/* * include/common/standard.h * This files contains some general purpose functions and macros. * * Copyright (C) 2000-2010 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _COMMON_STANDARD_H #define _COMMON_STANDARD_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef LLONG_MAX # define LLONG_MAX 9223372036854775807LL # define LLONG_MIN (-LLONG_MAX - 1LL) #endif #ifndef ULLONG_MAX # define ULLONG_MAX (LLONG_MAX * 2ULL + 1) #endif #ifndef LONGBITS #define LONGBITS ((unsigned int)sizeof(long) * 8) #endif /* size used for max length of decimal representation of long long int. */ #define NB_LLMAX_STR (sizeof("-9223372036854775807")-1) /* number of itoa_str entries */ #define NB_ITOA_STR 10 /* maximum quoted string length (truncated above) */ #define QSTR_SIZE 200 #define NB_QSTR 10 /****** string-specific macros and functions ******/ /* if a > max, then bound to . The macro returns the new */ #define UBOUND(a, max) ({ typeof(a) b = (max); if ((a) > b) (a) = b; (a); }) /* if a < min, then bound to . The macro returns the new */ #define LBOUND(a, min) ({ typeof(a) b = (min); if ((a) < b) (a) = b; (a); }) /* returns 1 only if only zero or one bit is set in X, which means that X is a * power of 2, and 0 otherwise */ #define POWEROF2(x) (((x) & ((x)-1)) == 0) /* operators to compare values. They're ordered that way so that the lowest bit * serves as a negation for the test and contains all tests that are not equal. */ enum { STD_OP_LE = 0, STD_OP_GT = 1, STD_OP_EQ = 2, STD_OP_NE = 3, STD_OP_GE = 4, STD_OP_LT = 5, }; enum http_scheme { SCH_HTTP, SCH_HTTPS, }; struct split_url { enum http_scheme scheme; const char *host; int host_len; }; extern int itoa_idx; /* index of next itoa_str to use */ /* * copies at most chars from to . Last char is always * set to 0, unless is 0. The number of chars copied is returned * (excluding the terminating zero). * This code has been optimized for size and speed : on x86, it's 45 bytes * long, uses only registers, and consumes only 4 cycles per char. */ extern int strlcpy2(char *dst, const char *src, int size); /* * This function simply returns a locally allocated string containing * the ascii representation for number 'n' in decimal. */ extern char itoa_str[][171]; extern char *ultoa_r(unsigned long n, char *buffer, int size); extern char *lltoa_r(long long int n, char *buffer, int size); extern char *sltoa_r(long n, char *buffer, int size); extern const char *ulltoh_r(unsigned long long n, char *buffer, int size); static inline const char *ultoa(unsigned long n) { return ultoa_r(n, itoa_str[0], sizeof(itoa_str[0])); } /* * unsigned long long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ulltoa(unsigned long long n, char *dst, size_t size); /* * unsigned long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ultoa_o(unsigned long n, char *dst, size_t size); /* * signed long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ltoa_o(long int n, char *dst, size_t size); /* * signed long long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *lltoa(long long n, char *dst, size_t size); /* * write a ascii representation of a unsigned into dst, * return a pointer to the last character * Pad the ascii representation with '0', using size. */ char *utoa_pad(unsigned int n, char *dst, size_t size); /* * This function simply returns a locally allocated string containing the ascii * representation for number 'n' in decimal, unless n is 0 in which case it * returns the alternate string (or an empty string if the alternate string is * NULL). It use is intended for limits reported in reports, where it's * desirable not to display anything if there is no limit. Warning! it shares * the same vector as ultoa_r(). */ extern const char *limit_r(unsigned long n, char *buffer, int size, const char *alt); /* returns a locally allocated string containing the ASCII representation of * the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same * function call (eg: printf), shared with the other similar functions making * use of itoa_str[]. */ static inline const char *U2A(unsigned long n) { const char *ret = ultoa_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0])); if (++itoa_idx >= NB_ITOA_STR) itoa_idx = 0; return ret; } /* returns a locally allocated string containing the HTML representation of * the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same * function call (eg: printf), shared with the other similar functions making * use of itoa_str[]. */ static inline const char *U2H(unsigned long long n) { const char *ret = ulltoh_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0])); if (++itoa_idx >= NB_ITOA_STR) itoa_idx = 0; return ret; } /* returns a locally allocated string containing the HTML representation of * the number 'n' in decimal. Up to NB_ITOA_STR calls may be used in the same * function call (eg: printf), shared with the other similar functions making * use of itoa_str[]. */ static inline const char *LIM2A(unsigned long n, const char *alt) { const char *ret = limit_r(n, itoa_str[itoa_idx], sizeof(itoa_str[0]), alt); if (++itoa_idx >= NB_ITOA_STR) itoa_idx = 0; return ret; } /* Encode the integer into a varint (variable-length integer). The encoded * value is copied in <*buf>. Here is the encoding format: * * 0 <= X < 240 : 1 byte (7.875 bits) [ XXXX XXXX ] * 240 <= X < 2288 : 2 bytes (11 bits) [ 1111 XXXX ] [ 0XXX XXXX ] * 2288 <= X < 264432 : 3 bytes (18 bits) [ 1111 XXXX ] [ 1XXX XXXX ] [ 0XXX XXXX ] * 264432 <= X < 33818864 : 4 bytes (25 bits) [ 1111 XXXX ] [ 1XXX XXXX ]*2 [ 0XXX XXXX ] * 33818864 <= X < 4328786160 : 5 bytes (32 bits) [ 1111 XXXX ] [ 1XXX XXXX ]*3 [ 0XXX XXXX ] * ... * * On success, it returns the number of written bytes and <*buf> is moved after * the encoded value. Otherwise, it returns -1. */ static inline int encode_varint(uint64_t i, char **buf, char *end) { unsigned char *p = (unsigned char *)*buf; int r; if (p >= (unsigned char *)end) return -1; if (i < 240) { *p++ = i; *buf = (char *)p; return 1; } *p++ = (unsigned char)i | 240; i = (i - 240) >> 4; while (i >= 128) { if (p >= (unsigned char *)end) return -1; *p++ = (unsigned char)i | 128; i = (i - 128) >> 7; } if (p >= (unsigned char *)end) return -1; *p++ = (unsigned char)i; r = ((char *)p - *buf); *buf = (char *)p; return r; } /* Decode a varint from <*buf> and save the decoded value in <*i>. See * 'spoe_encode_varint' for details about varint. * On success, it returns the number of read bytes and <*buf> is moved after the * varint. Otherwise, it returns -1. */ static inline int decode_varint(char **buf, char *end, uint64_t *i) { unsigned char *p = (unsigned char *)*buf; int r; if (p >= (unsigned char *)end) return -1; *i = *p++; if (*i < 240) { *buf = (char *)p; return 1; } r = 4; do { if (p >= (unsigned char *)end) return -1; *i += (uint64_t)*p << r; r += 7; } while (*p++ >= 128); r = ((char *)p - *buf); *buf = (char *)p; return r; } /* returns a locally allocated string containing the quoted encoding of the * input string. The output may be truncated to QSTR_SIZE chars, but it is * guaranteed that the string will always be properly terminated. Quotes are * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must * always be at least 4 chars. */ const char *qstr(const char *str); /* returns or its quote-encoded equivalent if it contains at least one * quote or a comma. This is aimed at build CSV-compatible strings. */ static inline const char *cstr(const char *str) { const char *p = str; while (*p) { if (*p == ',' || *p == '"') return qstr(str); p++; } return str; } /* * Returns non-zero if character is a hex digit (0-9, a-f, A-F), else zero. */ extern int ishex(char s); /* * Return integer equivalent of character for a hex digit (0-9, a-f, A-F), * otherwise -1. This compact form helps gcc produce efficient code. */ static inline int hex2i(int c) { if (unlikely((unsigned char)(c -= '0') > 9)) { if (likely((unsigned char)(c -= 'A' - '0') > 5 && (unsigned char)(c -= 'a' - 'A') > 5)) c = -11; c += 10; } return c; } /* rounds down to the closest value having max 2 digits */ unsigned int round_2dig(unsigned int i); /* * Checks for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an * invalid character is found, a pointer to it is returned. If everything is * fine, NULL is returned. */ extern const char *invalid_char(const char *name); /* * Checks for invalid characters. Valid chars are [A-Za-z0-9_.-]. * If an invalid character is found, a pointer to it is returned. * If everything is fine, NULL is returned. */ extern const char *invalid_domainchar(const char *name); /* * Checks for invalid characters. Valid chars are [A-Za-z_.-]. * If an invalid character is found, a pointer to it is returned. * If everything is fine, NULL is returned. */ extern const char *invalid_prefix_char(const char *name); /* * converts to a locally allocated struct sockaddr_storage *, and a * port range consisting in two integers. The low and high end are always set * even if the port is unspecified, in which case (0,0) is returned. The low * port is set in the sockaddr. Thus, it is enough to check the size of the * returned range to know if an array must be allocated or not. The format is * "addr[:[port[-port]]]", where "addr" can be a dotted IPv4 address, an IPv6 * address, a host name, or empty or "*" to indicate INADDR_ANY. If an IPv6 * address wants to ignore port, it must be terminated by a trailing colon (':'). * The IPv6 '::' address is IN6ADDR_ANY, so in order to bind to a given port on * IPv6, use ":::port". NULL is returned if the host part cannot be resolved. * If is non-null, it is used as a string prefix before any path-based * address (typically the path to a unix socket). If use_dns is not true, * the funtion cannot accept the DNS resolution. */ struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, char **err, const char *pfx, char **fqdn, int resolve); /* converts to a struct in_addr containing a network mask. It can be * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1 * if the conversion succeeds otherwise zero. */ int str2mask(const char *str, struct in_addr *mask); /* convert to struct in_addr . It returns 1 if the conversion * succeeds otherwise non-zero. */ int cidr2dotted(int cidr, struct in_addr *mask); /* * converts to two struct in_addr* which must be pre-allocated. * The format is "addr[/mask]", where "addr" cannot be empty, and mask * is optionnal and either in the dotted or CIDR notation. * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. */ int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask); /* str2ip and str2ip2: * * converts to a struct sockaddr_storage* provided by the caller. The * caller must have zeroed first, and may have set sa->ss_family to force * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then * the function tries to guess the address family from the syntax. If the * family is forced and the format doesn't match, an error is returned. The * string is assumed to contain only an address, no port. The address can be a * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved. * The return address will only have the address family and the address set, * all other fields remain zero. The string is not supposed to be modified. * The IPv6 '::' address is IN6ADDR_ANY. * * str2ip2: * * If is set, this function try to resolve DNS, otherwise, it returns * NULL result. */ struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve); static inline struct sockaddr_storage *str2ip(const char *str, struct sockaddr_storage *sa) { return str2ip2(str, sa, 1); } /* * converts to two struct in6_addr* which must be pre-allocated. * The format is "addr[/mask]", where "addr" cannot be empty, and mask * is an optionnal number of bits (128 being the default). * Returns 1 if OK, 0 if error. */ int str62net(const char *str, struct in6_addr *addr, unsigned char *mask); /* * Parse IP address found in url. */ int url2ipv4(const char *addr, struct in_addr *dst); /* * Resolve destination server from URL. Convert to a sockaddr_storage*. */ int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out); /* Tries to convert a sockaddr_storage address to text form. Upon success, the * address family is returned so that it's easy for the caller to adapt to the * output format. Zero is returned if the address family is not supported. -1 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are * supported. */ int addr_to_str(struct sockaddr_storage *addr, char *str, int size); /* Tries to convert a sockaddr_storage port to text form. Upon success, the * address family is returned so that it's easy for the caller to adapt to the * output format. Zero is returned if the address family is not supported. -1 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are * supported. */ int port_to_str(struct sockaddr_storage *addr, char *str, int size); /* check if the given address is local to the system or not. It will return * -1 when it's not possible to know, 0 when the address is not local, 1 when * it is. We don't want to iterate over all interfaces for this (and it is not * portable). So instead we try to bind in UDP to this address on a free non * privileged port and to connect to the same address, port 0 (connect doesn't * care). If it succeeds, we own the address. Note that non-inet addresses are * considered local since they're most likely AF_UNIX. */ int addr_is_local(const struct netns_entry *ns, const struct sockaddr_storage *orig); /* will try to encode the string replacing all characters tagged in * with the hexadecimal representation of their ASCII-code (2 digits) * prefixed by , and will store the result between (included) * and (excluded), and will always terminate the string with a '\0' * before . The position of the '\0' is returned if the conversion * completes. If bytes are missing between and , then the * conversion will be incomplete and truncated. If <= , the '\0' * cannot even be stored so we return without writing the 0. * The input string must also be zero-terminated. */ extern const char hextab[]; char *encode_string(char *start, char *stop, const char escape, const fd_set *map, const char *string); /* * Same behavior, except that it encodes chunk instead of a string. */ char *encode_chunk(char *start, char *stop, const char escape, const fd_set *map, const struct chunk *chunk); /* * Tries to prefix characters tagged in the with the * character. The input must be zero-terminated. The result will * be stored between (included) and (excluded). This * function will always try to terminate the resulting string with a '\0' * before , and will return its position if the conversion * completes. */ char *escape_string(char *start, char *stop, const char escape, const fd_set *map, const char *string); /* * Tries to prefix characters tagged in the with the * character. contains the input to be escaped. The result will be * stored between (included) and (excluded). The function * will always try to terminate the resulting string with a '\0' before * , and will return its position if the conversion completes. */ char *escape_chunk(char *start, char *stop, const char escape, const fd_set *map, const struct chunk *chunk); /* Check a string for using it in a CSV output format. If the string contains * one of the following four char <">, <,>, CR or LF, the string is * encapsulated between <"> and the <"> are escaped by a <""> sequence. * is the input string to be escaped. The function assumes that * the input string is null-terminated. * * If is 0, the result is returned escaped but without double quote. * It is useful if the escaped string is used between double quotes in the * format. * * printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash)); * * If is 1, the converter puts the quotes only if any character is * escaped. If is 2, the converter always puts the quotes. * * is a struct chunk used for storing the output string. * * The function returns the converted string on its output. If an error * occurs, the function returns an empty string. This type of output is useful * for using the function directly as printf() argument. * * If the output buffer is too short to contain the input string, the result * is truncated. * * This function appends the encoding to the existing output chunk. Please * use csv_enc() instead if you want to replace the output chunk. */ const char *csv_enc_append(const char *str, int quote, struct chunk *output); /* same as above but the output chunk is reset first */ static inline const char *csv_enc(const char *str, int quote, struct chunk *output) { chunk_reset(output); return csv_enc_append(str, quote, output); } /* Decode an URL-encoded string in-place. The resulting string might * be shorter. If some forbidden characters are found, the conversion is * aborted, the string is truncated before the issue and non-zero is returned, * otherwise the operation returns non-zero indicating success. */ int url_decode(char *string); /* This one is 6 times faster than strtoul() on athlon, but does * no check at all. */ static inline unsigned int __str2ui(const char *s) { unsigned int i = 0; while (*s) { i = i * 10 - '0'; i += (unsigned char)*s++; } return i; } /* This one is 5 times faster than strtoul() on athlon with checks. * It returns the value of the number composed of all valid digits read. */ static inline unsigned int __str2uic(const char *s) { unsigned int i = 0; unsigned int j; while (1) { j = (*s++) - '0'; if (j > 9) break; i *= 10; i += j; } return i; } /* This one is 28 times faster than strtoul() on athlon, but does * no check at all! */ static inline unsigned int __strl2ui(const char *s, int len) { unsigned int i = 0; while (len-- > 0) { i = i * 10 - '0'; i += (unsigned char)*s++; } return i; } /* This one is 7 times faster than strtoul() on athlon with checks. * It returns the value of the number composed of all valid digits read. */ static inline unsigned int __strl2uic(const char *s, int len) { unsigned int i = 0; unsigned int j, k; while (len-- > 0) { j = (*s++) - '0'; k = i * 10; if (j > 9) break; i = k + j; } return i; } /* This function reads an unsigned integer from the string pointed to by * and returns it. The pointer is adjusted to point to the first unread * char. The function automatically stops at . */ static inline unsigned int __read_uint(const char **s, const char *end) { const char *ptr = *s; unsigned int i = 0; unsigned int j, k; while (ptr < end) { j = *ptr - '0'; k = i * 10; if (j > 9) break; i = k + j; ptr++; } *s = ptr; return i; } unsigned long long int read_uint64(const char **s, const char *end); long long int read_int64(const char **s, const char *end); extern unsigned int str2ui(const char *s); extern unsigned int str2uic(const char *s); extern unsigned int strl2ui(const char *s, int len); extern unsigned int strl2uic(const char *s, int len); extern int strl2ic(const char *s, int len); extern int strl2irc(const char *s, int len, int *ret); extern int strl2llrc(const char *s, int len, long long *ret); extern int strl2llrc_dotted(const char *text, int len, long long *ret); extern unsigned int read_uint(const char **s, const char *end); unsigned int inetaddr_host(const char *text); unsigned int inetaddr_host_lim(const char *text, const char *stop); unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret); static inline char *cut_crlf(char *s) { while (*s != '\r' && *s != '\n') { char *p = s++; if (!*p) return p; } *s++ = '\0'; return s; } static inline char *ltrim(char *s, char c) { if (c) while (*s == c) s++; return s; } static inline char *rtrim(char *s, char c) { char *p = s + strlen(s); while (p-- > s) if (*p == c) *p = '\0'; else break; return s; } static inline char *alltrim(char *s, char c) { rtrim(s, c); return ltrim(s, c); } /* This function converts the time_t value into a broken out struct tm * which must be allocated by the caller. It is highly recommended to use this * function intead of localtime() because that one requires a time_t* which * is not always compatible with tv_sec depending on OS/hardware combinations. */ static inline void get_localtime(const time_t now, struct tm *tm) { localtime_r(&now, tm); } /* This function converts the time_t value into a broken out struct tm * which must be allocated by the caller. It is highly recommended to use this * function intead of gmtime() because that one requires a time_t* which * is not always compatible with tv_sec depending on OS/hardware combinations. */ static inline void get_gmtime(const time_t now, struct tm *tm) { gmtime_r(&now, tm); } /* Counts a number of elapsed days since 01/01/0000 based solely on elapsed * years and assuming the regular rule for leap years applies. It's fake but * serves as a temporary origin. It's worth remembering that it's the first * year of each period that is leap and not the last one, so for instance year * 1 sees 366 days since year 0 was leap. For this reason we have to apply * modular arithmetics which is why we offset the year by 399 before * subtracting the excess at the end. No overflow here before ~11.7 million * years. */ static inline unsigned int days_since_zero(unsigned int y) { return y * 365 + (y + 399) / 4 - (y + 399) / 100 + (y + 399) / 400 - 399 / 4 + 399 / 100; } /* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date . * It is meant as a portable replacement for timegm() for use with valid inputs. * Returns undefined results for invalid dates (eg: months out of range 0..11). */ extern time_t my_timegm(const struct tm *tm); /* This function parses a time value optionally followed by a unit suffix among * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit * expected by the caller. The computation does its best to avoid overflows. * The value is returned in if everything is fine, and a NULL is returned * by the function. In case of error, a pointer to the error is returned and * is left untouched. */ extern const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags); extern const char *parse_size_err(const char *text, unsigned *ret); /* unit flags to pass to parse_time_err */ #define TIME_UNIT_US 0x0000 #define TIME_UNIT_MS 0x0001 #define TIME_UNIT_S 0x0002 #define TIME_UNIT_MIN 0x0003 #define TIME_UNIT_HOUR 0x0004 #define TIME_UNIT_DAY 0x0005 #define TIME_UNIT_MASK 0x0007 #define SEC 1 #define MINUTE (60 * SEC) #define HOUR (60 * MINUTE) #define DAY (24 * HOUR) /* Multiply the two 32-bit operands and shift the 64-bit result right 32 bits. * This is used to compute fixed ratios by setting one of the operands to * (2^32*ratio). */ static inline unsigned int mul32hi(unsigned int a, unsigned int b) { return ((unsigned long long)a * b) >> 32; } /* gcc does not know when it can safely divide 64 bits by 32 bits. Use this * function when you know for sure that the result fits in 32 bits, because * it is optimal on x86 and on 64bit processors. */ static inline unsigned int div64_32(unsigned long long o1, unsigned int o2) { unsigned int result; #ifdef __i386__ asm("divl %2" : "=a" (result) : "A"(o1), "rm"(o2)); #else result = o1 / o2; #endif return result; } /* Simple popcountl implementation. It returns the number of ones in a word */ static inline unsigned int my_popcountl(unsigned long a) { unsigned int cnt; for (cnt = 0; a; a >>= 1) { if (a & 1) cnt++; } return cnt; } /* Build a word with the lower bits set (reverse of my_popcountl) */ static inline unsigned long nbits(int bits) { if (--bits < 0) return 0; else return (2UL << bits) - 1; } /* * Parse binary string written in hexadecimal (source) and store the decoded * result into binstr and set binstrlen to the lengh of binstr. Memory for * binstr is allocated by the function. In case of error, returns 0 with an * error message in err. */ int parse_binary(const char *source, char **binstr, int *binstrlen, char **err); /* copies at most characters from and always terminates with '\0' */ char *my_strndup(const char *src, int n); /* * search needle in haystack * returns the pointer if found, returns NULL otherwise */ const void *my_memmem(const void *, size_t, const void *, size_t); /* This function returns the first unused key greater than or equal to in * ID tree . Zero is returned if no place is found. */ unsigned int get_next_id(struct eb_root *root, unsigned int key); /* This function compares a sample word possibly followed by blanks to another * clean word. The compare is case-insensitive. 1 is returned if both are equal, * otherwise zero. This intends to be used when checking HTTP headers for some * values. */ int word_match(const char *sample, int slen, const char *word, int wlen); /* Convert a fixed-length string to an IP address. Returns 0 in case of error, * or the number of chars read in case of success. */ int buf2ip(const char *buf, size_t len, struct in_addr *dst); int buf2ip6(const char *buf, size_t len, struct in6_addr *dst); /* To be used to quote config arg positions. Returns the string at * surrounded by simple quotes if is valid and non-empty, or "end of line" * if ptr is NULL or empty. The string is locally allocated. */ const char *quote_arg(const char *ptr); /* returns an operator among STD_OP_* for string or < 0 if unknown */ int get_std_op(const char *str); /* hash a 32-bit integer to another 32-bit integer */ extern unsigned int full_hash(unsigned int a); static inline unsigned int __full_hash(unsigned int a) { /* This function is one of Bob Jenkins' full avalanche hashing * functions, which when provides quite a good distribution for little * input variations. The result is quite suited to fit over a 32-bit * space with enough variations so that a randomly picked number falls * equally before any server position. * Check http://burtleburtle.net/bob/hash/integer.html for more info. */ a = (a+0x7ed55d16) + (a<<12); a = (a^0xc761c23c) ^ (a>>19); a = (a+0x165667b1) + (a<<5); a = (a+0xd3a2646c) ^ (a<<9); a = (a+0xfd7046c5) + (a<<3); a = (a^0xb55a4f09) ^ (a>>16); /* ensure values are better spread all around the tree by multiplying * by a large prime close to 3/4 of the tree. */ return a * 3221225473U; } /* sets the address family to AF_UNSPEC so that is_addr() does not match */ static inline void clear_addr(struct sockaddr_storage *addr) { addr->ss_family = AF_UNSPEC; } /* returns non-zero if addr has a valid and non-null IPv4 or IPv6 address, * otherwise zero. */ static inline int is_inet_addr(const struct sockaddr_storage *addr) { int i; switch (addr->ss_family) { case AF_INET: return *(int *)&((struct sockaddr_in *)addr)->sin_addr; case AF_INET6: for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++) if (((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i] != 0) return ((int *)&((struct sockaddr_in6 *)addr)->sin6_addr)[i]; } return 0; } /* returns non-zero if addr has a valid and non-null IPv4 or IPv6 address, * or is a unix address, otherwise returns zero. */ static inline int is_addr(const struct sockaddr_storage *addr) { if (addr->ss_family == AF_UNIX) return 1; else return is_inet_addr(addr); } /* returns port in network byte order */ static inline int get_net_port(struct sockaddr_storage *addr) { switch (addr->ss_family) { case AF_INET: return ((struct sockaddr_in *)addr)->sin_port; case AF_INET6: return ((struct sockaddr_in6 *)addr)->sin6_port; } return 0; } /* returns port in host byte order */ static inline int get_host_port(struct sockaddr_storage *addr) { switch (addr->ss_family) { case AF_INET: return ntohs(((struct sockaddr_in *)addr)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)addr)->sin6_port); } return 0; } /* returns address len for 's family, 0 for unknown families */ static inline int get_addr_len(const struct sockaddr_storage *addr) { switch (addr->ss_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_UNIX: return sizeof(struct sockaddr_un); } return 0; } /* set port in host byte order */ static inline int set_net_port(struct sockaddr_storage *addr, int port) { switch (addr->ss_family) { case AF_INET: ((struct sockaddr_in *)addr)->sin_port = port; case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_port = port; } return 0; } /* set port in network byte order */ static inline int set_host_port(struct sockaddr_storage *addr, int port) { switch (addr->ss_family) { case AF_INET: ((struct sockaddr_in *)addr)->sin_port = htons(port); case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_port = htons(port); } return 0; } /* Convert mask from bit length form to in_addr form. * This function never fails. */ void len2mask4(int len, struct in_addr *addr); /* Convert mask from bit length form to in6_addr form. * This function never fails. */ void len2mask6(int len, struct in6_addr *addr); /* Return true if IPv4 address is part of the network */ extern int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net); /* Return true if IPv6 address is part of the network */ extern int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net); /* Map IPv4 adress on IPv6 address, as specified in RFC 3513. */ extern void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr); /* Map IPv6 adress on IPv4 address, as specified in RFC 3513. * Return true if conversion is possible and false otherwise. */ extern int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr); /* compare two struct sockaddr_storage and return: * 0 (true) if the addr is the same in both * 1 (false) if the addr is not the same in both */ int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2); /* copy ip from into * the caller must clear before calling. * Returns a pointer to the destination */ struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest); char *human_time(int t, short hz_div); extern const char *monthname[]; /* date2str_log: write a date in the format : * sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d", * tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, * tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000); * * without using sprintf. return a pointer to the last char written (\0) or * NULL if there isn't enough space. */ char *date2str_log(char *dest, struct tm *tm, struct timeval *date, size_t size); /* Return the GMT offset for a specific local time. * Both t and tm must represent the same time. * The string returned has the same format as returned by strftime(... "%z", tm). * Offsets are kept in an internal cache for better performances. */ const char *get_gmt_offset(time_t t, struct tm *tm); /* gmt2str_log: write a date in the format : * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf * return a pointer to the last char written (\0) or * NULL if there isn't enough space. */ char *gmt2str_log(char *dst, struct tm *tm, size_t size); /* localdate2str_log: write a date in the format : * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf * Both t and tm must represent the same time. * return a pointer to the last char written (\0) or * NULL if there isn't enough space. */ char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size); /* These 3 functions parses date string and fills the * corresponding broken-down time in . In succes case, * it returns 1, otherwise, it returns 0. */ int parse_http_date(const char *date, int len, struct tm *tm); int parse_imf_date(const char *date, int len, struct tm *tm); int parse_rfc850_date(const char *date, int len, struct tm *tm); int parse_asctime_date(const char *date, int len, struct tm *tm); /* Dynamically allocates a string of the proper length to hold the formatted * output. NULL is returned on error. The caller is responsible for freeing the * memory area using free(). The resulting string is returned in if the * pointer is not NULL. A previous version of might be used to build the * new string, and it will be freed before returning if it is not NULL, which * makes it possible to build complex strings from iterative calls without * having to care about freeing intermediate values, as in the example below : * * memprintf(&err, "invalid argument: '%s'", arg); * ... * memprintf(&err, "parser said : <%s>\n", *err); * ... * free(*err); * * This means that must be initialized to NULL before first invocation. * The return value also holds the allocated string, which eases error checking * and immediate consumption. If the output pointer is not used, NULL must be * passed instead and it will be ignored. The returned message will then also * be NULL so that the caller does not have to bother with freeing anything. * * It is also convenient to use it without any free except the last one : * err = NULL; * if (!fct1(err)) report(*err); * if (!fct2(err)) report(*err); * if (!fct3(err)) report(*err); * free(*err); * * memprintf relies on memvprintf. This last version can be called from any * function with variadic arguments. */ char *memvprintf(char **out, const char *format, va_list args) __attribute__ ((format(printf, 2, 0))); char *memprintf(char **out, const char *format, ...) __attribute__ ((format(printf, 2, 3))); /* Used to add spaces before each line of , unless there is only one line. * The input argument is automatically freed and reassigned. The result will have to be * freed by the caller. * Example of use : * parse(cmd, &err); (callee: memprintf(&err, ...)) * fprintf(stderr, "Parser said: %s\n", indent_error(&err)); * free(err); */ char *indent_msg(char **out, int level); /* Convert occurrences of environment variables in the input string to their * corresponding value. A variable is identified as a series of alphanumeric * characters or underscores following a '$' sign. The string must be * free()able. NULL returns NULL. The resulting string might be reallocated if * some expansion is made. */ char *env_expand(char *in); /* debugging macro to emit messages using write() on fd #-1 so that strace sees * them. */ #define fddebug(msg...) do { char *_m = NULL; memprintf(&_m, ##msg); if (_m) write(-1, _m, strlen(_m)); free(_m); } while (0) /* displays a long memory block at , assuming first byte of * has address . String may be placed as a prefix in front of * each line. It may be NULL if unused. The output is emitted to file . */ void debug_hexdump(FILE *out, const char *pfx, const char *buf, unsigned int baseaddr, int len); /* this is used to emit traces when building with TRACE=1 */ __attribute__((format(printf, 1, 2))) void trace(char *fmt, ...); /* used from everywhere just to drain results we don't want to read and which * recent versions of gcc increasingly and annoyingly complain about. */ extern int shut_your_big_mouth_gcc_int; /* used from everywhere just to drain results we don't want to read and which * recent versions of gcc increasingly and annoyingly complain about. */ static inline void shut_your_big_mouth_gcc(int r) { shut_your_big_mouth_gcc_int = r; } /* same as strstr() but case-insensitive */ const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2); /************************* Composite address manipulation ********************* * Composite addresses are simply unsigned long data in which the higher bits * represent a pointer, and the two lower bits are flags. There are several * places where we just want to associate one or two flags to a pointer (eg, * to type it), and these functions permit this. The pointer is necessarily a * 32-bit aligned pointer, as its two lower bits will be cleared and replaced * with the flags. *****************************************************************************/ /* Masks the two lower bits of a composite address and converts it to a * pointer. This is used to mix some bits with some aligned pointers to * structs and to retrieve the original (32-bit aligned) pointer. */ static inline void *caddr_to_ptr(unsigned long caddr) { return (void *)(caddr & ~3UL); } /* Only retrieves the two lower bits of a composite address. This is used to mix * some bits with some aligned pointers to structs and to retrieve the original * data (2 bits). */ static inline unsigned int caddr_to_data(unsigned long caddr) { return (caddr & 3UL); } /* Combines the aligned pointer whose 2 lower bits will be masked with the bits * from to form a composite address. This is used to mix some bits with * some aligned pointers to structs and to retrieve the original (32-bit aligned) * pointer. */ static inline unsigned long caddr_from_ptr(void *ptr, unsigned int data) { return (((unsigned long)ptr) & ~3UL) + (data & 3); } /* sets the 2 bits of in the composite address */ static inline unsigned long caddr_set_flags(unsigned long caddr, unsigned int data) { return caddr | (data & 3); } /* clears the 2 bits of in the composite address */ static inline unsigned long caddr_clr_flags(unsigned long caddr, unsigned int data) { return caddr & ~(unsigned long)(data & 3); } /* UTF-8 decoder status */ #define UTF8_CODE_OK 0x00 #define UTF8_CODE_OVERLONG 0x10 #define UTF8_CODE_INVRANGE 0x20 #define UTF8_CODE_BADSEQ 0x40 unsigned char utf8_next(const char *s, int len, unsigned int *c); static inline unsigned char utf8_return_code(unsigned int code) { return code & 0xf0; } static inline unsigned char utf8_return_length(unsigned char code) { return code & 0x0f; } /* Turns 64-bit value from host byte order to network byte order. * The principle consists in letting the compiler detect we're playing * with a union and simplify most or all operations. The asm-optimized * htonl() version involving bswap (x86) / rev (arm) / other is a single * operation on little endian, or a NOP on big-endian. In both cases, * this lets the compiler "see" that we're rebuilding a 64-bit word from * two 32-bit quantities that fit into a 32-bit register. In big endian, * the whole code is optimized out. In little endian, with a decent compiler, * a few bswap and 2 shifts are left, which is the minimum acceptable. */ static inline unsigned long long my_htonll(unsigned long long a) { #if defined(__x86_64__) __asm__ volatile("bswap %0" : "=r"(a) : "0"(a)); return a; #else union { struct { unsigned int w1; unsigned int w2; } by32; unsigned long long by64; } w = { .by64 = a }; return ((unsigned long long)htonl(w.by32.w1) << 32) | htonl(w.by32.w2); #endif } /* Turns 64-bit value from network byte order to host byte order. */ static inline unsigned long long my_ntohll(unsigned long long a) { return my_htonll(a); } /* returns a 64-bit a timestamp with the finest resolution available. The * unit is intentionally not specified. It's mostly used to compare dates. */ #if defined(__i386__) || defined(__x86_64__) static inline unsigned long long rdtsc() { unsigned int a, d; asm volatile("rdtsc" : "=a" (a), "=d" (d)); return a + ((unsigned long long)d << 32); } #else static inline unsigned long long rdtsc() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000 + tv.tv_usec; } #endif /* append a copy of string (in a wordlist) at the end of the list
  • * On failure : return 0 and filled with an error message. * The caller is responsible for freeing the and copy * memory area using free() */ struct list; int list_append_word(struct list *li, const char *str, char **err); int dump_text(struct chunk *out, const char *buf, int bsize); int dump_binary(struct chunk *out, const char *buf, int bsize); int dump_text_line(struct chunk *out, const char *buf, int bsize, int len, int *line, int ptr); /* same as realloc() except that ptr is also freed upon failure */ static inline void *my_realloc2(void *ptr, size_t size) { void *ret; ret = realloc(ptr, size); if (!ret && size) free(ptr); return ret; } /* HAP_STRING() makes a string from a literal while HAP_XSTRING() first * evaluates the argument and is suited to pass macros. * * They allow macros like PCRE_MAJOR to be defined without quotes, which * is convenient for applications that want to test its value. */ #define HAP_STRING(...) #__VA_ARGS__ #define HAP_XSTRING(...) HAP_STRING(__VA_ARGS__) #endif /* _COMMON_STANDARD_H */