/* * include/proto/fd.h * File descriptors states. * * Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _PROTO_FD_H #define _PROTO_FD_H #include #include #include #include #include #include #include #include #include /* public variables */ extern volatile struct fdlist fd_cache; extern volatile struct fdlist fd_cache_local[MAX_THREADS]; extern volatile struct fdlist update_list; extern unsigned long *polled_mask; extern unsigned long fd_cache_mask; // Mask of threads with events in the cache extern THREAD_LOCAL int *fd_updt; // FD updates list extern THREAD_LOCAL int fd_nbupdt; // number of updates in the list extern int poller_wr_pipe[MAX_THREADS]; __decl_hathreads(extern HA_RWLOCK_T __attribute__((aligned(64))) fdcache_lock); /* global lock to protect fd_cache array */ /* Deletes an FD from the fdsets. * The file descriptor is also closed. */ void fd_delete(int fd); /* Deletes an FD from the fdsets. * The file descriptor is kept open. */ void fd_remove(int fd); /* disable the specified poller */ void disable_poller(const char *poller_name); void poller_pipe_io_handler(int fd); /* * Initialize the pollers till the best one is found. * If none works, returns 0, otherwise 1. * The pollers register themselves just before main() is called. */ int init_pollers(); /* * Deinitialize the pollers. */ void deinit_pollers(); /* * Some pollers may lose their connection after a fork(). It may be necessary * to create initialize part of them again. Returns 0 in case of failure, * otherwise 1. The fork() function may be NULL if unused. In case of error, * the the current poller is destroyed and the caller is responsible for trying * another one by calling init_pollers() again. */ int fork_poller(); /* * Lists the known pollers on . * Should be performed only before initialization. */ int list_pollers(FILE *out); /* * Runs the polling loop */ void run_poller(); /* Scan and process the cached events. This should be called right after * the poller. */ void fd_process_cached_events(); void fd_add_to_fd_list(volatile struct fdlist *list, int fd, int off); void fd_rm_from_fd_list(volatile struct fdlist *list, int fd, int off); /* Mark fd as updated for polling and allocate an entry in the update list * for this if it was not already there. This can be done at any time. */ static inline void updt_fd_polling(const int fd) { if ((fdtab[fd].thread_mask & all_threads_mask) == tid_bit) { unsigned int oldupdt; /* note: we don't have a test-and-set yet in hathreads */ if (HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid)) return; oldupdt = HA_ATOMIC_ADD(&fd_nbupdt, 1) - 1; fd_updt[oldupdt] = fd; } else { unsigned long update_mask = fdtab[fd].update_mask; do { if (update_mask == fdtab[fd].thread_mask) return; } while (!HA_ATOMIC_CAS(&fdtab[fd].update_mask, &update_mask, fdtab[fd].thread_mask)); fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update)); } } /* Called from the poller to acknoledge we read an entry from the global * update list, to remove our bit from the update_mask, and remove it from * the list if we were the last one. */ static inline void done_update_polling(int fd) { unsigned long update_mask; update_mask = HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit); while ((update_mask & all_threads_mask)== 0) { /* If we were the last one that had to update that entry, remove it from the list */ fd_rm_from_fd_list(&update_list, fd, offsetof(struct fdtab, update)); if (update_list.first == fd) abort(); update_mask = (volatile unsigned long)fdtab[fd].update_mask; if ((update_mask & all_threads_mask) != 0) { /* Maybe it's been re-updated in the meanwhile, and we * wrongly removed it from the list, if so, re-add it */ fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update)); update_mask = (volatile unsigned long)(fdtab[fd].update_mask); /* And then check again, just in case after all it * should be removed, even if it's very unlikely, given * the current thread wouldn't have been able to take * care of it yet */ } else break; } } /* Allocates a cache entry for a file descriptor if it does not yet have one. * This can be done at any time. */ static inline void fd_alloc_cache_entry(const int fd) { HA_ATOMIC_OR(&fd_cache_mask, fdtab[fd].thread_mask); if (!(fdtab[fd].thread_mask & (fdtab[fd].thread_mask - 1))) fd_add_to_fd_list(&fd_cache_local[my_ffsl(fdtab[fd].thread_mask) - 1], fd, offsetof(struct fdtab, cache)); else fd_add_to_fd_list(&fd_cache, fd, offsetof(struct fdtab, cache)); } /* Removes entry used by fd from the FD cache and replaces it with the * last one. * If the fd has no entry assigned, return immediately. */ static inline void fd_release_cache_entry(const int fd) { if (!(fdtab[fd].thread_mask & (fdtab[fd].thread_mask - 1))) fd_rm_from_fd_list(&fd_cache_local[my_ffsl(fdtab[fd].thread_mask) - 1], fd, offsetof(struct fdtab, cache)); else fd_rm_from_fd_list(&fd_cache, fd, offsetof(struct fdtab, cache)); } /* This function automatically enables/disables caching for an entry depending * on its state. It is only called on state changes. */ static inline void fd_update_cache(int fd) { /* only READY and ACTIVE states (the two with both flags set) require a cache entry */ if (((fdtab[fd].state & (FD_EV_READY_R | FD_EV_ACTIVE_R)) == (FD_EV_READY_R | FD_EV_ACTIVE_R)) || ((fdtab[fd].state & (FD_EV_READY_W | FD_EV_ACTIVE_W)) == (FD_EV_READY_W | FD_EV_ACTIVE_W))) { fd_alloc_cache_entry(fd); } else { fd_release_cache_entry(fd); } } /* * returns the FD's recv state (FD_EV_*) */ static inline int fd_recv_state(const int fd) { return ((unsigned)fdtab[fd].state >> (4 * DIR_RD)) & FD_EV_STATUS; } /* * returns true if the FD is active for recv */ static inline int fd_recv_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_R; } /* * returns true if the FD is ready for recv */ static inline int fd_recv_ready(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_READY_R; } /* * returns true if the FD is polled for recv */ static inline int fd_recv_polled(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_POLLED_R; } /* * returns the FD's send state (FD_EV_*) */ static inline int fd_send_state(const int fd) { return ((unsigned)fdtab[fd].state >> (4 * DIR_WR)) & FD_EV_STATUS; } /* * returns true if the FD is active for send */ static inline int fd_send_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_W; } /* * returns true if the FD is ready for send */ static inline int fd_send_ready(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_READY_W; } /* * returns true if the FD is polled for send */ static inline int fd_send_polled(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_POLLED_W; } /* * returns true if the FD is active for recv or send */ static inline int fd_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_RW; } /* Disable processing recv events on fd */ static inline void fd_stop_recv(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_ACTIVE_R)) return; new = old & ~FD_EV_ACTIVE_R; new &= ~FD_EV_POLLED_R; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_R) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Disable processing send events on fd */ static inline void fd_stop_send(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_ACTIVE_W)) return; new = old & ~FD_EV_ACTIVE_W; new &= ~FD_EV_POLLED_W; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_W) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Disable processing of events on fd for both directions. */ static inline void fd_stop_both(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_ACTIVE_RW)) return; new = old & ~FD_EV_ACTIVE_RW; new &= ~FD_EV_POLLED_RW; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_RW) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Report that FD cannot receive anymore without polling (EAGAIN detected). */ static inline void fd_cant_recv(const int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_READY_R)) return; new = old & ~FD_EV_READY_R; if (new & FD_EV_ACTIVE_R) new |= FD_EV_POLLED_R; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_R) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Report that FD can receive anymore without polling. */ static inline void fd_may_recv(const int fd) { /* marking ready never changes polled status */ HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_R); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Disable readiness when polled. This is useful to interrupt reading when it * is suspected that the end of data might have been reached (eg: short read). * This can only be done using level-triggered pollers, so if any edge-triggered * is ever implemented, a test will have to be added here. */ static inline void fd_done_recv(const int fd) { unsigned char old, new; old = fdtab[fd].state; do { if ((old & (FD_EV_POLLED_R|FD_EV_READY_R)) != (FD_EV_POLLED_R|FD_EV_READY_R)) return; new = old & ~FD_EV_READY_R; if (new & FD_EV_ACTIVE_R) new |= FD_EV_POLLED_R; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_R) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Report that FD cannot send anymore without polling (EAGAIN detected). */ static inline void fd_cant_send(const int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_READY_W)) return; new = old & ~FD_EV_READY_W; if (new & FD_EV_ACTIVE_W) new |= FD_EV_POLLED_W; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_W) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Report that FD can send anymore without polling (EAGAIN detected). */ static inline void fd_may_send(const int fd) { /* marking ready never changes polled status */ HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_W); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Prepare FD to try to receive */ static inline void fd_want_recv(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (old & FD_EV_ACTIVE_R) return; new = old | FD_EV_ACTIVE_R; if (!(new & FD_EV_READY_R)) new |= FD_EV_POLLED_R; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_R) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Prepare FD to try to send */ static inline void fd_want_send(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (old & FD_EV_ACTIVE_W) return; new = old | FD_EV_ACTIVE_W; if (!(new & FD_EV_READY_W)) new |= FD_EV_POLLED_W; } while (unlikely(!HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); if ((old ^ new) & FD_EV_POLLED_W) updt_fd_polling(fd); if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fd_update_cache(fd); /* need an update entry to change the state */ if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Update events seen for FD and its state if needed. This should be called * by the poller to set FD_POLL_* flags. */ static inline void fd_update_events(int fd, int evts) { if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fdtab[fd].ev &= FD_POLL_STICKY; fdtab[fd].ev |= evts; if (atleast2(fdtab[fd].thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); if (fdtab[fd].ev & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR)) fd_may_recv(fd); if (fdtab[fd].ev & (FD_POLL_OUT | FD_POLL_ERR)) fd_may_send(fd); } /* Prepares for being polled */ static inline void fd_insert(int fd, void *owner, void (*iocb)(int fd), unsigned long thread_mask) { if (atleast2(thread_mask)) HA_SPIN_LOCK(FD_LOCK, &fdtab[fd].lock); fdtab[fd].owner = owner; fdtab[fd].iocb = iocb; fdtab[fd].ev = 0; fdtab[fd].linger_risk = 0; fdtab[fd].cloned = 0; fdtab[fd].thread_mask = thread_mask; /* note: do not reset polled_mask here as it indicates which poller * still knows this FD from a possible previous round. */ if (atleast2(thread_mask)) HA_SPIN_UNLOCK(FD_LOCK, &fdtab[fd].lock); } /* Computes the bounded poll() timeout based on the next expiration timer * by bounding it to MAX_DELAY_MS. may equal TICK_ETERNITY. The pollers * just needs to call this function right before polling to get their timeout * value. Timeouts that are already expired (possibly due to a pending event) * are accounted for in activity.poll_exp. */ static inline int compute_poll_timeout(int next) { int wait_time; if (!tick_isset(next)) wait_time = MAX_DELAY_MS; else if (tick_is_expired(next, now_ms)) { activity[tid].poll_exp++; wait_time = 0; } else { wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1; if (wait_time > MAX_DELAY_MS) wait_time = MAX_DELAY_MS; } return wait_time; } /* These are replacements for FD_SET, FD_CLR, FD_ISSET, working on uints */ static inline void hap_fd_set(int fd, unsigned int *evts) { HA_ATOMIC_OR(&evts[fd / (8*sizeof(*evts))], 1U << (fd & (8*sizeof(*evts) - 1))); } static inline void hap_fd_clr(int fd, unsigned int *evts) { HA_ATOMIC_AND(&evts[fd / (8*sizeof(*evts))], ~(1U << (fd & (8*sizeof(*evts) - 1)))); } static inline unsigned int hap_fd_isset(int fd, unsigned int *evts) { return evts[fd / (8*sizeof(*evts))] & (1U << (fd & (8*sizeof(*evts) - 1))); } static inline void wake_thread(int tid) { char c = 'c'; shut_your_big_mouth_gcc(write(poller_wr_pipe[tid], &c, 1)); } #endif /* _PROTO_FD_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */