/* * include/proto/connection.h * This file contains connection function prototypes * * Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _PROTO_CONNECTION_H #define _PROTO_CONNECTION_H #include #include #include #include #include #include extern struct pool_head *pool2_connection; /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_connection(); /* I/O callback for fd-based connections. It calls the read/write handlers * provided by the connection's sock_ops. */ void conn_fd_handler(int fd); /* receive a PROXY protocol header over a connection */ int conn_recv_proxy(struct connection *conn, int flag); int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote); int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst); int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote); /* receive a NetScaler Client IP insertion header over a connection */ int conn_recv_netscaler_cip(struct connection *conn, int flag); /* raw send() directly on the socket */ int conn_sock_send(struct connection *conn, const void *buf, int len, int flags); /* drains any pending bytes from the socket */ int conn_sock_drain(struct connection *conn); /* returns true is the transport layer is ready */ static inline int conn_xprt_ready(const struct connection *conn) { return (conn->flags & CO_FL_XPRT_READY); } /* returns true is the control layer is ready */ static inline int conn_ctrl_ready(const struct connection *conn) { return (conn->flags & CO_FL_CTRL_READY); } /* Calls the init() function of the transport layer if any and if not done yet, * and sets the CO_FL_XPRT_READY flag to indicate it was properly initialized. * Returns <0 in case of error. */ static inline int conn_xprt_init(struct connection *conn) { int ret = 0; if (!conn_xprt_ready(conn) && conn->xprt && conn->xprt->init) ret = conn->xprt->init(conn); if (ret >= 0) conn->flags |= CO_FL_XPRT_READY; return ret; } /* Calls the close() function of the transport layer if any and if not done * yet, and clears the CO_FL_XPRT_READY flag. However this is not done if the * CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the * transport layer very late if needed. */ static inline void conn_xprt_close(struct connection *conn) { if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_XPRT_TRACKED)) == CO_FL_XPRT_READY) { if (conn->xprt->close) conn->xprt->close(conn); conn->flags &= ~CO_FL_XPRT_READY; } } /* Initializes the connection's control layer which essentially consists in * registering the file descriptor for polling and setting the CO_FL_CTRL_READY * flag. The caller is responsible for ensuring that the control layer is * already assigned to the connection prior to the call. */ static inline void conn_ctrl_init(struct connection *conn) { if (!conn_ctrl_ready(conn)) { int fd = conn->t.sock.fd; fd_insert(fd); /* mark the fd as ready so as not to needlessly poll at the beginning */ fd_may_recv(fd); fd_may_send(fd); fdtab[fd].owner = conn; fdtab[fd].iocb = conn_fd_handler; conn->flags |= CO_FL_CTRL_READY; } } /* Deletes the FD if the transport layer is already gone. Once done, * it then removes the CO_FL_CTRL_READY flag. */ static inline void conn_ctrl_close(struct connection *conn) { if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_CTRL_READY)) == CO_FL_CTRL_READY) { fd_delete(conn->t.sock.fd); conn->flags &= ~CO_FL_CTRL_READY; } } /* If the connection still has a transport layer, then call its close() function * if any, and delete the file descriptor if a control layer is set. This is * used to close everything at once and atomically. However this is not done if * the CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the * transport layer very late if needed. */ static inline void conn_full_close(struct connection *conn) { conn_xprt_close(conn); conn_ctrl_close(conn); } /* Force to close the connection whatever the tracking state. This is mainly * used on the error path where the tracking does not make sense, or to kill * an idle connection we want to abort immediately. */ static inline void conn_force_close(struct connection *conn) { if (conn_xprt_ready(conn) && conn->xprt->close) conn->xprt->close(conn); if (conn_ctrl_ready(conn)) fd_delete(conn->t.sock.fd); conn->flags &= ~(CO_FL_XPRT_READY|CO_FL_CTRL_READY); } /* Update polling on connection 's file descriptor depending on its current * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN * in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*. * The connection flags are updated with the new flags at the end of the * operation. Polling is totally disabled if an error was reported. */ void conn_update_sock_polling(struct connection *c); /* Update polling on connection 's file descriptor depending on its current * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN * in CO_FL_WAIT_*, and the data layer expectations indicated by CO_FL_DATA_*. * The connection flags are updated with the new flags at the end of the * operation. Polling is totally disabled if an error was reported. */ void conn_update_data_polling(struct connection *c); /* Refresh the connection's polling flags from its file descriptor status. * This should be called at the beginning of a connection handler. */ static inline void conn_refresh_polling_flags(struct connection *conn) { conn->flags &= ~(CO_FL_WAIT_ROOM | CO_FL_WAIT_DATA); if (conn_ctrl_ready(conn)) { unsigned int flags = conn->flags & ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA); if (fd_recv_active(conn->t.sock.fd)) flags |= CO_FL_CURR_RD_ENA; if (fd_send_active(conn->t.sock.fd)) flags |= CO_FL_CURR_WR_ENA; conn->flags = flags; } } /* inspects c->flags and returns non-zero if DATA ENA changes from the CURR ENA * or if the WAIT flags are set with their respective ENA flags. Additionally, * non-zero is also returned if an error was reported on the connection. This * function is used quite often and is inlined. In order to proceed optimally * with very little code and CPU cycles, the bits are arranged so that a change * can be detected by a few left shifts, a xor, and a mask. These operations * detect when W&D are both enabled for either direction, when C&D differ for * either direction and when Error is set. The trick consists in first keeping * only the bits we're interested in, since they don't collide when shifted, * and to perform the AND at the end. In practice, the compiler is able to * replace the last AND with a TEST in boolean conditions. This results in * checks that are done in 4-6 cycles and less than 30 bytes. */ static inline unsigned int conn_data_polling_changes(const struct connection *c) { unsigned int f = c->flags; f &= CO_FL_DATA_WR_ENA | CO_FL_DATA_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR; f = (f ^ (f << 1)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ D */ return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR); } /* inspects c->flags and returns non-zero if SOCK ENA changes from the CURR ENA * or if the WAIT flags are set with their respective ENA flags. Additionally, * non-zero is also returned if an error was reported on the connection. This * function is used quite often and is inlined. In order to proceed optimally * with very little code and CPU cycles, the bits are arranged so that a change * can be detected by a few left shifts, a xor, and a mask. These operations * detect when W&S are both enabled for either direction, when C&S differ for * either direction and when Error is set. The trick consists in first keeping * only the bits we're interested in, since they don't collide when shifted, * and to perform the AND at the end. In practice, the compiler is able to * replace the last AND with a TEST in boolean conditions. This results in * checks that are done in 4-6 cycles and less than 30 bytes. */ static inline unsigned int conn_sock_polling_changes(const struct connection *c) { unsigned int f = c->flags; f &= CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR; f = (f ^ (f << 2)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ S */ return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR); } /* Automatically updates polling on connection depending on the DATA flags * if no handshake is in progress. */ static inline void conn_cond_update_data_polling(struct connection *c) { if (!(c->flags & CO_FL_POLL_SOCK) && conn_data_polling_changes(c)) conn_update_data_polling(c); } /* Automatically updates polling on connection depending on the SOCK flags * if a handshake is in progress. */ static inline void conn_cond_update_sock_polling(struct connection *c) { if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c)) conn_update_sock_polling(c); } /* Stop all polling on the fd. This might be used when an error is encountered * for example. */ static inline void conn_stop_polling(struct connection *c) { c->flags &= ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_SOCK_RD_ENA | CO_FL_SOCK_WR_ENA | CO_FL_DATA_RD_ENA | CO_FL_DATA_WR_ENA); fd_stop_both(c->t.sock.fd); } /* Automatically update polling on connection depending on the DATA and * SOCK flags, and on whether a handshake is in progress or not. This may be * called at any moment when there is a doubt about the effectiveness of the * polling state, for instance when entering or leaving the handshake state. */ static inline void conn_cond_update_polling(struct connection *c) { if (unlikely(c->flags & CO_FL_ERROR)) conn_stop_polling(c); else if (!(c->flags & CO_FL_POLL_SOCK) && conn_data_polling_changes(c)) conn_update_data_polling(c); else if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c)) conn_update_sock_polling(c); } /***** Event manipulation primitives for use by DATA I/O callbacks *****/ /* The __conn_* versions do not propagate to lower layers and are only meant * to be used by handlers called by the connection handler. The other ones * may be used anywhere. */ static inline void __conn_data_want_recv(struct connection *c) { c->flags |= CO_FL_DATA_RD_ENA; } static inline void __conn_data_stop_recv(struct connection *c) { c->flags &= ~CO_FL_DATA_RD_ENA; } static inline void __conn_data_want_send(struct connection *c) { c->flags |= CO_FL_DATA_WR_ENA; } static inline void __conn_data_stop_send(struct connection *c) { c->flags &= ~CO_FL_DATA_WR_ENA; } static inline void __conn_data_stop_both(struct connection *c) { c->flags &= ~(CO_FL_DATA_WR_ENA | CO_FL_DATA_RD_ENA); } static inline void conn_data_want_recv(struct connection *c) { __conn_data_want_recv(c); conn_cond_update_data_polling(c); } static inline void conn_data_stop_recv(struct connection *c) { __conn_data_stop_recv(c); conn_cond_update_data_polling(c); } static inline void conn_data_want_send(struct connection *c) { __conn_data_want_send(c); conn_cond_update_data_polling(c); } static inline void conn_data_stop_send(struct connection *c) { __conn_data_stop_send(c); conn_cond_update_data_polling(c); } static inline void conn_data_stop_both(struct connection *c) { __conn_data_stop_both(c); conn_cond_update_data_polling(c); } /***** Event manipulation primitives for use by handshake I/O callbacks *****/ /* The __conn_* versions do not propagate to lower layers and are only meant * to be used by handlers called by the connection handler. The other ones * may be used anywhere. */ static inline void __conn_sock_want_recv(struct connection *c) { c->flags |= CO_FL_SOCK_RD_ENA; } static inline void __conn_sock_stop_recv(struct connection *c) { c->flags &= ~CO_FL_SOCK_RD_ENA; } static inline void __conn_sock_want_send(struct connection *c) { c->flags |= CO_FL_SOCK_WR_ENA; } static inline void __conn_sock_stop_send(struct connection *c) { c->flags &= ~CO_FL_SOCK_WR_ENA; } static inline void __conn_sock_stop_both(struct connection *c) { c->flags &= ~(CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA); } static inline void conn_sock_want_recv(struct connection *c) { __conn_sock_want_recv(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_recv(struct connection *c) { __conn_sock_stop_recv(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_want_send(struct connection *c) { __conn_sock_want_send(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_send(struct connection *c) { __conn_sock_stop_send(c); conn_cond_update_sock_polling(c); } static inline void conn_sock_stop_both(struct connection *c) { __conn_sock_stop_both(c); conn_cond_update_sock_polling(c); } /* shutdown management */ static inline void conn_sock_read0(struct connection *c) { c->flags |= CO_FL_SOCK_RD_SH; __conn_sock_stop_recv(c); /* we don't risk keeping ports unusable if we found the * zero from the other side. */ if (conn_ctrl_ready(c)) fdtab[c->t.sock.fd].linger_risk = 0; } static inline void conn_data_read0(struct connection *c) { c->flags |= CO_FL_DATA_RD_SH; __conn_data_stop_recv(c); } static inline void conn_sock_shutw(struct connection *c) { c->flags |= CO_FL_SOCK_WR_SH; __conn_sock_stop_send(c); if (conn_ctrl_ready(c)) shutdown(c->t.sock.fd, SHUT_WR); } static inline void conn_data_shutw(struct connection *c) { c->flags |= CO_FL_DATA_WR_SH; __conn_data_stop_send(c); /* clean data-layer shutdown */ if (c->xprt && c->xprt->shutw) c->xprt->shutw(c, 1); } static inline void conn_data_shutw_hard(struct connection *c) { c->flags |= CO_FL_DATA_WR_SH; __conn_data_stop_send(c); /* unclean data-layer shutdown */ if (c->xprt && c->xprt->shutw) c->xprt->shutw(c, 0); } /* detect sock->data read0 transition */ static inline int conn_data_read0_pending(struct connection *c) { return (c->flags & (CO_FL_DATA_RD_SH | CO_FL_SOCK_RD_SH)) == CO_FL_SOCK_RD_SH; } /* detect data->sock shutw transition */ static inline int conn_sock_shutw_pending(struct connection *c) { return (c->flags & (CO_FL_DATA_WR_SH | CO_FL_SOCK_WR_SH)) == CO_FL_DATA_WR_SH; } /* prepares a connection to work with protocol and transport . * The transport's context is initialized as well. */ static inline void conn_prepare(struct connection *conn, const struct protocol *proto, const struct xprt_ops *xprt) { conn->ctrl = proto; conn->xprt = xprt; conn->xprt_st = 0; conn->xprt_ctx = NULL; } /* Initializes all required fields for a new connection. Note that it does the * minimum acceptable initialization for a connection that already exists and * is about to be reused. It also leaves the addresses untouched, which makes * it usable across connection retries to reset a connection to a known state. */ static inline void conn_init(struct connection *conn) { conn->obj_type = OBJ_TYPE_CONN; conn->flags = CO_FL_NONE; conn->data = NULL; conn->owner = NULL; conn->send_proxy_ofs = 0; conn->t.sock.fd = -1; /* just to help with debugging */ conn->err_code = CO_ER_NONE; conn->target = NULL; conn->proxy_netns = NULL; LIST_INIT(&conn->list); } /* Tries to allocate a new connection and initialized its main fields. The * connection is returned on success, NULL on failure. The connection must * be released using pool_free2() or conn_free(). */ static inline struct connection *conn_new() { struct connection *conn; conn = pool_alloc2(pool2_connection); if (likely(conn != NULL)) conn_init(conn); return conn; } /* Releases a connection previously allocated by conn_new() */ static inline void conn_free(struct connection *conn) { pool_free2(pool2_connection, conn); } /* Retrieves the connection's source address */ static inline void conn_get_from_addr(struct connection *conn) { if (conn->flags & CO_FL_ADDR_FROM_SET) return; if (!conn_ctrl_ready(conn) || !conn->ctrl->get_src) return; if (conn->ctrl->get_src(conn->t.sock.fd, (struct sockaddr *)&conn->addr.from, sizeof(conn->addr.from), obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1) return; conn->flags |= CO_FL_ADDR_FROM_SET; } /* Retrieves the connection's original destination address */ static inline void conn_get_to_addr(struct connection *conn) { if (conn->flags & CO_FL_ADDR_TO_SET) return; if (!conn_ctrl_ready(conn) || !conn->ctrl->get_dst) return; if (conn->ctrl->get_dst(conn->t.sock.fd, (struct sockaddr *)&conn->addr.to, sizeof(conn->addr.to), obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1) return; conn->flags |= CO_FL_ADDR_TO_SET; } /* Attaches a connection to an owner and assigns a data layer */ static inline void conn_attach(struct connection *conn, void *owner, const struct data_cb *data) { conn->data = data; conn->owner = owner; } /* returns a human-readable error code for conn->err_code, or NULL if the code * is unknown. */ static inline const char *conn_err_code_str(struct connection *c) { switch (c->err_code) { case CO_ER_NONE: return "Success"; case CO_ER_CONF_FDLIM: return "Reached configured maxconn value"; case CO_ER_PROC_FDLIM: return "Too many sockets on the process"; case CO_ER_SYS_FDLIM: return "Too many sockets on the system"; case CO_ER_SYS_MEMLIM: return "Out of system buffers"; case CO_ER_NOPROTO: return "Protocol or address family not supported"; case CO_ER_SOCK_ERR: return "General socket error"; case CO_ER_PORT_RANGE: return "Source port range exhausted"; case CO_ER_CANT_BIND: return "Can't bind to source address"; case CO_ER_FREE_PORTS: return "Out of local source ports on the system"; case CO_ER_ADDR_INUSE: return "Local source address already in use"; case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header"; case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header"; case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header"; case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received"; case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header"; case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header"; case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header"; case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header"; case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header"; case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received"; case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number"; case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header"; case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake"; case CO_ER_SSL_ABORT: return "Connection error during SSL handshake"; case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake"; case CO_ER_SSL_TOO_MANY: return "Too many SSL connections"; case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection"; case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegociation attempt"; case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified"; case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted"; case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure"; case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat"; case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)"; case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)"; } return NULL; } #endif /* _PROTO_CONNECTION_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */