & QUIC_PACKET_FIXED_BIT)) {
|
|
/* XXX TO BE DISCARDED */
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
l = dgram_ctx->owner;
|
|
beg = *buf;
|
|
/* Header form */
|
|
qc_parse_hd_form(pkt, *(*buf)++, &long_header);
|
|
if (long_header) {
|
|
unsigned char dcid_len;
|
|
|
|
if (!quic_packet_read_long_header(buf, end, pkt)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
dcid_len = pkt->dcid.len;
|
|
/* For Initial packets, and for servers (QUIC clients connections),
|
|
* there is no Initial connection IDs storage.
|
|
*/
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
/* DCIDs of first packets coming from clients may have the same values.
|
|
* Let's distinguish them concatenating the socket addresses to the DCIDs.
|
|
*/
|
|
quic_cid_saddr_cat(&pkt->dcid, saddr);
|
|
cids = &l->rx.odcids;
|
|
}
|
|
else {
|
|
if (pkt->dcid.len != QUIC_CID_LEN) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
cids = &l->rx.cids;
|
|
}
|
|
|
|
node = ebmb_lookup(cids, pkt->dcid.data, pkt->dcid.len);
|
|
if (!node && pkt->type == QUIC_PACKET_TYPE_INITIAL && dcid_len == QUIC_CID_LEN &&
|
|
cids == &l->rx.odcids) {
|
|
/* Switch to the definitive tree ->cids containing the final CIDs. */
|
|
node = ebmb_lookup(&l->rx.cids, pkt->dcid.data, dcid_len);
|
|
if (node) {
|
|
/* If found, signal this with NULL as special value for <cids>. */
|
|
pkt->dcid.len = dcid_len;
|
|
cids = NULL;
|
|
}
|
|
}
|
|
|
|
if (!node) {
|
|
if (pkt->type != QUIC_PACKET_TYPE_INITIAL) {
|
|
TRACE_PROTO("Non Initiial packet", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
qc = new_quic_conn(pkt->version);
|
|
if (!qc) {
|
|
TRACE_PROTO("Non allocated new connection", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
pkt->qc = qc;
|
|
pkt->saddr = *saddr;
|
|
/* Note that here, odcid_len equals to pkt->dcid.len minus the length
|
|
* of <saddr>.
|
|
*/
|
|
pkt->odcid_len = dcid_len;
|
|
/* Enqueue this packet. */
|
|
LIST_ADDQ(&l->rx.qpkts, &pkt->rx_list);
|
|
/* Try to accept a new connection. */
|
|
listener_accept(l);
|
|
if (!qc->conn) {
|
|
TRACE_PROTO("Non accepted connection", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
if (!quic_conn_init_timer(qc)) {
|
|
TRACE_PROTO("Non initialized timer", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
/* This is the DCID node sent in this packet by the client. */
|
|
node = &qc->odcid_node;
|
|
conn_ctx = qc->conn->xprt_ctx;
|
|
SSL_set_quic_transport_params(conn_ctx->ssl,
|
|
qc->enc_params, qc->enc_params_len);
|
|
}
|
|
else {
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL && cids == &l->rx.odcids)
|
|
qc = ebmb_entry(node, struct quic_conn, odcid_node);
|
|
else
|
|
qc = ebmb_entry(node, struct quic_conn, scid_node);
|
|
}
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
uint64_t token_len;
|
|
struct quic_tls_ctx *ctx =
|
|
&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx;
|
|
|
|
if (!quic_dec_int(&token_len, (const unsigned char **)buf, end) ||
|
|
end - *buf < token_len) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
/* XXX TO DO XXX 0 value means "the token is not present".
|
|
* A server which sends an Initial packet must not set the token.
|
|
* So, a client which receives an Initial packet with a token
|
|
* MUST discard the packet or generate a connection error with
|
|
* PROTOCOL_VIOLATION as type.
|
|
* The token must be provided in a Retry packet or NEW_TOKEN frame.
|
|
*/
|
|
pkt->token_len = token_len;
|
|
/* NOTE: the socket address has been concatenated to the destination ID
|
|
* choosen by the client for Initial packets.
|
|
*/
|
|
if (!ctx->rx.hp && !qc_new_isecs(qc->conn, pkt->dcid.data,
|
|
pkt->odcid_len, 1)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (end - *buf < QUIC_CID_LEN) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
cids = &l->rx.cids;
|
|
node = ebmb_lookup(cids, *buf, QUIC_CID_LEN);
|
|
if (!node) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
qc = ebmb_entry(node, struct quic_conn, scid_node);
|
|
*buf += QUIC_CID_LEN;
|
|
}
|
|
|
|
/* Store the DCID used for this packet to check the packet which
|
|
* come in this UDP datagram match with it.
|
|
*/
|
|
if (!dgram_ctx->dcid_node) {
|
|
dgram_ctx->dcid_node = node;
|
|
dgram_ctx->qc = qc;
|
|
}
|
|
|
|
/* Only packets packets with long headers and not RETRY or VERSION as type
|
|
* have a length field.
|
|
*/
|
|
if (long_header && pkt->type != QUIC_PACKET_TYPE_RETRY && pkt->version) {
|
|
if (!quic_dec_int(&len, (const unsigned char **)buf, end) ||
|
|
end - *buf < len) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
pkt->len = len;
|
|
}
|
|
else if (!long_header) {
|
|
/* A short packet is the last one of an UDP datagram. */
|
|
pkt->len = end - *buf;
|
|
}
|
|
|
|
/* Update the state if needed. */
|
|
conn_ctx = qc->conn->xprt_ctx;
|
|
|
|
/* Increase the total length of this packet by the header length. */
|
|
pkt->len += *buf - beg;
|
|
/* Do not check the DCID node before the length. */
|
|
if (dgram_ctx->dcid_node != node) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
if (pkt->len > sizeof pkt->data) {
|
|
TRACE_PROTO("Too big packet", QUIC_EV_CONN_LPKT, qc->conn, pkt, &pkt->len);
|
|
goto err;
|
|
}
|
|
|
|
if (!qc_try_rm_hp(pkt, buf, beg, end, conn_ctx)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
/* Wake the tasklet of the QUIC connection packet handler. */
|
|
if (conn_ctx)
|
|
tasklet_wakeup(conn_ctx->wait_event.tasklet);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc->conn, pkt);
|
|
|
|
return pkt->len;
|
|
|
|
err:
|
|
TRACE_DEVEL("Leaving in error", QUIC_EV_CONN_LPKT,
|
|
qc ? qc->conn : NULL, pkt);
|
|
return -1;
|
|
}
|
|
|
|
/* This function builds into <buf> buffer a QUIC long packet header whose size may be computed
|
|
* in advance. This is the reponsability of the caller to check there is enough room in this
|
|
* buffer to build a long header.
|
|
* Returns 0 if <type> QUIC packet type is not supported by long header, or 1 if succeeded.
|
|
*/
|
|
static int quic_build_packet_long_header(unsigned char **buf, const unsigned char *end,
|
|
int type, size_t pn_len, struct quic_conn *conn)
|
|
{
|
|
if (type > QUIC_PACKET_TYPE_RETRY)
|
|
return 0;
|
|
|
|
/* #0 byte flags */
|
|
*(*buf)++ = QUIC_PACKET_FIXED_BIT | QUIC_PACKET_LONG_HEADER_BIT |
|
|
(type << QUIC_PACKET_TYPE_SHIFT) | (pn_len - 1);
|
|
/* Version */
|
|
quic_write_uint32(buf, end, conn->version);
|
|
*(*buf)++ = conn->dcid.len;
|
|
/* Destination connection ID */
|
|
if (conn->dcid.len) {
|
|
memcpy(*buf, conn->dcid.data, conn->dcid.len);
|
|
*buf += conn->dcid.len;
|
|
}
|
|
/* Source connection ID */
|
|
*(*buf)++ = conn->scid.len;
|
|
if (conn->scid.len) {
|
|
memcpy(*buf, conn->scid.data, conn->scid.len);
|
|
*buf += conn->scid.len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function builds into <buf> buffer a QUIC long packet header whose size may be computed
|
|
* in advance. This is the reponsability of the caller to check there is enough room in this
|
|
* buffer to build a long header.
|
|
* Returns 0 if <type> QUIC packet type is not supported by long header, or 1 if succeeded.
|
|
*/
|
|
static int quic_build_packet_short_header(unsigned char **buf, const unsigned char *end,
|
|
size_t pn_len, struct quic_conn *conn)
|
|
{
|
|
/* #0 byte flags */
|
|
*(*buf)++ = QUIC_PACKET_FIXED_BIT | (pn_len - 1);
|
|
/* Destination connection ID */
|
|
if (conn->dcid.len) {
|
|
memcpy(*buf, conn->dcid.data, conn->dcid.len);
|
|
*buf += conn->dcid.len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Apply QUIC header protection to the packet with <buf> as first byte address,
|
|
* <pn> as address of the Packet number field, <pnlen> being this field length
|
|
* with <aead> as AEAD cipher and <key> as secret key.
|
|
* Returns 1 if succeeded or 0 if failed.
|
|
*/
|
|
static int quic_apply_header_protection(unsigned char *buf, unsigned char *pn, size_t pnlen,
|
|
const EVP_CIPHER *aead, const unsigned char *key)
|
|
{
|
|
int i, ret, outlen;
|
|
EVP_CIPHER_CTX *ctx;
|
|
/* We need an IV of at least 5 bytes: one byte for bytes #0
|
|
* and at most 4 bytes for the packet number
|
|
*/
|
|
unsigned char mask[5] = {0};
|
|
|
|
ret = 0;
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, pn + QUIC_PACKET_PN_MAXLEN) ||
|
|
!EVP_EncryptUpdate(ctx, mask, &outlen, mask, sizeof mask) ||
|
|
!EVP_EncryptFinal_ex(ctx, mask, &outlen))
|
|
goto out;
|
|
|
|
*buf ^= mask[0] & (*buf & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
|
|
for (i = 0; i < pnlen; i++)
|
|
pn[i] ^= mask[i + 1];
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reduce the encoded size of <ack_frm> ACK frame removing the last
|
|
* ACK ranges if needed to a value below <limit> in bytes.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static int quic_ack_frm_reduce_sz(struct quic_frame *ack_frm, size_t limit)
|
|
{
|
|
size_t room, ack_delay_sz;
|
|
|
|
ack_delay_sz = quic_int_getsize(ack_frm->tx_ack.ack_delay);
|
|
/* A frame is made of 1 byte for the frame type. */
|
|
room = limit - ack_delay_sz - 1;
|
|
if (!quic_rm_last_ack_ranges(ack_frm->tx_ack.arngs, room))
|
|
return 0;
|
|
|
|
return 1 + ack_delay_sz + ack_frm->tx_ack.arngs->enc_sz;
|
|
}
|
|
|
|
/* Prepare as most as possible CRYPTO frames from prebuilt CRYPTO frames for <qel>
|
|
* encryption level to be encoded in a buffer with <room> as available room,
|
|
* and <*len> the packet Length field initialized with the number of bytes already present
|
|
* in this buffer which must be taken into an account for the Length packet field value.
|
|
* <headlen> is the number of bytes already present in this packet befor building
|
|
* CRYPTO frames.
|
|
* This is the responsability of the caller to check that <*len> < <room> as this is
|
|
* the responsability to check that <headlen> < quic_path_prep_data(conn->path).
|
|
* Update consequently <*len> to reflect the size of these CRYPTO frames built
|
|
* by this function. Also attach these CRYPTO frames to <pkt> QUIC packet.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int qc_build_cfrms(struct quic_tx_packet *pkt,
|
|
size_t room, size_t *len, size_t headlen,
|
|
struct quic_enc_level *qel,
|
|
struct quic_conn *conn)
|
|
{
|
|
int ret;
|
|
struct quic_tx_frm *cf, *cfbak;
|
|
|
|
ret = 0;
|
|
/* If we are not probing we must take into an account the congestion
|
|
* control window.
|
|
*/
|
|
if (!conn->tx.nb_pto_dgrams)
|
|
room = QUIC_MIN(room, quic_path_prep_data(conn->path) - headlen);
|
|
TRACE_PROTO("************** CRYPTO frames build (headlen)",
|
|
QUIC_EV_CONN_BCFRMS, conn->conn, &headlen);
|
|
list_for_each_entry_safe(cf, cfbak, &qel->pktns->tx.frms, list) {
|
|
/* header length, data length, frame length. */
|
|
size_t hlen, dlen, cflen;
|
|
|
|
TRACE_PROTO(" New CRYPTO frame build (room, len)",
|
|
QUIC_EV_CONN_BCFRMS, conn->conn, &room, len);
|
|
if (!room)
|
|
break;
|
|
|
|
/* Compute the length of this CRYPTO frame header */
|
|
hlen = 1 + quic_int_getsize(cf->crypto.offset);
|
|
/* Compute the data length of this CRyPTO frame. */
|
|
dlen = max_stream_data_size(room, *len + hlen, cf->crypto.len);
|
|
TRACE_PROTO(" CRYPTO data length (hlen, crypto.len, dlen)",
|
|
QUIC_EV_CONN_BCFRMS, conn->conn, &hlen, &cf->crypto.len, &dlen);
|
|
if (!dlen)
|
|
break;
|
|
|
|
pkt->cdata_len += dlen;
|
|
/* CRYPTO frame length. */
|
|
cflen = hlen + quic_int_getsize(dlen) + dlen;
|
|
TRACE_PROTO(" CRYPTO frame length (cflen)",
|
|
QUIC_EV_CONN_BCFRMS, conn->conn, &cflen);
|
|
/* Add the CRYPTO data length and its encoded length to the packet
|
|
* length and the length of this length.
|
|
*/
|
|
*len += cflen;
|
|
room -= cflen;
|
|
if (dlen == cf->crypto.len) {
|
|
/* <cf> CRYPTO data have been consumed. */
|
|
LIST_DEL(&cf->list);
|
|
LIST_ADDQ(&pkt->frms, &cf->list);
|
|
}
|
|
else {
|
|
struct quic_tx_frm *new_cf;
|
|
|
|
new_cf = pool_alloc(pool_head_quic_tx_frm);
|
|
if (!new_cf) {
|
|
TRACE_PROTO("No memory for new crypto frame", QUIC_EV_CONN_BCFRMS, conn->conn);
|
|
return 0;
|
|
}
|
|
|
|
new_cf->type = QUIC_FT_CRYPTO;
|
|
new_cf->crypto.len = dlen;
|
|
new_cf->crypto.offset = cf->crypto.offset;
|
|
LIST_ADDQ(&pkt->frms, &new_cf->list);
|
|
/* Consume <dlen> bytes of the current frame. */
|
|
cf->crypto.len -= dlen;
|
|
cf->crypto.offset += dlen;
|
|
}
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This function builds a clear handshake packet used during a QUIC TLS handshakes
|
|
* into <wbuf> the current <wbuf> for <conn> QUIC connection with <qel> as QUIC
|
|
* TLS encryption level for outgoing packets filling it with as much as CRYPTO
|
|
* data as possible from <offset> offset in the CRYPTO data stream. Note that
|
|
* this offset value is updated by the length of the CRYPTO frame used to embed
|
|
* the CRYPTO data if this packet and only if the packet is successfully built.
|
|
* The trailing QUIC_TLS_TAG_LEN bytes of this packet are not built. But they are
|
|
* reserved so that to be sure there is enough room to build this AEAD TAG after
|
|
* having successfully returned from this function and to be sure the position
|
|
* pointer of <wbuf> may be safely incremented by QUIC_TLS_TAG_LEN. After having
|
|
* returned from this funciton, <wbuf> position will point one past the last
|
|
* byte of the payload with the confidence there is at least QUIC_TLS_TAG_LEN bytes
|
|
* available packet to encrypt this packet.
|
|
* This function also update the value of <buf_pn> pointer to point to the packet
|
|
* number field in this packet. <pn_len> will also have the packet number
|
|
* length as value.
|
|
*
|
|
* Return the length of the packet if succeeded minus QUIC_TLS_TAG_LEN, or -1 if
|
|
* failed (not enough room in <wbuf> to build this packet plus QUIC_TLS_TAG_LEN
|
|
* bytes), -2 if there are too much CRYPTO data in flight to build a packet.
|
|
*/
|
|
static ssize_t qc_do_build_hdshk_pkt(struct q_buf *wbuf,
|
|
struct quic_tx_packet *pkt, int pkt_type,
|
|
int64_t pn, size_t *pn_len,
|
|
unsigned char **buf_pn,
|
|
struct quic_enc_level *qel,
|
|
struct quic_conn *conn)
|
|
{
|
|
unsigned char *beg, *pos;
|
|
const unsigned char *end;
|
|
size_t len, len_frms, token_fields_len, padding_len;
|
|
struct quic_frame frm = { .type = QUIC_FT_CRYPTO, };
|
|
struct quic_frame ack_frm = { .type = QUIC_FT_ACK, };
|
|
struct quic_crypto *crypto = &frm.crypto;
|
|
size_t ack_frm_len;
|
|
int64_t largest_acked_pn;
|
|
int add_ping_frm;
|
|
|
|
/* Length field value with CRYPTO frames if present. */
|
|
len_frms = 0;
|
|
beg = pos = q_buf_getpos(wbuf);
|
|
end = q_buf_end(wbuf);
|
|
/* When not probing and not acking, reduce the size of this buffer to respect
|
|
* the congestion controller window.
|
|
*/
|
|
if (!conn->tx.nb_pto_dgrams && !(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED)) {
|
|
size_t path_room;
|
|
|
|
path_room = quic_path_prep_data(conn->path);
|
|
if (end - beg > path_room)
|
|
end = beg + path_room;
|
|
}
|
|
|
|
/* For a server, the token field of an Initial packet is empty. */
|
|
token_fields_len = pkt_type == QUIC_PACKET_TYPE_INITIAL ? 1 : 0;
|
|
|
|
/* Check there is enough room to build the header followed by a token. */
|
|
if (end - pos < QUIC_LONG_PACKET_MINLEN + conn->dcid.len +
|
|
conn->scid.len + token_fields_len + QUIC_TLS_TAG_LEN) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
/* Reserve enough room at the end of the packet for the AEAD TAG. */
|
|
end -= QUIC_TLS_TAG_LEN;
|
|
largest_acked_pn = qel->pktns->tx.largest_acked_pn;
|
|
/* packet number length */
|
|
*pn_len = quic_packet_number_length(pn, largest_acked_pn);
|
|
|
|
quic_build_packet_long_header(&pos, end, pkt_type, *pn_len, conn);
|
|
|
|
/* Encode the token length (0) for an Initial packet. */
|
|
if (pkt_type == QUIC_PACKET_TYPE_INITIAL)
|
|
*pos++ = 0;
|
|
|
|
/* Build an ACK frame if required. */
|
|
ack_frm_len = 0;
|
|
if ((qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) &&
|
|
!eb_is_empty(&qel->pktns->rx.arngs.root)) {
|
|
ack_frm.tx_ack.ack_delay = 0;
|
|
ack_frm.tx_ack.arngs = &qel->pktns->rx.arngs;
|
|
ack_frm_len = quic_ack_frm_reduce_sz(&ack_frm, end - pos);
|
|
if (!ack_frm_len) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
qel->pktns->flags &= ~QUIC_FL_PKTNS_ACK_REQUIRED;
|
|
}
|
|
|
|
/* Length field value without the CRYPTO frames data length. */
|
|
len = ack_frm_len + *pn_len;
|
|
if (!LIST_ISEMPTY(&qel->pktns->tx.frms)) {
|
|
ssize_t room = end - pos;
|
|
|
|
len_frms = len + QUIC_TLS_TAG_LEN;
|
|
if (!qc_build_cfrms(pkt, end - pos, &len_frms, pos - beg, qel, conn)) {
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
add_ping_frm = 0;
|
|
padding_len = 0;
|
|
if (objt_server(conn->conn->target) &&
|
|
pkt_type == QUIC_PACKET_TYPE_INITIAL &&
|
|
len < QUIC_INITIAL_PACKET_MINLEN) {
|
|
len += padding_len = QUIC_INITIAL_PACKET_MINLEN - len;
|
|
}
|
|
else if (LIST_ISEMPTY(&pkt->frms)) {
|
|
if (qel->pktns->tx.pto_probe) {
|
|
/* If we cannot send a CRYPTO frame, we send a PING frame. */
|
|
add_ping_frm = 1;
|
|
len += 1;
|
|
}
|
|
/* If there is no frame at all to follow, add at least a PADDING frame. */
|
|
if (!ack_frm_len)
|
|
len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len;
|
|
}
|
|
|
|
/* Length (of the remaining data). Must not fail because, the buffer size
|
|
* has been checked above. Note that we have reserved QUIC_TLS_TAG_LEN bytes
|
|
* for the encryption TAG. It must be taken into an account for the length
|
|
* of this packet.
|
|
*/
|
|
if (len_frms)
|
|
len = len_frms;
|
|
else
|
|
len += QUIC_TLS_TAG_LEN;
|
|
quic_enc_int(&pos, end, len);
|
|
|
|
/* Packet number field address. */
|
|
*buf_pn = pos;
|
|
|
|
/* Packet number encoding. */
|
|
quic_packet_number_encode(&pos, end, pn, *pn_len);
|
|
|
|
if (ack_frm_len && !qc_build_frm(&pos, end, &ack_frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
/* Crypto frame */
|
|
if (!LIST_ISEMPTY(&pkt->frms)) {
|
|
struct quic_tx_frm *cf;
|
|
|
|
list_for_each_entry(cf, &pkt->frms, list) {
|
|
crypto->offset = cf->crypto.offset;
|
|
crypto->len = cf->crypto.len;
|
|
crypto->qel = qel;
|
|
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build a PING frame if needed. */
|
|
if (add_ping_frm) {
|
|
frm.type = QUIC_FT_PING;
|
|
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Build a PADDING frame if needed. */
|
|
if (padding_len) {
|
|
frm.type = QUIC_FT_PADDING;
|
|
frm.padding.len = padding_len;
|
|
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Always reset this variable as this function has no idea
|
|
* if it was set. It is handle by the loss detection timer.
|
|
*/
|
|
qel->pktns->tx.pto_probe = 0;
|
|
|
|
out:
|
|
return pos - beg;
|
|
|
|
err:
|
|
return -1;
|
|
}
|
|
|
|
static inline void quic_tx_packet_init(struct quic_tx_packet *pkt)
|
|
{
|
|
pkt->cdata_len = 0;
|
|
pkt->in_flight_len = 0;
|
|
LIST_INIT(&pkt->frms);
|
|
}
|
|
|
|
/* Free <pkt> TX packet which has not already attache to any tree. */
|
|
static inline void free_quic_tx_packet(struct quic_tx_packet *pkt)
|
|
{
|
|
struct quic_tx_frm *frm, *frmbak;
|
|
|
|
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) {
|
|
LIST_DEL(&frm->list);
|
|
pool_free(pool_head_quic_tx_frm, frm);
|
|
}
|
|
pool_free(pool_head_quic_tx_packet, pkt);
|
|
}
|
|
|
|
/* Build a handshake packet into <buf> packet buffer with <pkt_type> as packet
|
|
* type for <qc> QUIC connection from CRYPTO data stream at <*offset> offset to
|
|
* be encrypted at <qel> encryption level.
|
|
* Return -2 if the packet could not be encrypted for any reason, -1 if there was
|
|
* not enough room in <buf> to build the packet, or the size of the built packet
|
|
* if succeeded (may be zero if there is too much crypto data in flight to build the packet).
|
|
*/
|
|
static ssize_t qc_build_hdshk_pkt(struct q_buf *buf, struct quic_conn *qc, int pkt_type,
|
|
struct quic_enc_level *qel)
|
|
{
|
|
/* The pointer to the packet number field. */
|
|
unsigned char *buf_pn;
|
|
unsigned char *beg, *end, *payload;
|
|
int64_t pn;
|
|
size_t pn_len, payload_len, aad_len;
|
|
ssize_t pkt_len;
|
|
struct quic_tls_ctx *tls_ctx;
|
|
struct quic_tx_packet *pkt;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_HPKT, qc->conn, NULL, qel);
|
|
pkt = pool_alloc(pool_head_quic_tx_packet);
|
|
if (!pkt) {
|
|
TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_HPKT, qc->conn);
|
|
return -2;
|
|
}
|
|
|
|
quic_tx_packet_init(pkt);
|
|
beg = q_buf_getpos(buf);
|
|
pn_len = 0;
|
|
buf_pn = NULL;
|
|
pn = qel->pktns->tx.next_pn + 1;
|
|
pkt_len = qc_do_build_hdshk_pkt(buf, pkt, pkt_type, pn, &pn_len, &buf_pn, qel, qc);
|
|
if (pkt_len <= 0) {
|
|
free_quic_tx_packet(pkt);
|
|
return pkt_len;
|
|
}
|
|
|
|
end = beg + pkt_len;
|
|
payload = buf_pn + pn_len;
|
|
payload_len = end - payload;
|
|
aad_len = payload - beg;
|
|
|
|
tls_ctx = &qel->tls_ctx;
|
|
if (!quic_packet_encrypt(payload, payload_len, beg, aad_len, pn, tls_ctx, qc->conn))
|
|
goto err;
|
|
|
|
end += QUIC_TLS_TAG_LEN;
|
|
pkt_len += QUIC_TLS_TAG_LEN;
|
|
if (!quic_apply_header_protection(beg, buf_pn, pn_len,
|
|
tls_ctx->tx.hp, tls_ctx->tx.hp_key)) {
|
|
TRACE_DEVEL("Could not apply the header protection", QUIC_EV_CONN_HPKT, qc->conn);
|
|
goto err;
|
|
}
|
|
|
|
/* Now that a correct packet is built, let us set the position pointer of
|
|
* <buf> buffer for the next packet.
|
|
*/
|
|
q_buf_setpos(buf, end);
|
|
/* Consume a packet number. */
|
|
++qel->pktns->tx.next_pn;
|
|
/* Attach the built packet to its tree. */
|
|
pkt->pn_node.key = qel->pktns->tx.next_pn;
|
|
/* Set the packet in fligth length for in flight packet only. */
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) {
|
|
pkt->in_flight_len = pkt_len;
|
|
qc->path->prep_in_flight += pkt_len;
|
|
}
|
|
pkt->pktns = qel->pktns;
|
|
eb64_insert(&qel->pktns->tx.pkts, &pkt->pn_node);
|
|
/* Increment the number of bytes in <buf> buffer by the length of this packet. */
|
|
buf->data += pkt_len;
|
|
/* Attach this packet to <buf>. */
|
|
LIST_ADDQ(&buf->pkts, &pkt->list);
|
|
TRACE_LEAVE(QUIC_EV_CONN_HPKT, qc->conn, pkt);
|
|
|
|
return pkt_len;
|
|
|
|
err:
|
|
free_quic_tx_packet(pkt);
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HPKT, qc->conn);
|
|
return -2;
|
|
}
|
|
|
|
/* Prepare a clear post handhskake packet for <conn> QUIC connnection.
|
|
* Return the length of this packet if succeeded, -1 <wbuf> was full.
|
|
*/
|
|
static ssize_t qc_do_build_phdshk_apkt(struct q_buf *wbuf,
|
|
struct quic_tx_packet *pkt,
|
|
int64_t pn, size_t *pn_len,
|
|
unsigned char **buf_pn, struct quic_enc_level *qel,
|
|
struct quic_conn *conn)
|
|
{
|
|
const unsigned char *beg, *end;
|
|
unsigned char *pos;
|
|
struct quic_frame *frm, *sfrm;
|
|
struct quic_frame ack_frm = { .type = QUIC_FT_ACK, };
|
|
size_t fake_len, ack_frm_len;
|
|
int64_t largest_acked_pn;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PAPKT, conn->conn);
|
|
beg = pos = q_buf_getpos(wbuf);
|
|
end = q_buf_end(wbuf);
|
|
/* When not probing and not acking, reduce the size of this buffer to respect
|
|
* the congestion controller window.
|
|
*/
|
|
if (!conn->tx.nb_pto_dgrams && !(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED)) {
|
|
size_t path_room;
|
|
|
|
path_room = quic_path_prep_data(conn->path);
|
|
if (end - beg > path_room)
|
|
end = beg + path_room;
|
|
}
|
|
largest_acked_pn = qel->pktns->tx.largest_acked_pn;
|
|
/* Packet number length */
|
|
*pn_len = quic_packet_number_length(pn, largest_acked_pn);
|
|
/* Check there is enough room to build this packet (without payload). */
|
|
if (end - pos < QUIC_SHORT_PACKET_MINLEN + sizeof_quic_cid(&conn->dcid) +
|
|
*pn_len + QUIC_TLS_TAG_LEN) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_PAPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
/* Reserve enough room at the end of the packet for the AEAD TAG. */
|
|
end -= QUIC_TLS_TAG_LEN;
|
|
quic_build_packet_short_header(&pos, end, *pn_len, conn);
|
|
/* Packet number field. */
|
|
*buf_pn = pos;
|
|
/* Packet number encoding. */
|
|
quic_packet_number_encode(&pos, end, pn, *pn_len);
|
|
|
|
/* Build an ACK frame if required. */
|
|
ack_frm_len = 0;
|
|
if ((qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) &&
|
|
!eb_is_empty(&qel->pktns->rx.arngs.root)) {
|
|
ack_frm.tx_ack.ack_delay = 0;
|
|
ack_frm.tx_ack.arngs = &qel->pktns->rx.arngs;
|
|
ack_frm_len = quic_ack_frm_reduce_sz(&ack_frm, end - pos);
|
|
if (!ack_frm_len)
|
|
goto err;
|
|
|
|
qel->pktns->flags &= ~QUIC_FL_PKTNS_ACK_REQUIRED;
|
|
}
|
|
|
|
if (ack_frm_len && !qc_build_frm(&pos, end, &ack_frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_PAPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
fake_len = ack_frm_len;
|
|
if (!LIST_ISEMPTY(&qel->pktns->tx.frms) &&
|
|
!qc_build_cfrms(pkt, end - pos, &fake_len, pos - beg, qel, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("some CRYPTO frames could not be built",
|
|
QUIC_EV_CONN_PAPKT, conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
|
|
/* Crypto frame */
|
|
if (!LIST_ISEMPTY(&pkt->frms)) {
|
|
struct quic_frame frm = { .type = QUIC_FT_CRYPTO, };
|
|
struct quic_crypto *crypto = &frm.crypto;
|
|
struct quic_tx_frm *cf;
|
|
|
|
list_for_each_entry(cf, &pkt->frms, list) {
|
|
crypto->offset = cf->crypto.offset;
|
|
crypto->len = cf->crypto.len;
|
|
crypto->qel = qel;
|
|
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
|
|
ssize_t room = end - pos;
|
|
TRACE_PROTO("Not enough room", QUIC_EV_CONN_PAPKT,
|
|
conn->conn, NULL, NULL, &room);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Encode a maximum of frames. */
|
|
list_for_each_entry_safe(frm, sfrm, &conn->tx.frms_to_send, list) {
|
|
unsigned char *ppos;
|
|
|
|
ppos = pos;
|
|
if (!qc_build_frm(&ppos, end, frm, pkt, conn)) {
|
|
TRACE_DEVEL("Frames not built", QUIC_EV_CONN_PAPKT, conn->conn);
|
|
break;
|
|
}
|
|
|
|
LIST_DEL(&frm->list);
|
|
LIST_ADDQ(&pkt->frms, &frm->list);
|
|
pos = ppos;
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PAPKT, conn->conn);
|
|
return pos - beg;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving in error (buffer full)", QUIC_EV_CONN_PAPKT, conn->conn);
|
|
return -1;
|
|
}
|
|
|
|
/* Prepare a post handhskake packet at Application encryption level for <conn>
|
|
* QUIC connnection.
|
|
* Return the length of this packet if succeeded, -1 if <wbuf> was full,
|
|
* -2 in case of major error (encryption failure).
|
|
*/
|
|
static ssize_t qc_build_phdshk_apkt(struct q_buf *wbuf, struct quic_conn *qc)
|
|
{
|
|
/* A pointer to the packet number fiel in <buf> */
|
|
unsigned char *buf_pn;
|
|
unsigned char *beg, *end, *payload;
|
|
int64_t pn;
|
|
size_t pn_len, aad_len, payload_len;
|
|
ssize_t pkt_len;
|
|
struct quic_tls_ctx *tls_ctx;
|
|
struct quic_enc_level *qel;
|
|
struct quic_tx_packet *pkt;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PAPKT, qc->conn);
|
|
pkt = pool_alloc(pool_head_quic_tx_packet);
|
|
if (!pkt) {
|
|
TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_PAPKT, qc->conn);
|
|
return -2;
|
|
}
|
|
|
|
quic_tx_packet_init(pkt);
|
|
beg = q_buf_getpos(wbuf);
|
|
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
|
|
pn_len = 0;
|
|
buf_pn = NULL;
|
|
pn = qel->pktns->tx.next_pn + 1;
|
|
pkt_len = qc_do_build_phdshk_apkt(wbuf, pkt, pn, &pn_len, &buf_pn, qel, qc);
|
|
if (pkt_len <= 0) {
|
|
free_quic_tx_packet(pkt);
|
|
return pkt_len;
|
|
}
|
|
|
|
end = beg + pkt_len;
|
|
payload = buf_pn + pn_len;
|
|
payload_len = end - payload;
|
|
aad_len = payload - beg;
|
|
|
|
tls_ctx = &qel->tls_ctx;
|
|
if (!quic_packet_encrypt(payload, payload_len, beg, aad_len, pn, tls_ctx, qc->conn))
|
|
goto err;
|
|
|
|
end += QUIC_TLS_TAG_LEN;
|
|
pkt_len += QUIC_TLS_TAG_LEN;
|
|
if (!quic_apply_header_protection(beg, buf_pn, pn_len,
|
|
tls_ctx->tx.hp, tls_ctx->tx.hp_key))
|
|
goto err;
|
|
|
|
q_buf_setpos(wbuf, end);
|
|
/* Consume a packet number. */
|
|
++qel->pktns->tx.next_pn;
|
|
/* Attach the built packet to its tree. */
|
|
pkt->pn_node.key = qel->pktns->tx.next_pn;
|
|
eb64_insert(&qel->pktns->tx.pkts, &pkt->pn_node);
|
|
/* Set the packet in fligth length for in flight packet only. */
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) {
|
|
pkt->in_flight_len = pkt_len;
|
|
qc->path->prep_in_flight += pkt_len;
|
|
}
|
|
pkt->pktns = qel->pktns;
|
|
/* Increment the number of bytes in <buf> buffer by the length of this packet. */
|
|
wbuf->data += pkt_len;
|
|
/* Attach this packet to <buf>. */
|
|
LIST_ADDQ(&wbuf->pkts, &pkt->list);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_PAPKT, qc->conn, pkt);
|
|
|
|
return pkt_len;
|
|
|
|
err:
|
|
free_quic_tx_packet(pkt);
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PAPKT, qc->conn);
|
|
return -2;
|
|
}
|
|
|
|
/* Prepare a maximum of QUIC Application level packets from <ctx> QUIC
|
|
* connection I/O handler context.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
int qc_prep_phdshk_pkts(struct quic_conn *qc)
|
|
{
|
|
struct q_buf *wbuf;
|
|
struct quic_enc_level *qel;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PAPKTS, qc->conn);
|
|
wbuf = q_wbuf(qc);
|
|
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
|
|
while (q_buf_empty(wbuf)) {
|
|
ssize_t ret;
|
|
|
|
if (!(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) &&
|
|
(LIST_ISEMPTY(&qel->pktns->tx.frms) ||
|
|
qc->path->prep_in_flight >= qc->path->cwnd)) {
|
|
TRACE_DEVEL("nothing more to do",
|
|
QUIC_EV_CONN_PAPKTS, qc->conn);
|
|
break;
|
|
}
|
|
|
|
ret = qc_build_phdshk_apkt(wbuf, qc);
|
|
switch (ret) {
|
|
case -1:
|
|
/* Not enough room left in <wbuf>. */
|
|
wbuf = q_next_wbuf(qc);
|
|
continue;
|
|
case -2:
|
|
return 0;
|
|
default:
|
|
/* XXX TO CHECK: consume a buffer. */
|
|
wbuf = q_next_wbuf(qc);
|
|
continue;
|
|
}
|
|
}
|
|
TRACE_LEAVE(QUIC_EV_CONN_PAPKTS, qc->conn);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* QUIC connection packet handler task. */
|
|
static struct task *quic_conn_io_cb(struct task *t, void *context, unsigned short state)
|
|
{
|
|
struct quic_conn_ctx *ctx = context;
|
|
|
|
if (ctx->state < QUIC_HS_ST_COMPLETE) {
|
|
qc_do_hdshk(ctx);
|
|
}
|
|
else {
|
|
struct quic_conn *qc = ctx->conn->qc;
|
|
|
|
/* XXX TO DO: may fail!!! XXX */
|
|
qc_treat_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_APP], ctx);
|
|
qc_prep_phdshk_pkts(qc);
|
|
qc_send_ppkts(ctx);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Receive up to <count> bytes from connection <conn>'s socket and store them
|
|
* into buffer <buf>. Only one call to recv() is performed, unless the
|
|
* buffer wraps, in which case a second call may be performed. The connection's
|
|
* flags are updated with whatever special event is detected (error, read0,
|
|
* empty). The caller is responsible for taking care of those events and
|
|
* avoiding the call if inappropriate. The function does not call the
|
|
* connection's polling update function, so the caller is responsible for this.
|
|
* errno is cleared before starting so that the caller knows that if it spots an
|
|
* error without errno, it's pending and can be retrieved via getsockopt(SO_ERROR).
|
|
*/
|
|
static size_t quic_conn_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags)
|
|
{
|
|
ssize_t ret;
|
|
size_t try, done = 0;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
return 0;
|
|
|
|
if (!fd_recv_ready(conn->handle.fd))
|
|
return 0;
|
|
|
|
conn->flags &= ~CO_FL_WAIT_ROOM;
|
|
errno = 0;
|
|
|
|
if (unlikely(!(fdtab[conn->handle.fd].ev & FD_POLL_IN))) {
|
|
/* stop here if we reached the end of data */
|
|
if ((fdtab[conn->handle.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_HUP)
|
|
goto read0;
|
|
|
|
/* report error on POLL_ERR before connection establishment */
|
|
if ((fdtab[conn->handle.fd].ev & FD_POLL_ERR) && (conn->flags & CO_FL_WAIT_L4_CONN)) {
|
|
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
/* read the largest possible block. For this, we perform only one call
|
|
* to recv() unless the buffer wraps and we exactly fill the first hunk,
|
|
* in which case we accept to do it once again. A new attempt is made on
|
|
* EINTR too.
|
|
*/
|
|
while (count > 0) {
|
|
try = b_contig_space(buf);
|
|
if (!try)
|
|
break;
|
|
|
|
if (try > count)
|
|
try = count;
|
|
|
|
ret = recvfrom(conn->handle.fd, b_tail(buf), try, 0, NULL, 0);
|
|
|
|
if (ret > 0) {
|
|
b_add(buf, ret);
|
|
done += ret;
|
|
if (ret < try) {
|
|
/* unfortunately, on level-triggered events, POLL_HUP
|
|
* is generally delivered AFTER the system buffer is
|
|
* empty, unless the poller supports POLL_RDHUP. If
|
|
* we know this is the case, we don't try to read more
|
|
* as we know there's no more available. Similarly, if
|
|
* there's no problem with lingering we don't even try
|
|
* to read an unlikely close from the client since we'll
|
|
* close first anyway.
|
|
*/
|
|
if (fdtab[conn->handle.fd].ev & FD_POLL_HUP)
|
|
goto read0;
|
|
|
|
if ((!fdtab[conn->handle.fd].linger_risk) ||
|
|
(cur_poller.flags & HAP_POLL_F_RDHUP)) {
|
|
break;
|
|
}
|
|
}
|
|
count -= ret;
|
|
}
|
|
else if (ret == 0) {
|
|
goto read0;
|
|
}
|
|
else if (errno == EAGAIN || errno == ENOTCONN) {
|
|
fd_cant_recv(conn->handle.fd);
|
|
break;
|
|
}
|
|
else if (errno != EINTR) {
|
|
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done)
|
|
conn->flags &= ~CO_FL_WAIT_L4_CONN;
|
|
|
|
leave:
|
|
return done;
|
|
|
|
read0:
|
|
conn_sock_read0(conn);
|
|
conn->flags &= ~CO_FL_WAIT_L4_CONN;
|
|
|
|
/* Now a final check for a possible asynchronous low-level error
|
|
* report. This can happen when a connection receives a reset
|
|
* after a shutdown, both POLL_HUP and POLL_ERR are queued, and
|
|
* we might have come from there by just checking POLL_HUP instead
|
|
* of recv()'s return value 0, so we have no way to tell there was
|
|
* an error without checking.
|
|
*/
|
|
if (unlikely(fdtab[conn->handle.fd].ev & FD_POLL_ERR))
|
|
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
|
|
goto leave;
|
|
}
|
|
|
|
|
|
/* Send up to <count> pending bytes from buffer <buf> to connection <conn>'s
|
|
* socket. <flags> may contain some CO_SFL_* flags to hint the system about
|
|
* other pending data for example, but this flag is ignored at the moment.
|
|
* Only one call to send() is performed, unless the buffer wraps, in which case
|
|
* a second call may be performed. The connection's flags are updated with
|
|
* whatever special event is detected (error, empty). The caller is responsible
|
|
* for taking care of those events and avoiding the call if inappropriate. The
|
|
* function does not call the connection's polling update function, so the caller
|
|
* is responsible for this. It's up to the caller to update the buffer's contents
|
|
* based on the return value.
|
|
*/
|
|
static size_t quic_conn_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags)
|
|
{
|
|
ssize_t ret;
|
|
size_t try, done;
|
|
int send_flag;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
return 0;
|
|
|
|
if (!fd_send_ready(conn->handle.fd))
|
|
return 0;
|
|
|
|
done = 0;
|
|
/* send the largest possible block. For this we perform only one call
|
|
* to send() unless the buffer wraps and we exactly fill the first hunk,
|
|
* in which case we accept to do it once again.
|
|
*/
|
|
while (count) {
|
|
try = b_contig_data(buf, done);
|
|
if (try > count)
|
|
try = count;
|
|
|
|
send_flag = MSG_DONTWAIT | MSG_NOSIGNAL;
|
|
if (try < count || flags & CO_SFL_MSG_MORE)
|
|
send_flag |= MSG_MORE;
|
|
|
|
ret = sendto(conn->handle.fd, b_peek(buf, done), try, send_flag,
|
|
(struct sockaddr *)conn->dst, get_addr_len(conn->dst));
|
|
if (ret > 0) {
|
|
count -= ret;
|
|
done += ret;
|
|
|
|
/* A send succeeded, so we can consier ourself connected */
|
|
conn->flags |= CO_FL_WAIT_L4L6;
|
|
/* if the system buffer is full, don't insist */
|
|
if (ret < try)
|
|
break;
|
|
}
|
|
else if (ret == 0 || errno == EAGAIN || errno == ENOTCONN || errno == EINPROGRESS) {
|
|
/* nothing written, we need to poll for write first */
|
|
fd_cant_send(conn->handle.fd);
|
|
break;
|
|
}
|
|
else if (errno != EINTR) {
|
|
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
|
|
break;
|
|
}
|
|
}
|
|
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done)
|
|
conn->flags &= ~CO_FL_WAIT_L4_CONN;
|
|
|
|
if (done > 0) {
|
|
/* we count the total bytes sent, and the send rate for 32-byte
|
|
* blocks. The reason for the latter is that freq_ctr are
|
|
* limited to 4GB and that it's not enough per second.
|
|
*/
|
|
_HA_ATOMIC_ADD(&global.out_bytes, done);
|
|
update_freq_ctr(&global.out_32bps, (done + 16) / 32);
|
|
}
|
|
return done;
|
|
}
|
|
|
|
/* Initialize a QUIC connection (quic_conn struct) to be attached to <conn>
|
|
* connection with <xprt_ctx> as address of the xprt context.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int qc_conn_init(struct connection *conn, void **xprt_ctx)
|
|
{
|
|
struct quic_conn_ctx *ctx;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_NEW, conn);
|
|
|
|
if (*xprt_ctx)
|
|
goto out;
|
|
|
|
if (!conn_ctrl_ready(conn))
|
|
goto out;
|
|
|
|
ctx = pool_alloc(pool_head_quic_conn_ctx);
|
|
if (!ctx) {
|
|
conn->err_code = CO_ER_SYS_MEMLIM;
|
|
goto err;
|
|
}
|
|
|
|
ctx->wait_event.tasklet = tasklet_new();
|
|
if (!ctx->wait_event.tasklet) {
|
|
conn->err_code = CO_ER_SYS_MEMLIM;
|
|
goto err;
|
|
}
|
|
|
|
ctx->wait_event.tasklet->process = quic_conn_io_cb;
|
|
ctx->wait_event.tasklet->context = ctx;
|
|
ctx->wait_event.events = 0;
|
|
ctx->conn = conn;
|
|
ctx->subs = NULL;
|
|
ctx->xprt_ctx = NULL;
|
|
|
|
ctx->xprt = xprt_get(XPRT_QUIC);
|
|
if (objt_server(conn->target)) {
|
|
/* Server */
|
|
struct server *srv = __objt_server(conn->target);
|
|
unsigned char dcid[QUIC_CID_LEN];
|
|
struct quic_conn *quic_conn;
|
|
int ssl_err, ipv4;
|
|
|
|
ssl_err = SSL_ERROR_NONE;
|
|
if (RAND_bytes(dcid, sizeof dcid) != 1)
|
|
goto err;
|
|
|
|
conn->qc = new_quic_conn(QUIC_PROTOCOL_VERSION_DRAFT_28);
|
|
if (!conn->qc)
|
|
goto err;
|
|
|
|
quic_conn = conn->qc;
|
|
quic_conn->conn = conn;
|
|
ipv4 = conn->dst->ss_family == AF_INET;
|
|
if (!qc_new_conn_init(quic_conn, ipv4, NULL, &srv->cids,
|
|
dcid, sizeof dcid, NULL, 0))
|
|
goto err;
|
|
|
|
if (!qc_new_isecs(conn, dcid, sizeof dcid, 0))
|
|
goto err;
|
|
|
|
ctx->state = QUIC_HS_ST_CLIENT_INITIAL;
|
|
if (ssl_bio_and_sess_init(conn, srv->ssl_ctx.ctx,
|
|
&ctx->ssl, &ctx->bio, ha_quic_meth, ctx) == -1)
|
|
goto err;
|
|
|
|
quic_conn->params = srv->quic_params;
|
|
/* Copy the initial source connection ID. */
|
|
quic_cid_cpy(&quic_conn->params.initial_source_connection_id, &quic_conn->scid);
|
|
quic_conn->enc_params_len =
|
|
quic_transport_params_encode(quic_conn->enc_params,
|
|
quic_conn->enc_params + sizeof quic_conn->enc_params,
|
|
&quic_conn->params, 0);
|
|
if (!quic_conn->enc_params_len)
|
|
goto err;
|
|
|
|
SSL_set_quic_transport_params(ctx->ssl, quic_conn->enc_params, quic_conn->enc_params_len);
|
|
SSL_set_connect_state(ctx->ssl);
|
|
ssl_err = SSL_do_handshake(ctx->ssl);
|
|
if (ssl_err != 1) {
|
|
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
|
|
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
|
|
TRACE_PROTO("SSL handshake",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
}
|
|
else {
|
|
TRACE_DEVEL("SSL handshake error",
|
|
QUIC_EV_CONN_HDSHK, ctx->conn, &ctx->state, &ssl_err);
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
else if (objt_listener(conn->target)) {
|
|
/* Listener */
|
|
struct bind_conf *bc = __objt_listener(conn->target)->bind_conf;
|
|
|
|
ctx->state = QUIC_HS_ST_SERVER_INITIAL;
|
|
|
|
if (ssl_bio_and_sess_init(conn, bc->initial_ctx,
|
|
&ctx->ssl, &ctx->bio, ha_quic_meth, ctx) == -1)
|
|
goto err;
|
|
|
|
SSL_set_accept_state(ctx->ssl);
|
|
}
|
|
|
|
*xprt_ctx = ctx;
|
|
|
|
/* Leave init state and start handshake */
|
|
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
|
|
/* Start the handshake */
|
|
tasklet_wakeup(ctx->wait_event.tasklet);
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_NEW, conn);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
if (ctx->wait_event.tasklet)
|
|
tasklet_free(ctx->wait_event.tasklet);
|
|
pool_free(pool_head_quic_conn_ctx, ctx);
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_NEW, conn);
|
|
return -1;
|
|
}
|
|
|
|
/* transport-layer operations for QUIC connections. */
|
|
static struct xprt_ops ssl_quic = {
|
|
.snd_buf = quic_conn_from_buf,
|
|
.rcv_buf = quic_conn_to_buf,
|
|
.init = qc_conn_init,
|
|
.prepare_bind_conf = ssl_sock_prepare_bind_conf,
|
|
.destroy_bind_conf = ssl_sock_destroy_bind_conf,
|
|
.name = "QUIC",
|
|
};
|
|
|
|
__attribute__((constructor))
|
|
static void __quic_conn_init(void)
|
|
{
|
|
ha_quic_meth = BIO_meth_new(0x666, "ha QUIC methods");
|
|
xprt_register(XPRT_QUIC, &ssl_quic);
|
|
}
|
|
|
|
__attribute__((destructor))
|
|
static void __quic_conn_deinit(void)
|
|
{
|
|
BIO_meth_free(ha_quic_meth);
|
|
}
|
|
|
|
/* Read all the QUIC packets found in <buf> with <len> as length (typically a UDP
|
|
* datagram), <ctx> being the QUIC I/O handler context, from QUIC connections,
|
|
* calling <func> function;
|
|
* Return the number of bytes read if succeded, -1 if not.
|
|
*/
|
|
static ssize_t quic_dgram_read(char *buf, size_t len, void *owner,
|
|
struct sockaddr_storage *saddr, qpkt_read_func *func)
|
|
{
|
|
unsigned char *pos;
|
|
const unsigned char *end;
|
|
struct quic_dgram_ctx dgram_ctx = {
|
|
.dcid_node = NULL,
|
|
.owner = owner,
|
|
};
|
|
|
|
pos = (unsigned char *)buf;
|
|
end = pos + len;
|
|
|
|
do {
|
|
int ret;
|
|
struct quic_rx_packet *pkt;
|
|
|
|
pkt = pool_alloc(pool_head_quic_rx_packet);
|
|
if (!pkt)
|
|
goto err;
|
|
|
|
memset(pkt, 0, sizeof(*pkt));
|
|
quic_rx_packet_refinc(pkt);
|
|
ret = func(&pos, end, pkt, &dgram_ctx, saddr);
|
|
if (ret == -1) {
|
|
size_t pkt_len;
|
|
|
|
pkt_len = pkt->len;
|
|
free_quic_rx_packet(pkt);
|
|
/* If the packet length could not be found, we cannot continue. */
|
|
if (!pkt_len)
|
|
break;
|
|
}
|
|
} while (pos < end);
|
|
|
|
/* Increasing the received bytes counter by the UDP datagram length
|
|
* if this datagram could be associated to a connection.
|
|
*/
|
|
if (dgram_ctx.qc)
|
|
dgram_ctx.qc->rx.bytes += len;
|
|
|
|
return pos - (unsigned char *)buf;
|
|
|
|
err:
|
|
return -1;
|
|
}
|
|
|
|
ssize_t quic_lstnr_dgram_read(char *buf, size_t len, void *owner,
|
|
struct sockaddr_storage *saddr)
|
|
{
|
|
return quic_dgram_read(buf, len, owner, saddr, qc_lstnr_pkt_rcv);
|
|
}
|
|
|
|
ssize_t quic_srv_dgram_read(char *buf, size_t len, void *owner,
|
|
struct sockaddr_storage *saddr)
|
|
{
|
|
return quic_dgram_read(buf, len, owner, saddr, qc_srv_pkt_rcv);
|
|
}
|
|
|
|
/* QUIC I/O handler for connection to local listeners or remove servers
|
|
* depending on <listener> boolean value, with <fd> as socket file
|
|
* descriptor and <ctx> as context.
|
|
*/
|
|
static size_t quic_conn_handler(int fd, void *ctx, qpkt_read_func *func)
|
|
{
|
|
ssize_t ret;
|
|
size_t done = 0;
|
|
struct buffer *buf = get_trash_chunk();
|
|
/* Source address */
|
|
struct sockaddr_storage saddr = {0};
|
|
socklen_t saddrlen = sizeof saddr;
|
|
|
|
if (!fd_recv_ready(fd))
|
|
return 0;
|
|
|
|
do {
|
|
ret = recvfrom(fd, buf->area, buf->size, 0,
|
|
(struct sockaddr *)&saddr, &saddrlen);
|
|
if (ret < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
if (errno == EAGAIN)
|
|
fd_cant_recv(fd);
|
|
goto out;
|
|
}
|
|
} while (0);
|
|
|
|
done = buf->data = ret;
|
|
quic_dgram_read(buf->area, buf->data, ctx, &saddr, func);
|
|
|
|
out:
|
|
return done;
|
|
}
|
|
|
|
/* QUIC I/O handler for connections to local listeners with <fd> as socket
|
|
* file descriptor.
|
|
*/
|
|
void quic_fd_handler(int fd)
|
|
{
|
|
if (fdtab[fd].ev & FD_POLL_IN)
|
|
quic_conn_handler(fd, fdtab[fd].owner, &qc_lstnr_pkt_rcv);
|
|
}
|
|
|
|
/* QUIC I/O handler for connections to remote servers with <fd> as socket
|
|
* file descriptor.
|
|
*/
|
|
void quic_conn_fd_handler(int fd)
|
|
{
|
|
if (fdtab[fd].ev & FD_POLL_IN)
|
|
quic_conn_handler(fd, fdtab[fd].owner, &qc_srv_pkt_rcv);
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|