/* * HTTP protocol analyzer * * Copyright (C) 2018 HAProxy Technologies, Christopher Faulet * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern const char *stat_status_codes[]; static void htx_end_request(struct stream *s); static void htx_end_response(struct stream *s); static void htx_capture_headers(struct htx *htx, char **cap, struct cap_hdr *cap_hdr); static int htx_del_hdr_value(char *start, char *end, char **from, char *next); static size_t htx_fmt_req_line(const struct htx_sl *sl, char *str, size_t len); static size_t htx_fmt_res_line(const struct htx_sl *sl, char *str, size_t len); static void htx_debug_stline(const char *dir, struct stream *s, const struct htx_sl *sl); static void htx_debug_hdr(const char *dir, struct stream *s, const struct ist n, const struct ist v); static enum rule_result htx_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status); static enum rule_result htx_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s); static int htx_apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px); static int htx_apply_filters_to_response(struct stream *s, struct channel *res, struct proxy *px); static void htx_manage_client_side_cookies(struct stream *s, struct channel *req); static void htx_manage_server_side_cookies(struct stream *s, struct channel *res); static int htx_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *backend); static int htx_handle_stats(struct stream *s, struct channel *req); static int htx_reply_100_continue(struct stream *s); static int htx_reply_40x_unauthorized(struct stream *s, const char *auth_realm); /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int htx_wait_for_request(struct stream *s, struct channel *req, int an_bit) { /* * We will analyze a complete HTTP request to check the its syntax. * * Once the start line and all headers are received, we may perform a * capture of the error (if any), and we will set a few fields. We also * check for monitor-uri, logging and finally headers capture. */ struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; struct htx_sl *sl; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); htx = htxbuf(&req->buf); /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; /* If there is data available for analysis, log the end of the idle time. */ if (c_data(req) && s->logs.t_idle == -1) { const struct cs_info *csinfo = si_get_cs_info(objt_cs(s->si[0].end)); s->logs.t_idle = ((csinfo) ? csinfo->t_idle : tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake); } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * requests are checked first. When waiting for a second request * on a keep-alive stream, if we encounter and error, close, t/o, * we note the error in the stream flags but don't set any state. * Since the error will be noted there, it will not be counted by * process_stream() as a frontend error. * Last, we may increase some tracked counters' http request errors on * the cases that are deliberately the client's fault. For instance, * a timeout or connection reset is not counted as an error. However * a bad request is. */ if (unlikely(htx_is_empty(htx) || htx_get_tail_type(htx) < HTX_BLK_EOH)) { /* * First catch invalid request */ if (htx->flags & HTX_FL_PARSING_ERROR) { stream_inc_http_req_ctr(s); stream_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(sess->fe); goto return_bad_req; } /* 1: have we encountered a read error ? */ if (req->flags & CF_READ_ERROR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; stream_inc_http_err_ctr(s); stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); txn->status = 400; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; htx_reply_and_close(s, txn->status, NULL); req->analysers &= AN_REQ_FLT_END; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 2: has the read timeout expired ? */ else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; stream_inc_http_err_ctr(s); stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); txn->status = 408; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; htx_reply_and_close(s, txn->status, htx_error_message(s)); req->analysers &= AN_REQ_FLT_END; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 3: have we encountered a close ? */ else if (req->flags & CF_SHUTR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; stream_inc_http_err_ctr(s); stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); txn->status = 400; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; htx_reply_and_close(s, txn->status, htx_error_message(s)); req->analysers &= AN_REQ_FLT_END; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ if (sess->listener->options & LI_O_NOQUICKACK && htx_is_not_empty(htx) && objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) { /* We need more data, we have to re-enable quick-ack in case we * previously disabled it, otherwise we might cause the client * to delay next data. */ conn_set_quickack(objt_conn(sess->origin), 1); } if ((req->flags & CF_READ_PARTIAL) && (txn->flags & TX_WAIT_NEXT_RQ)) { /* If the client starts to talk, let's fall back to * request timeout processing. */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* just set the request timeout once at the beginning of the request */ if (!tick_isset(req->analyse_exp)) { if ((txn->flags & TX_WAIT_NEXT_RQ) && tick_isset(s->be->timeout.httpka)) req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka); else req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); } /* we're not ready yet */ return 0; failed_keep_alive: /* Here we process low-level errors for keep-alive requests. In * short, if the request is not the first one and it experiences * a timeout, read error or shutdown, we just silently close so * that the client can try again. */ txn->status = 0; msg->msg_state = HTTP_MSG_RQBEFORE; req->analysers &= AN_REQ_FLT_END; s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ htx_reply_and_close(s, txn->status, NULL); return 0; } msg->msg_state = HTTP_MSG_BODY; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */ /* kill the pending keep-alive timeout */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; sl = http_find_stline(htx); /* 0: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int32_t pos; htx_debug_stline("clireq", s, sl); for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; htx_debug_hdr("clihdr", s, htx_get_blk_name(htx, blk), htx_get_blk_value(htx, blk)); } } /* * 1: identify the method and the version. Also set HTTP flags */ txn->meth = sl->info.req.meth; if (sl->flags & HTX_SL_F_VER_11) msg->flags |= HTTP_MSGF_VER_11; msg->flags |= HTTP_MSGF_XFER_LEN; msg->flags |= ((sl->flags & HTX_SL_F_CHNK) ? HTTP_MSGF_TE_CHNK : HTTP_MSGF_CNT_LEN); if (sl->flags & HTX_SL_F_BODYLESS) msg->flags |= HTTP_MSGF_BODYLESS; /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; else if (txn->meth == HTTP_METH_OTHER && isteqi(htx_sl_req_meth(sl), ist("PRI"))) { /* PRI is reserved for the HTTP/2 preface */ goto return_bad_req; } /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((sess->fe->monitor_uri_len != 0) && isteqi(htx_sl_req_uri(sl), ist2(sess->fe->monitor_uri, sess->fe->monitor_uri_len)))) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SF_MONITOR; HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } } /* nothing to fail, let's reply normally */ txn->status = 200; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) { size_t len; len = htx_fmt_req_line(sl, txn->uri, global.tune.requri_len - 1); txn->uri[len] = 0; if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) s->do_log(s); } else { ha_alert("HTTP logging : out of memory.\n"); } } /* if the frontend has "option http-use-proxy-header", we'll check if * we have what looks like a proxied connection instead of a connection, * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. * Note that this is *not* RFC-compliant, however browsers and proxies * happen to do that despite being non-standard :-( * We consider that a request not beginning with either '/' or '*' is * a proxied connection, which covers both "scheme://location" and * CONNECT ip:port. */ if ((sess->fe->options2 & PR_O2_USE_PXHDR) && *HTX_SL_REQ_UPTR(sl) != '/' && *HTX_SL_REQ_UPTR(sl) != '*') txn->flags |= TX_USE_PX_CONN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap)) htx_capture_headers(htx, s->req_cap, sess->fe->req_cap); /* Until set to anything else, the connection mode is set as Keep-Alive. It will * only change if both the request and the config reference something else. * Option httpclose by itself sets tunnel mode where headers are mangled. * However, if another mode is set, it will affect it (eg: server-close/ * keep-alive + httpclose = close). Note that we avoid to redo the same work * if FE and BE have the same settings (common). The method consists in * checking if options changed between the two calls (implying that either * one is non-null, or one of them is non-null and we are there for the first * time. */ if ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE)) htx_adjust_conn_mode(s, txn); /* we may have to wait for the request's body */ if (s->be->options & PR_O_WREQ_BODY) req->analysers |= AN_REQ_HTTP_BODY; /* * RFC7234#4: * A cache MUST write through requests with methods * that are unsafe (Section 4.2.1 of [RFC7231]) to * the origin server; i.e., a cache is not allowed * to generate a reply to such a request before * having forwarded the request and having received * a corresponding response. * * RFC7231#4.2.1: * Of the request methods defined by this * specification, the GET, HEAD, OPTIONS, and TRACE * methods are defined to be safe. */ if (likely(txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD || txn->meth == HTTP_METH_OPTIONS || txn->meth == HTTP_METH_TRACE)) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: txn->status = 400; txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; htx_reply_and_close(s, txn->status, htx_error_message(s)); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; return 0; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int htx_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; struct redirect_rule *rule; struct cond_wordlist *wl; enum rule_result verdict; int deny_status = HTTP_ERR_403; struct connection *conn = objt_conn(sess->origin); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ goto return_prx_yield; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); htx = htxbuf(&req->buf); /* just in case we have some per-backend tracking */ stream_inc_be_http_req_ctr(s); /* evaluate http-request rules */ if (!LIST_ISEMPTY(&px->http_req_rules)) { verdict = htx_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status); switch (verdict) { case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ goto return_prx_yield; case HTTP_RULE_RES_CONT: case HTTP_RULE_RES_STOP: /* nothing to do */ break; case HTTP_RULE_RES_DENY: /* deny or tarpit */ if (txn->flags & TX_CLTARPIT) goto tarpit; goto deny; case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */ goto return_prx_cond; case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ goto done; case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ goto return_bad_req; } } if (conn && (conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) { struct http_hdr_ctx ctx; ctx.blk = NULL; if (!http_find_header(htx, ist("Early-Data"), &ctx, 0)) { if (unlikely(!http_add_header(htx, ist("Early-Data"), ist("1")))) goto return_bad_req; } } /* OK at this stage, we know that the request was accepted according to * the http-request rules, we can check for the stats. Note that the * URI is detected *before* the req* rules in order not to be affected * by a possible reqrep, while they are processed *after* so that a * reqdeny can still block them. This clearly needs to change in 1.6! */ if (htx_stats_check_uri(s, txn, px)) { s->target = &http_stats_applet.obj_type; if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) { txn->status = 500; s->logs.tv_request = now; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto return_prx_cond; } /* parse the whole stats request and extract the relevant information */ htx_handle_stats(s, req); verdict = htx_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status); /* not all actions implemented: deny, allow, auth */ if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */ goto deny; if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */ goto return_prx_cond; } /* evaluate the req* rules except reqadd */ if (px->req_exp != NULL) { if (htx_apply_filters_to_request(s, req, px) < 0) goto return_bad_req; if (txn->flags & TX_CLDENY) goto deny; if (txn->flags & TX_CLTARPIT) { deny_status = HTTP_ERR_500; goto tarpit; } } /* add request headers from the rule sets in the same order */ list_for_each_entry(wl, &px->req_add, list) { struct ist n,v; if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } http_parse_header(ist2(wl->s, strlen(wl->s)), &n, &v); if (unlikely(!http_add_header(htx, n, v))) goto return_bad_req; } /* Proceed with the stats now. */ if (unlikely(objt_applet(s->target) == &http_stats_applet) || unlikely(objt_applet(s->target) == &http_cache_applet)) { /* process the stats request now */ if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; /* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */ req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END); req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; goto done; } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (!htx_apply_redirect_rule(rule, s, txn)) goto return_bad_req; goto done; } /* POST requests may be accompanied with an "Expect: 100-Continue" header. * If this happens, then the data will not come immediately, so we must * send all what we have without waiting. Note that due to the small gain * in waiting for the body of the request, it's easier to simply put the * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove * itself once used. */ req->flags |= CF_SEND_DONTWAIT; done: /* done with this analyser, continue with next ones that the calling * points will have set, if any. */ req->analyse_exp = TICK_ETERNITY; done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */ req->analysers &= ~an_bit; return 1; tarpit: /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) htx_manage_client_side_cookies(s, req); /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ channel_erase(&s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); txn->status = http_err_codes[deny_status]; req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); stream_inc_http_err_ctr(s); HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); if (sess->fe != s->be) HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); goto done_without_exp; deny: /* this request was blocked (denied) */ /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) htx_manage_client_side_cookies(s, req); txn->flags |= TX_CLDENY; txn->status = http_err_codes[deny_status]; s->logs.tv_request = now; htx_reply_and_close(s, txn->status, htx_error_message(s)); stream_inc_http_err_ctr(s); HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); if (sess->fe != s->be) HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); goto return_prx_cond; return_bad_req: txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; htx_reply_and_close(s, txn->status, htx_error_message(s)); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; return 0; return_prx_yield: channel_dont_connect(req); return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req.analysers. */ int htx_process_request(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; struct connection *cli_conn = objt_conn(strm_sess(s)->origin); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ channel_dont_connect(req); return 0; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ htx = htxbuf(&req->buf); /* * If HTTP PROXY is set we simply get remote server address parsing * incoming request. Note that this requires that a connection is * allocated on the server side. */ if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) { struct connection *conn; struct htx_sl *sl; struct ist uri, path; /* Note that for now we don't reuse existing proxy connections */ if (unlikely((conn = cs_conn(si_alloc_cs(&s->si[1], NULL))) == NULL)) { txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 500; req->analysers &= AN_REQ_FLT_END; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } sl = http_find_stline(htx); uri = htx_sl_req_uri(sl); path = http_get_path(uri); if (url2sa(uri.ptr, uri.len - path.len, &conn->addr.to, NULL) == -1) goto return_bad_req; /* if the path was found, we have to remove everything between * uri.ptr and path.ptr (excluded). If it was not found, we need * to replace from all the uri by a single "/". * * Instead of rewritting the whole start line, we just update * the star-line URI. Some space will be lost but it should be * insignificant. */ istcpy(&uri, (path.len ? path : ist("/")), uri.len); } /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if (s->be->cookie_name || sess->fe->capture_name) manage_client_side_cookies(s, req); /* add unique-id if "header-unique-id" is specified */ if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) { if ((s->unique_id = pool_alloc(pool_head_uniqueid)) == NULL) goto return_bad_req; s->unique_id[0] = '\0'; build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id); } if (sess->fe->header_unique_id && s->unique_id) { struct ist n = ist2(sess->fe->header_unique_id, strlen(sess->fe->header_unique_id)); struct ist v = ist2(s->unique_id, strlen(s->unique_id)); if (unlikely(!http_add_header(htx, n, v))) goto return_bad_req; } /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) { struct http_hdr_ctx ctx = { .blk = NULL }; struct ist hdr = ist2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name, s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len); if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) && http_find_header(htx, hdr, &ctx, 0)) { /* The header is set to be added only if none is present * and we found it, so don't do anything. */ } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!sess->fe->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr) != sess->fe->except_net.s_addr) && (!s->be->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr) != s->be->except_net.s_addr)) { unsigned char *pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ chunk_printf(&trash, "%d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data)))) goto return_bad_req; } } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ chunk_printf(&trash, "%s", pn); if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data)))) goto return_bad_req; } } /* * 10: add X-Original-To if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_ORGTO) { /* FIXME: don't know if IPv6 can handle that case too. */ if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Original-To header unless the destination IP is * in the 'except' network range. */ conn_get_to_addr(cli_conn); if (cli_conn->addr.to.ss_family == AF_INET && ((!sess->fe->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr) != sess->fe->except_to.s_addr) && (!s->be->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr) != s->be->except_to.s_addr))) { struct ist hdr; unsigned char *pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-original-to, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->orgto_hdr_len) hdr = ist2(s->be->orgto_hdr_name, s->be->orgto_hdr_len); else hdr = ist2(sess->fe->orgto_hdr_name, sess->fe->orgto_hdr_len); chunk_printf(&trash, "%d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(!http_add_header(htx, hdr, ist2(trash.area, trash.data)))) goto return_bad_req; } } } /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) && s->txn->meth == HTTP_METH_POST && s->be->url_param_name != NULL) { channel_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; /* We expect some data from the client. Unless we know for sure * we already have a full request, we have to re-enable quick-ack * in case we previously disabled it, otherwise we might cause * the client to delay further data. */ if ((sess->listener->options & LI_O_NOQUICKACK) && (htx_get_tail_type(htx) != HTX_BLK_EOM)) conn_set_quickack(cli_conn, 1); /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; s->logs.tv_request = now; /* OK let's go on with the BODY now */ return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; req->analysers &= AN_REQ_FLT_END; htx_reply_and_close(s, txn->status, htx_error_message(s)); HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int htx_process_tarpit(struct stream *s, struct channel *req, int an_bit) { struct http_txn *txn = s->txn; /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ channel_dont_connect(req); if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 && !tick_is_expired(req->analyse_exp, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); if (!(req->flags & CF_READ_ERROR)) htx_reply_and_close(s, txn->status, htx_error_message(s)); req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_T; return 0; } /* This function is an analyser which waits for the HTTP request body. It waits * for either the buffer to be full, or the full advertised contents to have * reached the buffer. It must only be called after the standard HTTP request * processing has occurred, because it expects the request to be parsed and will * look for the Expect header. It may send a 100-Continue interim response. It * takes in input any state starting from HTTP_MSG_BODY and leaves with one of * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it * needs to read more data, or 1 once it has completed its analysis. */ int htx_wait_for_request_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->req; struct htx *htx; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); htx = htxbuf(&req->buf); if (msg->msg_state < HTTP_MSG_BODY) goto missing_data; /* We have to parse the HTTP request body to find any required data. * "balance url_param check_post" should have been the only way to get * into this. We were brought here after HTTP header analysis, so all * related structures are ready. */ if (msg->msg_state < HTTP_MSG_DATA) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (msg->flags & HTTP_MSGF_VER_11) { struct ist hdr = { .ptr = "Expect", .len = 6 }; struct http_hdr_ctx ctx; ctx.blk = NULL; /* Expect is allowed in 1.1, look for it */ if (http_find_header(htx, hdr, &ctx, 0) && unlikely(isteqi(ctx.value, ist2("100-continue", 12)))) { if (htx_reply_100_continue(s) == -1) goto return_bad_req; http_remove_header(htx, &ctx); } } } msg->msg_state = HTTP_MSG_DATA; /* Now we're in HTTP_MSG_DATA. We just need to know if all data have * been received or if the buffer is full. */ if (htx_get_tail_type(htx) >= HTX_BLK_EOD || htx_used_space(htx) + global.tune.maxrewrite >= htx->size) goto http_end; missing_data: if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_req; if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { txn->status = 408; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; goto return_err_msg; } /* we get here if we need to wait for more data */ if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) { /* Not enough data. We'll re-use the http-request * timeout here. Ideally, we should set the timeout * relative to the accept() date. We just set the * request timeout once at the beginning of the * request. */ channel_dont_connect(req); if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); return 0; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.tv_request = now; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return_err_msg: req->analysers &= AN_REQ_FLT_END; HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return 0; } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done. */ int htx_request_forward_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct htx *htx; int ret; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); htx = htxbuf(&req->buf); if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((req->flags & CF_SHUTW) && (req->to_forward || co_data(req)))) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; htx_end_request(s); htx_end_response(s); return 1; } /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->msg_state == HTTP_MSG_BODY) msg->msg_state = HTTP_MSG_DATA; /* Some post-connect processing might want us to refrain from starting to * forward data. Currently, the only reason for this is "balance url_param" * whichs need to parse/process the request after we've enabled forwarding. */ if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) { if (!(s->res.flags & CF_READ_ATTACHED)) { channel_auto_connect(req); req->flags |= CF_WAKE_CONNECT; channel_dont_close(req); /* don't fail on early shutr */ goto waiting; } msg->flags &= ~HTTP_MSGF_WAIT_CONN; } /* in most states, we should abort in case of early close */ channel_auto_close(req); if (req->to_forward) { /* We can't process the buffer's contents yet */ req->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } if (msg->msg_state >= HTTP_MSG_DONE) goto done; /* Forward input data. We get it by removing all outgoing data not * forwarded yet from HTX data size. If there are some data filters, we * let them decide the amount of data to forward. */ if (HAS_REQ_DATA_FILTERS(s)) { ret = flt_http_payload(s, msg, htx->data); if (ret < 0) goto return_bad_req; c_adv(req, ret); if (htx->data != co_data(req) || htx->extra) goto missing_data_or_waiting; } else { c_adv(req, htx->data - co_data(req)); /* To let the function channel_forward work as expected we must update * the channel's buffer to pretend there is no more input data. The * right length is then restored. We must do that, because when an HTX * message is stored into a buffer, it appears as full. */ if ((msg->flags & HTTP_MSGF_XFER_LEN) && htx->extra) htx->extra -= channel_htx_forward(req, htx, htx->extra); } /* Check if the end-of-message is reached and if so, switch the message * in HTTP_MSG_DONE state. */ if (htx_get_tail_type(htx) != HTX_BLK_EOM) goto missing_data_or_waiting; msg->msg_state = HTTP_MSG_DONE; done: /* other states, DONE...TUNNEL */ /* we don't want to forward closes on DONE except in tunnel mode. */ if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) channel_dont_close(req); if (HAS_REQ_DATA_FILTERS(s)) { ret = flt_http_end(s, msg); if (ret <= 0) { if (!ret) goto missing_data_or_waiting; goto return_bad_req; } } htx_end_request(s); if (!(req->analysers & an_bit)) { htx_end_response(s); if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (req->flags & CF_SHUTW) { /* request errors are most likely due to the * server aborting the transfer. */ goto aborted_xfer; } goto return_bad_req; } return 1; } /* If "option abortonclose" is set on the backend, we want to monitor * the client's connection and forward any shutdown notification to the * server, which will decide whether to close or to go on processing the * request. We only do that in tunnel mode, and not in other modes since * it can be abused to exhaust source ports. */ if ((s->be->options & PR_O_ABRT_CLOSE) && !(s->si[0].flags & SI_FL_CLEAN_ABRT)) { channel_auto_read(req); if ((req->flags & (CF_SHUTR|CF_READ_NULL)) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)) s->si[1].flags |= SI_FL_NOLINGER; channel_auto_close(req); } else if (s->txn->meth == HTTP_METH_POST) { /* POST requests may require to read extra CRLF sent by broken * browsers and which could cause an RST to be sent upon close * on some systems (eg: Linux). */ channel_auto_read(req); } return 0; missing_data_or_waiting: /* stop waiting for data if the input is closed before the end */ if (msg->msg_state < HTTP_MSG_DONE && req->flags & CF_SHUTR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); goto return_bad_req_stats_ok; } waiting: /* waiting for the last bits to leave the buffer */ if (req->flags & CF_SHUTW) goto aborted_xfer; if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_req; /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. * And when content-length is used, we never want to let the possible * shutdown be forwarded to the other side, as the state machine will * take care of it once the client responds. It's also important to * prevent TIME_WAITs from accumulating on the backend side, and for * HTTP/2 where the last frame comes with a shutdown. */ if (msg->flags & HTTP_MSGF_XFER_LEN) channel_dont_close(req); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (msg->flags & HTTP_MSGF_TE_CHNK) req->flags |= CF_EXPECT_MORE; return 0; return_bad_req: /* let's centralize all bad requests */ HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return_bad_req_stats_ok: txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status > 0) { /* Note: we don't send any error if some data were already sent */ htx_reply_and_close(s, txn->status, NULL); } else { txn->status = 400; htx_reply_and_close(s, txn->status, htx_error_message(s)); } req->analysers &= AN_REQ_FLT_END; s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */ if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } return 0; aborted_xfer: txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status > 0) { /* Note: we don't send any error if some data were already sent */ htx_reply_and_close(s, txn->status, NULL); } else { txn->status = 502; htx_reply_and_close(s, txn->status, htx_error_message(s)); } req->analysers &= AN_REQ_FLT_END; s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */ HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int htx_wait_for_response(struct stream *s, struct channel *rep, int an_bit) { /* * We will analyze a complete HTTP response to check the its syntax. * * Once the start line and all headers are received, we may perform a * capture of the error (if any), and we will set a few fields. We also * logging and finally headers capture. */ struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct htx *htx; struct connection *srv_conn; struct htx_sl *sl; int n; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, ci_data(rep), rep->analysers); htx = htxbuf(&rep->buf); /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(co_data(rep) || htx_is_empty(htx) || htx_get_tail_type(htx) < HTX_BLK_EOH)) { /* * First catch invalid response */ if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_res; /* 1: have we encountered a read error ? */ if (rep->flags & CF_READ_ERROR) { if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); } rep->analysers &= AN_RES_FLT_END; txn->status = 502; /* Check to see if the server refused the early data. * If so, just send a 425 */ if (objt_cs(s->si[1].end)) { struct connection *conn = objt_cs(s->si[1].end)->conn; if (conn->err_code == CO_ER_SSL_EARLY_FAILED) txn->status = 425; } s->si[1].flags |= SI_FL_NOLINGER; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* 2: read timeout : return a 504 to the client. */ else if (rep->flags & CF_READ_TIMEOUT) { HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); } rep->analysers &= AN_RES_FLT_END; txn->status = 504; s->si[1].flags |= SI_FL_NOLINGER; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVTO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* 3: client abort with an abortonclose */ else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) { HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&__objt_server(s->target)->counters.cli_aborts, 1); rep->analysers &= AN_RES_FLT_END; txn->status = 400; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } /* 4: close from server, capture the response if the server has started to respond */ else if (rep->flags & CF_SHUTR) { if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); } rep->analysers &= AN_RES_FLT_END; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* 5: write error to client (we don't send any message then) */ else if (rep->flags & CF_WRITE_ERROR) { if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); rep->analysers &= AN_RES_FLT_END; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ msg->msg_state = HTTP_MSG_BODY; sl = http_find_stline(htx); /* 0: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int32_t pos; htx_debug_stline("srvrep", s, sl); for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; htx_debug_hdr("srvhdr", s, htx_get_blk_name(htx, blk), htx_get_blk_value(htx, blk)); } } /* 1: get the status code and the version. Also set HTTP flags */ txn->status = sl->info.res.status; if (sl->flags & HTX_SL_F_VER_11) msg->flags |= HTTP_MSGF_VER_11; if (sl->flags & HTX_SL_F_XFER_LEN) { msg->flags |= HTTP_MSGF_XFER_LEN; msg->flags |= ((sl->flags & HTX_SL_F_CHNK) ? HTTP_MSGF_TE_CHNK : HTTP_MSGF_CNT_LEN); if (sl->flags & HTX_SL_F_BODYLESS) msg->flags |= HTTP_MSGF_BODYLESS; } n = txn->status / 100; if (n < 1 || n > 5) n = 0; /* when the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. */ if (n == 4) stream_inc_http_err_ctr(s); if (objt_server(s->target)) HA_ATOMIC_ADD(&__objt_server(s->target)->counters.p.http.rsp[n], 1); /* Adjust server's health based on status code. Note: status codes 501 * and 505 are triggered on demand by client request, so we must not * count them as server failures. */ if (objt_server(s->target)) { if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK); else health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS); } /* * We may be facing a 100-continue response, or any other informational * 1xx response which is non-final, in which case this is not the right * response, and we're waiting for the next one. Let's allow this response * to go to the client and wait for the next one. There's an exception for * 101 which is used later in the code to switch protocols. */ if (txn->status < 200 && (txn->status == 100 || txn->status >= 102)) { FLT_STRM_CB(s, flt_http_reset(s, msg)); c_adv(rep, htx->data); msg->msg_state = HTTP_MSG_RPBEFORE; txn->status = 0; s->logs.t_data = -1; /* was not a response yet */ return 0; } /* * 2: check for cacheability. */ switch (txn->status) { case 200: case 203: case 204: case 206: case 300: case 301: case 404: case 405: case 410: case 414: case 501: break; default: /* RFC7231#6.1: * Responses with status codes that are defined as * cacheable by default (e.g., 200, 203, 204, 206, * 300, 301, 404, 405, 410, 414, and 501 in this * specification) can be reused by a cache with * heuristic expiration unless otherwise indicated * by the method definition or explicit cache * controls [RFC7234]; all other status codes are * not cacheable by default. */ txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK); break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap)) htx_capture_headers(htx, s->res_cap, sess->fe->rsp_cap); /* Skip parsing if no content length is possible. */ if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || txn->status == 101)) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely * to understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement specific * parsers for such protocols, we'll want to check the Upgrade * header which contains information about that protocol for * responses with status 101 (eg: see RFC2817 about TLS). */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN; } /* check for NTML authentication headers in 401 (WWW-Authenticate) and * 407 (Proxy-Authenticate) responses and set the connection to private */ srv_conn = cs_conn(objt_cs(s->si[1].end)); if (srv_conn) { struct ist hdr; struct http_hdr_ctx ctx; if (txn->status == 401) hdr = ist("WWW-Authenticate"); else if (txn->status == 407) hdr = ist("Proxy-Authenticate"); else goto end; ctx.blk = NULL; while (http_find_header(htx, hdr, &ctx, 0)) { if ((ctx.value.len >= 9 && word_match(ctx.value.ptr, ctx.value.len, "Negotiate", 9)) || (ctx.value.len >= 4 && word_match(ctx.value.ptr, ctx.value.len, "NTLM", 4))) srv_conn->flags |= CO_FL_PRIVATE; } } end: /* we want to have the response time before we start processing it */ s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now); /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; channel_auto_close(rep); return 1; return_bad_res: HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); } txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; htx_reply_and_close(s, txn->status, htx_error_message(s)); rep->analysers &= AN_RES_FLT_END; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; abort_keep_alive: /* A keep-alive request to the server failed on a network error. * The client is required to retry. We need to close without returning * any other information so that the client retries. */ txn->status = 0; rep->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ htx_reply_and_close(s, txn->status, NULL); return 0; } /* This function performs all the processing enabled for the current response. * It normally returns 1 unless it wants to break. It relies on buffers flags, * and updates s->res.analysers. It might make sense to explode it into several * other functions. It works like process_request (see indications above). */ int htx_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct htx *htx; struct proxy *cur_proxy; struct cond_wordlist *wl; enum rule_result ret = HTTP_RULE_RES_CONT; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, ci_data(rep), rep->analysers); htx = htxbuf(&rep->buf); /* The stats applet needs to adjust the Connection header but we don't * apply any filter there. */ if (unlikely(objt_applet(s->target) == &http_stats_applet)) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; goto end; } /* * We will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. * * Maybe we are in resume condiion. In this case I choose the * "struct proxy" which contains the rule list matching the resume * pointer. If none of theses "struct proxy" match, I initialise * the process with the first one. * * In fact, I check only correspondance betwwen the current list * pointer and the ->fe rule list. If it doesn't match, I initialize * the loop with the ->be. */ if (s->current_rule_list == &sess->fe->http_res_rules) cur_proxy = sess->fe; else cur_proxy = s->be; while (1) { struct proxy *rule_set = cur_proxy; /* evaluate http-response rules */ if (ret == HTTP_RULE_RES_CONT) { ret = htx_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s); if (ret == HTTP_RULE_RES_BADREQ) goto return_srv_prx_502; if (ret == HTTP_RULE_RES_DONE) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } } /* we need to be called again. */ if (ret == HTTP_RULE_RES_YIELD) { channel_dont_close(rep); return 0; } /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (htx_apply_filters_to_response(s, rep, rule_set) < 0) goto return_bad_resp; } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (objt_server(s->target)) HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_secu, 1); HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); goto return_srv_prx_502; } /* add response headers from the rule sets in the same order */ list_for_each_entry(wl, &rule_set->rsp_add, list) { struct ist n, v; if (txn->status < 200 && txn->status != 101) break; if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } http_parse_header(ist2(wl->s, strlen(wl->s)), &n, &v); if (unlikely(!http_add_header(htx, n, v))) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == sess->fe) break; cur_proxy = sess->fe; } /* After this point, this anayzer can't return yield, so we can * remove the bit corresponding to this analyzer from the list. * * Note that the intermediate returns and goto found previously * reset the analyzers. */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; /* OK that's all we can do for 1xx responses */ if (unlikely(txn->status < 200 && txn->status != 101)) goto end; /* * Now check for a server cookie. */ if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE)) htx_manage_server_side_cookies(s, rep); /* * Check for cache-control or pragma headers if required. */ if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) check_response_for_cacheability(s, rep); /* * Add server cookie in the response if needed */ if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) && !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) && (!(s->flags & SF_DIRECT) || ((s->be->cookie_maxidle || txn->cookie_last_date) && (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || (s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && !(s->flags & SF_IGNORE_PRST)) { /* the server is known, it's not the one the client requested, or the * cookie's last seen date needs to be refreshed. We have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ if (!objt_server(s->target)->cookie) { chunk_printf(&trash, "%s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", s->be->cookie_name); } else { chunk_printf(&trash, "%s=%s", s->be->cookie_name, objt_server(s->target)->cookie); if (s->be->cookie_maxidle || s->be->cookie_maxlife) { /* emit last_date, which is mandatory */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64((date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; if (s->be->cookie_maxlife) { /* emit first_date, which is either the original one or * the current date. */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64(txn->cookie_first_date ? txn->cookie_first_date >> 2 : (date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; } } chunk_appendf(&trash, "; path=/"); } if (s->be->cookie_domain) chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain); if (s->be->ck_opts & PR_CK_HTTPONLY) chunk_appendf(&trash, "; HttpOnly"); if (s->be->ck_opts & PR_CK_SECURE) chunk_appendf(&trash, "; Secure"); if (unlikely(!http_add_header(htx, ist("Set-Cookie"), ist2(trash.area, trash.data)))) goto return_bad_resp; txn->flags &= ~TX_SCK_MASK; if (__objt_server(s->target)->cookie && (s->flags & SF_DIRECT)) /* the server did not change, only the date was updated */ txn->flags |= TX_SCK_UPDATED; else txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(!http_add_header(htx, ist("Cache-control"), ist("private")))) goto return_bad_resp; } } /* * Check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && (s->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1); HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); send_log(s->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); goto return_srv_prx_502; } end: /* Always enter in the body analyzer */ rep->analysers &= ~AN_RES_FLT_XFER_DATA; rep->analysers |= AN_RES_HTTP_XFER_BODY; /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_data; /* to get a valid end date */ s->logs.bytes_out = htx->data; s->do_log(s); s->logs.bytes_out = 0; } return 1; return_bad_resp: if (objt_server(s->target)) { HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); } HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); return_srv_prx_502: rep->analysers &= AN_RES_FLT_END; txn->status = 502; s->logs.t_data = -1; /* was not a valid response */ s->si[1].flags |= SI_FL_NOLINGER; htx_reply_and_close(s, txn->status, htx_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * * It is capable of compressing response data both in content-length mode and * in chunked mode. The state machines follows different flows depending on * whether content-length and chunked modes are used, since there are no * trailers in content-length : * * chk-mode cl-mode * ,----- BODY -----. * / \ * V size > 0 V chk-mode * .--> SIZE -------------> DATA -------------> CRLF * | | size == 0 | last byte | * | v final crlf v inspected | * | TRAILERS -----------> DONE | * | | * `----------------------------------------------' * * Compression only happens in the DATA state, and must be flushed in final * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding * is performed at once on final states for all bytes parsed, or when leaving * on missing data. */ int htx_response_forward_body(struct stream *s, struct channel *res, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->rsp; struct htx *htx; int ret; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, res, res->rex, res->wex, res->flags, ci_data(res), res->analysers); htx = htxbuf(&res->buf); if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((res->flags & CF_SHUTW) && (res->to_forward || co_data(res)))) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; htx_end_response(s); htx_end_request(s); return 1; } if (msg->msg_state == HTTP_MSG_BODY) msg->msg_state = HTTP_MSG_DATA; /* in most states, we should abort in case of early close */ channel_auto_close(res); if (res->to_forward) { /* We can't process the buffer's contents yet */ res->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } if (msg->msg_state >= HTTP_MSG_DONE) goto done; /* Forward input data. We get it by removing all outgoing data not * forwarded yet from HTX data size. If there are some data filters, we * let them decide the amount of data to forward. */ if (HAS_RSP_DATA_FILTERS(s)) { ret = flt_http_payload(s, msg, htx->data); if (ret < 0) goto return_bad_res; c_adv(res, ret); if (htx->data != co_data(res) || htx->extra) goto missing_data_or_waiting; } else { c_adv(res, htx->data - co_data(res)); /* To let the function channel_forward work as expected we must update * the channel's buffer to pretend there is no more input data. The * right length is then restored. We must do that, because when an HTX * message is stored into a buffer, it appears as full. */ if ((msg->flags & HTTP_MSGF_XFER_LEN) && htx->extra) htx->extra -= channel_htx_forward(res, htx, htx->extra); } if (!(msg->flags & HTTP_MSGF_XFER_LEN)) { /* The server still sending data that should be filtered */ if (res->flags & CF_SHUTR || !HAS_RSP_DATA_FILTERS(s)) { msg->msg_state = HTTP_MSG_TUNNEL; goto done; } } /* Check if the end-of-message is reached and if so, switch the message * in HTTP_MSG_DONE state. */ if (htx_get_tail_type(htx) != HTX_BLK_EOM) goto missing_data_or_waiting; msg->msg_state = HTTP_MSG_DONE; done: /* other states, DONE...TUNNEL */ channel_dont_close(res); if (HAS_RSP_DATA_FILTERS(s)) { ret = flt_http_end(s, msg); if (ret <= 0) { if (!ret) goto missing_data_or_waiting; goto return_bad_res; } } htx_end_response(s); if (!(res->analysers & an_bit)) { htx_end_request(s); if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (res->flags & CF_SHUTW) { /* response errors are most likely due to the * client aborting the transfer. */ goto aborted_xfer; } goto return_bad_res; } return 1; } return 0; missing_data_or_waiting: if (res->flags & CF_SHUTW) goto aborted_xfer; if (htx->flags & HTX_FL_PARSING_ERROR) goto return_bad_res; /* stop waiting for data if the input is closed before the end. If the * client side was already closed, it means that the client has aborted, * so we don't want to count this as a server abort. Otherwise it's a * server abort. */ if (msg->msg_state < HTTP_MSG_DONE && res->flags & CF_SHUTR) { if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW)) goto aborted_xfer; /* If we have some pending data, we continue the processing */ if (htx_is_empty(htx)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); goto return_bad_res_stats_ok; } } /* When TE: chunked is used, we need to get there again to parse * remaining chunks even if the server has closed, so we don't want to * set CF_DONTCLOSE. Similarly when there is a content-leng or if there * are filters registered on the stream, we don't want to forward a * close */ if ((msg->flags & HTTP_MSGF_XFER_LEN) || HAS_RSP_DATA_FILTERS(s)) channel_dont_close(res); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING)) res->flags |= CF_EXPECT_MORE; /* the stream handler will take care of timeouts and errors */ return 0; return_bad_res: /* let's centralize all bad responses */ HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1); return_bad_res_stats_ok: txn->rsp.err_state = txn->rsp.msg_state; txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ htx_reply_and_close(s, txn->status, NULL); res->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */ if (objt_server(s->target)) health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; return 0; aborted_xfer: txn->rsp.err_state = txn->rsp.msg_state; txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ htx_reply_and_close(s, txn->status, NULL); res->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */ HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; return 0; } void htx_adjust_conn_mode(struct stream *s, struct http_txn *txn) { struct proxy *fe = strm_fe(s); int tmp = TX_CON_WANT_CLO; if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN) tmp = TX_CON_WANT_TUN; if ((txn->flags & TX_CON_WANT_MSK) < tmp) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; } /* Perform an HTTP redirect based on the information in . The function * returns zero on success, or zero in case of a, irrecoverable error such * as too large a request to build a valid response. */ int htx_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn) { struct channel *req = &s->req; struct channel *res = &s->res; struct htx *htx; struct htx_sl *sl; struct buffer *chunk; struct ist status, reason, location; unsigned int flags; size_t data; chunk = alloc_trash_chunk(); if (!chunk) goto fail; /* * Create the location */ htx = htxbuf(&req->buf); switch(rule->type) { case REDIRECT_TYPE_SCHEME: { struct http_hdr_ctx ctx; struct ist path, host; host = ist(""); ctx.blk = NULL; if (http_find_header(htx, ist("Host"), &ctx, 0)) host = ctx.value; sl = http_find_stline(htx); path = http_get_path(htx_sl_req_uri(sl)); /* build message using path */ if (path.ptr) { if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < path.len) { if (*(path.ptr + qs) == '?') { path.len = qs; break; } qs++; } } } else path = ist("/"); if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add scheme */ if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } else { /* add scheme with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); } /* add "://" + host + path */ if (!chunk_memcat(chunk, "://", 3) || !chunk_memcat(chunk, host.ptr, host.len) || !chunk_memcat(chunk, path.ptr, path.len)) goto fail; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data + 1 >= chunk->size) goto fail; chunk->area[chunk->data++] = '/'; } break; } case REDIRECT_TYPE_PREFIX: { struct ist path; sl = http_find_stline(htx); path = http_get_path(htx_sl_req_uri(sl)); /* build message using path */ if (path.ptr) { if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < path.len) { if (*(path.ptr + qs) == '?') { path.len = qs; break; } qs++; } } } else path = ist("/"); if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } } else { /* add prefix with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); } /* add path */ if (!chunk_memcat(chunk, path.ptr, path.len)) goto fail; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data + 1 >= chunk->size) goto fail; chunk->area[chunk->data++] = '/'; } break; } case REDIRECT_TYPE_LOCATION: default: if (rule->rdr_str) { /* this is an old "redirect" rule */ /* add location */ if (!chunk_memcat(chunk, rule->rdr_str, rule->rdr_len)) goto fail; } else { /* add location with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); } break; } location = ist2(chunk->area, chunk->data); /* * Create the 30x response */ switch (rule->code) { case 308: status = ist("308"); reason = ist("Permanent Redirect"); break; case 307: status = ist("307"); reason = ist("Temporary Redirect"); break; case 303: status = ist("303"); reason = ist("See Other"); break; case 301: status = ist("301"); reason = ist("Moved Permanently"); break; case 302: default: status = ist("302"); reason = ist("Found"); break; } htx = htx_from_buf(&res->buf); flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS); sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), status, reason); if (!sl) goto fail; sl->info.res.status = rule->code; s->txn->status = rule->code; if (!htx_add_header(htx, ist("Connection"), ist("close")) || !htx_add_header(htx, ist("Content-length"), ist("0")) || !htx_add_header(htx, ist("Location"), location)) goto fail; if (rule->code == 302 || rule->code == 303 || rule->code == 307) { if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache"))) goto fail; } if (rule->cookie_len) { if (!htx_add_header(htx, ist("Set-Cookie"), ist2(rule->cookie_str, rule->cookie_len))) goto fail; } if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM)) goto fail; /* let's log the request time */ s->logs.tv_request = now; data = htx->data - co_data(res); c_adv(res, data); res->total += data; channel_auto_read(req); channel_abort(req); channel_auto_close(req); channel_erase(req); res->wex = tick_add_ifset(now_ms, res->wto); channel_auto_read(res); channel_auto_close(res); channel_shutr_now(res); req->analysers &= AN_REQ_FLT_END; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; free_trash_chunk(chunk); return 1; fail: /* If an error occurred, remove the incomplete HTTP response from the * buffer */ channel_truncate(res); free_trash_chunk(chunk); return 0; } int htx_transform_header_str(struct stream* s, struct channel *chn, struct htx *htx, struct ist name, const char *str, struct my_regex *re, int action) { struct http_hdr_ctx ctx; struct buffer *output = get_trash_chunk(); /* find full header is action is ACT_HTTP_REPLACE_HDR */ ctx.blk = NULL; while (http_find_header(htx, name, &ctx, (action == ACT_HTTP_REPLACE_HDR))) { if (!regex_exec_match2(re, ctx.value.ptr, ctx.value.len, MAX_MATCH, pmatch, 0)) continue; output->data = exp_replace(output->area, output->size, ctx.value.ptr, str, pmatch); if (output->data == -1) return -1; if (!http_replace_header_value(htx, &ctx, ist2(output->area, output->data))) return -1; } return 0; } static int htx_transform_header(struct stream* s, struct channel *chn, struct htx *htx, const struct ist name, struct list *fmt, struct my_regex *re, int action) { struct buffer *replace; int ret = -1; replace = alloc_trash_chunk(); if (!replace) goto leave; replace->data = build_logline(s, replace->area, replace->size, fmt); if (replace->data >= replace->size - 1) goto leave; ret = htx_transform_header_str(s, chn, htx, name, replace->area, re, action); leave: free_trash_chunk(replace); return ret; } /* Terminate a 103-Erly-hints response and send it to the client. It returns 0 * on success and -1 on error. The response channel is updated accordingly. */ static int htx_reply_103_early_hints(struct channel *res) { struct htx *htx = htx_from_buf(&res->buf); size_t data; if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM)) { /* If an error occurred during an Early-hint rule, * remove the incomplete HTTP 103 response from the * buffer */ channel_truncate(res); return -1; } data = htx->data - co_data(res); c_adv(res, data); res->total += data; return 0; } /* * Build an HTTP Early Hint HTTP 103 response header with as name and with a value * built according to log line format. * If is 0, it is starts a new response by adding the start * line. If an error occurred -1 is returned. On success 0 is returned. The * channel is not updated here. It must be done calling the function * htx_reply_103_early_hints(). */ static int htx_add_early_hint_header(struct stream *s, int early_hints, const struct ist name, struct list *fmt) { struct channel *res = &s->res; struct htx *htx = htx_from_buf(&res->buf); struct buffer *value = alloc_trash_chunk(); if (!early_hints) { struct htx_sl *sl; unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11| HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS); sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), ist("103"), ist("Early Hints")); if (!sl) goto fail; sl->info.res.status = 103; } value->data = build_logline(s, b_tail(value), b_room(value), fmt); if (!htx_add_header(htx, name, ist2(b_head(value), b_data(value)))) goto fail; free_trash_chunk(value); return 1; fail: /* If an error occurred during an Early-hint rule, remove the incomplete * HTTP 103 response from the buffer */ channel_truncate(res); free_trash_chunk(value); return -1; } /* This function executes one of the set-{method,path,query,uri} actions. It * takes the string from the variable 'replace' with length 'len', then modifies * the relevant part of the request line accordingly. Then it updates various * pointers to the next elements which were moved, and the total buffer length. * It finds the action to be performed in p[2], previously filled by function * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal * error, though this can be revisited when this code is finally exploited. * * 'action' can be '0' to replace method, '1' to replace path, '2' to replace * query string and 3 to replace uri. * * In query string case, the mark question '?' must be set at the start of the * string by the caller, event if the replacement query string is empty. */ int htx_req_replace_stline(int action, const char *replace, int len, struct proxy *px, struct stream *s) { struct htx *htx = htxbuf(&s->req.buf); switch (action) { case 0: // method if (!http_replace_req_meth(htx, ist2(replace, len))) return -1; break; case 1: // path if (!http_replace_req_path(htx, ist2(replace, len))) return -1; break; case 2: // query if (!http_replace_req_query(htx, ist2(replace, len))) return -1; break; case 3: // uri if (!http_replace_req_uri(htx, ist2(replace, len))) return -1; break; default: return -1; } return 0; } /* This function replace the HTTP status code and the associated message. The * variable contains the new status code. This function never fails. */ void htx_res_set_status(unsigned int status, const char *reason, struct stream *s) { struct htx *htx = htxbuf(&s->res.buf); char *res; chunk_reset(&trash); res = ultoa_o(status, trash.area, trash.size); trash.data = res - trash.area; /* Do we have a custom reason format string? */ if (reason == NULL) reason = http_get_reason(status); if (!http_replace_res_status(htx, ist2(trash.area, trash.data))) http_replace_res_reason(htx, ist2(reason, strlen(reason))); } /* Executes the http-request rules for stream , proxy and * transaction . Returns the verdict of the first rule that prevents * further processing of the request (auth, deny, ...), and defaults to * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT * on txn->flags if it encounters a tarpit rule. If is not NULL * and a deny/tarpit rule is matched, it will be filled with this rule's deny * status. */ static enum rule_result htx_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct htx *htx; struct act_rule *rule; struct http_hdr_ctx ctx; const char *auth_realm; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_flags = 0; int early_hints = 0; htx = htxbuf(&s->req.buf); /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: if (early_hints && rule->action != ACT_HTTP_EARLY_HINT) { early_hints = 0; if (htx_reply_103_early_hints(&s->res) == -1) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } } switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_ACTION_DENY: if (deny_status) *deny_status = rule->deny_status; rule_ret = HTTP_RULE_RES_DENY; goto end; case ACT_HTTP_REQ_TARPIT: txn->flags |= TX_CLTARPIT; if (deny_status) *deny_status = rule->deny_status; rule_ret = HTTP_RULE_RES_DENY; goto end; case ACT_HTTP_REQ_AUTH: /* Auth might be performed on regular http-req rules as well as on stats */ auth_realm = rule->arg.auth.realm; if (!auth_realm) { if (px->uri_auth && rules == &px->uri_auth->http_req_rules) auth_realm = STATS_DEFAULT_REALM; else auth_realm = px->id; } /* send 401/407 depending on whether we use a proxy or not. We still * count one error, because normal browsing won't significantly * increase the counter but brute force attempts will. */ rule_ret = HTTP_RULE_RES_ABRT; if (htx_reply_40x_unauthorized(s, auth_realm) == -1) rule_ret = HTTP_RULE_RES_BADREQ; stream_inc_http_err_ctr(s); goto end; case ACT_HTTP_REDIR: rule_ret = HTTP_RULE_RES_DONE; if (!htx_apply_redirect_rule(rule->arg.redir, s, txn)) rule_ret = HTTP_RULE_RES_BADREQ; goto end; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: conn_set_tos(objt_conn(sess->origin), rule->arg.tos); break; case ACT_HTTP_SET_MARK: conn_set_mark(objt_conn(sess->origin), rule->arg.mark); break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (htx_transform_header(s, &s->req, htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } break; case ACT_HTTP_DEL_HDR: /* remove all occurrences of the header */ ctx.blk = NULL; while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1)) http_remove_header(htx, &ctx); break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: { /* The scope of the trash buffer must be limited to this function. The * build_logline() function can execute a lot of other function which * can use the trash buffer. So for limiting the scope of this global * buffer, we build first the header value using build_logline, and * after we store the header name. */ struct buffer *replace; struct ist n, v; replace = alloc_trash_chunk(); if (!replace) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } replace->data = build_logline(s, replace->area, replace->size, &rule->arg.hdr_add.fmt); n = ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); v = ist2(replace->area, replace->data); if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.blk = NULL; while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1)) http_remove_header(htx, &ctx); } if (!http_add_header(htx, n, v)) { static unsigned char rate_limit = 0; if ((rate_limit++ & 255) == 0) { send_log(px, LOG_WARNING, "Proxy %s failed to add or set the request header '%.*s' for request #%u. You might need to increase tune.maxrewrite.", px->id, (int)n.len, n.ptr, s->uniq_id); } HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); if (sess->fe != s->be) HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); } free_trash_chunk(replace); break; } case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); pat_ref_delete(ref, key->area); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* add entry only if it does not already exist */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); if (pat_ref_find_elt(ref, key->area) == NULL) pat_ref_add(ref, key->area, NULL, NULL); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; struct buffer *key, *value; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* allocate value */ value = alloc_trash_chunk(); if (!value) { free_trash_chunk(key); rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* collect value */ value->data = build_logline(s, value->area, value->size, &rule->arg.map.value); value->area[value->data] = '\0'; /* perform update */ if (pat_ref_find_elt(ref, key->area) != NULL) /* update entry if it exists */ pat_ref_set(ref, key->area, value->area, NULL); else /* insert a new entry */ pat_ref_add(ref, key->area, value->area, NULL); free_trash_chunk(key); free_trash_chunk(value); break; } case ACT_HTTP_EARLY_HINT: if (!(txn->req.flags & HTTP_MSGF_VER_11)) break; early_hints = htx_add_early_hint_header(s, early_hints, ist2(rule->arg.early_hint.name, rule->arg.early_hint.name_len), &rule->arg.early_hint.fmt); if (early_hints == -1) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } break; case ACT_CUSTOM: if ((s->req.flags & CF_READ_ERROR) || ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && !(s->si[0].flags & SI_FL_CLEAN_ABRT) && (px->options & PR_O_ABRT_CLOSE))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_DONE; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; } break; case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: /* Note: only the first valid tracking parameter of each * applies. */ if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { struct stktable *t; struct stksess *ts; struct stktable_key *key; void *ptr1, *ptr2; t = rule->arg.trk_ctr.table.t; key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); if (key && (ts = stktable_get_entry(t, key))) { stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); /* let's count a new HTTP request as it's the first time we do it */ ptr1 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); ptr2 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); if (ptr1 || ptr2) { HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); if (ptr1) stktable_data_cast(ptr1, http_req_cnt)++; if (ptr2) update_freq_ctr_period(&stktable_data_cast(ptr2, http_req_rate), t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ stktable_touch_local(t, ts, 0); } stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); if (sess->fe != s->be) stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); } } break; /* other flags exists, but normally, they never be matched. */ default: break; } } end: if (early_hints) { if (htx_reply_103_early_hints(&s->res) == -1) rule_ret = HTTP_RULE_RES_BADREQ; } /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Executes the http-response rules for stream and proxy . It * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP, * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT * is returned, the process can continue the evaluation of next rule list. If * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ * is returned, it means the operation could not be processed and a server error * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a * deny rule. If *YIELD is returned, the caller must call again the function * with the same context. */ static enum rule_result htx_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct htx *htx; struct act_rule *rule; struct http_hdr_ctx ctx; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_flags = 0; htx = htxbuf(&s->res.buf); /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; /* "allow" rules are OK */ goto end; case ACT_ACTION_DENY: txn->flags |= TX_SVDENY; rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: conn_set_tos(objt_conn(sess->origin), rule->arg.tos); break; case ACT_HTTP_SET_MARK: conn_set_mark(objt_conn(sess->origin), rule->arg.mark); break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (htx_transform_header(s, &s->res, htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } break; case ACT_HTTP_DEL_HDR: /* remove all occurrences of the header */ ctx.blk = NULL; while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1)) http_remove_header(htx, &ctx); break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: { struct buffer *replace; struct ist n, v; replace = alloc_trash_chunk(); if (!replace) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } replace->data = build_logline(s, replace->area, replace->size, &rule->arg.hdr_add.fmt); n = ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); v = ist2(replace->area, replace->data); if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.blk = NULL; while (http_find_header(htx, ist2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len), &ctx, 1)) http_remove_header(htx, &ctx); } if (!http_add_header(htx, n, v)) { static unsigned char rate_limit = 0; if ((rate_limit++ & 255) == 0) { send_log(px, LOG_WARNING, "Proxy %s failed to add or set the response header '%.*s' for request #%u. You might need to increase tune.maxrewrite.", px->id, (int)n.len, n.ptr, s->uniq_id); } HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); if (sess->fe != s->be) HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); if (sess->listener->counters) HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_rewrites, 1); } free_trash_chunk(replace); break; } case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); pat_ref_delete(ref, key->area); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* check if the entry already exists */ if (pat_ref_find_elt(ref, key->area) == NULL) pat_ref_add(ref, key->area, NULL, NULL); free_trash_chunk(key); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; struct buffer *key, *value; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* allocate value */ value = alloc_trash_chunk(); if (!value) { free_trash_chunk(key); rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* collect value */ value->data = build_logline(s, value->area, value->size, &rule->arg.map.value); value->area[value->data] = '\0'; /* perform update */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); if (pat_ref_find_elt(ref, key->area) != NULL) /* update entry if it exists */ pat_ref_set(ref, key->area, value->area, NULL); else /* insert a new entry */ pat_ref_add(ref, key->area, value->area, NULL); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); free_trash_chunk(value); break; } case ACT_HTTP_REDIR: rule_ret = HTTP_RULE_RES_DONE; if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) rule_ret = HTTP_RULE_RES_BADREQ; goto end; case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: /* Note: only the first valid tracking parameter of each * applies. */ if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { struct stktable *t; struct stksess *ts; struct stktable_key *key; void *ptr; t = rule->arg.trk_ctr.table.t; key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); if (key && (ts = stktable_get_entry(t, key))) { stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); /* let's count a new HTTP request as it's the first time we do it */ ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); if (ptr) stktable_data_cast(ptr, http_req_cnt)++; ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); /* When the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. Normally this is done when receiving the response * but here we're tracking after this ought to have been done so we have * to do it on purpose. */ if ((unsigned)(txn->status - 400) < 100) { ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT); if (ptr) stktable_data_cast(ptr, http_err_cnt)++; ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1); } HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ stktable_touch_local(t, ts, 0); stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); if (sess->fe != s->be) stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); } } break; case ACT_CUSTOM: if ((s->req.flags & CF_READ_ERROR) || ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && !(s->si[0].flags & SI_FL_CLEAN_ABRT) && (px->options & PR_O_ABRT_CLOSE))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; } break; /* other flags exists, but normally, they never be matched. */ default: break; } } end: /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ static int htx_apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp) { struct http_txn *txn = s->txn; struct htx *htx; struct buffer *hdr = get_trash_chunk(); int32_t pos; htx = htxbuf(&req->buf); for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type; struct ist n, v; next_hdr: type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; n = htx_get_blk_name(htx, blk); v = htx_get_blk_value(htx, blk); chunk_memcat(hdr, n.ptr, n.len); hdr->area[hdr->data++] = ':'; hdr->area[hdr->data++] = ' '; chunk_memcat(hdr, v.ptr, v.len); /* Now we have one header in */ if (regex_exec_match2(exp->preg, hdr->area, hdr->data, MAX_MATCH, pmatch, 0)) { struct http_hdr_ctx ctx; int len; switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; goto end; case ACT_DENY: txn->flags |= TX_CLDENY; goto end; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; goto end; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, hdr->area, exp->replace, pmatch); if (len < 0) return -1; http_parse_header(ist2(trash.area, len), &n, &v); ctx.blk = blk; ctx.value = v; if (!http_replace_header(htx, &ctx, n, v)) return -1; if (!ctx.blk) goto end; pos = htx_get_blk_pos(htx, blk); break; case ACT_REMOVE: ctx.blk = blk; ctx.value = v; if (!http_remove_header(htx, &ctx)) return -1; if (!ctx.blk) goto end; pos = htx_get_blk_pos(htx, blk); goto next_hdr; } } } end: return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ static int htx_apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp) { struct http_txn *txn = s->txn; struct htx *htx; struct buffer *reqline = get_trash_chunk(); int done; htx = htxbuf(&req->buf); if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; reqline->data = htx_fmt_req_line(http_find_stline(htx), reqline->area, reqline->size); /* Now we have the request line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, reqline->area, reqline->data, MAX_MATCH, pmatch, 0)) { struct htx_sl *sl = http_find_stline(htx); struct ist meth, uri, vsn; int len; switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; done = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, reqline->area, exp->replace, pmatch); if (len < 0) return -1; http_parse_stline(ist2(trash.area, len), &meth, &uri, &vsn); sl->info.req.meth = find_http_meth(meth.ptr, meth.len); if (!http_replace_stline(htx, meth, uri, vsn)) return -1; done = 1; break; } } return done; } /* * Apply all the req filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ static int htx_apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->req_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) break; if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) continue; /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the request line. */ ret = htx_apply_filter_to_req_line(s, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ if (unlikely(htx_apply_filter_to_req_headers(s, req, exp) < 0)) return -1; } } return 0; } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ static int htx_apply_filter_to_resp_headers(struct stream *s, struct channel *res, struct hdr_exp *exp) { struct http_txn *txn = s->txn; struct htx *htx; struct buffer *hdr = get_trash_chunk(); int32_t pos; htx = htxbuf(&res->buf); for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type; struct ist n, v; next_hdr: type = htx_get_blk_type(blk); if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; n = htx_get_blk_name(htx, blk); v = htx_get_blk_value(htx, blk); chunk_memcat(hdr, n.ptr, n.len); hdr->area[hdr->data++] = ':'; hdr->area[hdr->data++] = ' '; chunk_memcat(hdr, v.ptr, v.len); /* Now we have one header in */ if (regex_exec_match2(exp->preg, hdr->area, hdr->data, MAX_MATCH, pmatch, 0)) { struct http_hdr_ctx ctx; int len; switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; goto end; break; case ACT_DENY: txn->flags |= TX_SVDENY; goto end; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, hdr->area, exp->replace, pmatch); if (len < 0) return -1; http_parse_header(ist2(trash.area, len), &n, &v); ctx.blk = blk; ctx.value = v; if (!http_replace_header(htx, &ctx, n, v)) return -1; if (!ctx.blk) goto end; pos = htx_get_blk_pos(htx, blk); break; case ACT_REMOVE: ctx.blk = blk; ctx.value = v; if (!http_remove_header(htx, &ctx)) return -1; if (!ctx.blk) goto end; pos = htx_get_blk_pos(htx, blk); goto next_hdr; } } } end: return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ static int htx_apply_filter_to_sts_line(struct stream *s, struct channel *res, struct hdr_exp *exp) { struct http_txn *txn = s->txn; struct htx *htx; struct buffer *resline = get_trash_chunk(); int done; htx = htxbuf(&res->buf); if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; resline->data = htx_fmt_res_line(http_find_stline(htx), resline->area, resline->size); /* Now we have the status line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, resline->area, resline->data, MAX_MATCH, pmatch, 0)) { struct htx_sl *sl = http_find_stline(htx); struct ist vsn, code, reason; int len; switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, resline->area, exp->replace, pmatch); if (len < 0) return -1; http_parse_stline(ist2(trash.area, len), &vsn, &code, &reason); sl->info.res.status = strl2ui(code.ptr, code.len); if (!http_replace_stline(htx, vsn, code, reason)) return -1; done = 1; return 1; } } return done; } /* * Apply all the resp filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ static int htx_apply_filters_to_response(struct stream *s, struct channel *res, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->rsp_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & TX_SVDENY) break; if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the status line. */ ret = htx_apply_filter_to_sts_line(s, res, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ if (unlikely(htx_apply_filter_to_resp_headers(s, res, exp) < 0)) return -1; } } return 0; } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. This code is quite complex because * of the multiple very crappy and ambiguous syntaxes we have to support. it * highly recommended not to touch this part without a good reason ! */ static void htx_manage_client_side_cookies(struct stream *s, struct channel *req) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct htx *htx; struct http_hdr_ctx ctx; char *hdr_beg, *hdr_end, *del_from; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; int preserve_hdr; htx = htxbuf(&req->buf); ctx.blk = NULL; while (http_find_header(htx, ist("Cookie"), &ctx, 1)) { del_from = NULL; /* nothing to be deleted */ preserve_hdr = 0; /* assume we may kill the whole header */ /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it. * * Note: RFC2965 is unclear about the processing of spaces around * the equal sign in the ATTR=VALUE form. A careful inspection of * the RFC explicitly allows spaces before it, and not within the * tokens (attrs or values). An inspection of RFC2109 allows that * too but section 10.1.3 lets one think that spaces may be allowed * after the equal sign too, resulting in some (rare) buggy * implementations trying to do that. So let's do what servers do. * Latest ietf draft forbids spaces all around. Also, earlier RFCs * allowed quoted strings in values, with any possible character * after a backslash, including control chars and delimitors, which * causes parsing to become ambiguous. Browsers also allow spaces * within values even without quotes. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header. All of these headers are valid : * * hdr_beg hdr_end * | | * v | * NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3 | * NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3 v * NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3 * | | | | | | | * | | | | | | | * | | | | | | +--> next * | | | | | +----> val_end * | | | | +-----------> val_beg * | | | +--------------> equal * | | +----------------> att_end * | +---------------------> att_beg * +--------------------------> prev * */ hdr_beg = ctx.value.ptr; hdr_end = hdr_beg + ctx.value.len; for (prev = hdr_beg; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev; if (prev > hdr_beg) att_beg++; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ',' || *equal == ';') break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else val_beg = val_end = next = equal; /* We have nothing to do with attributes beginning with * '$'. However, they will automatically be removed if a * header before them is removed, since they're supposed * to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = htx_del_hdr_value(hdr_beg, hdr_end, &del_from, prev); val_end += delta; next += delta; hdr_end += delta; prev = del_from; del_from = NULL; } continue; } /* if there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { memmove(att_end, equal, hdr_end - equal); stripped_before = (att_end - equal); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg); stripped_after = (equal + 1) - val_beg; val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; } /* now everything is as on the diagram above */ /* First, let's see if we want to capture this cookie. We check * that we don't already have a client side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->cli_cookie, att_beg, log_len); txn->cli_cookie[log_len] = 0; } } /* Persistence cookies in passive, rewrite or insert mode have the * following form : * * Cookie: NAME=SRV[|[|]] * * For cookies in prefix mode, the form is : * * Cookie: NAME=SRV~VALUE */ if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { struct server *srv = s->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID between val_beg and delim, and the original cookie between * delim+1 and val_end. Otherwise, delim==val_end : * * hdr_beg * | * v * NAME=SRV; # in all but prefix modes * NAME=SRV~OPAQUE ; # in prefix mode * || || | |+-> next * || || | +--> val_end * || || +---------> delim * || |+------------> val_beg * || +-------------> att_end = equal * |+-----------------> att_beg * +------------------> prev * */ if (s->be->ck_opts & PR_CK_PFX) { for (delim = val_beg; delim < val_end; delim++) if (*delim == COOKIE_DELIM) break; } else { char *vbar1; delim = val_end; /* Now check if the cookie contains a date field, which would * appear after a vertical bar ('|') just after the server name * and before the delimiter. */ vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); if (vbar1) { /* OK, so left of the bar is the server's cookie and * right is the last seen date. It is a base64 encoded * 30-bit value representing the UNIX date since the * epoch in 4-second quantities. */ int val; delim = vbar1++; if (val_end - vbar1 >= 5) { val = b64tos30(vbar1); if (val > 0) txn->cookie_last_date = val << 2; } /* look for a second vertical bar */ vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); if (vbar1 && (val_end - vbar1 > 5)) { val = b64tos30(vbar1 + 1); if (val > 0) txn->cookie_first_date = val << 2; } } } /* if the cookie has an expiration date and the proxy wants to check * it, then we do that now. We first check if the cookie is too old, * then only if it has expired. We detect strict overflow because the * time resolution here is not great (4 seconds). Cookies with dates * in the future are ignored if their offset is beyond one day. This * allows an admin to fix timezone issues without expiring everyone * and at the same time avoids keeping unwanted side effects for too * long. */ if (txn->cookie_first_date && s->be->cookie_maxlife && (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) || ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_OLD; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } else if (txn->cookie_last_date && s->be->cookie_maxidle && (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) || ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_EXPIRED; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. * The same behaviour is applied when persistence must be ignored. */ if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - val_beg) && !memcmp(val_beg, srv->cookie, delim - val_beg)) { if ((srv->cur_state != SRV_ST_STOPPED) || (s->be->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { /* we found the server and we can use it */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN; s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } else { /* we found a server, but it's down, * mark it as such and go on in case * another one is available. */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { /* no server matched this cookie or we deliberately skipped it */ txn->flags &= ~TX_CK_MASK; if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) txn->flags |= TX_CK_UNUSED; else txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentally removed later, * if we're in cookie prefix mode */ if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { int delta; /* negative */ memmove(val_beg, delim + 1, hdr_end - (delim + 1)); delta = val_beg - (delim + 1); val_end += delta; next += delta; hdr_end += delta; del_from = NULL; preserve_hdr = 1; /* we want to keep this cookie */ } else if (del_from == NULL && (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { del_from = prev; } } else { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = htx_del_hdr_value(hdr_beg, hdr_end, &del_from, prev); if (att_beg >= del_from) att_beg += delta; if (att_end >= del_from) att_end += delta; val_beg += delta; val_end += delta; next += delta; hdr_end += delta; prev = del_from; del_from = NULL; } } /* continue with next cookie on this header line */ att_beg = next; } /* for each cookie */ /* There are no more cookies on this line. * We may still have one (or several) marked for deletion at the * end of the line. We must do this now in two ways : * - if some cookies must be preserved, we only delete from the * mark to the end of line ; * - if nothing needs to be preserved, simply delete the whole header */ if (del_from) { hdr_end = (preserve_hdr ? del_from : hdr_beg); } if ((hdr_end - hdr_beg) != ctx.value.len) { if (hdr_beg != hdr_end) { htx_set_blk_value_len(ctx.blk, hdr_end - hdr_beg); htx->data -= (hdr_end - ctx.value.ptr); } else http_remove_header(htx, &ctx); } } /* for each "Cookie header */ } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. This function is also used when we * just need to know if there is a cookie (eg: for check-cache). */ static void htx_manage_server_side_cookies(struct stream *s, struct channel *res) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct htx *htx; struct http_hdr_ctx ctx; struct server *srv; char *hdr_beg, *hdr_end; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; int is_cookie2; htx = htxbuf(&res->buf); ctx.blk = NULL; while (1) { if (!http_find_header(htx, ist("Set-Cookie"), &ctx, 1)) { if (!http_find_header(htx, ist("Set-Cookie2"), &ctx, 1)) break; is_cookie2 = 1; } /* OK, right now we know we have a Set-Cookie* at hdr_beg, and * points to the colon. */ txn->flags |= TX_SCK_PRESENT; /* Maybe we only wanted to see if there was a Set-Cookie (eg: * check-cache is enabled) and we are not interested in checking * them. Warning, the cookie capture is declared in the frontend. */ if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL) break; /* OK so now we know we have to process this response cookie. * The format of the Set-Cookie header is slightly different * from the format of the Cookie header in that it does not * support the comma as a cookie delimiter (thus the header * cannot be folded) because the Expires attribute described in * the original Netscape's spec may contain an unquoted date * with a comma inside. We have to live with this because * many browsers don't support Max-Age and some browsers don't * support quoted strings. However the Set-Cookie2 header is * clean. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header (in case of set-cookie2). A special * pointer, points to the beginning of the set-cookie-av * fields after the first semi-colon. The pointer points * either to the end of line (set-cookie) or next unquoted comma * (set-cookie2). All of these headers are valid : * * hdr_beg hdr_end * | | * v | * NAME1 = VALUE 1 ; Secure; Path="/" | * NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT v * NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT * NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard * | | | | | | | | * | | | | | | | +-> next * | | | | | | +------------> scav * | | | | | +--------------> val_end * | | | | +--------------------> val_beg * | | | +----------------------> equal * | | +------------------------> att_end * | +----------------------------> att_beg * +------------------------------> prev * -------------------------------> hdr_beg */ hdr_beg = ctx.value.ptr; hdr_end = hdr_beg + ctx.value.len; for (prev = hdr_beg; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev; if (prev > hdr_beg) att_beg++; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ',')) break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else { /* points to next comma, semi-colon or EOL */ val_beg = val_end = next = equal; } if (next < hdr_end) { /* Set-Cookie2 supports multiple cookies, and points to * a colon or semi-colon before the end. So skip all attr-value * pairs and look for the next comma. For Set-Cookie, since * commas are permitted in values, skip to the end. */ if (is_cookie2) next = http_find_hdr_value_end(next, hdr_end); else next = hdr_end; } /* Now everything is as on the diagram above */ /* Ignore cookies with no equal sign */ if (equal == val_end) continue; /* If there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { memmove(att_end, equal, hdr_end - equal); stripped_before = (att_end - equal); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { memmove(equal + 1, val_beg, hdr_end + stripped_before - val_beg); stripped_after = (equal + 1) - val_beg; val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; ctx.value.len = hdr_end - hdr_beg; htx_set_blk_value_len(ctx.blk, ctx.value.len); htx->data -= (hdr_end - ctx.value.ptr); } /* First, let's see if we want to capture this cookie. We check * that we don't already have a server side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->srv_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->srv_cookie, att_beg, log_len); txn->srv_cookie[log_len] = 0; } } srv = objt_server(s->target); /* now check if we need to process it for persistence */ if (!(s->flags & SF_IGNORE_PRST) && (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { /* assume passive cookie by default */ txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_FOUND; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (s->be->ck_opts & PR_CK_PSV) { /* The "preserve" flag was set, we don't want to touch the * server's cookie. */ } else if ((srv && (s->be->ck_opts & PR_CK_INS)) || ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) { /* this cookie must be deleted */ if (prev == hdr_beg && next == hdr_end) { /* whole header */ http_remove_header(htx, &ctx); /* note: while both invalid now, and * are still equal, so the for() will stop as expected. */ } else { /* just remove the value */ int delta = htx_del_hdr_value(hdr_beg, hdr_end, &prev, next); next = prev; hdr_end += delta; } txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_DELETED; /* and go on with next cookie */ } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) { /* replace bytes val_beg->val_end with the cookie name associated * with this server since we know it. */ int sliding, delta; ctx.value = ist2(val_beg, val_end - val_beg); ctx.lws_before = ctx.lws_after = 0; http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen)); delta = srv->cklen - (val_end - val_beg); sliding = (ctx.value.ptr - val_beg); hdr_beg += sliding; val_beg += sliding; next += sliding + delta; hdr_end += sliding + delta; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimiter between them.. */ int sliding, delta; ctx.value = ist2(val_beg, 0); ctx.lws_before = ctx.lws_after = 0; http_replace_header_value(htx, &ctx, ist2(srv->cookie, srv->cklen + 1)); delta = srv->cklen + 1; sliding = (ctx.value.ptr - val_beg); hdr_beg += sliding; val_beg += sliding; next += sliding + delta; hdr_end += sliding + delta; val_beg[srv->cklen] = COOKIE_DELIM; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } } /* that's done for this cookie, check the next one on the same * line when next != hdr_end (only if is_cookie2). */ } } } /* * Parses the Cache-Control and Pragma request header fields to determine if * the request may be served from the cache and/or if it is cacheable. Updates * s->txn->flags. */ void htx_check_request_for_cacheability(struct stream *s, struct channel *req) { struct http_txn *txn = s->txn; struct htx *htx; int32_t pos; int pragma_found, cc_found, i; if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE) return; /* nothing more to do here */ htx = htxbuf(&req->buf); pragma_found = cc_found = 0; for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); struct ist n, v; if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; n = htx_get_blk_name(htx, blk); v = htx_get_blk_value(htx, blk); if (isteq(n, ist("pragma"))) { if (v.len >= 8 && strncasecmp(v.ptr, "no-cache", 8) == 0) { pragma_found = 1; continue; } } /* Don't use the cache and don't try to store if we found the * Authorization header */ if (isteq(n, ist("authorization"))) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; txn->flags |= TX_CACHE_IGNORE; continue; } if (!isteq(n, ist("cache-control"))) continue; /* OK, right now we know we have a cache-control header */ cc_found = 1; if (!v.len) /* no info */ continue; i = 0; while (i < v.len && *(v.ptr+i) != '=' && *(v.ptr+i) != ',' && !isspace((unsigned char)*(v.ptr+i))) i++; /* we have a complete value between v.ptr and (v.ptr+i). We don't check the * values after max-age, max-stale nor min-fresh, we simply don't * use the cache when they're specified. */ if (((i == 7) && strncasecmp(v.ptr, "max-age", 7) == 0) || ((i == 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) || ((i == 9) && strncasecmp(v.ptr, "max-stale", 9) == 0) || ((i == 9) && strncasecmp(v.ptr, "min-fresh", 9) == 0)) { txn->flags |= TX_CACHE_IGNORE; continue; } if ((i == 8) && strncasecmp(v.ptr, "no-store", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } } /* RFC7234#5.4: * When the Cache-Control header field is also present and * understood in a request, Pragma is ignored. * When the Cache-Control header field is not present in a * request, caches MUST consider the no-cache request * pragma-directive as having the same effect as if * "Cache-Control: no-cache" were present. */ if (!cc_found && pragma_found) txn->flags |= TX_CACHE_IGNORE; } /* * Check if response is cacheable or not. Updates s->txn->flags. */ void htx_check_response_for_cacheability(struct stream *s, struct channel *res) { struct http_txn *txn = s->txn; struct htx *htx; int32_t pos; int i; if (txn->status < 200) { /* do not try to cache interim responses! */ txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } htx = htxbuf(&res->buf); for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); struct ist n, v; if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; n = htx_get_blk_name(htx, blk); v = htx_get_blk_value(htx, blk); if (isteq(n, ist("pragma"))) { if ((v.len >= 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } if (!isteq(n, ist("cache-control"))) continue; /* OK, right now we know we have a cache-control header */ if (!v.len) /* no info */ continue; i = 0; while (i < v.len && *(v.ptr+i) != '=' && *(v.ptr+i) != ',' && !isspace((unsigned char)*(v.ptr+i))) i++; /* we have a complete value between v.ptr and (v.ptr+i) */ if (i < v.len && *(v.ptr + i) == '=') { if (((v.len - i) > 1 && (i == 7) && strncasecmp(v.ptr, "max-age=0", 9) == 0) || ((v.len - i) > 1 && (i == 8) && strncasecmp(v.ptr, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } /* we have something of the form no-cache="set-cookie" */ if ((v.len >= 21) && strncasecmp(v.ptr, "no-cache=\"set-cookie", 20) == 0 && (*(v.ptr + 20) == '"' || *(v.ptr + 20 ) == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((i == 7) && strncasecmp(v.ptr, "private", 7) == 0) || ((i == 8) && strncasecmp(v.ptr, "no-cache", 8) == 0) || ((i == 8) && strncasecmp(v.ptr, "no-store", 8) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((i == 6) && strncasecmp(v.ptr, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* send a server's name with an outgoing request over an established connection. * Note: this function is designed to be called once the request has been * scheduled for being forwarded. This is the reason why the number of forwarded * bytes have to be adjusted. */ int htx_send_name_header(struct stream *s, struct proxy *be, const char *srv_name) { struct htx *htx; struct http_hdr_ctx ctx; struct ist hdr; uint32_t data; hdr = ist2(be->server_id_hdr_name, be->server_id_hdr_len); htx = htxbuf(&s->req.buf); data = htx->data; ctx.blk = NULL; while (http_find_header(htx, hdr, &ctx, 1)) http_remove_header(htx, &ctx); http_add_header(htx, hdr, ist2(srv_name, strlen(srv_name))); if (co_data(&s->req)) { if (data >= htx->data) c_rew(&s->req, data - htx->data); else c_adv(&s->req, htx->data - data); } return 0; } /* * In a GET, HEAD or POST request, check if the requested URI matches the stats uri * for the current backend. * * It is assumed that the request is either a HEAD, GET, or POST and that the * uri_auth field is valid. * * Returns 1 if stats should be provided, otherwise 0. */ static int htx_stats_check_uri(struct stream *s, struct http_txn *txn, struct proxy *backend) { struct uri_auth *uri_auth = backend->uri_auth; struct htx *htx; struct htx_sl *sl; struct ist uri; if (!uri_auth) return 0; if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) return 0; htx = htxbuf(&s->req.buf); sl = http_find_stline(htx); uri = htx_sl_req_uri(sl); /* check URI size */ if (uri_auth->uri_len > uri.len) return 0; if (memcmp(uri.ptr, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; return 1; } /* This function prepares an applet to handle the stats. It can deal with the * "100-continue" expectation, check that admin rules are met for POST requests, * and program a response message if something was unexpected. It cannot fail * and always relies on the stats applet to complete the job. It does not touch * analysers nor counters, which are left to the caller. It does not touch * s->target which is supposed to already point to the stats applet. The caller * is expected to have already assigned an appctx to the stream. */ static int htx_handle_stats(struct stream *s, struct channel *req) { struct stats_admin_rule *stats_admin_rule; struct stream_interface *si = &s->si[1]; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct uri_auth *uri_auth = s->be->uri_auth; const char *h, *lookup, *end; struct appctx *appctx; struct htx *htx; struct htx_sl *sl; appctx = si_appctx(si); memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats)); appctx->st1 = appctx->st2 = 0; appctx->ctx.stats.st_code = STAT_STATUS_INIT; appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */ if ((msg->flags & HTTP_MSGF_VER_11) && (txn->meth != HTTP_METH_HEAD)) appctx->ctx.stats.flags |= STAT_CHUNKED; htx = htxbuf(&req->buf); sl = http_find_stline(htx); lookup = HTX_SL_REQ_UPTR(sl) + uri_auth->uri_len; end = HTX_SL_REQ_UPTR(sl) + HTX_SL_REQ_ULEN(sl); for (h = lookup; h <= end - 3; h++) { if (memcmp(h, ";up", 3) == 0) { appctx->ctx.stats.flags |= STAT_HIDE_DOWN; break; } } if (uri_auth->refresh) { for (h = lookup; h <= end - 10; h++) { if (memcmp(h, ";norefresh", 10) == 0) { appctx->ctx.stats.flags |= STAT_NO_REFRESH; break; } } } for (h = lookup; h <= end - 4; h++) { if (memcmp(h, ";csv", 4) == 0) { appctx->ctx.stats.flags &= ~STAT_FMT_HTML; break; } } for (h = lookup; h <= end - 6; h++) { if (memcmp(h, ";typed", 6) == 0) { appctx->ctx.stats.flags &= ~STAT_FMT_HTML; appctx->ctx.stats.flags |= STAT_FMT_TYPED; break; } } for (h = lookup; h <= end - 8; h++) { if (memcmp(h, ";st=", 4) == 0) { int i; h += 4; appctx->ctx.stats.st_code = STAT_STATUS_UNKN; for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { if (strncmp(stat_status_codes[i], h, 4) == 0) { appctx->ctx.stats.st_code = i; break; } } break; } } appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; for (h = lookup; h <= end - 8; h++) { if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) { int itx = 0; const char *h2; char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1]; const char *err; h += strlen(STAT_SCOPE_INPUT_NAME) + 1; h2 = h; appctx->ctx.stats.scope_str = h2 - s->txn->uri; while (h <= end) { if (*h == ';' || *h == '&' || *h == ' ') break; itx++; h++; } if (itx > STAT_SCOPE_TXT_MAXLEN) itx = STAT_SCOPE_TXT_MAXLEN; appctx->ctx.stats.scope_len = itx; /* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */ memcpy(scope_txt, h2, itx); scope_txt[itx] = '\0'; err = invalid_char(scope_txt); if (err) { /* bad char in search text => clear scope */ appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; } break; } } /* now check whether we have some admin rules for this request */ list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) { int ret = 1; if (stats_admin_rule->cond) { ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ appctx->ctx.stats.flags |= STAT_ADMIN; break; } } /* Was the status page requested with a POST ? */ if (unlikely(txn->meth == HTTP_METH_POST)) { if (appctx->ctx.stats.flags & STAT_ADMIN) { /* we'll need the request body, possibly after sending 100-continue */ if (msg->msg_state < HTTP_MSG_DATA) req->analysers |= AN_REQ_HTTP_BODY; appctx->st0 = STAT_HTTP_POST; } else { appctx->ctx.stats.flags &= ~STAT_CHUNKED; appctx->ctx.stats.st_code = STAT_STATUS_DENY; appctx->st0 = STAT_HTTP_LAST; } } else { /* So it was another method (GET/HEAD) */ appctx->st0 = STAT_HTTP_HEAD; } s->task->nice = -32; /* small boost for HTTP statistics */ return 1; } void htx_perform_server_redirect(struct stream *s, struct stream_interface *si) { struct channel *req = &s->req; struct channel *res = &s->res; struct server *srv; struct htx *htx; struct htx_sl *sl; struct ist path, location; unsigned int flags; size_t data; /* * Create the location */ chunk_reset(&trash); /* 1: add the server's prefix */ /* special prefix "/" means don't change URL */ srv = __objt_server(s->target); if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') { if (!chunk_memcat(&trash, srv->rdr_pfx, srv->rdr_len)) return; } /* 2: add the request Path */ htx = htxbuf(&req->buf); sl = http_find_stline(htx); path = http_get_path(htx_sl_req_uri(sl)); if (!path.ptr) return; if (!chunk_memcat(&trash, path.ptr, path.len)) return; location = ist2(trash.area, trash.data); /* * Create the 302 respone */ htx = htx_from_buf(&res->buf); flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11|HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS); sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), ist("302"), ist("Found")); if (!sl) goto fail; sl->info.res.status = 302; s->txn->status = 302; if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache")) || !htx_add_header(htx, ist("Connection"), ist("close")) || !htx_add_header(htx, ist("Content-length"), ist("0")) || !htx_add_header(htx, ist("Location"), location)) goto fail; if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM)) goto fail; /* * Send the message */ data = htx->data - co_data(res); c_adv(res, data); res->total += data; /* return without error. */ si_shutr(si); si_shutw(si); si->err_type = SI_ET_NONE; si->state = SI_ST_CLO; channel_auto_read(req); channel_abort(req); channel_auto_close(req); channel_erase(req); channel_auto_read(res); channel_auto_close(res); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_C; /* FIXME: we should increase a counter of redirects per server and per backend. */ srv_inc_sess_ctr(srv); srv_set_sess_last(srv); return; fail: /* If an error occurred, remove the incomplete HTTP response from the * buffer */ channel_truncate(res); } /* This function terminates the request because it was completly analyzed or * because an error was triggered during the body forwarding. */ static void htx_end_request(struct stream *s) { struct channel *chn = &s->req; struct http_txn *txn = s->txn; DPRINTF(stderr,"[%u] %s: stream=%p states=%s,%s req->analysers=0x%08x res->analysers=0x%08x\n", now_ms, __FUNCTION__, s, h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state), s->req.analysers, s->res.analysers); if (unlikely(txn->req.msg_state == HTTP_MSG_ERROR || txn->rsp.msg_state == HTTP_MSG_ERROR)) { channel_abort(chn); channel_truncate(chn); goto end; } if (unlikely(txn->req.msg_state < HTTP_MSG_DONE)) return; if (txn->req.msg_state == HTTP_MSG_DONE) { if (txn->rsp.msg_state < HTTP_MSG_DONE) { /* The server has not finished to respond, so we * don't want to move in order not to upset it. */ return; } /* No need to read anymore, the request was completely parsed. * We can shut the read side unless we want to abort_on_close, * or we have a POST request. The issue with POST requests is * that some browsers still send a CRLF after the request, and * this CRLF must be read so that it does not remain in the kernel * buffers, otherwise a close could cause an RST on some systems * (eg: Linux). */ if ((!(s->be->options & PR_O_ABRT_CLOSE) || (s->si[0].flags & SI_FL_CLEAN_ABRT)) && txn->meth != HTTP_METH_POST) channel_dont_read(chn); /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ s->si[1].flags |= SI_FL_NOHALF; /* In any case we've finished parsing the request so we must * disable Nagle when sending data because 1) we're not going * to shut this side, and 2) the server is waiting for us to * send pending data. */ chn->flags |= CF_NEVER_WAIT; /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) { /* Tunnel mode will not have any analyser so it needs to * poll for reads. */ channel_auto_read(chn); if (b_data(&chn->buf)) return; txn->req.msg_state = HTTP_MSG_TUNNEL; } else { /* we're not expecting any new data to come for this * transaction, so we can close it. * * However, there is an exception if the response * length is undefined. In this case, we need to wait * the close from the server. The response will be * switched in TUNNEL mode until the end. */ if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) && txn->rsp.msg_state != HTTP_MSG_CLOSED) goto check_channel_flags; if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } goto check_channel_flags; } if (txn->req.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; goto end; } return; } if (txn->req.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* if we don't know whether the server will close, we need to hard close */ if (txn->rsp.flags & HTTP_MSGF_XFER_LEN) s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */ /* see above in MSG_DONE why we only do this in these states */ if ((!(s->be->options & PR_O_ABRT_CLOSE) || (s->si[0].flags & SI_FL_CLEAN_ABRT))) channel_dont_read(chn); goto end; } check_channel_flags: /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ txn->req.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } end: chn->analysers &= AN_REQ_FLT_END; if (txn->req.msg_state == HTTP_MSG_TUNNEL && HAS_REQ_DATA_FILTERS(s)) chn->analysers |= AN_REQ_FLT_XFER_DATA; channel_auto_close(chn); channel_auto_read(chn); } /* This function terminates the response because it was completly analyzed or * because an error was triggered during the body forwarding. */ static void htx_end_response(struct stream *s) { struct channel *chn = &s->res; struct http_txn *txn = s->txn; DPRINTF(stderr,"[%u] %s: stream=%p states=%s,%s req->analysers=0x%08x res->analysers=0x%08x\n", now_ms, __FUNCTION__, s, h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state), s->req.analysers, s->res.analysers); if (unlikely(txn->req.msg_state == HTTP_MSG_ERROR || txn->rsp.msg_state == HTTP_MSG_ERROR)) { channel_truncate(&s->req); channel_abort(&s->req); goto end; } if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE)) return; if (txn->rsp.msg_state == HTTP_MSG_DONE) { /* In theory, we don't need to read anymore, but we must * still monitor the server connection for a possible close * while the request is being uploaded, so we don't disable * reading. */ /* channel_dont_read(chn); */ if (txn->req.msg_state < HTTP_MSG_DONE) { /* The client seems to still be sending data, probably * because we got an error response during an upload. * We have the choice of either breaking the connection * or letting it pass through. Let's do the later. */ return; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) { channel_auto_read(chn); chn->flags |= CF_NEVER_WAIT; if (b_data(&chn->buf)) return; txn->rsp.msg_state = HTTP_MSG_TUNNEL; } else { /* we're not expecting any new data to come for this * transaction, so we can close it. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } goto check_channel_flags; } if (txn->rsp.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->rsp.err_state = txn->rsp.msg_state; txn->rsp.msg_state = HTTP_MSG_ERROR; HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); goto end; } return; } if (txn->rsp.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* drop any pending data */ channel_truncate(&s->req); channel_abort(&s->req); goto end; } check_channel_flags: /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ txn->rsp.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } end: chn->analysers &= AN_RES_FLT_END; if (txn->rsp.msg_state == HTTP_MSG_TUNNEL && HAS_RSP_DATA_FILTERS(s)) chn->analysers |= AN_RES_FLT_XFER_DATA; channel_auto_close(chn); channel_auto_read(chn); } void htx_server_error(struct stream *s, struct stream_interface *si, int err, int finst, const struct buffer *msg) { channel_auto_read(si_oc(si)); channel_abort(si_oc(si)); channel_auto_close(si_oc(si)); channel_erase(si_oc(si)); channel_auto_close(si_ic(si)); channel_auto_read(si_ic(si)); /* is an HTX structure. So we copy it in the response's * channel */ if (msg) { struct channel *chn = si_ic(si); struct htx *htx; FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg)); chn->buf.data = msg->data; memcpy(chn->buf.area, msg->area, msg->data); htx = htx_from_buf(&chn->buf); c_adv(chn, htx->data); chn->total += htx->data; } if (!(s->flags & SF_ERR_MASK)) s->flags |= err; if (!(s->flags & SF_FINST_MASK)) s->flags |= finst; } void htx_reply_and_close(struct stream *s, short status, struct buffer *msg) { channel_auto_read(&s->req); channel_abort(&s->req); channel_auto_close(&s->req); channel_erase(&s->req); channel_truncate(&s->res); s->txn->flags &= ~TX_WAIT_NEXT_RQ; /* is an HTX structure. So we copy it in the response's * channel */ /* FIXME: It is a problem for now if there is some outgoing data */ if (msg) { struct channel *chn = &s->res; struct htx *htx; FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg)); chn->buf.data = msg->data; memcpy(chn->buf.area, msg->area, msg->data); htx = htx_from_buf(&chn->buf); c_adv(chn, htx->data); chn->total += htx->data; } s->res.wex = tick_add_ifset(now_ms, s->res.wto); channel_auto_read(&s->res); channel_auto_close(&s->res); channel_shutr_now(&s->res); } struct buffer *htx_error_message(struct stream *s) { const int msgnum = http_get_status_idx(s->txn->status); if (s->be->errmsg[msgnum].area) return &s->be->errmsg[msgnum]; else if (strm_fe(s)->errmsg[msgnum].area) return &strm_fe(s)->errmsg[msgnum]; else return &htx_err_chunks[msgnum]; } /* Send a 100-Continue response to the client. It returns 0 on success and -1 * on error. The response channel is updated accordingly. */ static int htx_reply_100_continue(struct stream *s) { struct channel *res = &s->res; struct htx *htx = htx_from_buf(&res->buf); struct htx_sl *sl; unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11| HTX_SL_F_XFER_LEN|HTX_SL_F_BODYLESS); size_t data; sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), ist("100"), ist("Continue")); if (!sl) goto fail; sl->info.res.status = 100; if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_endof(htx, HTX_BLK_EOM)) goto fail; data = htx->data - co_data(res); c_adv(res, data); res->total += data; return 0; fail: /* If an error occurred, remove the incomplete HTTP response from the * buffer */ channel_truncate(res); return -1; } /* Send a 401-Unauthorized or 407-Unauthorized response to the client, depending * ont whether we use a proxy or not. It returns 0 on success and -1 on * error. The response channel is updated accordingly. */ static int htx_reply_40x_unauthorized(struct stream *s, const char *auth_realm) { struct channel *res = &s->res; struct htx *htx = htx_from_buf(&res->buf); struct htx_sl *sl; struct ist code, body; int status; unsigned int flags = (HTX_SL_F_IS_RESP|HTX_SL_F_VER_11); size_t data; if (!(s->txn->flags & TX_USE_PX_CONN)) { status = 401; code = ist("401"); body = ist("

401 Unauthorized

\n" "You need a valid user and password to access this content.\n" "\n"); } else { status = 407; code = ist("407"); body = ist("

407 Unauthorized

\n" "You need a valid user and password to access this content.\n" "\n"); } sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, ist("HTTP/1.1"), code, ist("Unauthorized")); if (!sl) goto fail; sl->info.res.status = status; s->txn->status = status; if (chunk_printf(&trash, "Basic realm=\"%s\"", auth_realm) == -1) goto fail; if (!htx_add_header(htx, ist("Cache-Control"), ist("no-cache")) || !htx_add_header(htx, ist("Connection"), ist("close")) || !htx_add_header(htx, ist("Content-Type"), ist("text/html")) || !htx_add_header(htx, ist("Proxy-Authenticate"), ist2(trash.area, trash.data))) goto fail; if (!htx_add_endof(htx, HTX_BLK_EOH) || !htx_add_data(htx, body) || !htx_add_endof(htx, HTX_BLK_EOM)) goto fail; data = htx->data - co_data(res); c_adv(res, data); res->total += data; channel_auto_read(&s->req); channel_abort(&s->req); channel_auto_close(&s->req); channel_erase(&s->req); res->wex = tick_add_ifset(now_ms, res->wto); channel_auto_read(res); channel_auto_close(res); channel_shutr_now(res); return 0; fail: /* If an error occurred, remove the incomplete HTTP response from the * buffer */ channel_truncate(res); return -1; } /* * Capture headers from message according to header list , and * fill the pointers appropriately. */ static void htx_capture_headers(struct htx *htx, char **cap, struct cap_hdr *cap_hdr) { struct cap_hdr *h; int32_t pos; for (pos = htx_get_head(htx); pos != -1; pos = htx_get_next(htx, pos)) { struct htx_blk *blk = htx_get_blk(htx, pos); enum htx_blk_type type = htx_get_blk_type(blk); struct ist n, v; if (type == HTX_BLK_EOH) break; if (type != HTX_BLK_HDR) continue; n = htx_get_blk_name(htx, blk); for (h = cap_hdr; h; h = h->next) { if (h->namelen && (h->namelen == n.len) && (strncasecmp(n.ptr, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc(h->pool); if (cap[h->index] == NULL) { ha_alert("HTTP capture : out of memory.\n"); break; } v = htx_get_blk_value(htx, blk); if (v.len > h->len) v.len = h->len; memcpy(cap[h->index], v.ptr, v.len); cap[h->index][v.len]=0; } } } } /* Delete a value in a header between delimiters and . The header * itself is delimited by and pointers. The number of characters * displaced is returned, and the pointer to the first delimiter is updated if * required. The function tries as much as possible to respect the following * principles : * - replace delimiter by the one unless points to , * in which case is simply removed * - set exactly one space character after the new first delimiter, unless there * are not enough characters in the block being moved to do so. * - remove unneeded spaces before the previous delimiter and after the new * one. * * It is the caller's responsibility to ensure that : * - points to a valid delimiter or ; * - points to a valid delimiter or ; * - there are non-space chars before . */ static int htx_del_hdr_value(char *start, char *end, char **from, char *next) { char *prev = *from; if (prev == start) { /* We're removing the first value. eat the semicolon, if * is lower than */ if (next < end) next++; while (next < end && HTTP_IS_SPHT(*next)) next++; } else { /* Remove useless spaces before the old delimiter. */ while (HTTP_IS_SPHT(*(prev-1))) prev--; *from = prev; /* copy the delimiter and if possible a space if we're * not at the end of the line. */ if (next < end) { *prev++ = *next++; if (prev + 1 < next) *prev++ = ' '; while (next < end && HTTP_IS_SPHT(*next)) next++; } } memmove(prev, next, end - next); return (prev - next); } /* Formats the start line of the request (without CRLF) and puts it in and * return the written length. The line can be truncated if it exceeds . */ static size_t htx_fmt_req_line(const struct htx_sl *sl, char *str, size_t len) { struct ist dst = ist2(str, 0); if (istcat(&dst, htx_sl_req_meth(sl), len) == -1) goto end; if (dst.len + 1 > len) goto end; dst.ptr[dst.len++] = ' '; if (istcat(&dst, htx_sl_req_uri(sl), len) == -1) goto end; if (dst.len + 1 > len) goto end; dst.ptr[dst.len++] = ' '; istcat(&dst, htx_sl_req_vsn(sl), len); end: return dst.len; } /* Formats the start line of the response (without CRLF) and puts it in and * return the written length. The line can be truncated if it exceeds . */ static size_t htx_fmt_res_line(const struct htx_sl *sl, char *str, size_t len) { struct ist dst = ist2(str, 0); if (istcat(&dst, htx_sl_res_vsn(sl), len) == -1) goto end; if (dst.len + 1 > len) goto end; dst.ptr[dst.len++] = ' '; if (istcat(&dst, htx_sl_res_code(sl), len) == -1) goto end; if (dst.len + 1 > len) goto end; dst.ptr[dst.len++] = ' '; istcat(&dst, htx_sl_res_reason(sl), len); end: return dst.len; } /* * Print a debug line with a start line. */ static void htx_debug_stline(const char *dir, struct stream *s, const struct htx_sl *sl) { struct session *sess = strm_sess(s); int max; chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id, dir, objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1, objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1); max = HTX_SL_P1_LEN(sl); UBOUND(max, trash.size - trash.data - 3); chunk_memcat(&trash, HTX_SL_P1_PTR(sl), max); trash.area[trash.data++] = ' '; max = HTX_SL_P2_LEN(sl); UBOUND(max, trash.size - trash.data - 2); chunk_memcat(&trash, HTX_SL_P2_PTR(sl), max); trash.area[trash.data++] = ' '; max = HTX_SL_P3_LEN(sl); UBOUND(max, trash.size - trash.data - 1); chunk_memcat(&trash, HTX_SL_P3_PTR(sl), max); trash.area[trash.data++] = '\n'; shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); } /* * Print a debug line with a header. */ static void htx_debug_hdr(const char *dir, struct stream *s, const struct ist n, const struct ist v) { struct session *sess = strm_sess(s); int max; chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id, dir, objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1, objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1); max = n.len; UBOUND(max, trash.size - trash.data - 3); chunk_memcat(&trash, n.ptr, max); trash.area[trash.data++] = ':'; trash.area[trash.data++] = ' '; max = v.len; UBOUND(max, trash.size - trash.data - 1); chunk_memcat(&trash, v.ptr, max); trash.area[trash.data++] = '\n'; shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); } __attribute__((constructor)) static void __htx_protocol_init(void) { } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */