/* * Memory management functions. * * Copyright 2000-2007 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HAP_LOCAL_POOLS /* These are the most common pools, expected to be initialized first. These * ones are allocated from an array, allowing to map them to an index. */ struct pool_head pool_base_start[MAX_BASE_POOLS] = { }; unsigned int pool_base_count = 0; /* These ones are initialized per-thread on startup by init_pools() */ struct pool_cache_head pool_cache[MAX_THREADS][MAX_BASE_POOLS]; THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */ THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */ #endif static struct list pools = LIST_HEAD_INIT(pools); int mem_poison_byte = -1; #ifdef DEBUG_FAIL_ALLOC static int mem_fail_rate = 0; static int mem_should_fail(const struct pool_head *); #endif /* Try to find an existing shared pool with the same characteristics and * returns it, otherwise creates this one. NULL is returned if no memory * is available for a new creation. Two flags are supported : * - MEM_F_SHARED to indicate that the pool may be shared with other users * - MEM_F_EXACT to indicate that the size must not be rounded up */ struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags) { struct pool_head *pool; struct pool_head *entry; struct list *start; unsigned int align; int idx __maybe_unused; /* We need to store a (void *) at the end of the chunks. Since we know * that the malloc() function will never return such a small size, * let's round the size up to something slightly bigger, in order to * ease merging of entries. Note that the rounding is a power of two. * This extra (void *) is not accounted for in the size computation * so that the visible parts outside are not affected. * * Note: for the LRU cache, we need to store 2 doubly-linked lists. */ if (!(flags & MEM_F_EXACT)) { align = 4 * sizeof(void *); // 2 lists = 4 pointers min size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA; } /* TODO: thread: we do not lock pool list for now because all pools are * created during HAProxy startup (so before threads creation) */ start = &pools; pool = NULL; list_for_each_entry(entry, &pools, list) { if (entry->size == size) { /* either we can share this place and we take it, or * we look for a shareable one or for the next position * before which we will insert a new one. */ if (flags & entry->flags & MEM_F_SHARED) { /* we can share this one */ pool = entry; DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name); break; } } else if (entry->size > size) { /* insert before this one */ start = &entry->list; break; } } if (!pool) { #ifdef CONFIG_HAP_LOCAL_POOLS if (pool_base_count < MAX_BASE_POOLS) pool = &pool_base_start[pool_base_count++]; if (!pool) { /* look for a freed entry */ for (entry = pool_base_start; entry != pool_base_start + MAX_BASE_POOLS; entry++) { if (!entry->size) { pool = entry; break; } } } #endif if (!pool) pool = calloc(1, sizeof(*pool)); if (!pool) return NULL; if (name) strlcpy2(pool->name, name, sizeof(pool->name)); pool->size = size; pool->flags = flags; LIST_ADDQ(start, &pool->list); #ifdef CONFIG_HAP_LOCAL_POOLS /* update per-thread pool cache if necessary */ idx = pool_get_index(pool); if (idx >= 0) { int thr; for (thr = 0; thr < MAX_THREADS; thr++) pool_cache[thr][idx].size = size; } #endif HA_SPIN_INIT(&pool->lock); } pool->users++; return pool; } #ifdef CONFIG_HAP_LOCAL_POOLS /* Evicts some of the oldest objects from the local cache, pushing them to the * global pool. */ void pool_evict_from_cache() { struct pool_cache_item *item; struct pool_cache_head *ph; do { item = LIST_PREV(&ti->pool_lru_head, struct pool_cache_item *, by_lru); /* note: by definition we remove oldest objects so they also are the * oldest in their own pools, thus their next is the pool's head. */ ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list); LIST_DEL(&item->by_pool); LIST_DEL(&item->by_lru); ph->count--; pool_cache_count--; pool_cache_bytes -= ph->size; __pool_free(pool_base_start + (ph - pool_cache[tid]), item); } while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8); } #endif #ifdef CONFIG_HAP_LOCKLESS_POOLS /* Allocates new entries for pool until there are at least + 1 * available, then returns the last one for immediate use, so that at least * are left available in the pool upon return. NULL is returned if the * last entry could not be allocated. It's important to note that at least one * allocation is always performed even if there are enough entries in the pool. * A call to the garbage collector is performed at most once in case malloc() * returns an error, before returning NULL. */ void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr = NULL, **free_list; int failed = 0; int size = pool->size; int limit = pool->limit; int allocated = pool->allocated, allocated_orig = allocated; /* stop point */ avail += pool->used; while (1) { if (limit && allocated >= limit) { _HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); activity[tid].pool_fail++; return NULL; } swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->allocated, POOL_AVG_SAMPLES/4); ptr = pool_alloc_area(size + POOL_EXTRA); if (!ptr) { _HA_ATOMIC_ADD(&pool->failed, 1); if (failed) { activity[tid].pool_fail++; return NULL; } failed++; pool_gc(pool); continue; } if (++allocated > avail) break; free_list = pool->free_list; do { *POOL_LINK(pool, ptr) = free_list; __ha_barrier_store(); } while (_HA_ATOMIC_CAS(&pool->free_list, &free_list, ptr) == 0); } __ha_barrier_atomic_store(); _HA_ATOMIC_ADD(&pool->allocated, allocated - allocated_orig); _HA_ATOMIC_ADD(&pool->used, 1); #ifdef DEBUG_MEMORY_POOLS /* keep track of where the element was allocated from */ *POOL_LINK(pool, ptr) = (void *)pool; #endif return ptr; } void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr; ptr = __pool_refill_alloc(pool, avail); return ptr; } /* * This function frees whatever can be freed in pool . */ void pool_flush(struct pool_head *pool) { struct pool_free_list cmp, new; void **next, *temp; int removed = 0; if (!pool) return; HA_SPIN_LOCK(POOL_LOCK, &pool->lock); do { cmp.free_list = pool->free_list; cmp.seq = pool->seq; new.free_list = NULL; new.seq = cmp.seq + 1; } while (!_HA_ATOMIC_DWCAS(&pool->free_list, &cmp, &new)); __ha_barrier_atomic_store(); HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); next = cmp.free_list; while (next) { temp = next; next = *POOL_LINK(pool, temp); removed++; pool_free_area(temp, pool->size + POOL_EXTRA); } pool->free_list = next; _HA_ATOMIC_SUB(&pool->allocated, removed); /* here, we should have pool->allocate == pool->used */ } /* * This function frees whatever can be freed in all pools, but respecting * the minimum thresholds imposed by owners. It makes sure to be alone to * run by using thread_isolate(). is unused. */ void pool_gc(struct pool_head *pool_ctx) { struct pool_head *entry; int isolated = thread_isolated(); if (!isolated) thread_isolate(); list_for_each_entry(entry, &pools, list) { while ((int)((volatile int)entry->allocated - (volatile int)entry->used) > (int)entry->minavail) { struct pool_free_list cmp, new; cmp.seq = entry->seq; __ha_barrier_load(); cmp.free_list = entry->free_list; __ha_barrier_load(); if (cmp.free_list == NULL) break; new.free_list = *POOL_LINK(entry, cmp.free_list); new.seq = cmp.seq + 1; if (HA_ATOMIC_DWCAS(&entry->free_list, &cmp, &new) == 0) continue; pool_free_area(cmp.free_list, entry->size + POOL_EXTRA); _HA_ATOMIC_SUB(&entry->allocated, 1); } } if (!isolated) thread_release(); } #else /* CONFIG_HAP_LOCKLESS_POOLS */ /* Allocates new entries for pool until there are at least + 1 * available, then returns the last one for immediate use, so that at least * are left available in the pool upon return. NULL is returned if the * last entry could not be allocated. It's important to note that at least one * allocation is always performed even if there are enough entries in the pool. * A call to the garbage collector is performed at most once in case malloc() * returns an error, before returning NULL. */ void *__pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr = NULL; int failed = 0; #ifdef DEBUG_FAIL_ALLOC if (mem_should_fail(pool)) return NULL; #endif /* stop point */ avail += pool->used; while (1) { if (pool->limit && pool->allocated >= pool->limit) { activity[tid].pool_fail++; return NULL; } swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->allocated, POOL_AVG_SAMPLES/4); HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); ptr = pool_alloc_area(pool->size + POOL_EXTRA); #ifdef DEBUG_MEMORY_POOLS /* keep track of where the element was allocated from. This * is done out of the lock so that the system really allocates * the data without harming other threads waiting on the lock. */ if (ptr) *POOL_LINK(pool, ptr) = (void *)pool; #endif HA_SPIN_LOCK(POOL_LOCK, &pool->lock); if (!ptr) { pool->failed++; if (failed) { activity[tid].pool_fail++; return NULL; } failed++; pool_gc(pool); continue; } if (++pool->allocated > avail) break; *POOL_LINK(pool, ptr) = (void *)pool->free_list; pool->free_list = ptr; } pool->used++; return ptr; } void *pool_refill_alloc(struct pool_head *pool, unsigned int avail) { void *ptr; HA_SPIN_LOCK(POOL_LOCK, &pool->lock); ptr = __pool_refill_alloc(pool, avail); HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); return ptr; } /* * This function frees whatever can be freed in pool . */ void pool_flush(struct pool_head *pool) { void *temp; if (!pool) return; while (1) { HA_SPIN_LOCK(POOL_LOCK, &pool->lock); temp = pool->free_list; if (!temp) { HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); break; } pool->free_list = *POOL_LINK(pool, temp); pool->allocated--; HA_SPIN_UNLOCK(POOL_LOCK, &pool->lock); pool_free_area(temp, pool->size + POOL_EXTRA); } /* here, we should have pool->allocated == pool->used */ } /* * This function frees whatever can be freed in all pools, but respecting * the minimum thresholds imposed by owners. It makes sure to be alone to * run by using thread_isolate(). is unused. */ void pool_gc(struct pool_head *pool_ctx) { struct pool_head *entry; int isolated = thread_isolated(); if (!isolated) thread_isolate(); list_for_each_entry(entry, &pools, list) { void *temp; //qfprintf(stderr, "Flushing pool %s\n", entry->name); while (entry->free_list && (int)(entry->allocated - entry->used) > (int)entry->minavail) { temp = entry->free_list; entry->free_list = *POOL_LINK(entry, temp); entry->allocated--; pool_free_area(temp, entry->size + POOL_EXTRA); } } if (!isolated) thread_release(); } #endif /* * This function destroys a pool by freeing it completely, unless it's still * in use. This should be called only under extreme circumstances. It always * returns NULL if the resulting pool is empty, easing the clearing of the old * pointer, otherwise it returns the pool. * . */ void *pool_destroy(struct pool_head *pool) { if (pool) { pool_flush(pool); if (pool->used) return pool; pool->users--; if (!pool->users) { LIST_DEL(&pool->list); #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_DESTROY(&pool->lock); #endif #ifdef CONFIG_HAP_LOCAL_POOLS if ((pool - pool_base_start) < MAX_BASE_POOLS) memset(pool, 0, sizeof(*pool)); else #endif free(pool); } } return NULL; } /* This destroys all pools on exit. It is *not* thread safe. */ void pool_destroy_all() { struct pool_head *entry, *back; list_for_each_entry_safe(entry, back, &pools, list) pool_destroy(entry); } /* This function dumps memory usage information into the trash buffer. */ void dump_pools_to_trash() { struct pool_head *entry; unsigned long allocated, used; int nbpools; allocated = used = nbpools = 0; chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n"); list_for_each_entry(entry, &pools, list) { #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_LOCK(POOL_LOCK, &entry->lock); #endif chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used, needed_avg %u, %u failures, %u users, @%p=%02d%s\n", entry->name, entry->size, entry->allocated, entry->size * entry->allocated, entry->used, swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed, entry->users, entry, (int)pool_get_index(entry), (entry->flags & MEM_F_SHARED) ? " [SHARED]" : ""); allocated += entry->allocated * entry->size; used += entry->used * entry->size; nbpools++; #ifndef CONFIG_HAP_LOCKLESS_POOLS HA_SPIN_UNLOCK(POOL_LOCK, &entry->lock); #endif } chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used.\n", nbpools, allocated, used); } /* Dump statistics on pools usage. */ void dump_pools(void) { dump_pools_to_trash(); qfprintf(stderr, "%s", trash.area); } /* This function returns the total number of failed pool allocations */ int pool_total_failures() { struct pool_head *entry; int failed = 0; list_for_each_entry(entry, &pools, list) failed += entry->failed; return failed; } /* This function returns the total amount of memory allocated in pools (in bytes) */ unsigned long pool_total_allocated() { struct pool_head *entry; unsigned long allocated = 0; list_for_each_entry(entry, &pools, list) allocated += entry->allocated * entry->size; return allocated; } /* This function returns the total amount of memory used in pools (in bytes) */ unsigned long pool_total_used() { struct pool_head *entry; unsigned long used = 0; list_for_each_entry(entry, &pools, list) used += entry->used * entry->size; return used; } /* This function dumps memory usage information onto the stream interface's * read buffer. It returns 0 as long as it does not complete, non-zero upon * completion. No state is used. */ static int cli_io_handler_dump_pools(struct appctx *appctx) { struct stream_interface *si = appctx->owner; dump_pools_to_trash(); if (ci_putchk(si_ic(si), &trash) == -1) { si_rx_room_blk(si); return 0; } return 1; } /* callback used to create early pool of size and store the * resulting pointer into . If the allocation fails, it quits with after * emitting an error message. */ void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size) { *ptr = create_pool(name, size, MEM_F_SHARED); if (!*ptr) { ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n", name, size, strerror(errno)); exit(1); } } /* Initializes all per-thread arrays on startup */ static void init_pools() { #ifdef CONFIG_HAP_LOCAL_POOLS int thr, idx; for (thr = 0; thr < MAX_THREADS; thr++) { for (idx = 0; idx < MAX_BASE_POOLS; idx++) { LIST_INIT(&pool_cache[thr][idx].list); pool_cache[thr][idx].size = 0; } LIST_INIT(&ha_thread_info[thr].pool_lru_head); } #endif } INITCALL0(STG_PREPARE, init_pools); /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ { { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools }, {{},} }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); #ifdef DEBUG_FAIL_ALLOC #define MEM_FAIL_MAX_CHAR 32 #define MEM_FAIL_MAX_STR 128 static int mem_fail_cur_idx; static char mem_fail_str[MEM_FAIL_MAX_CHAR * MEM_FAIL_MAX_STR]; __decl_thread(static HA_SPINLOCK_T mem_fail_lock); int mem_should_fail(const struct pool_head *pool) { int ret = 0; int n; if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) { int randnb = ha_random() % 100; if (mem_fail_rate > randnb) ret = 1; else ret = 0; } HA_SPIN_LOCK(POOL_LOCK, &mem_fail_lock); n = snprintf(&mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR], MEM_FAIL_MAX_CHAR - 2, "%d %.18s %d %d", mem_fail_cur_idx, pool->name, ret, tid); while (n < MEM_FAIL_MAX_CHAR - 1) mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n++] = ' '; if (mem_fail_cur_idx < MEM_FAIL_MAX_STR - 1) mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n] = '\n'; else mem_fail_str[mem_fail_cur_idx * MEM_FAIL_MAX_CHAR + n] = 0; mem_fail_cur_idx++; if (mem_fail_cur_idx == MEM_FAIL_MAX_STR) mem_fail_cur_idx = 0; HA_SPIN_UNLOCK(POOL_LOCK, &mem_fail_lock); return ret; } /* config parser for global "tune.fail-alloc" */ static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; mem_fail_rate = atoi(args[1]); if (mem_fail_rate < 0 || mem_fail_rate > 100) { memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]); return -1; } return 0; } #endif /* register global config keywords */ static struct cfg_kw_list mem_cfg_kws = {ILH, { #ifdef DEBUG_FAIL_ALLOC { CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc }, #endif { 0, NULL, NULL } }}; INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */