/* * AF_INET/AF_INET6 SOCK_STREAM protocol layer (tcp) * * Copyright 2000-2013 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ /* this is to have tcp_info defined on systems using musl * library, such as Alpine Linux */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen); static int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen); static void tcpv4_add_listener(struct listener *listener, int port); static void tcpv6_add_listener(struct listener *listener, int port); /* Note: must not be declared as its list will be overwritten */ static struct protocol proto_tcpv4 = { .name = "tcpv4", .sock_domain = AF_INET, .sock_type = SOCK_STREAM, .sock_prot = IPPROTO_TCP, .sock_family = AF_INET, .sock_addrlen = sizeof(struct sockaddr_in), .l3_addrlen = 32/8, .accept = &listener_accept, .connect = tcp_connect_server, .bind = tcp_bind_listener, .bind_all = tcp_bind_listeners, .unbind_all = unbind_all_listeners, .enable_all = enable_all_listeners, .get_src = tcp_get_src, .get_dst = tcp_get_dst, .pause = tcp_pause_listener, .add = tcpv4_add_listener, .listeners = LIST_HEAD_INIT(proto_tcpv4.listeners), .nb_listeners = 0, }; INITCALL1(STG_REGISTER, protocol_register, &proto_tcpv4); /* Note: must not be declared as its list will be overwritten */ static struct protocol proto_tcpv6 = { .name = "tcpv6", .sock_domain = AF_INET6, .sock_type = SOCK_STREAM, .sock_prot = IPPROTO_TCP, .sock_family = AF_INET6, .sock_addrlen = sizeof(struct sockaddr_in6), .l3_addrlen = 128/8, .accept = &listener_accept, .connect = tcp_connect_server, .bind = tcp_bind_listener, .bind_all = tcp_bind_listeners, .unbind_all = unbind_all_listeners, .enable_all = enable_all_listeners, .get_src = tcp_get_src, .get_dst = tcp_get_dst, .pause = tcp_pause_listener, .add = tcpv6_add_listener, .listeners = LIST_HEAD_INIT(proto_tcpv6.listeners), .nb_listeners = 0, }; INITCALL1(STG_REGISTER, protocol_register, &proto_tcpv6); /* Default TCP parameters, got by opening a temporary TCP socket. */ #ifdef TCP_MAXSEG static THREAD_LOCAL int default_tcp_maxseg = -1; static THREAD_LOCAL int default_tcp6_maxseg = -1; #endif /* Binds ipv4/ipv6 address to socket , unless is set, in which * case we try to bind . is a 2-bit field consisting of : * - 0 : ignore remote address (may even be a NULL pointer) * - 1 : use provided address * - 2 : use provided port * - 3 : use both * * The function supports multiple foreign binding methods : * - linux_tproxy: we directly bind to the foreign address * The second one can be used as a fallback for the first one. * This function returns 0 when everything's OK, 1 if it could not bind, to the * local address, 2 if it could not bind to the foreign address. */ int tcp_bind_socket(int fd, int flags, struct sockaddr_storage *local, struct sockaddr_storage *remote) { struct sockaddr_storage bind_addr; int foreign_ok = 0; int ret; static THREAD_LOCAL int ip_transp_working = 1; static THREAD_LOCAL int ip6_transp_working = 1; switch (local->ss_family) { case AF_INET: if (flags && ip_transp_working) { /* This deserves some explanation. Some platforms will support * multiple combinations of certain methods, so we try the * supported ones until one succeeds. */ if (0 #if defined(IP_TRANSPARENT) || (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == 0) #endif #if defined(IP_FREEBIND) || (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == 0) #endif #if defined(IP_BINDANY) || (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == 0) #endif #if defined(SO_BINDANY) || (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0) #endif ) foreign_ok = 1; else ip_transp_working = 0; } break; case AF_INET6: if (flags && ip6_transp_working) { if (0 #if defined(IPV6_TRANSPARENT) && defined(SOL_IPV6) || (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == 0) #endif #if defined(IP_FREEBIND) || (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == 0) #endif #if defined(IPV6_BINDANY) || (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == 0) #endif #if defined(SO_BINDANY) || (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0) #endif ) foreign_ok = 1; else ip6_transp_working = 0; } break; } if (flags) { memset(&bind_addr, 0, sizeof(bind_addr)); bind_addr.ss_family = remote->ss_family; switch (remote->ss_family) { case AF_INET: if (flags & 1) ((struct sockaddr_in *)&bind_addr)->sin_addr = ((struct sockaddr_in *)remote)->sin_addr; if (flags & 2) ((struct sockaddr_in *)&bind_addr)->sin_port = ((struct sockaddr_in *)remote)->sin_port; break; case AF_INET6: if (flags & 1) ((struct sockaddr_in6 *)&bind_addr)->sin6_addr = ((struct sockaddr_in6 *)remote)->sin6_addr; if (flags & 2) ((struct sockaddr_in6 *)&bind_addr)->sin6_port = ((struct sockaddr_in6 *)remote)->sin6_port; break; default: /* we don't want to try to bind to an unknown address family */ foreign_ok = 0; } } setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); if (foreign_ok) { if (is_inet_addr(&bind_addr)) { ret = bind(fd, (struct sockaddr *)&bind_addr, get_addr_len(&bind_addr)); if (ret < 0) return 2; } } else { if (is_inet_addr(local)) { ret = bind(fd, (struct sockaddr *)local, get_addr_len(local)); if (ret < 0) return 1; } } if (!flags) return 0; if (!foreign_ok) /* we could not bind to a foreign address */ return 2; return 0; } /* conn->dst MUST be valid */ static int create_server_socket(struct connection *conn) { const struct netns_entry *ns = NULL; #ifdef USE_NS if (objt_server(conn->target)) { if (__objt_server(conn->target)->flags & SRV_F_USE_NS_FROM_PP) ns = conn->proxy_netns; else ns = __objt_server(conn->target)->netns; } #endif return my_socketat(ns, conn->dst->ss_family, SOCK_STREAM, IPPROTO_TCP); } /* * This function initiates a TCP connection establishment to the target assigned * to connection using (si->{target,dst}). A source address may be * pointed to by conn->src in case of transparent proxying. Normal source * bind addresses are still determined locally (due to the possible need of a * source port). conn->target may point either to a valid server or to a backend, * depending on conn->target. Only OBJ_TYPE_PROXY and OBJ_TYPE_SERVER are * supported. The parameter is a boolean indicating whether there are data * waiting for being sent or not, in order to adjust data write polling and on * some platforms, the ability to avoid an empty initial ACK. The argument * allows the caller to force using a delayed ACK when establishing the connection * - 0 = no delayed ACK unless data are advertised and backend has tcp-smart-connect * - CONNECT_DELACK_SMART_CONNECT = delayed ACK if backend has tcp-smart-connect, regardless of data * - CONNECT_DELACK_ALWAYS = delayed ACK regardless of backend options * * Note that a pending send_proxy message accounts for data. * * It can return one of : * - SF_ERR_NONE if everything's OK * - SF_ERR_SRVTO if there are no more servers * - SF_ERR_SRVCL if the connection was refused by the server * - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) * - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) * - SF_ERR_INTERNAL for any other purely internal errors * Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted. * * The connection's fd is inserted only when SF_ERR_NONE is returned, otherwise * it's invalid and the caller has nothing to do. */ int tcp_connect_server(struct connection *conn, int flags) { int fd; struct server *srv; struct proxy *be; struct conn_src *src; int use_fastopen = 0; struct sockaddr_storage *addr; conn->flags |= CO_FL_WAIT_L4_CONN; /* connection in progress */ switch (obj_type(conn->target)) { case OBJ_TYPE_PROXY: be = objt_proxy(conn->target); srv = NULL; break; case OBJ_TYPE_SERVER: srv = objt_server(conn->target); be = srv->proxy; /* Make sure we check that we have data before activating * TFO, or we could trigger a kernel issue whereby after * a successful connect() == 0, any subsequent connect() * will return EINPROGRESS instead of EISCONN. */ use_fastopen = (srv->flags & SRV_F_FASTOPEN) && ((flags & (CONNECT_CAN_USE_TFO | CONNECT_HAS_DATA)) == (CONNECT_CAN_USE_TFO | CONNECT_HAS_DATA)); break; default: conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } if (!conn->dst) { conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } fd = conn->handle.fd = create_server_socket(conn); if (fd == -1) { qfprintf(stderr, "Cannot get a server socket.\n"); if (errno == ENFILE) { conn->err_code = CO_ER_SYS_FDLIM; send_log(be, LOG_EMERG, "Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n", be->id, global.maxsock); } else if (errno == EMFILE) { conn->err_code = CO_ER_PROC_FDLIM; send_log(be, LOG_EMERG, "Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n", be->id, global.maxsock); } else if (errno == ENOBUFS || errno == ENOMEM) { conn->err_code = CO_ER_SYS_MEMLIM; send_log(be, LOG_EMERG, "Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n", be->id, global.maxsock); } else if (errno == EAFNOSUPPORT || errno == EPROTONOSUPPORT) { conn->err_code = CO_ER_NOPROTO; } else conn->err_code = CO_ER_SOCK_ERR; /* this is a resource error */ conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } if (fd >= global.maxsock) { /* do not log anything there, it's a normal condition when this option * is used to serialize connections to a server ! */ ha_alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n"); close(fd); conn->err_code = CO_ER_CONF_FDLIM; conn->flags |= CO_FL_ERROR; return SF_ERR_PRXCOND; /* it is a configuration limit */ } if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) || (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)) == -1)) { qfprintf(stderr,"Cannot set client socket to non blocking mode.\n"); close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } if (master == 1 && (fcntl(fd, F_SETFD, FD_CLOEXEC) == -1)) { ha_alert("Cannot set CLOEXEC on client socket.\n"); close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_INTERNAL; } if (be->options & PR_O_TCP_SRV_KA) setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one)); /* allow specific binding : * - server-specific at first * - proxy-specific next */ if (srv && srv->conn_src.opts & CO_SRC_BIND) src = &srv->conn_src; else if (be->conn_src.opts & CO_SRC_BIND) src = &be->conn_src; else src = NULL; if (src) { int ret, flags = 0; if (conn->src && is_inet_addr(conn->src)) { switch (src->opts & CO_SRC_TPROXY_MASK) { case CO_SRC_TPROXY_CLI: conn->flags |= CO_FL_PRIVATE; /* fall through */ case CO_SRC_TPROXY_ADDR: flags = 3; break; case CO_SRC_TPROXY_CIP: case CO_SRC_TPROXY_DYN: conn->flags |= CO_FL_PRIVATE; flags = 1; break; } } #ifdef SO_BINDTODEVICE /* Note: this might fail if not CAP_NET_RAW */ if (src->iface_name) setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, src->iface_name, src->iface_len + 1); #endif if (src->sport_range) { int attempts = 10; /* should be more than enough to find a spare port */ struct sockaddr_storage sa; ret = 1; memcpy(&sa, &src->source_addr, sizeof(sa)); do { /* note: in case of retry, we may have to release a previously * allocated port, hence this loop's construct. */ port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; if (!attempts) break; attempts--; fdinfo[fd].local_port = port_range_alloc_port(src->sport_range); if (!fdinfo[fd].local_port) { conn->err_code = CO_ER_PORT_RANGE; break; } fdinfo[fd].port_range = src->sport_range; set_host_port(&sa, fdinfo[fd].local_port); ret = tcp_bind_socket(fd, flags, &sa, conn->src); if (ret != 0) conn->err_code = CO_ER_CANT_BIND; } while (ret != 0); /* binding NOK */ } else { #ifdef IP_BIND_ADDRESS_NO_PORT static THREAD_LOCAL int bind_address_no_port = 1; setsockopt(fd, SOL_IP, IP_BIND_ADDRESS_NO_PORT, (const void *) &bind_address_no_port, sizeof(int)); #endif ret = tcp_bind_socket(fd, flags, &src->source_addr, conn->src); if (ret != 0) conn->err_code = CO_ER_CANT_BIND; } if (unlikely(ret != 0)) { port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); if (ret == 1) { ha_alert("Cannot bind to source address before connect() for backend %s. Aborting.\n", be->id); send_log(be, LOG_EMERG, "Cannot bind to source address before connect() for backend %s.\n", be->id); } else { ha_alert("Cannot bind to tproxy source address before connect() for backend %s. Aborting.\n", be->id); send_log(be, LOG_EMERG, "Cannot bind to tproxy source address before connect() for backend %s.\n", be->id); } conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } } #if defined(TCP_QUICKACK) /* disabling tcp quick ack now allows the first request to leave the * machine with the first ACK. We only do this if there are pending * data in the buffer. */ if (flags & (CONNECT_DELACK_ALWAYS) || ((flags & CONNECT_DELACK_SMART_CONNECT || (flags & CONNECT_HAS_DATA) || conn->send_proxy_ofs) && (be->options2 & PR_O2_SMARTCON))) setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); #endif #ifdef TCP_USER_TIMEOUT /* there is not much more we can do here when it fails, it's still minor */ if (srv && srv->tcp_ut) setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &srv->tcp_ut, sizeof(srv->tcp_ut)); #endif if (use_fastopen) { #if defined(TCP_FASTOPEN_CONNECT) setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN_CONNECT, &one, sizeof(one)); #endif } if (global.tune.server_sndbuf) setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &global.tune.server_sndbuf, sizeof(global.tune.server_sndbuf)); if (global.tune.server_rcvbuf) setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &global.tune.server_rcvbuf, sizeof(global.tune.server_rcvbuf)); addr = (conn->flags & CO_FL_SOCKS4) ? &srv->socks4_addr : conn->dst; if (connect(fd, (const struct sockaddr *)addr, get_addr_len(addr)) == -1) { if (errno == EINPROGRESS || errno == EALREADY) { /* common case, let's wait for connect status */ conn->flags |= CO_FL_WAIT_L4_CONN; } else if (errno == EISCONN) { /* should normally not happen but if so, indicates that it's OK */ conn->flags &= ~CO_FL_WAIT_L4_CONN; } else if (errno == EAGAIN || errno == EADDRINUSE || errno == EADDRNOTAVAIL) { char *msg; if (errno == EAGAIN || errno == EADDRNOTAVAIL) { msg = "no free ports"; conn->err_code = CO_ER_FREE_PORTS; } else { msg = "local address already in use"; conn->err_code = CO_ER_ADDR_INUSE; } qfprintf(stderr,"Connect() failed for backend %s: %s.\n", be->id, msg); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); send_log(be, LOG_ERR, "Connect() failed for backend %s: %s.\n", be->id, msg); conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } else if (errno == ETIMEDOUT) { //qfprintf(stderr,"Connect(): ETIMEDOUT"); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_SRVTO; } else { // (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM) //qfprintf(stderr,"Connect(): %d", errno); port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port); fdinfo[fd].port_range = NULL; close(fd); conn->err_code = CO_ER_SOCK_ERR; conn->flags |= CO_FL_ERROR; return SF_ERR_SRVCL; } } else { /* connect() == 0, this is great! */ conn->flags &= ~CO_FL_WAIT_L4_CONN; } conn->flags |= CO_FL_ADDR_TO_SET; conn_ctrl_init(conn); /* registers the FD */ fdtab[fd].linger_risk = 1; /* close hard if needed */ if (conn->flags & CO_FL_WAIT_L4_CONN) { fd_want_send(fd); fd_cant_send(fd); } if (conn_xprt_init(conn) < 0) { conn_full_close(conn); conn->flags |= CO_FL_ERROR; return SF_ERR_RESOURCE; } return SF_ERR_NONE; /* connection is OK */ } /* * Retrieves the source address for the socket , with indicating * if we're a listener (=0) or an initiator (!=0). It returns 0 in case of * success, -1 in case of error. The socket's source address is stored in * for bytes. */ int tcp_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir) { if (dir) return getsockname(fd, sa, &salen); else return getpeername(fd, sa, &salen); } /* * Retrieves the original destination address for the socket , with * indicating if we're a listener (=0) or an initiator (!=0). In the case of a * listener, if the original destination address was translated, the original * address is retrieved. It returns 0 in case of success, -1 in case of error. * The socket's source address is stored in for bytes. */ int tcp_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir) { if (dir) return getpeername(fd, sa, &salen); else { int ret = getsockname(fd, sa, &salen); if (ret < 0) return ret; #if defined(USE_TPROXY) && defined(SO_ORIGINAL_DST) /* For TPROXY and Netfilter's NAT, we can retrieve the original * IPv4 address before DNAT/REDIRECT. We must not do that with * other families because v6-mapped IPv4 addresses are still * reported as v4. */ if (((struct sockaddr_storage *)sa)->ss_family == AF_INET && getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, sa, &salen) == 0) return 0; #endif return ret; } } /* XXX: Should probably be elsewhere */ static int compare_sockaddr(struct sockaddr_storage *a, struct sockaddr_storage *b) { if (a->ss_family != b->ss_family) { return (-1); } switch (a->ss_family) { case AF_INET: { struct sockaddr_in *a4 = (void *)a, *b4 = (void *)b; if (a4->sin_port != b4->sin_port) return (-1); return (memcmp(&a4->sin_addr, &b4->sin_addr, sizeof(a4->sin_addr))); } case AF_INET6: { struct sockaddr_in6 *a6 = (void *)a, *b6 = (void *)b; if (a6->sin6_port != b6->sin6_port) return (-1); return (memcmp(&a6->sin6_addr, &b6->sin6_addr, sizeof(a6->sin6_addr))); } default: return (-1); } } #define LI_MANDATORY_FLAGS (LI_O_FOREIGN | LI_O_V6ONLY | LI_O_V4V6) /* When binding the listeners, check if a socket has been sent to us by the * previous process that we could reuse, instead of creating a new one. */ static int tcp_find_compatible_fd(struct listener *l) { struct xfer_sock_list *xfer_sock = xfer_sock_list; int ret = -1; while (xfer_sock) { if (!compare_sockaddr(&xfer_sock->addr, &l->addr)) { if ((l->interface == NULL && xfer_sock->iface == NULL) || (l->interface != NULL && xfer_sock->iface != NULL && !strcmp(l->interface, xfer_sock->iface))) { if ((l->options & LI_MANDATORY_FLAGS) == (xfer_sock->options & LI_MANDATORY_FLAGS)) { if ((xfer_sock->namespace == NULL && l->netns == NULL) #ifdef USE_NS || (xfer_sock->namespace != NULL && l->netns != NULL && !strcmp(xfer_sock->namespace, l->netns->node.key)) #endif ) { break; } } } } xfer_sock = xfer_sock->next; } if (xfer_sock != NULL) { ret = xfer_sock->fd; if (xfer_sock == xfer_sock_list) xfer_sock_list = xfer_sock->next; if (xfer_sock->prev) xfer_sock->prev->next = xfer_sock->next; if (xfer_sock->next) xfer_sock->next->prev = xfer_sock->prev; free(xfer_sock->iface); free(xfer_sock->namespace); free(xfer_sock); } return ret; } #undef L1_MANDATORY_FLAGS /* This function tries to bind a TCPv4/v6 listener. It may return a warning or * an error message in if the message is at most bytes long * (including '\0'). Note that may be NULL if is also zero. * The return value is composed from ERR_ABORT, ERR_WARN, * ERR_ALERT, ERR_RETRYABLE and ERR_FATAL. ERR_NONE indicates that everything * was alright and that no message was returned. ERR_RETRYABLE means that an * error occurred but that it may vanish after a retry (eg: port in use), and * ERR_FATAL indicates a non-fixable error. ERR_WARN and ERR_ALERT do not alter * the meaning of the error, but just indicate that a message is present which * should be displayed with the respective level. Last, ERR_ABORT indicates * that it's pointless to try to start other listeners. No error message is * returned if errlen is NULL. */ int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen) { __label__ tcp_return, tcp_close_return; int fd, err; int ext, ready; socklen_t ready_len; const char *msg = NULL; #ifdef TCP_MAXSEG /* Create a temporary TCP socket to get default parameters we can't * guess. * */ ready_len = sizeof(default_tcp_maxseg); if (default_tcp_maxseg == -1) { default_tcp_maxseg = -2; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd < 0) ha_warning("Failed to create a temporary socket!\n"); else { if (getsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &default_tcp_maxseg, &ready_len) == -1) ha_warning("Failed to get the default value of TCP_MAXSEG\n"); close(fd); } } if (default_tcp6_maxseg == -1) { default_tcp6_maxseg = -2; fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP); if (fd >= 0) { if (getsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &default_tcp6_maxseg, &ready_len) == -1) ha_warning("Failed ot get the default value of TCP_MAXSEG for IPv6\n"); close(fd); } } #endif /* ensure we never return garbage */ if (errlen) *errmsg = 0; if (listener->state != LI_ASSIGNED) return ERR_NONE; /* already bound */ err = ERR_NONE; if (listener->fd == -1) listener->fd = tcp_find_compatible_fd(listener); /* if the listener already has an fd assigned, then we were offered the * fd by an external process (most likely the parent), and we don't want * to create a new socket. However we still want to set a few flags on * the socket. */ fd = listener->fd; ext = (fd >= 0); if (!ext) { fd = my_socketat(listener->netns, listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { err |= ERR_RETRYABLE | ERR_ALERT; msg = "cannot create listening socket"; goto tcp_return; } } if (fd >= global.maxsock) { err |= ERR_FATAL | ERR_ABORT | ERR_ALERT; msg = "not enough free sockets (raise '-n' parameter)"; goto tcp_close_return; } if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) { err |= ERR_FATAL | ERR_ALERT; msg = "cannot make socket non-blocking"; goto tcp_close_return; } if (!ext && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) { /* not fatal but should be reported */ msg = "cannot do so_reuseaddr"; err |= ERR_ALERT; } if (listener->options & LI_O_NOLINGER) setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger, sizeof(struct linger)); else { struct linger tmplinger; socklen_t len = sizeof(tmplinger); if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &tmplinger, &len) == 0 && (tmplinger.l_onoff == 1 || tmplinger.l_linger == 0)) { tmplinger.l_onoff = 0; tmplinger.l_linger = 0; setsockopt(fd, SOL_SOCKET, SO_LINGER, &tmplinger, sizeof(tmplinger)); } } #ifdef SO_REUSEPORT /* OpenBSD and Linux 3.9 support this. As it's present in old libc versions of * Linux, it might return an error that we will silently ignore. */ if (!ext && (global.tune.options & GTUNE_USE_REUSEPORT)) setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one)); #endif if (!ext && (listener->options & LI_O_FOREIGN)) { switch (listener->addr.ss_family) { case AF_INET: if (1 #if defined(IP_TRANSPARENT) && (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == -1) #endif #if defined(IP_FREEBIND) && (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == -1) #endif #if defined(IP_BINDANY) && (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == -1) #endif #if defined(SO_BINDANY) && (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1) #endif ) { msg = "cannot make listening socket transparent"; err |= ERR_ALERT; } break; case AF_INET6: if (1 #if defined(IPV6_TRANSPARENT) && defined(SOL_IPV6) && (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == -1) #endif #if defined(IP_FREEBIND) && (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == -1) #endif #if defined(IPV6_BINDANY) && (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == -1) #endif #if defined(SO_BINDANY) && (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1) #endif ) { msg = "cannot make listening socket transparent"; err |= ERR_ALERT; } break; } } #ifdef SO_BINDTODEVICE /* Note: this might fail if not CAP_NET_RAW */ if (!ext && listener->interface) { if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, listener->interface, strlen(listener->interface) + 1) == -1) { msg = "cannot bind listener to device"; err |= ERR_WARN; } } #endif #if defined(TCP_MAXSEG) if (listener->maxseg > 0) { if (setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &listener->maxseg, sizeof(listener->maxseg)) == -1) { msg = "cannot set MSS"; err |= ERR_WARN; } } else if (ext) { int tmpmaxseg = -1; int defaultmss; socklen_t len = sizeof(tmpmaxseg); if (listener->addr.ss_family == AF_INET) defaultmss = default_tcp_maxseg; else defaultmss = default_tcp6_maxseg; getsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &tmpmaxseg, &len); if (defaultmss > 0 && tmpmaxseg != defaultmss && setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG, &defaultmss, sizeof(defaultmss)) == -1) { msg = "cannot set MSS"; err |= ERR_WARN; } } #endif #if defined(TCP_USER_TIMEOUT) if (listener->tcp_ut) { if (setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &listener->tcp_ut, sizeof(listener->tcp_ut)) == -1) { msg = "cannot set TCP User Timeout"; err |= ERR_WARN; } } else setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &zero, sizeof(zero)); #endif #if defined(TCP_DEFER_ACCEPT) if (listener->options & LI_O_DEF_ACCEPT) { /* defer accept by up to one second */ int accept_delay = 1; if (setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &accept_delay, sizeof(accept_delay)) == -1) { msg = "cannot enable DEFER_ACCEPT"; err |= ERR_WARN; } } else setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &zero, sizeof(zero)); #endif #if defined(TCP_FASTOPEN) if (listener->options & LI_O_TCP_FO) { /* TFO needs a queue length, let's use the configured backlog */ int qlen = listener_backlog(listener); if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)) == -1) { msg = "cannot enable TCP_FASTOPEN"; err |= ERR_WARN; } } else { socklen_t len; int qlen; len = sizeof(qlen); /* Only disable fast open if it was enabled, we don't want * the kernel to create a fast open queue if there's none. */ if (getsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, &len) == 0 && qlen != 0) { if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &zero, sizeof(zero)) == -1) { msg = "cannot disable TCP_FASTOPEN"; err |= ERR_WARN; } } } #endif #if defined(IPV6_V6ONLY) if (listener->options & LI_O_V6ONLY) setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one)); else if (listener->options & LI_O_V4V6) setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &zero, sizeof(zero)); #endif if (!ext && bind(fd, (struct sockaddr *)&listener->addr, listener->proto->sock_addrlen) == -1) { err |= ERR_RETRYABLE | ERR_ALERT; msg = "cannot bind socket"; goto tcp_close_return; } ready = 0; ready_len = sizeof(ready); if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ready, &ready_len) == -1) ready = 0; if (!(ext && ready) && /* only listen if not already done by external process */ listen(fd, listener_backlog(listener)) == -1) { err |= ERR_RETRYABLE | ERR_ALERT; msg = "cannot listen to socket"; goto tcp_close_return; } #if defined(TCP_QUICKACK) if (listener->options & LI_O_NOQUICKACK) setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero)); else setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif /* the socket is ready */ listener->fd = fd; listener->state = LI_LISTEN; fd_insert(fd, listener, listener->proto->accept, thread_mask(listener->bind_conf->bind_thread) & all_threads_mask); tcp_return: if (msg && errlen) { char pn[INET6_ADDRSTRLEN]; addr_to_str(&listener->addr, pn, sizeof(pn)); snprintf(errmsg, errlen, "%s [%s:%d]", msg, pn, get_host_port(&listener->addr)); } return err; tcp_close_return: close(fd); goto tcp_return; } /* This function creates all TCP sockets bound to the protocol entry . * It is intended to be used as the protocol's bind_all() function. * The sockets will be registered but not added to any fd_set, in order not to * loose them across the fork(). A call to enable_all_listeners() is needed * to complete initialization. The return value is composed from ERR_*. * * Must be called with proto_lock held. * */ static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen) { struct listener *listener; int err = ERR_NONE; list_for_each_entry(listener, &proto->listeners, proto_list) { err |= tcp_bind_listener(listener, errmsg, errlen); if (err & ERR_ABORT) break; } return err; } /* Add to the list of tcpv4 listeners, on port . The * listener's state is automatically updated from LI_INIT to LI_ASSIGNED. * The number of listeners for the protocol is updated. * * Must be called with proto_lock held. * */ static void tcpv4_add_listener(struct listener *listener, int port) { if (listener->state != LI_INIT) return; listener->state = LI_ASSIGNED; listener->proto = &proto_tcpv4; ((struct sockaddr_in *)(&listener->addr))->sin_port = htons(port); LIST_ADDQ(&proto_tcpv4.listeners, &listener->proto_list); proto_tcpv4.nb_listeners++; } /* Add to the list of tcpv6 listeners, on port . The * listener's state is automatically updated from LI_INIT to LI_ASSIGNED. * The number of listeners for the protocol is updated. * * Must be called with proto_lock held. * */ static void tcpv6_add_listener(struct listener *listener, int port) { if (listener->state != LI_INIT) return; listener->state = LI_ASSIGNED; listener->proto = &proto_tcpv6; ((struct sockaddr_in *)(&listener->addr))->sin_port = htons(port); LIST_ADDQ(&proto_tcpv6.listeners, &listener->proto_list); proto_tcpv6.nb_listeners++; } /* Pause a listener. Returns < 0 in case of failure, 0 if the listener * was totally stopped, or > 0 if correctly paused. */ int tcp_pause_listener(struct listener *l) { if (shutdown(l->fd, SHUT_WR) != 0) return -1; /* Solaris dies here */ if (listen(l->fd, listener_backlog(l)) != 0) return -1; /* OpenBSD dies here */ if (shutdown(l->fd, SHUT_RD) != 0) return -1; /* should always be OK */ return 1; } /* * Execute the "set-src" action. May be called from {tcp,http}request. * It only changes the address and tries to preserve the original port. If the * previous family was neither AF_INET nor AF_INET6, the port is set to zero. */ enum act_return tcp_action_req_set_src(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *cli_conn; if ((cli_conn = objt_conn(sess->origin)) && conn_get_src(cli_conn)) { struct sample *smp; smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_ADDR); if (smp) { int port = get_net_port(cli_conn->src); if (smp->data.type == SMP_T_IPV4) { ((struct sockaddr_in *)cli_conn->src)->sin_family = AF_INET; ((struct sockaddr_in *)cli_conn->src)->sin_addr.s_addr = smp->data.u.ipv4.s_addr; ((struct sockaddr_in *)cli_conn->src)->sin_port = port; } else if (smp->data.type == SMP_T_IPV6) { ((struct sockaddr_in6 *)cli_conn->src)->sin6_family = AF_INET6; memcpy(&((struct sockaddr_in6 *)cli_conn->src)->sin6_addr, &smp->data.u.ipv6, sizeof(struct in6_addr)); ((struct sockaddr_in6 *)cli_conn->src)->sin6_port = port; } } cli_conn->flags |= CO_FL_ADDR_FROM_SET; } return ACT_RET_CONT; } /* * Execute the "set-dst" action. May be called from {tcp,http}request. * It only changes the address and tries to preserve the original port. If the * previous family was neither AF_INET nor AF_INET6, the port is set to zero. */ enum act_return tcp_action_req_set_dst(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *cli_conn; if ((cli_conn = objt_conn(sess->origin)) && conn_get_dst(cli_conn)) { struct sample *smp; smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_ADDR); if (smp) { int port = get_net_port(cli_conn->dst); if (smp->data.type == SMP_T_IPV4) { ((struct sockaddr_in *)cli_conn->dst)->sin_family = AF_INET; ((struct sockaddr_in *)cli_conn->dst)->sin_addr.s_addr = smp->data.u.ipv4.s_addr; } else if (smp->data.type == SMP_T_IPV6) { ((struct sockaddr_in6 *)cli_conn->dst)->sin6_family = AF_INET6; memcpy(&((struct sockaddr_in6 *)cli_conn->dst)->sin6_addr, &smp->data.u.ipv6, sizeof(struct in6_addr)); ((struct sockaddr_in6 *)cli_conn->dst)->sin6_port = port; } cli_conn->flags |= CO_FL_ADDR_TO_SET; } } return ACT_RET_CONT; } /* * Execute the "set-src-port" action. May be called from {tcp,http}request. * We must test the sin_family before setting the port. If the address family * is neither AF_INET nor AF_INET6, the address is forced to AF_INET "0.0.0.0" * and the port is assigned. */ enum act_return tcp_action_req_set_src_port(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *cli_conn; if ((cli_conn = objt_conn(sess->origin)) && conn_get_src(cli_conn)) { struct sample *smp; smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT); if (smp) { if (cli_conn->src->ss_family == AF_INET6) { ((struct sockaddr_in6 *)cli_conn->src)->sin6_port = htons(smp->data.u.sint); } else { if (cli_conn->src->ss_family != AF_INET) { cli_conn->src->ss_family = AF_INET; ((struct sockaddr_in *)cli_conn->src)->sin_addr.s_addr = 0; } ((struct sockaddr_in *)cli_conn->src)->sin_port = htons(smp->data.u.sint); } } } return ACT_RET_CONT; } /* * Execute the "set-dst-port" action. May be called from {tcp,http}request. * We must test the sin_family before setting the port. If the address family * is neither AF_INET nor AF_INET6, the address is forced to AF_INET "0.0.0.0" * and the port is assigned. */ enum act_return tcp_action_req_set_dst_port(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *cli_conn; if ((cli_conn = objt_conn(sess->origin)) && conn_get_dst(cli_conn)) { struct sample *smp; smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT); if (smp) { if (cli_conn->dst->ss_family == AF_INET6) { ((struct sockaddr_in6 *)cli_conn->dst)->sin6_port = htons(smp->data.u.sint); } else { if (cli_conn->dst->ss_family != AF_INET) { cli_conn->dst->ss_family = AF_INET; ((struct sockaddr_in *)cli_conn->dst)->sin_addr.s_addr = 0; } ((struct sockaddr_in *)cli_conn->dst)->sin_port = htons(smp->data.u.sint); } } } return ACT_RET_CONT; } /* Executes the "silent-drop" action. May be called from {tcp,http}{request,response} */ static enum act_return tcp_exec_action_silent_drop(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *strm, int flags) { struct connection *conn = objt_conn(sess->origin); if (!conn) goto out; if (!conn_ctrl_ready(conn)) goto out; #ifdef TCP_QUICKACK /* drain is needed only to send the quick ACK */ conn_sock_drain(conn); /* re-enable quickack if it was disabled to ack all data and avoid * retransmits from the client that might trigger a real reset. */ setsockopt(conn->handle.fd, SOL_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif /* lingering must absolutely be disabled so that we don't send a * shutdown(), this is critical to the TCP_REPAIR trick. When no stream * is present, returning with ERR will cause lingering to be disabled. */ if (strm) strm->si[0].flags |= SI_FL_NOLINGER; /* We're on the client-facing side, we must force to disable lingering to * ensure we will use an RST exclusively and kill any pending data. */ fdtab[conn->handle.fd].linger_risk = 1; #ifdef TCP_REPAIR if (setsockopt(conn->handle.fd, SOL_TCP, TCP_REPAIR, &one, sizeof(one)) == 0) { /* socket will be quiet now */ goto out; } #endif /* either TCP_REPAIR is not defined or it failed (eg: permissions). * Let's fall back on the TTL trick, though it only works for routed * network and has no effect on local net. */ #ifdef IP_TTL setsockopt(conn->handle.fd, SOL_IP, IP_TTL, &one, sizeof(one)); #endif out: /* kill the stream if any */ if (strm) { channel_abort(&strm->req); channel_abort(&strm->res); strm->req.analysers &= AN_REQ_FLT_END; strm->res.analysers &= AN_RES_FLT_END; if (strm->flags & SF_BE_ASSIGNED) _HA_ATOMIC_ADD(&strm->be->be_counters.denied_req, 1); if (!(strm->flags & SF_ERR_MASK)) strm->flags |= SF_ERR_PRXCOND; if (!(strm->flags & SF_FINST_MASK)) strm->flags |= SF_FINST_R; } _HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); return ACT_RET_ABRT; } /* parse "set-{src,dst}[-port]" action */ enum act_parse_ret tcp_parse_set_src_dst(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { int cur_arg; struct sample_expr *expr; unsigned int where; cur_arg = *orig_arg; expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args, NULL); if (!expr) return ACT_RET_PRS_ERR; where = 0; if (px->cap & PR_CAP_FE) where |= SMP_VAL_FE_HRQ_HDR; if (px->cap & PR_CAP_BE) where |= SMP_VAL_BE_HRQ_HDR; if (!(expr->fetch->val & where)) { memprintf(err, "fetch method '%s' extracts information from '%s', none of which is available here", args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); return ACT_RET_PRS_ERR; } rule->arg.expr = expr; rule->action = ACT_CUSTOM; if (!strcmp(args[*orig_arg-1], "set-src")) { rule->action_ptr = tcp_action_req_set_src; } else if (!strcmp(args[*orig_arg-1], "set-src-port")) { rule->action_ptr = tcp_action_req_set_src_port; } else if (!strcmp(args[*orig_arg-1], "set-dst")) { rule->action_ptr = tcp_action_req_set_dst; } else if (!strcmp(args[*orig_arg-1], "set-dst-port")) { rule->action_ptr = tcp_action_req_set_dst_port; } else { return ACT_RET_PRS_ERR; } (*orig_arg)++; return ACT_RET_PRS_OK; } /* Parse a "silent-drop" action. It takes no argument. It returns ACT_RET_PRS_OK on * success, ACT_RET_PRS_ERR on error. */ static enum act_parse_ret tcp_parse_silent_drop(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { rule->action = ACT_CUSTOM; rule->action_ptr = tcp_exec_action_silent_drop; return ACT_RET_PRS_OK; } /************************************************************************/ /* All supported sample fetch functions must be declared here */ /************************************************************************/ /* fetch the connection's source IPv4/IPv6 address */ int smp_fetch_src(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *cli_conn = objt_conn(smp->sess->origin); if (!cli_conn) return 0; if (!conn_get_src(cli_conn)) return 0; switch (cli_conn->src->ss_family) { case AF_INET: smp->data.u.ipv4 = ((struct sockaddr_in *)cli_conn->src)->sin_addr; smp->data.type = SMP_T_IPV4; break; case AF_INET6: smp->data.u.ipv6 = ((struct sockaddr_in6 *)cli_conn->src)->sin6_addr; smp->data.type = SMP_T_IPV6; break; default: return 0; } smp->flags = 0; return 1; } /* set temp integer to the connection's source port */ static int smp_fetch_sport(const struct arg *args, struct sample *smp, const char *k, void *private) { struct connection *cli_conn = objt_conn(smp->sess->origin); if (!cli_conn) return 0; if (!conn_get_src(cli_conn)) return 0; smp->data.type = SMP_T_SINT; if (!(smp->data.u.sint = get_host_port(cli_conn->src))) return 0; smp->flags = 0; return 1; } /* fetch the connection's destination IPv4/IPv6 address */ static int smp_fetch_dst(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *cli_conn = objt_conn(smp->sess->origin); if (!cli_conn) return 0; if (!conn_get_dst(cli_conn)) return 0; switch (cli_conn->dst->ss_family) { case AF_INET: smp->data.u.ipv4 = ((struct sockaddr_in *)cli_conn->dst)->sin_addr; smp->data.type = SMP_T_IPV4; break; case AF_INET6: smp->data.u.ipv6 = ((struct sockaddr_in6 *)cli_conn->dst)->sin6_addr; smp->data.type = SMP_T_IPV6; break; default: return 0; } smp->flags = 0; return 1; } /* check if the destination address of the front connection is local to the * system or if it was intercepted. */ int smp_fetch_dst_is_local(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct listener *li = smp->sess->listener; if (!conn) return 0; if (!conn_get_dst(conn)) return 0; smp->data.type = SMP_T_BOOL; smp->flags = 0; smp->data.u.sint = addr_is_local(li->netns, conn->dst); return smp->data.u.sint >= 0; } /* check if the source address of the front connection is local to the system * or not. */ int smp_fetch_src_is_local(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = objt_conn(smp->sess->origin); struct listener *li = smp->sess->listener; if (!conn) return 0; if (!conn_get_src(conn)) return 0; smp->data.type = SMP_T_BOOL; smp->flags = 0; smp->data.u.sint = addr_is_local(li->netns, conn->src); return smp->data.u.sint >= 0; } /* set temp integer to the frontend connexion's destination port */ static int smp_fetch_dport(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *cli_conn = objt_conn(smp->sess->origin); if (!cli_conn) return 0; if (!conn_get_dst(cli_conn)) return 0; smp->data.type = SMP_T_SINT; if (!(smp->data.u.sint = get_host_port(cli_conn->dst))) return 0; smp->flags = 0; return 1; } #ifdef TCP_INFO /* Validates the arguments passed to "fc_*" fetch keywords returning a time * value. These keywords support an optional string representing the unit of the * result: "us" for microseconds and "ms" for milliseconds". Returns 0 on error * and non-zero if OK. */ static int val_fc_time_value(struct arg *args, char **err) { if (args[0].type == ARGT_STR) { if (strcmp(args[0].data.str.area, "us") == 0) { free(args[0].data.str.area); args[0].type = ARGT_SINT; args[0].data.sint = TIME_UNIT_US; } else if (strcmp(args[0].data.str.area, "ms") == 0) { free(args[0].data.str.area); args[0].type = ARGT_SINT; args[0].data.sint = TIME_UNIT_MS; } else { memprintf(err, "expects 'us' or 'ms', got '%s'", args[0].data.str.area); return 0; } } else { memprintf(err, "Unexpected arg type"); return 0; } return 1; } /* Validates the arguments passed to "fc_*" fetch keywords returning a * counter. These keywords should be used without any keyword, but because of a * bug in previous versions, an optional string argument may be passed. In such * case, the argument is ignored and a warning is emitted. Returns 0 on error * and non-zero if OK. */ static int var_fc_counter(struct arg *args, char **err) { if (args[0].type != ARGT_STOP) { ha_warning("no argument supported for 'fc_*' sample expressions returning counters.\n"); if (args[0].type == ARGT_STR) free(args[0].data.str.area); args[0].type = ARGT_STOP; } return 1; } /* Returns some tcp_info data if it's available. "dir" must be set to 0 if * the client connection is required, otherwise it is set to 1. "val" represents * the required value. * If the function fails it returns 0, otherwise it returns 1 and "result" is filled. */ static inline int get_tcp_info(const struct arg *args, struct sample *smp, int dir, int val) { struct connection *conn; struct tcp_info info; socklen_t optlen; /* strm can be null. */ if (!smp->strm) return 0; /* get the object associated with the stream interface.The * object can be other thing than a connection. For example, * it be a appctx. */ conn = cs_conn(objt_cs(smp->strm->si[dir].end)); if (!conn) return 0; /* The fd may not be available for the tcp_info struct, and the syscal can fail. */ optlen = sizeof(info); if (getsockopt(conn->handle.fd, SOL_TCP, TCP_INFO, &info, &optlen) == -1) return 0; /* extract the value. */ smp->data.type = SMP_T_SINT; switch (val) { case 0: smp->data.u.sint = info.tcpi_rtt; break; case 1: smp->data.u.sint = info.tcpi_rttvar; break; #if defined(__linux__) /* these ones are common to all Linux versions */ case 2: smp->data.u.sint = info.tcpi_unacked; break; case 3: smp->data.u.sint = info.tcpi_sacked; break; case 4: smp->data.u.sint = info.tcpi_lost; break; case 5: smp->data.u.sint = info.tcpi_retrans; break; case 6: smp->data.u.sint = info.tcpi_fackets; break; case 7: smp->data.u.sint = info.tcpi_reordering; break; #elif defined(__FreeBSD__) || defined(__NetBSD__) /* the ones are found on FreeBSD and NetBSD featuring TCP_INFO */ case 2: smp->data.u.sint = info.__tcpi_unacked; break; case 3: smp->data.u.sint = info.__tcpi_sacked; break; case 4: smp->data.u.sint = info.__tcpi_lost; break; case 5: smp->data.u.sint = info.__tcpi_retrans; break; case 6: smp->data.u.sint = info.__tcpi_fackets; break; case 7: smp->data.u.sint = info.__tcpi_reordering; break; #endif default: return 0; } return 1; } /* get the mean rtt of a client connexion */ static int smp_fetch_fc_rtt(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 0)) return 0; /* By default or if explicitly specified, convert rtt to ms */ if (!args || args[0].type == ARGT_STOP || args[0].data.sint == TIME_UNIT_MS) smp->data.u.sint = (smp->data.u.sint + 500) / 1000; return 1; } /* get the variance of the mean rtt of a client connexion */ static int smp_fetch_fc_rttvar(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 1)) return 0; /* By default or if explicitly specified, convert rttvar to ms */ if (!args || args[0].type == ARGT_STOP || args[0].data.sint == TIME_UNIT_MS) smp->data.u.sint = (smp->data.u.sint + 500) / 1000; return 1; } #if defined(__linux__) || defined(__FreeBSD__) || defined(__NetBSD__) /* get the unacked counter on a client connexion */ static int smp_fetch_fc_unacked(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 2)) return 0; return 1; } /* get the sacked counter on a client connexion */ static int smp_fetch_fc_sacked(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 3)) return 0; return 1; } /* get the lost counter on a client connexion */ static int smp_fetch_fc_lost(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 4)) return 0; return 1; } /* get the retrans counter on a client connexion */ static int smp_fetch_fc_retrans(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 5)) return 0; return 1; } /* get the fackets counter on a client connexion */ static int smp_fetch_fc_fackets(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 6)) return 0; return 1; } /* get the reordering counter on a client connexion */ static int smp_fetch_fc_reordering(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!get_tcp_info(args, smp, 0, 7)) return 0; return 1; } #endif // linux || freebsd || netbsd #endif // TCP_INFO #ifdef IPV6_V6ONLY /* parse the "v4v6" bind keyword */ static int bind_parse_v4v6(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET6) l->options |= LI_O_V4V6; } return 0; } /* parse the "v6only" bind keyword */ static int bind_parse_v6only(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET6) l->options |= LI_O_V6ONLY; } return 0; } #endif #ifdef CONFIG_HAP_TRANSPARENT /* parse the "transparent" bind keyword */ static int bind_parse_transparent(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->options |= LI_O_FOREIGN; } return 0; } #endif #ifdef TCP_DEFER_ACCEPT /* parse the "defer-accept" bind keyword */ static int bind_parse_defer_accept(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->options |= LI_O_DEF_ACCEPT; } return 0; } #endif #ifdef TCP_FASTOPEN /* parse the "tfo" bind keyword */ static int bind_parse_tfo(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->options |= LI_O_TCP_FO; } return 0; } #endif #ifdef TCP_MAXSEG /* parse the "mss" bind keyword */ static int bind_parse_mss(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; int mss; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing MSS value", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } mss = atoi(args[cur_arg + 1]); if (!mss || abs(mss) > 65535) { memprintf(err, "'%s' : expects an MSS with and absolute value between 1 and 65535", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->maxseg = mss; } return 0; } #endif #ifdef TCP_USER_TIMEOUT /* parse the "tcp-ut" bind keyword */ static int bind_parse_tcp_ut(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { const char *ptr = NULL; struct listener *l; unsigned int timeout; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing TCP User Timeout value", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } ptr = parse_time_err(args[cur_arg + 1], &timeout, TIME_UNIT_MS); if (ptr == PARSE_TIME_OVER) { memprintf(err, "timer overflow in argument '%s' to '%s' (maximum value is 2147483647 ms or ~24.8 days)", args[cur_arg+1], args[cur_arg]); return ERR_ALERT | ERR_FATAL; } else if (ptr == PARSE_TIME_UNDER) { memprintf(err, "timer underflow in argument '%s' to '%s' (minimum non-null value is 1 ms)", args[cur_arg+1], args[cur_arg]); return ERR_ALERT | ERR_FATAL; } else if (ptr) { memprintf(err, "'%s' : expects a positive delay in milliseconds", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->tcp_ut = timeout; } return 0; } #endif #ifdef SO_BINDTODEVICE /* parse the "interface" bind keyword */ static int bind_parse_interface(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing interface name", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } list_for_each_entry(l, &conf->listeners, by_bind) { if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) l->interface = strdup(args[cur_arg + 1]); } return 0; } #endif #ifdef USE_NS /* parse the "namespace" bind keyword */ static int bind_parse_namespace(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; char *namespace = NULL; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing namespace id", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } namespace = args[cur_arg + 1]; list_for_each_entry(l, &conf->listeners, by_bind) { l->netns = netns_store_lookup(namespace, strlen(namespace)); if (l->netns == NULL) l->netns = netns_store_insert(namespace); if (l->netns == NULL) { ha_alert("Cannot open namespace '%s'.\n", args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } } return 0; } #endif #ifdef TCP_USER_TIMEOUT /* parse the "tcp-ut" server keyword */ static int srv_parse_tcp_ut(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { const char *ptr = NULL; unsigned int timeout; if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing TCP User Timeout value", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } ptr = parse_time_err(args[*cur_arg + 1], &timeout, TIME_UNIT_MS); if (ptr == PARSE_TIME_OVER) { memprintf(err, "timer overflow in argument '%s' to '%s' (maximum value is 2147483647 ms or ~24.8 days)", args[*cur_arg+1], args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } else if (ptr == PARSE_TIME_UNDER) { memprintf(err, "timer underflow in argument '%s' to '%s' (minimum non-null value is 1 ms)", args[*cur_arg+1], args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } else if (ptr) { memprintf(err, "'%s' : expects a positive delay in milliseconds", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if (newsrv->addr.ss_family == AF_INET || newsrv->addr.ss_family == AF_INET6) newsrv->tcp_ut = timeout; return 0; } #endif /* Note: must not be declared as its list will be overwritten. * Note: fetches that may return multiple types must be declared as the lowest * common denominator, the type that can be casted into all other ones. For * instance v4/v6 must be declared v4. */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "dst", smp_fetch_dst, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI }, { "dst_is_local", smp_fetch_dst_is_local, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, { "dst_port", smp_fetch_dport, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, { "src", smp_fetch_src, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI }, { "src_is_local", smp_fetch_src_is_local, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI }, { "src_port", smp_fetch_sport, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, #ifdef TCP_INFO { "fc_rtt", smp_fetch_fc_rtt, ARG1(0,STR), val_fc_time_value, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_rttvar", smp_fetch_fc_rttvar, ARG1(0,STR), val_fc_time_value, SMP_T_SINT, SMP_USE_L4CLI }, #if defined(__linux__) || defined(__FreeBSD__) || defined(__NetBSD__) { "fc_unacked", smp_fetch_fc_unacked, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_sacked", smp_fetch_fc_sacked, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_retrans", smp_fetch_fc_retrans, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_fackets", smp_fetch_fc_fackets, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_lost", smp_fetch_fc_lost, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, { "fc_reordering", smp_fetch_fc_reordering, ARG1(0,STR), var_fc_counter, SMP_T_SINT, SMP_USE_L4CLI }, #endif // linux || freebsd || netbsd #endif // TCP_INFO { /* END */ }, }}; INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); /************************************************************************/ /* All supported bind keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct bind_kw_list bind_kws = { "TCP", { }, { #ifdef TCP_DEFER_ACCEPT { "defer-accept", bind_parse_defer_accept, 0 }, /* wait for some data for 1 second max before doing accept */ #endif #ifdef SO_BINDTODEVICE { "interface", bind_parse_interface, 1 }, /* specifically bind to this interface */ #endif #ifdef TCP_MAXSEG { "mss", bind_parse_mss, 1 }, /* set MSS of listening socket */ #endif #ifdef TCP_USER_TIMEOUT { "tcp-ut", bind_parse_tcp_ut, 1 }, /* set User Timeout on listening socket */ #endif #ifdef TCP_FASTOPEN { "tfo", bind_parse_tfo, 0 }, /* enable TCP_FASTOPEN of listening socket */ #endif #ifdef CONFIG_HAP_TRANSPARENT { "transparent", bind_parse_transparent, 0 }, /* transparently bind to the specified addresses */ #endif #ifdef IPV6_V6ONLY { "v4v6", bind_parse_v4v6, 0 }, /* force socket to bind to IPv4+IPv6 */ { "v6only", bind_parse_v6only, 0 }, /* force socket to bind to IPv6 only */ #endif #ifdef USE_NS { "namespace", bind_parse_namespace, 1 }, #endif /* the versions with the NULL parse function*/ { "defer-accept", NULL, 0 }, { "interface", NULL, 1 }, { "mss", NULL, 1 }, { "transparent", NULL, 0 }, { "v4v6", NULL, 0 }, { "v6only", NULL, 0 }, { NULL, NULL, 0 }, }}; INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws); static struct srv_kw_list srv_kws = { "TCP", { }, { #ifdef TCP_USER_TIMEOUT { "tcp-ut", srv_parse_tcp_ut, 1, 1 }, /* set TCP user timeout on server */ #endif { NULL, NULL, 0 }, }}; INITCALL1(STG_REGISTER, srv_register_keywords, &srv_kws); static struct action_kw_list tcp_req_conn_actions = {ILH, { { "set-src", tcp_parse_set_src_dst }, { "set-src-port", tcp_parse_set_src_dst }, { "set-dst" , tcp_parse_set_src_dst }, { "set-dst-port", tcp_parse_set_src_dst }, { "silent-drop", tcp_parse_silent_drop }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_req_conn_keywords_register, &tcp_req_conn_actions); static struct action_kw_list tcp_req_sess_actions = {ILH, { { "set-src", tcp_parse_set_src_dst }, { "set-src-port", tcp_parse_set_src_dst }, { "set-dst" , tcp_parse_set_src_dst }, { "set-dst-port", tcp_parse_set_src_dst }, { "silent-drop", tcp_parse_silent_drop }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_req_sess_keywords_register, &tcp_req_sess_actions); static struct action_kw_list tcp_req_cont_actions = {ILH, { { "set-dst" , tcp_parse_set_src_dst }, { "set-dst-port", tcp_parse_set_src_dst }, { "silent-drop", tcp_parse_silent_drop }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &tcp_req_cont_actions); static struct action_kw_list tcp_res_cont_actions = {ILH, { { "silent-drop", tcp_parse_silent_drop }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &tcp_res_cont_actions); static struct action_kw_list http_req_actions = {ILH, { { "silent-drop", tcp_parse_silent_drop }, { "set-src", tcp_parse_set_src_dst }, { "set-src-port", tcp_parse_set_src_dst }, { "set-dst", tcp_parse_set_src_dst }, { "set-dst-port", tcp_parse_set_src_dst }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions); static struct action_kw_list http_res_actions = {ILH, { { "silent-drop", tcp_parse_silent_drop }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_res_keywords_register, &http_res_actions); REGISTER_BUILD_OPTS("Built with transparent proxy support using:" #if defined(IP_TRANSPARENT) " IP_TRANSPARENT" #endif #if defined(IPV6_TRANSPARENT) " IPV6_TRANSPARENT" #endif #if defined(IP_FREEBIND) " IP_FREEBIND" #endif #if defined(IP_BINDANY) " IP_BINDANY" #endif #if defined(IPV6_BINDANY) " IPV6_BINDANY" #endif #if defined(SO_BINDANY) " SO_BINDANY" #endif ""); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */