/* * include/proto/channel.h * Channel management definitions, macros and inline functions. * * Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _PROTO_CHANNEL_H #define _PROTO_CHANNEL_H #include #include #include #include #include #include #include #include #include /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_channel(); unsigned long long __channel_forward(struct channel *chn, unsigned long long bytes); /* SI-to-channel functions working with buffers */ int bi_putblk(struct channel *chn, const char *str, int len); struct buffer *bi_swpbuf(struct channel *chn, struct buffer *buf); int bi_putchr(struct channel *chn, char c); int bi_getline_nc(struct channel *chn, char **blk1, int *len1, char **blk2, int *len2); int bi_getblk_nc(struct channel *chn, char **blk1, int *len1, char **blk2, int *len2); int bo_inject(struct channel *chn, const char *msg, int len); int bo_getline(struct channel *chn, char *str, int len); int bo_getblk(struct channel *chn, char *blk, int len, int offset); int bo_getline_nc(struct channel *chn, char **blk1, int *len1, char **blk2, int *len2); int bo_getblk_nc(struct channel *chn, char **blk1, int *len1, char **blk2, int *len2); /* Initialize all fields in the channel. */ static inline void channel_init(struct channel *chn) { chn->buf = &buf_empty; chn->to_forward = 0; chn->last_read = now_ms; chn->xfer_small = chn->xfer_large = 0; chn->total = 0; chn->pipe = NULL; chn->analysers = 0; chn->cons = NULL; chn->flags = 0; } /* Schedule up to more bytes to be forwarded via the channel without * notifying the owner task. Any data pending in the buffer are scheduled to be * sent as well, in the limit of the number of bytes to forward. This must be * the only method to use to schedule bytes to be forwarded. If the requested * number is too large, it is automatically adjusted. The number of bytes taken * into account is returned. Directly touching ->to_forward will cause lockups * when buf->o goes down to zero if nobody is ready to push the remaining data. */ static inline unsigned long long channel_forward(struct channel *chn, unsigned long long bytes) { /* hint: avoid comparisons on long long for the fast case, since if the * length does not fit in an unsigned it, it will never be forwarded at * once anyway. */ if (bytes <= ~0U) { unsigned int bytes32 = bytes; if (bytes32 <= chn->buf->i) { /* OK this amount of bytes might be forwarded at once */ b_adv(chn->buf, bytes32); return bytes; } } return __channel_forward(chn, bytes); } /*********************************************************************/ /* These functions are used to compute various channel content sizes */ /*********************************************************************/ /* Reports non-zero if the channel is empty, which means both its * buffer and pipe are empty. The construct looks strange but is * jump-less and much more efficient on both 32 and 64-bit than * the boolean test. */ static inline unsigned int channel_is_empty(struct channel *c) { return !(c->buf->o | (long)c->pipe); } /* Returns non-zero if the channel is rewritable, which means that the buffer * it is attached to has at least bytes immediately available. * This is used to decide when a request or response may be parsed when some * data from a previous exchange might still be present. */ static inline int channel_is_rewritable(const struct channel *chn) { int rem = chn->buf->size; rem -= chn->buf->o; rem -= chn->buf->i; rem -= global.tune.maxrewrite; return rem >= 0; } /* Tells whether data are likely to leave the buffer. This is used to know when * we can safely ignore the reserve since we know we cannot retry a connection. * It returns zero if data are blocked, non-zero otherwise. */ static inline int channel_may_send(const struct channel *chn) { return chn->cons->state == SI_ST_EST; } /* Returns the amount of bytes from the channel that are already scheduled for * leaving (buf->o) or that are still part of the input and expected to be sent * soon as covered by to_forward. This is useful to know by how much we can * shrink the rewrite reserve during forwards. Buffer data are not considered * in transit until the channel is connected, so that the reserve remains * protected. */ static inline int channel_in_transit(const struct channel *chn) { int ret; if (!channel_may_send(chn)) return 0; /* below, this is min(i, to_forward) optimized for the fast case */ if (chn->to_forward >= chn->buf->i || (CHN_INFINITE_FORWARD < MAX_RANGE(typeof(chn->buf->i)) && chn->to_forward == CHN_INFINITE_FORWARD)) ret = chn->buf->i; else ret = chn->to_forward; ret += chn->buf->o; return ret; } /* Returns non-zero if the channel can still receive data. This is used to * decide when to stop reading into a buffer when we want to ensure that we * leave the reserve untouched after all pending outgoing data are forwarded. * The reserved space is taken into account if ->to_forward indicates that an * end of transfer is close to happen. Note that both ->buf->o and ->to_forward * are considered as available since they're supposed to leave the buffer. The * test is optimized to avoid as many operations as possible for the fast case * and to be used as an "if" condition. */ static inline int channel_may_recv(const struct channel *chn) { int rem = chn->buf->size; if (chn->buf == &buf_empty) return 1; rem -= chn->buf->o; rem -= chn->buf->i; if (!rem) return 0; /* buffer already full */ /* now we know there's some room left, verify if we're touching * the reserve with some permanent input data. */ if (chn->to_forward >= chn->buf->i || (CHN_INFINITE_FORWARD < MAX_RANGE(typeof(chn->buf->i)) && // just there to ensure gcc chn->to_forward == CHN_INFINITE_FORWARD)) // avoids the useless second return 1; // test whenever possible rem -= global.tune.maxrewrite; rem += chn->buf->o; rem += chn->to_forward; return rem > 0; } /* Returns true if the channel's input is already closed */ static inline int channel_input_closed(struct channel *chn) { return ((chn->flags & CF_SHUTR) != 0); } /* Returns true if the channel's output is already closed */ static inline int channel_output_closed(struct channel *chn) { return ((chn->flags & CF_SHUTW) != 0); } /* Check channel timeouts, and set the corresponding flags. The likely/unlikely * have been optimized for fastest normal path. The read/write timeouts are not * set if there was activity on the channel. That way, we don't have to update * the timeout on every I/O. Note that the analyser timeout is always checked. */ static inline void channel_check_timeouts(struct channel *chn) { if (likely(!(chn->flags & (CF_SHUTR|CF_READ_TIMEOUT|CF_READ_ACTIVITY|CF_READ_NOEXP))) && unlikely(tick_is_expired(chn->rex, now_ms))) chn->flags |= CF_READ_TIMEOUT; if (likely(!(chn->flags & (CF_SHUTW|CF_WRITE_TIMEOUT|CF_WRITE_ACTIVITY))) && unlikely(tick_is_expired(chn->wex, now_ms))) chn->flags |= CF_WRITE_TIMEOUT; if (likely(!(chn->flags & CF_ANA_TIMEOUT)) && unlikely(tick_is_expired(chn->analyse_exp, now_ms))) chn->flags |= CF_ANA_TIMEOUT; } /* Erase any content from channel and adjusts flags accordingly. Note * that any spliced data is not affected since we may not have any access to * it. */ static inline void channel_erase(struct channel *chn) { chn->to_forward = 0; b_reset(chn->buf); } /* marks the channel as "shutdown" ASAP for reads */ static inline void channel_shutr_now(struct channel *chn) { chn->flags |= CF_SHUTR_NOW; } /* marks the channel as "shutdown" ASAP for writes */ static inline void channel_shutw_now(struct channel *chn) { chn->flags |= CF_SHUTW_NOW; } /* marks the channel as "shutdown" ASAP in both directions */ static inline void channel_abort(struct channel *chn) { chn->flags |= CF_SHUTR_NOW | CF_SHUTW_NOW; chn->flags &= ~CF_AUTO_CONNECT; } /* allow the consumer to try to establish a new connection. */ static inline void channel_auto_connect(struct channel *chn) { chn->flags |= CF_AUTO_CONNECT; } /* prevent the consumer from trying to establish a new connection, and also * disable auto shutdown forwarding. */ static inline void channel_dont_connect(struct channel *chn) { chn->flags &= ~(CF_AUTO_CONNECT|CF_AUTO_CLOSE); } /* allow the producer to forward shutdown requests */ static inline void channel_auto_close(struct channel *chn) { chn->flags |= CF_AUTO_CLOSE; } /* prevent the producer from forwarding shutdown requests */ static inline void channel_dont_close(struct channel *chn) { chn->flags &= ~CF_AUTO_CLOSE; } /* allow the producer to read / poll the input */ static inline void channel_auto_read(struct channel *chn) { chn->flags &= ~CF_DONT_READ; } /* prevent the producer from read / poll the input */ static inline void channel_dont_read(struct channel *chn) { chn->flags |= CF_DONT_READ; } /*************************************************/ /* Buffer operations in the context of a channel */ /*************************************************/ /* Return the number of reserved bytes in the channel's visible * buffer, which ensures that once all pending data are forwarded, the * buffer still has global.tune.maxrewrite bytes free. The result is * between 0 and global.tune.maxrewrite, which is itself smaller than * any chn->size. Special care is taken to avoid any possible integer * overflow in the operations. */ static inline int channel_reserved(const struct channel *chn) { int reserved; reserved = global.tune.maxrewrite - channel_in_transit(chn); if (reserved < 0) reserved = 0; return reserved; } /* Return the max number of bytes the buffer can contain so that once all the * data in transit are forwarded, the buffer still has global.tune.maxrewrite * bytes free. The result sits between chn->size - maxrewrite and chn->size. */ static inline int channel_recv_limit(const struct channel *chn) { return chn->buf->size - channel_reserved(chn); } /* Returns the amount of space available at the input of the buffer, taking the * reserved space into account if ->to_forward indicates that an end of transfer * is close to happen. The test is optimized to avoid as many operations as * possible for the fast case. */ static inline int channel_recv_max(const struct channel *chn) { int ret; ret = channel_recv_limit(chn) - chn->buf->i - chn->buf->o; if (ret < 0) ret = 0; return ret; } /* Truncate any unread data in the channel's buffer, and disable forwarding. * Outgoing data are left intact. This is mainly to be used to send error * messages after existing data. */ static inline void channel_truncate(struct channel *chn) { if (!chn->buf->o) return channel_erase(chn); chn->to_forward = 0; if (!chn->buf->i) return; chn->buf->i = 0; } /* * Advance the channel buffer's read pointer by bytes. This is useful * when data have been read directly from the buffer. It is illegal to call * this function with causing a wrapping at the end of the buffer. It's * the caller's responsibility to ensure that is never larger than * chn->o. Channel flag WRITE_PARTIAL is set. */ static inline void bo_skip(struct channel *chn, int len) { chn->buf->o -= len; if (buffer_empty(chn->buf)) chn->buf->p = chn->buf->data; /* notify that some data was written to the SI from the buffer */ chn->flags |= CF_WRITE_PARTIAL; } /* Tries to copy chunk into the channel's buffer after length controls. * The chn->o and to_forward pointers are updated. If the channel's input is * closed, -2 is returned. If the block is too large for this buffer, -3 is * returned. If there is not enough room left in the buffer, -1 is returned. * Otherwise the number of bytes copied is returned (0 being a valid number). * Channel flag READ_PARTIAL is updated if some data can be transferred. The * chunk's length is updated with the number of bytes sent. */ static inline int bi_putchk(struct channel *chn, struct chunk *chunk) { int ret; ret = bi_putblk(chn, chunk->str, chunk->len); if (ret > 0) chunk->len -= ret; return ret; } /* Tries to copy string at once into the channel's buffer after length * controls. The chn->o and to_forward pointers are updated. If the channel's * input is closed, -2 is returned. If the block is too large for this buffer, * -3 is returned. If there is not enough room left in the buffer, -1 is * returned. Otherwise the number of bytes copied is returned (0 being a valid * number). Channel flag READ_PARTIAL is updated if some data can be * transferred. */ static inline int bi_putstr(struct channel *chn, const char *str) { return bi_putblk(chn, str, strlen(str)); } /* * Return one char from the channel's buffer. If the buffer is empty and the * channel is closed, return -2. If the buffer is just empty, return -1. The * buffer's pointer is not advanced, it's up to the caller to call bo_skip(buf, * 1) when it has consumed the char. Also note that this function respects the * chn->o limit. */ static inline int bo_getchr(struct channel *chn) { /* closed or empty + imminent close = -2; empty = -1 */ if (unlikely((chn->flags & CF_SHUTW) || channel_is_empty(chn))) { if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) return -2; return -1; } return *buffer_wrap_sub(chn->buf, chn->buf->p - chn->buf->o); } #endif /* _PROTO_CHANNEL_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */