/* * Session management functions. * * Copyright 2000-2010 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pool_head *pool2_session; struct list sessions; /* This function is called from the protocol layer accept() in order to instanciate * a new session on behalf of a given listener and frontend. It returns a positive * value upon success, 0 if the connection needs to be closed and ignored, or a * negative value upon critical failure. */ int session_accept(struct listener *l, int cfd, struct sockaddr_storage *addr) { struct proxy *p = l->frontend; struct session *s; struct http_txn *txn; struct task *t; if (unlikely((s = pool_alloc2(pool2_session)) == NULL)) { Alert("out of memory in event_accept().\n"); goto out_close; } /* minimum session initialization required for monitor mode below */ s->flags = 0; s->logs.logwait = p->to_log; /* if this session comes from a known monitoring system, we want to ignore * it as soon as possible, which means closing it immediately for TCP, but * cleanly. */ if (unlikely((l->options & LI_O_CHK_MONNET) && addr->ss_family == AF_INET && (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr)) { if (p->mode == PR_MODE_TCP) { pool_free2(pool2_session, s); return 0; } s->flags |= SN_MONITOR; s->logs.logwait = 0; } /* OK, we're keeping the session, so let's properly initialize the session */ LIST_ADDQ(&sessions, &s->list); LIST_INIT(&s->back_refs); if (unlikely((t = task_new()) == NULL)) { /* disable this proxy for a while */ Alert("out of memory in event_accept().\n"); goto out_free_session; } s->term_trace = 0; s->cli_addr = *addr; s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ s->uniq_id = totalconn; p->feconn++; /* beconn will be increased once assigned */ proxy_inc_fe_conn_ctr(l, p); /* note: cum_beconn will be increased once assigned */ t->process = l->handler; t->context = s; t->nice = l->nice; t->expire = TICK_ETERNITY; s->task = t; s->listener = l; /* Note: initially, the session's backend points to the frontend. * This changes later when switching rules are executed or * when the default backend is assigned. */ s->be = s->fe = p; s->req = s->rep = NULL; /* will be allocated later */ /* now evaluate the tcp-request layer4 rules. Since we expect to be able * to abort right here as soon as possible, we check the rules before * even initializing the stream interfaces. */ if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(s)) { task_free(t); LIST_DEL(&s->list); pool_free2(pool2_session, s); /* let's do a no-linger now to close with a single RST. */ setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); p->feconn--; return 0; } /* This session was accepted, count it now */ if (p->feconn > p->counters.feconn_max) p->counters.feconn_max = p->feconn; proxy_inc_fe_sess_ctr(l, p); /* this part should be common with other protocols */ s->si[0].fd = cfd; s->si[0].owner = t; s->si[0].state = s->si[0].prev_state = SI_ST_EST; s->si[0].err_type = SI_ET_NONE; s->si[0].err_loc = NULL; s->si[0].connect = NULL; s->si[0].iohandler = NULL; s->si[0].exp = TICK_ETERNITY; s->si[0].flags = SI_FL_NONE; if (likely(s->fe->options2 & PR_O2_INDEPSTR)) s->si[0].flags |= SI_FL_INDEP_STR; if (addr->ss_family == AF_INET || addr->ss_family == AF_INET6) s->si[0].flags = SI_FL_CAP_SPLTCP; /* TCP/TCPv6 splicing possible */ /* add the various callbacks */ stream_sock_prepare_interface(&s->si[0]); /* pre-initialize the other side's stream interface to an INIT state. The * callbacks will be initialized before attempting to connect. */ s->si[1].fd = -1; /* just to help with debugging */ s->si[1].owner = t; s->si[1].state = s->si[1].prev_state = SI_ST_INI; s->si[1].err_type = SI_ET_NONE; s->si[1].err_loc = NULL; s->si[1].connect = NULL; s->si[1].iohandler = NULL; s->si[1].shutr = stream_int_shutr; s->si[1].shutw = stream_int_shutw; s->si[1].exp = TICK_ETERNITY; s->si[1].flags = SI_FL_NONE; if (likely(s->fe->options2 & PR_O2_INDEPSTR)) s->si[1].flags |= SI_FL_INDEP_STR; s->srv = s->prev_srv = s->srv_conn = NULL; s->pend_pos = NULL; /* init store persistence */ s->store_count = 0; /* Adjust some socket options */ if (unlikely(fcntl(cfd, F_SETFL, O_NONBLOCK) == -1)) { Alert("accept(): cannot set the socket in non blocking mode. Giving up\n"); goto out_free_task; } txn = &s->txn; /* Those variables will be checked and freed if non-NULL in * session.c:session_free(). It is important that they are * properly initialized. */ txn->sessid = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; txn->uri = NULL; txn->req.cap = NULL; txn->rsp.cap = NULL; txn->hdr_idx.v = NULL; txn->hdr_idx.size = txn->hdr_idx.used = 0; if (unlikely((s->req = pool_alloc2(pool2_buffer)) == NULL)) goto out_free_task; /* no memory */ if (unlikely((s->rep = pool_alloc2(pool2_buffer)) == NULL)) goto out_free_req; /* no memory */ /* initialize the request buffer */ s->req->size = global.tune.bufsize; buffer_init(s->req); s->req->prod = &s->si[0]; s->req->cons = &s->si[1]; s->si[0].ib = s->si[1].ob = s->req; s->req->flags |= BF_READ_ATTACHED; /* the producer is already connected */ /* activate default analysers enabled for this listener */ s->req->analysers = l->analysers; s->req->wto = TICK_ETERNITY; s->req->rto = TICK_ETERNITY; s->req->rex = TICK_ETERNITY; s->req->wex = TICK_ETERNITY; s->req->analyse_exp = TICK_ETERNITY; /* initialize response buffer */ s->rep->size = global.tune.bufsize; buffer_init(s->rep); s->rep->prod = &s->si[1]; s->rep->cons = &s->si[0]; s->si[0].ob = s->si[1].ib = s->rep; s->rep->analysers = 0; s->rep->rto = TICK_ETERNITY; s->rep->wto = TICK_ETERNITY; s->rep->rex = TICK_ETERNITY; s->rep->wex = TICK_ETERNITY; s->rep->analyse_exp = TICK_ETERNITY; /* finish initialization of the accepted file descriptor */ fd_insert(cfd); fdtab[cfd].owner = &s->si[0]; fdtab[cfd].state = FD_STREADY; fdtab[cfd].flags = 0; fdtab[cfd].cb[DIR_RD].f = l->proto->read; fdtab[cfd].cb[DIR_RD].b = s->req; fdtab[cfd].cb[DIR_WR].f = l->proto->write; fdtab[cfd].cb[DIR_WR].b = s->rep; fdinfo[cfd].peeraddr = (struct sockaddr *)&s->cli_addr; fdinfo[cfd].peerlen = sizeof(s->cli_addr); EV_FD_SET(cfd, DIR_RD); if (p->accept) { int ret = p->accept(s); if (unlikely(ret < 0)) goto out_free_rep; if (unlikely(ret == 0)) { /* work is finished, we can release everything (eg: monitoring) */ pool_free2(pool2_buffer, s->rep); pool_free2(pool2_buffer, s->req); task_free(t); LIST_DEL(&s->list); pool_free2(pool2_session, s); p->feconn--; return 0; } } /* it is important not to call the wakeup function directly but to * pass through task_wakeup(), because this one knows how to apply * priorities to tasks. */ task_wakeup(t, TASK_WOKEN_INIT); return 1; /* Error unrolling */ out_free_rep: pool_free2(pool2_buffer, s->rep); out_free_req: pool_free2(pool2_buffer, s->req); out_free_task: p->feconn--; task_free(t); out_free_session: LIST_DEL(&s->list); pool_free2(pool2_session, s); out_close: return -1; } /* * frees the context associated to a session. It must have been removed first. */ void session_free(struct session *s) { struct http_txn *txn = &s->txn; struct proxy *fe = s->fe; struct bref *bref, *back; int i; if (s->pend_pos) pendconn_free(s->pend_pos); if (s->srv) { /* there may be requests left pending in queue */ if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; s->srv->cur_sess--; } if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); } if (unlikely(s->srv_conn)) { /* the session still has a reserved slot on a server, but * it should normally be only the same as the one above, * so this should not happen in fact. */ sess_change_server(s, NULL); } if (s->req->pipe) put_pipe(s->req->pipe); if (s->rep->pipe) put_pipe(s->rep->pipe); pool_free2(pool2_buffer, s->req); pool_free2(pool2_buffer, s->rep); http_end_txn(s); for (i = 0; i < s->store_count; i++) { if (!s->store[i].ts) continue; stksess_free(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; } if (fe) { pool_free2(fe->hdr_idx_pool, txn->hdr_idx.v); pool_free2(fe->rsp_cap_pool, txn->rsp.cap); pool_free2(fe->req_cap_pool, txn->req.cap); } list_for_each_entry_safe(bref, back, &s->back_refs, users) { /* we have to unlink all watchers. We must not relink them if * this session was the last one in the list. */ LIST_DEL(&bref->users); LIST_INIT(&bref->users); if (s->list.n != &sessions) LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users); bref->ref = s->list.n; } LIST_DEL(&s->list); pool_free2(pool2_session, s); /* We may want to free the maximum amount of pools if the proxy is stopping */ if (fe && unlikely(fe->state == PR_STSTOPPED)) { pool_flush2(pool2_buffer); pool_flush2(fe->hdr_idx_pool); pool_flush2(pool2_requri); pool_flush2(pool2_capture); pool_flush2(pool2_session); pool_flush2(fe->req_cap_pool); pool_flush2(fe->rsp_cap_pool); } } /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_session() { LIST_INIT(&sessions); pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED); return pool2_session != NULL; } void session_process_counters(struct session *s) { unsigned long long bytes; if (s->req) { bytes = s->req->total - s->logs.bytes_in; s->logs.bytes_in = s->req->total; if (bytes) { s->fe->counters.bytes_in += bytes; if (s->be != s->fe) s->be->counters.bytes_in += bytes; if (s->srv) s->srv->counters.bytes_in += bytes; if (s->listener->counters) s->listener->counters->bytes_in += bytes; } } if (s->rep) { bytes = s->rep->total - s->logs.bytes_out; s->logs.bytes_out = s->rep->total; if (bytes) { s->fe->counters.bytes_out += bytes; if (s->be != s->fe) s->be->counters.bytes_out += bytes; if (s->srv) s->srv->counters.bytes_out += bytes; if (s->listener->counters) s->listener->counters->bytes_out += bytes; } } } /* This function is called with (si->state == SI_ST_CON) meaning that a * connection was attempted and that the file descriptor is already allocated. * We must check for establishment, error and abort. Possible output states * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER, * otherwise 1. */ int sess_update_st_con_tcp(struct session *s, struct stream_interface *si) { struct buffer *req = si->ob; struct buffer *rep = si->ib; /* If we got an error, or if nothing happened and the connection timed * out, we must give up. The CER state handler will take care of retry * attempts and error reports. */ if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) { si->exp = TICK_ETERNITY; si->state = SI_ST_CER; si->flags &= ~SI_FL_CAP_SPLICE; fd_delete(si->fd); if (si->err_type) return 0; si->err_loc = s->srv; if (si->flags & SI_FL_ERR) si->err_type = SI_ET_CONN_ERR; else si->err_type = SI_ET_CONN_TO; return 0; } /* OK, maybe we want to abort */ if (unlikely((rep->flags & BF_SHUTW) || ((req->flags & BF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */ (((req->flags & (BF_OUT_EMPTY|BF_WRITE_ACTIVITY)) == BF_OUT_EMPTY) || s->be->options & PR_O_ABRT_CLOSE)))) { /* give up */ si->shutw(si); si->err_type |= SI_ET_CONN_ABRT; si->err_loc = s->srv; si->flags &= ~SI_FL_CAP_SPLICE; if (s->srv_error) s->srv_error(s, si); return 1; } /* we need to wait a bit more if there was no activity either */ if (!(req->flags & BF_WRITE_ACTIVITY)) return 1; /* OK, this means that a connection succeeded. The caller will be * responsible for handling the transition from CON to EST. */ s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); si->exp = TICK_ETERNITY; si->state = SI_ST_EST; si->err_type = SI_ET_NONE; si->err_loc = NULL; return 1; } /* This function is called with (si->state == SI_ST_CER) meaning that a * previous connection attempt has failed and that the file descriptor * has already been released. Possible causes include asynchronous error * notification and time out. Possible output states are SI_ST_CLO when * retries are exhausted, SI_ST_TAR when a delay is wanted before a new * connection attempt, SI_ST_ASS when it's wise to retry on the same server, * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are * marked as in error state. It returns 0. */ int sess_update_st_cer(struct session *s, struct stream_interface *si) { /* we probably have to release last session from the server */ if (s->srv) { health_adjust(s->srv, HANA_STATUS_L4_ERR); if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; s->srv->cur_sess--; } } /* ensure that we have enough retries left */ si->conn_retries--; if (si->conn_retries < 0) { if (!si->err_type) { si->err_type = SI_ET_CONN_ERR; si->err_loc = s->srv; } if (s->srv) s->srv->counters.failed_conns++; s->be->counters.failed_conns++; if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); /* shutw is enough so stop a connecting socket */ si->shutw(si); si->ob->flags |= BF_WRITE_ERROR; si->ib->flags |= BF_READ_ERROR; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return 0; } /* If the "redispatch" option is set on the backend, we are allowed to * retry on another server for the last retry. In order to achieve this, * we must mark the session unassigned, and eventually clear the DIRECT * bit to ignore any persistence cookie. We won't count a retry nor a * redispatch yet, because this will depend on what server is selected. */ if (s->srv && si->conn_retries == 0 && s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) { if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); s->prev_srv = s->srv; si->state = SI_ST_REQ; } else { if (s->srv) s->srv->counters.retries++; s->be->counters.retries++; si->state = SI_ST_ASS; } if (si->flags & SI_FL_ERR) { /* The error was an asynchronous connection error, and we will * likely have to retry connecting to the same server, most * likely leading to the same result. To avoid this, we wait * one second before retrying. */ if (!si->err_type) si->err_type = SI_ET_CONN_ERR; si->state = SI_ST_TAR; si->exp = tick_add(now_ms, MS_TO_TICKS(1000)); return 0; } return 0; } /* * This function handles the transition between the SI_ST_CON state and the * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or * SI_ST_INI) to SI_ST_EST, but only when a ->connect function is defined. */ void sess_establish(struct session *s, struct stream_interface *si) { struct buffer *req = si->ob; struct buffer *rep = si->ib; if (s->srv) health_adjust(s->srv, HANA_STATUS_L4_OK); if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. */ if (s->fe->to_log && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ s->do_log(s); } } else { s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE; /* reset hdr_idx which was already initialized by the request. * right now, the http parser does it. * hdr_idx_init(&s->txn.hdr_idx); */ } rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana; rep->flags |= BF_READ_ATTACHED; /* producer is now attached */ if (si->connect) { /* real connections have timeouts */ req->wto = s->be->timeout.server; rep->rto = s->be->timeout.server; } req->wex = TICK_ETERNITY; } /* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR. * Other input states are simply ignored. * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON. * Flags must have previously been updated for timeouts and other conditions. */ void sess_update_stream_int(struct session *s, struct stream_interface *si) { DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n", now_ms, __FUNCTION__, s, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state); if (si->state == SI_ST_ASS) { /* Server assigned to connection request, we have to try to connect now */ int conn_err; conn_err = connect_server(s); if (conn_err == SN_ERR_NONE) { /* state = SI_ST_CON now */ if (s->srv) srv_inc_sess_ctr(s->srv); return; } /* We have received a synchronous error. We might have to * abort, retry immediately or redispatch. */ if (conn_err == SN_ERR_INTERNAL) { if (!si->err_type) { si->err_type = SI_ET_CONN_OTHER; si->err_loc = s->srv; } if (s->srv) srv_inc_sess_ctr(s->srv); if (s->srv) s->srv->counters.failed_conns++; s->be->counters.failed_conns++; /* release other sessions waiting for this server */ if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); /* Failed and not retryable. */ si->shutr(si); si->shutw(si); si->ob->flags |= BF_WRITE_ERROR; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); /* no session was ever accounted for this server */ si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* We are facing a retryable error, but we don't want to run a * turn-around now, as the problem is likely a source port * allocation problem, so we want to retry now. */ si->state = SI_ST_CER; si->flags &= ~SI_FL_ERR; sess_update_st_cer(s, si); /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ return; } else if (si->state == SI_ST_QUE) { /* connection request was queued, check for any update */ if (!s->pend_pos) { /* The connection is not in the queue anymore. Either * we have a server connection slot available and we * go directly to the assigned state, or we need to * load-balance first and go to the INI state. */ si->exp = TICK_ETERNITY; if (unlikely(!(s->flags & SN_ASSIGNED))) si->state = SI_ST_REQ; else { s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->state = SI_ST_ASS; } return; } /* Connection request still in queue... */ if (si->flags & SI_FL_EXP) { /* ... and timeout expired */ si->exp = TICK_ETERNITY; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); if (s->srv) s->srv->counters.failed_conns++; s->be->counters.failed_conns++; si->shutr(si); si->shutw(si); si->ob->flags |= BF_WRITE_TIMEOUT; if (!si->err_type) si->err_type = SI_ET_QUEUE_TO; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* Connection remains in queue, check if we have to abort it */ if ((si->ob->flags & (BF_READ_ERROR)) || ((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */ (si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) { /* give up */ si->exp = TICK_ETERNITY; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->shutr(si); si->shutw(si); si->err_type |= SI_ET_QUEUE_ABRT; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* Nothing changed */ return; } else if (si->state == SI_ST_TAR) { /* Connection request might be aborted */ if ((si->ob->flags & (BF_READ_ERROR)) || ((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */ (si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) { /* give up */ si->exp = TICK_ETERNITY; si->shutr(si); si->shutw(si); si->err_type |= SI_ET_CONN_ABRT; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } if (!(si->flags & SI_FL_EXP)) return; /* still in turn-around */ si->exp = TICK_ETERNITY; /* we keep trying on the same server as long as the session is * marked "assigned". * FIXME: Should we force a redispatch attempt when the server is down ? */ if (s->flags & SN_ASSIGNED) si->state = SI_ST_ASS; else si->state = SI_ST_REQ; return; } } /* This function initiates a server connection request on a stream interface * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS, * indicating that a server has been assigned. It may also return SI_ST_QUE, * or SI_ST_CLO upon error. */ static void sess_prepare_conn_req(struct session *s, struct stream_interface *si) { DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n", now_ms, __FUNCTION__, s, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state); if (si->state != SI_ST_REQ) return; /* Try to assign a server */ if (srv_redispatch_connect(s) != 0) { /* We did not get a server. Either we queued the * connection request, or we encountered an error. */ if (si->state == SI_ST_QUE) return; /* we did not get any server, let's check the cause */ si->shutr(si); si->shutw(si); si->ob->flags |= BF_WRITE_ERROR; if (!si->err_type) si->err_type = SI_ET_CONN_OTHER; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* The server is assigned */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->state = SI_ST_ASS; } /* This stream analyser checks the switching rules and changes the backend * if appropriate. The default_backend rule is also considered, then the * target backend's forced persistence rules are also evaluated last if any. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request. */ int process_switching_rules(struct session *s, struct buffer *req, int an_bit) { struct persist_rule *prst_rule; req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->l, req->analysers); /* now check whether we have some switching rules for this request */ if (!(s->flags & SN_BE_ASSIGNED)) { struct switching_rule *rule; list_for_each_entry(rule, &s->fe->switching_rules, list) { int ret; ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, ACL_DIR_REQ); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { if (!session_set_backend(s, rule->be.backend)) goto sw_failed; break; } } /* To ensure correct connection accounting on the backend, we * have to assign one if it was not set (eg: a listen). This * measure also takes care of correctly setting the default * backend if any. */ if (!(s->flags & SN_BE_ASSIGNED)) if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be)) goto sw_failed; } /* we don't want to run the HTTP filters again if the backend has not changed */ if (s->fe == s->be) s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE; /* as soon as we know the backend, we must check if we have a matching forced or ignored * persistence rule, and report that in the session. */ list_for_each_entry(prst_rule, &s->be->persist_rules, list) { int ret = 1; if (prst_rule->cond) { ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, ACL_DIR_REQ); ret = acl_pass(ret); if (prst_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ if (prst_rule->type == PERSIST_TYPE_FORCE) { s->flags |= SN_FORCE_PRST; } else { s->flags |= SN_IGNORE_PRST; } break; } } return 1; sw_failed: /* immediately abort this request in case of allocation failure */ buffer_abort(s->req); buffer_abort(s->rep); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_RESOURCE; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; s->txn.status = 500; s->req->analysers = 0; s->req->analyse_exp = TICK_ETERNITY; return 0; } /* This stream analyser works on a request. It applies all sticking rules on * it then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ int process_sticking_rules(struct session *s, struct buffer *req, int an_bit) { struct proxy *px = s->be; struct sticking_rule *rule; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->l, req->analysers); list_for_each_entry(rule, &px->sticking_rules, list) { int ret = 1 ; int i; for (i = 0; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) break; } if (i != s->store_count) continue; if (rule->cond) { ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_REQ); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(px, s, &s->txn, PATTERN_FETCH_REQ, rule->expr, rule->table.t->type); if (!key) continue; if (rule->flags & STK_IS_MATCH) { struct stksess *ts; if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { if (!(s->flags & SN_ASSIGNED)) { struct eb32_node *node; void *ptr; /* srv found in table */ ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID); node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); if (node) { struct server *srv; srv = container_of(node, struct server, conf.id); if ((srv->state & SRV_RUNNING) || (px->options & PR_O_PERSIST) || (s->flags & SN_FORCE_PRST)) { s->flags |= SN_DIRECT | SN_ASSIGNED; s->srv = srv; } } } ts->expire = tick_add(now_ms, MS_TO_TICKS(rule->table.t->expire)); } } if (rule->flags & STK_IS_STORE) { if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count++].ts = ts; } } } } } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; } /* This stream analyser works on a response. It applies all store rules on it * then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ int process_store_rules(struct session *s, struct buffer *rep, int an_bit) { struct proxy *px = s->be; struct sticking_rule *rule; int i; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->l, rep->analysers); list_for_each_entry(rule, &px->storersp_rules, list) { int ret = 1 ; int storereqidx = -1; for (i = 0; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) { if (!(s->store[i].flags)) storereqidx = i; break; } } if ((i != s->store_count) && (storereqidx == -1)) continue; if (rule->cond) { ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_RTR); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(px, s, &s->txn, PATTERN_FETCH_RTR, rule->expr, rule->table.t->type); if (!key) continue; if (storereqidx != -1) { stksess_setkey(s->store[storereqidx].table, s->store[storereqidx].ts, key); s->store[storereqidx].flags = 1; } else if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count].flags = 1; s->store[s->store_count++].ts = ts; } } } } /* process store request and store response */ for (i = 0; i < s->store_count; i++) { struct stksess *ts; void *ptr; ts = stktable_lookup(s->store[i].table, s->store[i].ts); if (ts) { /* the entry already existed, we can free ours */ stktable_touch(s->store[i].table, s->store[i].ts); stksess_free(s->store[i].table, s->store[i].ts); } else ts = stktable_store(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); stktable_data_cast(ptr, server_id) = s->srv->puid; } rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } /* This macro is very specific to the function below. See the comments in * process_session() below to understand the logic and the tests. */ #define UPDATE_ANALYSERS(real, list, back, flag) { \ list = (((list) & ~(flag)) | ~(back)) & (real); \ back = real; \ if (!(list)) \ break; \ if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ continue; \ } /* Processes the client, server, request and response jobs of a session task, * then puts it back to the wait queue in a clean state, or cleans up its * resources if it must be deleted. Returns in the date the task wants * to be woken up, or TICK_ETERNITY. In order not to call all functions for * nothing too many times, the request and response buffers flags are monitored * and each function is called only if at least another function has changed at * least one flag it is interested in. */ struct task *process_session(struct task *t) { struct session *s = t->context; unsigned int rqf_last, rpf_last; unsigned int req_ana_back; //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, // s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags); /* this data may be no longer valid, clear it */ memset(&s->txn.auth, 0, sizeof(s->txn.auth)); /* This flag must explicitly be set every time */ s->req->flags &= ~BF_READ_NOEXP; /* Keep a copy of req/rep flags so that we can detect shutdowns */ rqf_last = s->req->flags; rpf_last = s->rep->flags; /* we don't want the stream interface functions to recursively wake us up */ if (s->req->prod->owner == t) s->req->prod->flags |= SI_FL_DONT_WAKE; if (s->req->cons->owner == t) s->req->cons->flags |= SI_FL_DONT_WAKE; /* 1a: Check for low level timeouts if needed. We just set a flag on * stream interfaces when their timeouts have expired. */ if (unlikely(t->state & TASK_WOKEN_TIMER)) { stream_int_check_timeouts(&s->si[0]); stream_int_check_timeouts(&s->si[1]); /* check buffer timeouts, and close the corresponding stream interfaces * for future reads or writes. Note: this will also concern upper layers * but we do not touch any other flag. We must be careful and correctly * detect state changes when calling them. */ buffer_check_timeouts(s->req); if (unlikely((s->req->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) { s->req->cons->flags |= SI_FL_NOLINGER; s->req->cons->shutw(s->req->cons); } if (unlikely((s->req->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT)) s->req->prod->shutr(s->req->prod); buffer_check_timeouts(s->rep); if (unlikely((s->rep->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) { s->rep->cons->flags |= SI_FL_NOLINGER; s->rep->cons->shutw(s->rep->cons); } if (unlikely((s->rep->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT)) s->rep->prod->shutr(s->rep->prod); } /* 1b: check for low-level errors reported at the stream interface. * First we check if it's a retryable error (in which case we don't * want to tell the buffer). Otherwise we report the error one level * upper by setting flags into the buffers. Note that the side towards * the client cannot have connect (hence retryable) errors. Also, the * connection setup code must be able to deal with any type of abort. */ if (unlikely(s->si[0].flags & SI_FL_ERR)) { if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) { s->si[0].shutr(&s->si[0]); s->si[0].shutw(&s->si[0]); stream_int_report_error(&s->si[0]); if (!(s->req->analysers) && !(s->rep->analysers)) { s->be->counters.cli_aborts++; if (s->srv) s->srv->counters.cli_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; } } } if (unlikely(s->si[1].flags & SI_FL_ERR)) { if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) { s->si[1].shutr(&s->si[1]); s->si[1].shutw(&s->si[1]); stream_int_report_error(&s->si[1]); s->be->counters.failed_resp++; if (s->srv) s->srv->counters.failed_resp++; if (!(s->req->analysers) && !(s->rep->analysers)) { s->be->counters.srv_aborts++; if (s->srv) s->srv->counters.srv_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; } } /* note: maybe we should process connection errors here ? */ } if (s->si[1].state == SI_ST_CON) { /* we were trying to establish a connection on the server side, * maybe it succeeded, maybe it failed, maybe we timed out, ... */ if (unlikely(!sess_update_st_con_tcp(s, &s->si[1]))) sess_update_st_cer(s, &s->si[1]); else if (s->si[1].state == SI_ST_EST) sess_establish(s, &s->si[1]); /* state is now one of SI_ST_CON (still in progress), SI_ST_EST * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. */ } resync_stream_interface: /* Check for connection closure */ DPRINTF(stderr, "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", now_ms, __FUNCTION__, __LINE__, t, s, s->flags, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state, s->rep->cons->err_type, s->req->cons->err_type, s->req->cons->conn_retries); /* nothing special to be done on client side */ if (unlikely(s->req->prod->state == SI_ST_DIS)) s->req->prod->state = SI_ST_CLO; /* When a server-side connection is released, we have to count it and * check for pending connections on this server. */ if (unlikely(s->req->cons->state == SI_ST_DIS)) { s->req->cons->state = SI_ST_CLO; if (s->srv) { if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; s->srv->cur_sess--; } sess_change_server(s, NULL); if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); } } /* * Note: of the transient states (REQ, CER, DIS), only REQ may remain * at this point. */ resync_request: /* Analyse request */ if ((s->req->flags & BF_MASK_ANALYSER) || (s->req->flags ^ rqf_last) & BF_MASK_STATIC) { unsigned int flags = s->req->flags; if (s->req->prod->state >= SI_ST_EST) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop new connections, * disable reading or closing. Note: if an analyser * disables any of these bits, it is responsible for * enabling them again when it disables itself, so * that other analysers are called in similar conditions. */ buffer_auto_read(s->req); buffer_auto_connect(s->req); buffer_auto_close(s->req); /* We will call all analysers for which a bit is set in * s->req->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the session. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. * * We build a list of analysers to run. We evaluate all * of these analysers in the order of the lower bit to * the higher bit. This ordering is very important. * An analyser will often add/remove other analysers, * including itself. Any changes to itself have no effect * on the loop. If it removes any other analysers, we * want those analysers not to be called anymore during * this loop. If it adds an analyser that is located * after itself, we want it to be scheduled for being * processed during the loop. If it adds an analyser * which is located before it, we want it to switch to * it immediately, even if it has already been called * once but removed since. * * In order to achieve this, we compare the analyser * list after the call with a copy of it before the * call. The work list is fed with analyser bits that * appeared during the call. Then we compare previous * work list with the new one, and check the bits that * appeared. If the lowest of these bits is lower than * the current bit, it means we have enabled a previous * analyser and must immediately loop again. */ ana_list = ana_back = s->req->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ if (ana_list & AN_REQ_INSPECT) { if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT); } if (ana_list & AN_REQ_WAIT_HTTP) { if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP); } if (ana_list & AN_REQ_HTTP_PROCESS_FE) { if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE); } if (ana_list & AN_REQ_SWITCHING_RULES) { if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES); } if (ana_list & AN_REQ_HTTP_PROCESS_BE) { if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE); } if (ana_list & AN_REQ_HTTP_TARPIT) { if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT); } if (ana_list & AN_REQ_HTTP_INNER) { if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER); } if (ana_list & AN_REQ_HTTP_BODY) { if (!http_process_request_body(s, s->req, AN_REQ_HTTP_BODY)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY); } if (ana_list & AN_REQ_PRST_RDP_COOKIE) { if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); } if (ana_list & AN_REQ_STICKING_RULES) { if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES); } if (ana_list & AN_REQ_HTTP_XFER_BODY) { if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); } break; } } if ((s->req->flags ^ flags) & BF_MASK_STATIC) { rqf_last = s->req->flags; goto resync_request; } } /* we'll monitor the request analysers while parsing the response, * because some response analysers may indirectly enable new request * analysers (eg: HTTP keep-alive). */ req_ana_back = s->req->analysers; resync_response: /* Analyse response */ if (unlikely(s->rep->flags & BF_HIJACK)) { /* In inject mode, we wake up everytime something has * happened on the write side of the buffer. */ unsigned int flags = s->rep->flags; if ((s->rep->flags & (BF_WRITE_PARTIAL|BF_WRITE_ERROR|BF_SHUTW)) && !(s->rep->flags & BF_FULL)) { s->rep->hijacker(s, s->rep); } if ((s->rep->flags ^ flags) & BF_MASK_STATIC) { rpf_last = s->rep->flags; goto resync_response; } } else if ((s->rep->flags & BF_MASK_ANALYSER) || (s->rep->flags ^ rpf_last) & BF_MASK_STATIC) { unsigned int flags = s->rep->flags; if (s->rep->prod->state >= SI_ST_EST) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop disable reading or * closing. Note: if an analyser disables any of these * bits, it is responsible for enabling them again when * it disables itself, so that other analysers are called * in similar conditions. */ buffer_auto_read(s->rep); buffer_auto_close(s->rep); /* We will call all analysers for which a bit is set in * s->rep->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the session. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. */ ana_list = ana_back = s->rep->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ if (ana_list & AN_RES_WAIT_HTTP) { if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP); } if (ana_list & AN_RES_STORE_RULES) { if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES); } if (ana_list & AN_RES_HTTP_PROCESS_BE) { if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE); } if (ana_list & AN_RES_HTTP_XFER_BODY) { if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); } break; } } if ((s->rep->flags ^ flags) & BF_MASK_STATIC) { rpf_last = s->rep->flags; goto resync_response; } } /* maybe someone has added some request analysers, so we must check and loop */ if (s->req->analysers & ~req_ana_back) goto resync_request; /* FIXME: here we should call protocol handlers which rely on * both buffers. */ /* * Now we propagate unhandled errors to the session. Normally * we're just in a data phase here since it means we have not * seen any analyser who could set an error status. */ if (!(s->flags & SN_ERR_MASK)) { if (s->req->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) { /* Report it if the client got an error or a read timeout expired */ s->req->analysers = 0; if (s->req->flags & BF_READ_ERROR) { s->be->counters.cli_aborts++; if (s->srv) s->srv->counters.cli_aborts++; s->flags |= SN_ERR_CLICL; } else if (s->req->flags & BF_READ_TIMEOUT) { s->be->counters.cli_aborts++; if (s->srv) s->srv->counters.cli_aborts++; s->flags |= SN_ERR_CLITO; } else if (s->req->flags & BF_WRITE_ERROR) { s->be->counters.srv_aborts++; if (s->srv) s->srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVCL; } else { s->be->counters.srv_aborts++; if (s->srv) s->srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVTO; } sess_set_term_flags(s); } else if (s->rep->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) { /* Report it if the server got an error or a read timeout expired */ s->rep->analysers = 0; if (s->rep->flags & BF_READ_ERROR) { s->be->counters.srv_aborts++; if (s->srv) s->srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVCL; } else if (s->rep->flags & BF_READ_TIMEOUT) { s->be->counters.srv_aborts++; if (s->srv) s->srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVTO; } else if (s->rep->flags & BF_WRITE_ERROR) { s->be->counters.cli_aborts++; if (s->srv) s->srv->counters.cli_aborts++; s->flags |= SN_ERR_CLICL; } else { s->be->counters.cli_aborts++; if (s->srv) s->srv->counters.cli_aborts++; s->flags |= SN_ERR_CLITO; } sess_set_term_flags(s); } } /* * Here we take care of forwarding unhandled data. This also includes * connection establishments and shutdown requests. */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. */ if (!s->req->analysers && !(s->req->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) && (s->req->prod->state >= SI_ST_EST) && (s->req->to_forward != BUF_INFINITE_FORWARD)) { /* This buffer is freewheeling, there's no analyser nor hijacker * attached to it. If any data are left in, we'll permit them to * move. */ buffer_auto_read(s->req); buffer_auto_connect(s->req); buffer_auto_close(s->req); buffer_flush(s->req); /* If the producer is still connected, we'll enable data to flow * from the producer to the consumer (which might possibly not be * connected yet). */ if (!(s->req->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW))) buffer_forward(s->req, BUF_INFINITE_FORWARD); } /* check if it is wise to enable kernel splicing to forward request data */ if (!(s->req->flags & (BF_KERN_SPLICING|BF_SHUTR)) && s->req->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) && (pipes_used < global.maxpipes) && (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (s->req->flags & BF_STREAMER_FAST)))) { s->req->flags |= BF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rqf_last = s->req->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* first, let's check if the request buffer needs to shutdown(write), which may * happen either because the input is closed or because we want to force a close * once the server has begun to respond. */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) == (BF_AUTO_CLOSE|BF_SHUTR))) buffer_shutw_now(s->req); /* shutdown(write) pending */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_OUT_EMPTY)) == (BF_SHUTW_NOW|BF_OUT_EMPTY))) s->req->cons->shutw(s->req->cons); /* shutdown(write) done on server side, we must stop the client too */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW && !s->req->analysers)) buffer_shutr_now(s->req); /* shutdown(read) pending */ if (unlikely((s->req->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) s->req->prod->shutr(s->req->prod); /* it's possible that an upper layer has requested a connection setup or abort. * There are 2 situations where we decide to establish a new connection : * - there are data scheduled for emission in the buffer * - the BF_AUTO_CONNECT flag is set (active connection) */ if (s->req->cons->state == SI_ST_INI) { if (!(s->req->flags & BF_SHUTW)) { if ((s->req->flags & (BF_AUTO_CONNECT|BF_OUT_EMPTY)) != BF_OUT_EMPTY) { /* If we have an iohandler without a connect method, we immediately * switch to the connected state, otherwise we perform a connection * request. */ s->req->cons->state = SI_ST_REQ; /* new connection requested */ s->req->cons->conn_retries = s->be->conn_retries; if (unlikely(s->req->cons->iohandler && !s->req->cons->connect)) { s->req->cons->state = SI_ST_EST; /* connection established */ s->rep->flags |= BF_READ_ATTACHED; /* producer is now attached */ s->req->wex = TICK_ETERNITY; } } } else { s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */ buffer_shutw_now(s->req); /* fix buffer flags upon abort */ buffer_shutr_now(s->rep); } } /* we may have a pending connection request, or a connection waiting * for completion. */ if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) { do { /* nb: step 1 might switch from QUE to ASS, but we first want * to give a chance to step 2 to perform a redirect if needed. */ if (s->si[1].state != SI_ST_REQ) sess_update_stream_int(s, &s->si[1]); if (s->si[1].state == SI_ST_REQ) sess_prepare_conn_req(s, &s->si[1]); if (s->si[1].state == SI_ST_ASS && s->srv && s->srv->rdr_len && (s->flags & SN_REDIRECTABLE)) perform_http_redirect(s, &s->si[1]); } while (s->si[1].state == SI_ST_ASS); } /* Benchmarks have shown that it's optimal to do a full resync now */ if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) goto resync_stream_interface; /* otherwise wewant to check if we need to resync the req buffer or not */ if ((s->req->flags ^ rqf_last) & BF_MASK_STATIC) goto resync_request; /* perform output updates to the response buffer */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. */ if (!s->rep->analysers && !(s->rep->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) && (s->rep->prod->state >= SI_ST_EST) && (s->rep->to_forward != BUF_INFINITE_FORWARD)) { /* This buffer is freewheeling, there's no analyser nor hijacker * attached to it. If any data are left in, we'll permit them to * move. */ buffer_auto_read(s->rep); buffer_auto_close(s->rep); buffer_flush(s->rep); if (!(s->rep->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW))) buffer_forward(s->rep, BUF_INFINITE_FORWARD); } /* check if it is wise to enable kernel splicing to forward response data */ if (!(s->rep->flags & (BF_KERN_SPLICING|BF_SHUTR)) && s->rep->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) && (pipes_used < global.maxpipes) && (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (s->rep->flags & BF_STREAMER_FAST)))) { s->rep->flags |= BF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rpf_last = s->rep->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* * FIXME: this is probably where we should produce error responses. */ /* first, let's check if the response buffer needs to shutdown(write) */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) == (BF_AUTO_CLOSE|BF_SHUTR))) buffer_shutw_now(s->rep); /* shutdown(write) pending */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_OUT_EMPTY|BF_SHUTW_NOW)) == (BF_OUT_EMPTY|BF_SHUTW_NOW))) s->rep->cons->shutw(s->rep->cons); /* shutdown(write) done on the client side, we must stop the server too */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW) && !s->rep->analysers) buffer_shutr_now(s->rep); /* shutdown(read) pending */ if (unlikely((s->rep->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) s->rep->prod->shutr(s->rep->prod); if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) goto resync_stream_interface; if (s->req->flags != rqf_last) goto resync_request; if ((s->rep->flags ^ rpf_last) & BF_MASK_STATIC) goto resync_response; /* we're interested in getting wakeups again */ s->req->prod->flags &= ~SI_FL_DONT_WAKE; s->req->cons->flags &= ~SI_FL_DONT_WAKE; /* This is needed only when debugging is enabled, to indicate * client-side or server-side close. Please note that in the unlikely * event where both sides would close at once, the sequence is reported * on the server side first. */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int len; if (s->si[1].state == SI_ST_CLO && s->si[1].prev_state == SI_ST_EST) { len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", s->uniq_id, s->be->id, (unsigned short)s->si[0].fd, (unsigned short)s->si[1].fd); write(1, trash, len); } if (s->si[0].state == SI_ST_CLO && s->si[0].prev_state == SI_ST_EST) { len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", s->uniq_id, s->be->id, (unsigned short)s->si[0].fd, (unsigned short)s->si[1].fd); write(1, trash, len); } } if (likely((s->rep->cons->state != SI_ST_CLO) || (s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) { if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED)) session_process_counters(s); if (s->rep->cons->state == SI_ST_EST && !s->rep->cons->iohandler) s->rep->cons->update(s->rep->cons); if (s->req->cons->state == SI_ST_EST && !s->req->cons->iohandler) s->req->cons->update(s->req->cons); s->req->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL|BF_READ_ATTACHED); s->rep->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL|BF_READ_ATTACHED); s->si[0].prev_state = s->si[0].state; s->si[1].prev_state = s->si[1].state; s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP); s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP); /* Trick: if a request is being waiting for the server to respond, * and if we know the server can timeout, we don't want the timeout * to expire on the client side first, but we're still interested * in passing data from the client to the server (eg: POST). Thus, * we can cancel the client's request timeout if the server's * request timeout is set and the server has not yet sent a response. */ if ((s->rep->flags & (BF_AUTO_CLOSE|BF_SHUTR)) == 0 && (tick_isset(s->req->wex) || tick_isset(s->rep->rex))) { s->req->flags |= BF_READ_NOEXP; s->req->rex = TICK_ETERNITY; } /* Call the second stream interface's I/O handler if it's embedded. * Note that this one may wake the task up again. */ if (s->req->cons->iohandler) { s->req->cons->iohandler(s->req->cons); if (task_in_rq(t)) { /* If we woke up, we don't want to requeue the * task to the wait queue, but rather requeue * it into the runqueue ASAP. */ t->expire = TICK_ETERNITY; return t; } } t->expire = tick_first(tick_first(s->req->rex, s->req->wex), tick_first(s->rep->rex, s->rep->wex)); if (s->req->analysers) t->expire = tick_first(t->expire, s->req->analyse_exp); if (s->si[0].exp) t->expire = tick_first(t->expire, s->si[0].exp); if (s->si[1].exp) t->expire = tick_first(t->expire, s->si[1].exp); #ifdef DEBUG_FULL fprintf(stderr, "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp, s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state); #endif #ifdef DEBUG_DEV /* this may only happen when no timeout is set or in case of an FSM bug */ if (!tick_isset(t->expire)) ABORT_NOW(); #endif return t; /* nothing more to do */ } s->fe->feconn--; if (s->flags & SN_BE_ASSIGNED) s->be->beconn--; actconn--; s->listener->nbconn--; if (s->listener->state == LI_FULL && s->listener->nbconn < s->listener->maxconn) { /* we should reactivate the listener */ EV_FD_SET(s->listener->fd, DIR_RD); s->listener->state = LI_READY; } if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int len; len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->be->id, (unsigned short)s->req->prod->fd, (unsigned short)s->req->cons->fd); write(1, trash, len); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); session_process_counters(s); if (s->txn.status) { int n; n = s->txn.status / 100; if (n < 1 || n > 5) n = 0; if (s->fe->mode == PR_MODE_HTTP) s->fe->counters.fe.http.rsp[n]++; if ((s->flags & SN_BE_ASSIGNED) && (s->be->mode == PR_MODE_HTTP)) s->be->counters.be.http.rsp[n]++; } /* let's do a final log if we need it */ if (s->logs.logwait && !(s->flags & SN_MONITOR) && (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { s->do_log(s); } /* the task MUST not be in the run queue anymore */ session_free(s); task_delete(t); task_free(t); return NULL; } /* * This function adjusts sess->srv_conn and maintains the previous and new * server's served session counts. Setting newsrv to NULL is enough to release * current connection slot. This function also notifies any LB algo which might * expect to be informed about any change in the number of active sessions on a * server. */ void sess_change_server(struct session *sess, struct server *newsrv) { if (sess->srv_conn == newsrv) return; if (sess->srv_conn) { sess->srv_conn->served--; if (sess->srv_conn->proxy->lbprm.server_drop_conn) sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); sess->srv_conn = NULL; } if (newsrv) { newsrv->served++; if (newsrv->proxy->lbprm.server_take_conn) newsrv->proxy->lbprm.server_take_conn(newsrv); sess->srv_conn = newsrv; } } /* Set correct session termination flags in case no analyser has done it. It * also counts a failed request if the server state has not reached the request * stage. */ void sess_set_term_flags(struct session *s) { if (!(s->flags & SN_FINST_MASK)) { if (s->si[1].state < SI_ST_REQ) { s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; s->flags |= SN_FINST_R; } else if (s->si[1].state == SI_ST_QUE) s->flags |= SN_FINST_Q; else if (s->si[1].state < SI_ST_EST) s->flags |= SN_FINST_C; else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) s->flags |= SN_FINST_D; else s->flags |= SN_FINST_L; } } /* Handle server-side errors for default protocols. It is called whenever a a * connection setup is aborted or a request is aborted in queue. It sets the * session termination flags so that the caller does not have to worry about * them. It's installed as ->srv_error for the server-side stream_interface. */ void default_srv_error(struct session *s, struct stream_interface *si) { int err_type = si->err_type; int err = 0, fin = 0; if (err_type & SI_ET_QUEUE_ABRT) { err = SN_ERR_CLICL; fin = SN_FINST_Q; } else if (err_type & SI_ET_CONN_ABRT) { err = SN_ERR_CLICL; fin = SN_FINST_C; } else if (err_type & SI_ET_QUEUE_TO) { err = SN_ERR_SRVTO; fin = SN_FINST_Q; } else if (err_type & SI_ET_QUEUE_ERR) { err = SN_ERR_SRVCL; fin = SN_FINST_Q; } else if (err_type & SI_ET_CONN_TO) { err = SN_ERR_SRVTO; fin = SN_FINST_C; } else if (err_type & SI_ET_CONN_ERR) { err = SN_ERR_SRVCL; fin = SN_FINST_C; } else /* SI_ET_CONN_OTHER and others */ { err = SN_ERR_INTERNAL; fin = SN_FINST_C; } if (!(s->flags & SN_ERR_MASK)) s->flags |= err; if (!(s->flags & SN_FINST_MASK)) s->flags |= fin; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */