/* * UNIX SOCK_STREAM protocol layer (uxst) * * Copyright 2000-2008 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef MAXPATHLEN #define MAXPATHLEN 128 #endif static int uxst_bind_listeners(struct protocol *proto); static int uxst_unbind_listeners(struct protocol *proto); /* Note: must not be declared as its list will be overwritten */ static struct protocol proto_unix = { .name = "unix_stream", .sock_domain = PF_UNIX, .sock_type = SOCK_STREAM, .sock_prot = 0, .sock_family = AF_UNIX, .sock_addrlen = sizeof(struct sockaddr_un), .l3_addrlen = sizeof(((struct sockaddr_un*)0)->sun_path),/* path len */ .read = &stream_sock_read, .write = &stream_sock_write, .bind_all = uxst_bind_listeners, .unbind_all = uxst_unbind_listeners, .enable_all = enable_all_listeners, .disable_all = disable_all_listeners, .listeners = LIST_HEAD_INIT(proto_unix.listeners), .nb_listeners = 0, }; const char unix_sock_usage_msg[] = "Unknown command. Please enter one of the following commands only :\n" " show info : report information about the running process\n" " show stat : report counters for each proxy and server\n" " show errors : report last request and response errors for each proxy\n" " show sess : report the list of current sessions\n" "\n"; const struct chunk unix_sock_usage = { .str = (char *)&unix_sock_usage_msg, .len = sizeof(unix_sock_usage_msg)-1 }; /******************************** * 1) low-level socket functions ********************************/ /* This function creates a named PF_UNIX stream socket at address . Note * that the path cannot be NULL nor empty. and different of -1 will * be used to change the socket owner. If is not 0, it will be used to * restrict access to the socket. While it is known not to be portable on every * OS, it's still useful where it works. * It returns the assigned file descriptor, or -1 in the event of an error. */ static int create_uxst_socket(const char *path, uid_t uid, gid_t gid, mode_t mode) { char tempname[MAXPATHLEN]; char backname[MAXPATHLEN]; struct sockaddr_un addr; int ret, sock; /* 1. create socket names */ if (!path[0]) { Alert("Invalid name for a UNIX socket. Aborting.\n"); goto err_return; } ret = snprintf(tempname, MAXPATHLEN, "%s.%d.tmp", path, pid); if (ret < 0 || ret >= MAXPATHLEN) { Alert("name too long for UNIX socket. Aborting.\n"); goto err_return; } ret = snprintf(backname, MAXPATHLEN, "%s.%d.bak", path, pid); if (ret < 0 || ret >= MAXPATHLEN) { Alert("name too long for UNIX socket. Aborting.\n"); goto err_return; } /* 2. clean existing orphaned entries */ if (unlink(tempname) < 0 && errno != ENOENT) { Alert("error when trying to unlink previous UNIX socket. Aborting.\n"); goto err_return; } if (unlink(backname) < 0 && errno != ENOENT) { Alert("error when trying to unlink previous UNIX socket. Aborting.\n"); goto err_return; } /* 3. backup existing socket */ if (link(path, backname) < 0 && errno != ENOENT) { Alert("error when trying to preserve previous UNIX socket. Aborting.\n"); goto err_return; } /* 4. prepare new socket */ addr.sun_family = AF_UNIX; strncpy(addr.sun_path, tempname, sizeof(addr.sun_path)); addr.sun_path[sizeof(addr.sun_path) - 1] = 0; sock = socket(PF_UNIX, SOCK_STREAM, 0); if (sock < 0) { Alert("cannot create socket for UNIX listener. Aborting.\n"); goto err_unlink_back; } if (sock >= global.maxsock) { Alert("socket(): not enough free sockets for UNIX listener. Raise -n argument. Aborting.\n"); goto err_unlink_temp; } if (fcntl(sock, F_SETFL, O_NONBLOCK) == -1) { Alert("cannot make UNIX socket non-blocking. Aborting.\n"); goto err_unlink_temp; } if (bind(sock, (struct sockaddr *)&addr, sizeof(addr)) < 0) { /* note that bind() creates the socket on the file system */ Alert("cannot bind socket for UNIX listener. Aborting.\n"); goto err_unlink_temp; } if (((uid != -1 || gid != -1) && (chown(tempname, uid, gid) == -1)) || (mode != 0 && chmod(tempname, mode) == -1)) { Alert("cannot change UNIX socket ownership. Aborting.\n"); goto err_unlink_temp; } if (listen(sock, 0) < 0) { Alert("cannot listen to socket for UNIX listener. Aborting.\n"); goto err_unlink_temp; } /* 5. install. * Point of no return: we are ready, we'll switch the sockets. We don't * fear loosing the socket because we have a copy of it in * backname. */ if (rename(tempname, path) < 0) { Alert("cannot switch final and temporary sockets for UNIX listener. Aborting.\n"); goto err_rename; } /* 6. cleanup */ unlink(backname); /* no need to keep this one either */ return sock; err_rename: ret = rename(backname, path); if (ret < 0 && errno == ENOENT) unlink(path); err_unlink_temp: unlink(tempname); close(sock); err_unlink_back: unlink(backname); err_return: return -1; } /* Tries to destroy the UNIX stream socket . The socket must not be used * anymore. It practises best effort, and no error is returned. */ static void destroy_uxst_socket(const char *path) { struct sockaddr_un addr; int sock, ret; /* We might have been chrooted, so we may not be able to access the * socket. In order to avoid bothering the other end, we connect with a * wrong protocol, namely SOCK_DGRAM. The return code from connect() * is enough to know if the socket is still live or not. If it's live * in mode SOCK_STREAM, we get EPROTOTYPE or anything else but not * ECONNREFUSED. In this case, we do not touch it because it's used * by some other process. */ sock = socket(PF_UNIX, SOCK_DGRAM, 0); if (sock < 0) return; addr.sun_family = AF_UNIX; strncpy(addr.sun_path, path, sizeof(addr.sun_path)); addr.sun_path[sizeof(addr.sun_path) - 1] = 0; ret = connect(sock, (struct sockaddr *)&addr, sizeof(addr)); if (ret < 0 && errno == ECONNREFUSED) { /* Connect failed: the socket still exists but is not used * anymore. Let's remove this socket now. */ unlink(path); } close(sock); } /******************************** * 2) listener-oriented functions ********************************/ /* This function creates the UNIX socket associated to the listener. It changes * the state from ASSIGNED to LISTEN. The socket is NOT enabled for polling. * The return value is composed from ERR_NONE, ERR_RETRYABLE and ERR_FATAL. */ static int uxst_bind_listener(struct listener *listener) { int fd; if (listener->state != LI_ASSIGNED) return ERR_NONE; /* already bound */ fd = create_uxst_socket(((struct sockaddr_un *)&listener->addr)->sun_path, listener->perm.ux.uid, listener->perm.ux.gid, listener->perm.ux.mode); if (fd == -1) return ERR_FATAL; /* the socket is now listening */ listener->fd = fd; listener->state = LI_LISTEN; /* the function for the accept() event */ fd_insert(fd); fdtab[fd].cb[DIR_RD].f = listener->accept; fdtab[fd].cb[DIR_WR].f = NULL; /* never called */ fdtab[fd].cb[DIR_RD].b = fdtab[fd].cb[DIR_WR].b = NULL; fdtab[fd].owner = listener; /* reference the listener instead of a task */ fdtab[fd].state = FD_STLISTEN; fdtab[fd].peeraddr = NULL; fdtab[fd].peerlen = 0; return ERR_NONE; } /* This function closes the UNIX sockets for the specified listener. * The listener enters the LI_ASSIGNED state. It always returns ERR_NONE. */ static int uxst_unbind_listener(struct listener *listener) { if (listener->state == LI_READY) EV_FD_CLR(listener->fd, DIR_RD); if (listener->state >= LI_LISTEN) { fd_delete(listener->fd); listener->state = LI_ASSIGNED; destroy_uxst_socket(((struct sockaddr_un *)&listener->addr)->sun_path); } return ERR_NONE; } /* Add a listener to the list of unix stream listeners. The listener's state * is automatically updated from LI_INIT to LI_ASSIGNED. The number of * listeners is updated. This is the function to use to add a new listener. */ void uxst_add_listener(struct listener *listener) { if (listener->state != LI_INIT) return; listener->state = LI_ASSIGNED; listener->proto = &proto_unix; LIST_ADDQ(&proto_unix.listeners, &listener->proto_list); proto_unix.nb_listeners++; } /******************************** * 3) protocol-oriented functions ********************************/ /* This function creates all UNIX sockets bound to the protocol entry . * It is intended to be used as the protocol's bind_all() function. * The sockets will be registered but not added to any fd_set, in order not to * loose them across the fork(). A call to uxst_enable_listeners() is needed * to complete initialization. * * The return value is composed from ERR_NONE, ERR_RETRYABLE and ERR_FATAL. */ static int uxst_bind_listeners(struct protocol *proto) { struct listener *listener; int err = ERR_NONE; list_for_each_entry(listener, &proto->listeners, proto_list) { err |= uxst_bind_listener(listener); if (err != ERR_NONE) continue; } return err; } /* This function stops all listening UNIX sockets bound to the protocol * . It does not detaches them from the protocol. * It always returns ERR_NONE. */ static int uxst_unbind_listeners(struct protocol *proto) { struct listener *listener; list_for_each_entry(listener, &proto->listeners, proto_list) uxst_unbind_listener(listener); return ERR_NONE; } /******************************** * 4) high-level functions ********************************/ /* * This function is called on a read event from a listen socket, corresponding * to an accept. It tries to accept as many connections as possible. * It returns 0. Since we use UNIX sockets on the local system for monitoring * purposes and other related things, we do not need to output as many messages * as with TCP which can fall under attack. */ int uxst_event_accept(int fd) { struct listener *l = fdtab[fd].owner; struct session *s; struct task *t; int cfd; int max_accept; if (global.nbproc > 1) max_accept = 8; /* let other processes catch some connections too */ else max_accept = -1; while (max_accept--) { struct sockaddr_storage addr; socklen_t laddr = sizeof(addr); if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) == -1) { switch (errno) { case EAGAIN: case EINTR: case ECONNABORTED: return 0; /* nothing more to accept */ case ENFILE: /* Process reached system FD limit. Check system tunables. */ return 0; case EMFILE: /* Process reached process FD limit. Check 'ulimit-n'. */ return 0; case ENOBUFS: case ENOMEM: /* Process reached system memory limit. Check system tunables. */ return 0; default: return 0; } } if (l->nbconn >= l->maxconn || actconn >= global.maxconn) { /* too many connections, we shoot this one and return. * FIXME: it would be better to simply switch the listener's * state to LI_FULL and disable the FD. We could re-enable * it upon fd_delete(), but this requires all protocols to * be switched. */ goto out_close; } if ((s = pool_alloc2(pool2_session)) == NULL) { Alert("out of memory in uxst_event_accept().\n"); goto out_close; } LIST_ADDQ(&sessions, &s->list); LIST_INIT(&s->back_refs); s->flags = 0; s->term_trace = 0; if ((t = task_new()) == NULL) { Alert("out of memory in uxst_event_accept().\n"); goto out_free_session; } s->cli_addr = addr; /* FIXME: should be checked earlier */ if (cfd >= global.maxsock) { Alert("accept(): not enough free sockets. Raise -n argument. Giving up.\n"); goto out_free_task; } if (fcntl(cfd, F_SETFL, O_NONBLOCK) == -1) { Alert("accept(): cannot set the socket in non blocking mode. Giving up\n"); goto out_free_task; } t->process = l->handler; t->context = s; t->nice = -64; /* we want to boost priority for local stats */ s->task = t; s->listener = l; s->fe = NULL; s->be = NULL; s->ana_state = 0; s->req = s->rep = NULL; /* will be allocated later */ s->si[0].state = s->si[0].prev_state = SI_ST_EST; s->si[0].err_type = SI_ET_NONE; s->si[0].err_loc = NULL; s->si[0].owner = t; s->si[0].connect = NULL; s->si[0].shutr = stream_sock_shutr; s->si[0].shutw = stream_sock_shutw; s->si[0].chk_rcv = stream_sock_chk_rcv; s->si[0].chk_snd = stream_sock_chk_snd; s->si[0].fd = cfd; s->si[0].flags = SI_FL_NONE; s->si[0].exp = TICK_ETERNITY; s->si[1].state = s->si[1].prev_state = SI_ST_INI; s->si[1].err_type = SI_ET_NONE; s->si[1].err_loc = NULL; s->si[1].owner = t; s->si[1].connect = NULL; s->si[1].shutr = stream_sock_shutr; s->si[1].shutw = stream_sock_shutw; s->si[1].chk_rcv = stream_sock_chk_rcv; s->si[1].chk_snd = stream_sock_chk_snd; s->si[1].exp = TICK_ETERNITY; s->si[1].fd = -1; /* just to help with debugging */ s->si[1].flags = SI_FL_NONE; s->srv = s->prev_srv = s->srv_conn = NULL; s->pend_pos = NULL; memset(&s->logs, 0, sizeof(s->logs)); memset(&s->txn, 0, sizeof(s->txn)); s->logs.tv_accept = now; /* corrected date for internal use */ s->data_state = DATA_ST_INIT; s->data_source = DATA_SRC_NONE; s->uniq_id = totalconn; if ((s->req = pool_alloc2(pool2_buffer)) == NULL) goto out_free_task; buffer_init(s->req); s->req->prod = &s->si[0]; s->req->cons = &s->si[1]; s->si[0].ib = s->si[1].ob = s->req; s->req->flags |= BF_READ_ATTACHED; /* the producer is already connected */ s->req->flags |= BF_READ_DONTWAIT; /* we plan to read small requests */ s->req->analysers = l->analysers; s->req->wto = TICK_ETERNITY; s->req->cto = TICK_ETERNITY; s->req->rto = TICK_ETERNITY; if ((s->rep = pool_alloc2(pool2_buffer)) == NULL) goto out_free_req; buffer_init(s->rep); s->rep->prod = &s->si[1]; s->rep->cons = &s->si[0]; s->si[0].ob = s->si[1].ib = s->rep; s->rep->rto = TICK_ETERNITY; s->rep->cto = TICK_ETERNITY; s->rep->wto = TICK_ETERNITY; s->req->rex = TICK_ETERNITY; s->req->wex = TICK_ETERNITY; s->req->analyse_exp = TICK_ETERNITY; s->rep->rex = TICK_ETERNITY; s->rep->wex = TICK_ETERNITY; s->rep->analyse_exp = TICK_ETERNITY; t->expire = TICK_ETERNITY; if (l->timeout) { s->req->rto = *l->timeout; s->rep->wto = *l->timeout; } fd_insert(cfd); fdtab[cfd].owner = &s->si[0]; fdtab[cfd].state = FD_STREADY; fdtab[cfd].cb[DIR_RD].f = l->proto->read; fdtab[cfd].cb[DIR_RD].b = s->req; fdtab[cfd].cb[DIR_WR].f = l->proto->write; fdtab[cfd].cb[DIR_WR].b = s->rep; fdtab[cfd].peeraddr = (struct sockaddr *)&s->cli_addr; fdtab[cfd].peerlen = sizeof(s->cli_addr); EV_FD_SET(cfd, DIR_RD); task_wakeup(t, TASK_WOKEN_INIT); l->nbconn++; /* warning! right now, it's up to the handler to decrease this */ if (l->nbconn >= l->maxconn) { EV_FD_CLR(l->fd, DIR_RD); l->state = LI_FULL; } actconn++; totalconn++; } return 0; out_free_req: pool_free2(pool2_buffer, s->req); out_free_task: task_free(t); out_free_session: LIST_DEL(&s->list); pool_free2(pool2_session, s); out_close: close(cfd); return 0; } /* Parses the request line in and possibly starts dumping stats on * s->rep with the hijack bit set. Returns 1 if OK, 0 in case of any error. * The line is modified after parsing. */ int unix_sock_parse_request(struct session *s, char *line) { char *args[MAX_UXST_ARGS + 1]; int arg; while (isspace((unsigned char)*line)) line++; arg = 0; args[arg] = line; while (*line && arg < MAX_UXST_ARGS) { if (isspace((unsigned char)*line)) { *line++ = '\0'; while (isspace((unsigned char)*line)) line++; args[++arg] = line; continue; } line++; } while (++arg <= MAX_UXST_ARGS) args[arg] = line; if (strcmp(args[0], "show") == 0) { if (strcmp(args[1], "stat") == 0) { if (*args[2] && *args[3] && *args[4]) { s->data_ctx.stats.flags |= STAT_BOUND; s->data_ctx.stats.iid = atoi(args[2]); s->data_ctx.stats.type = atoi(args[3]); s->data_ctx.stats.sid = atoi(args[4]); } s->data_ctx.stats.flags |= STAT_SHOW_STAT; s->data_ctx.stats.flags |= STAT_FMT_CSV; s->ana_state = STATS_ST_REP; buffer_install_hijacker(s, s->rep, stats_dump_raw_to_buffer); } else if (strcmp(args[1], "info") == 0) { s->data_ctx.stats.flags |= STAT_SHOW_INFO; s->data_ctx.stats.flags |= STAT_FMT_CSV; s->ana_state = STATS_ST_REP; buffer_install_hijacker(s, s->rep, stats_dump_raw_to_buffer); } else if (strcmp(args[1], "sess") == 0) { s->ana_state = STATS_ST_REP; buffer_install_hijacker(s, s->rep, stats_dump_sess_to_buffer); } else if (strcmp(args[1], "errors") == 0) { if (*args[2]) s->data_ctx.errors.iid = atoi(args[2]); else s->data_ctx.errors.iid = -1; s->data_ctx.errors.px = NULL; s->ana_state = STATS_ST_REP; buffer_install_hijacker(s, s->rep, stats_dump_errors_to_buffer); } else { /* neither "stat" nor "info" nor "sess" */ return 0; } } else { /* not "show" */ return 0; } return 1; } /* Processes the stats interpreter on the statistics socket. * In order to ease the transition, we simply simulate the server status * for now. It only knows states STATS_ST_INIT, STATS_ST_REQ, STATS_ST_REP, and * STATS_ST_CLOSE. It removes the AN_REQ_UNIX_STATS bit from req->analysers * once done. It always returns 0. */ int uxst_req_analyser_stats(struct session *s, struct buffer *req, int an_bit) { char *line, *p; switch (s->ana_state) { case STATS_ST_INIT: /* Stats output not initialized yet */ memset(&s->data_ctx.stats, 0, sizeof(s->data_ctx.stats)); s->data_source = DATA_SRC_STATS; s->ana_state = STATS_ST_REQ; buffer_write_dis(s->req); buffer_shutw_now(s->req); /* fall through */ case STATS_ST_REQ: /* Now, stats are initialized, hijack is not set, and * we are waiting for a complete request line. */ line = s->req->data; p = memchr(line, '\n', s->req->l); if (p) { *p = '\0'; if (!unix_sock_parse_request(s, line)) { /* invalid request */ stream_int_retnclose(s->req->prod, &unix_sock_usage); s->ana_state = 0; req->analysers = 0; return 0; } } /* processing a valid or incomplete request */ if ((req->flags & BF_FULL) || /* invalid request */ (req->flags & BF_READ_ERROR) || /* input error */ (req->flags & BF_READ_TIMEOUT) || /* read timeout */ tick_is_expired(req->analyse_exp, now_ms) || /* request timeout */ (req->flags & BF_SHUTR)) { /* input closed */ buffer_shutw_now(s->rep); s->ana_state = 0; req->analysers = 0; return 0; } /* don't forward nor abort */ req->flags |= BF_READ_DONTWAIT; /* we plan to read small requests */ return 0; case STATS_ST_REP: /* do nothing while response is being processed */ return 0; case STATS_ST_CLOSE: /* end of dump */ s->req->analysers &= ~an_bit; s->ana_state = 0; break; } return 0; } /* This function is the unix-stream equivalent of the global process_session(). * It is currently limited to unix-stream processing on control sockets such as * stats, and has no server-side. The two functions should be merged into one * once client and server sides are better delimited. Note that the server-side * still exists but remains in SI_ST_INI state forever, so that any call is a * NOP. */ struct task *uxst_process_session(struct task *t) { struct session *s = t->context; int resync; unsigned int rqf_last, rpf_last; /* 1a: Check for low level timeouts if needed. We just set a flag on * stream interfaces when their timeouts have expired. */ if (unlikely(t->state & TASK_WOKEN_TIMER)) { stream_int_check_timeouts(&s->si[0]); buffer_check_timeouts(s->req); buffer_check_timeouts(s->rep); } s->req->flags &= ~BF_READ_NOEXP; /* copy req/rep flags so that we can detect shutdowns */ rqf_last = s->req->flags; rpf_last = s->rep->flags; /* 1b: check for low-level errors reported at the stream interface. */ if (unlikely(s->si[0].flags & SI_FL_ERR)) { if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) { s->si[0].shutr(&s->si[0]); s->si[0].shutw(&s->si[0]); stream_int_report_error(&s->si[0]); } } /* check buffer timeouts, and close the corresponding stream interfaces * for future reads or writes. Note: this will also concern upper layers * but we do not touch any other flag. We must be careful and correctly * detect state changes when calling them. */ if (unlikely(s->req->flags & (BF_READ_TIMEOUT|BF_WRITE_TIMEOUT))) { if (s->req->flags & BF_READ_TIMEOUT) s->req->prod->shutr(s->req->prod); if (s->req->flags & BF_WRITE_TIMEOUT) s->req->cons->shutw(s->req->cons); } if (unlikely(s->rep->flags & (BF_READ_TIMEOUT|BF_WRITE_TIMEOUT))) { if (s->rep->flags & BF_READ_TIMEOUT) s->rep->prod->shutr(s->rep->prod); if (s->rep->flags & BF_WRITE_TIMEOUT) s->rep->cons->shutw(s->rep->cons); } /* Check for connection closure */ resync_stream_interface: /* nothing special to be done on client side */ if (unlikely(s->req->prod->state == SI_ST_DIS)) s->req->prod->state = SI_ST_CLO; /* * Note: of the transient states (REQ, CER, DIS), only REQ may remain * at this point. */ resync_request: /**** Process layer 7 below ****/ resync = 0; /* Analyse request */ if ((s->req->flags & BF_MASK_ANALYSER) || (s->req->flags ^ rqf_last) & BF_MASK_STATIC) { unsigned int flags = s->req->flags; if (s->req->prod->state >= SI_ST_EST) { /* it's up to the analysers to reset write_ena */ buffer_write_ena(s->req); /* We will call all analysers for which a bit is set in * s->req->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. This while() loop is in * fact a cleaner if(). */ while (s->req->analysers) { if (s->req->analysers & AN_REQ_UNIX_STATS) if (!uxst_req_analyser_stats(s, s->req, AN_REQ_UNIX_STATS)) break; /* Just make sure that nobody set a wrong flag causing an endless loop */ s->req->analysers &= AN_REQ_UNIX_STATS; /* we don't want to loop anyway */ break; } } s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; if ((s->req->flags ^ flags) & BF_MASK_STATIC) resync = 1; } /* if noone is interested in analysing data, let's forward everything */ if (!s->req->analysers && !(s->req->flags & BF_HIJACK)) s->req->send_max = s->req->l; /* If noone is interested in analysing data, it's time to forward * everything. We will wake up from time to time when either send_max * or to_forward are reached. */ if (!s->req->analysers && !(s->req->flags & (BF_HIJACK|BF_SHUTW)) && (s->req->prod->state >= SI_ST_EST)) { /* This buffer is freewheeling, there's no analyser nor hijacker * attached to it. If any data are left in, we'll permit them to * move. */ buffer_flush(s->req); /* If the producer is still connected, we'll schedule large blocks * of data to be forwarded from the producer to the consumer (which * might possibly not be connected yet). */ if (!(s->req->flags & BF_SHUTR) && s->req->to_forward < FORWARD_DEFAULT_SIZE) buffer_forward(s->req, FORWARD_DEFAULT_SIZE); } /* reflect what the L7 analysers have seen last */ rqf_last = s->req->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* first, let's check if the request buffer needs to shutdown(write) */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_EMPTY|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) == (BF_EMPTY|BF_WRITE_ENA|BF_SHUTR))) buffer_shutw_now(s->req); /* shutdown(write) pending */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW)) == BF_SHUTW_NOW)) s->req->cons->shutw(s->req->cons); /* shutdown(write) done on server side, we must stop the client too */ if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW && !s->req->analysers)) buffer_shutr_now(s->req); /* shutdown(read) pending */ if (unlikely((s->req->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) s->req->prod->shutr(s->req->prod); /* * Here we want to check if we need to resync or not. */ if ((s->req->flags ^ rqf_last) & BF_MASK_STATIC) resync = 1; s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; /* according to benchmarks, it makes sense to resync now */ if (s->req->prod->state == SI_ST_DIS) goto resync_stream_interface; if (resync) goto resync_request; resync_response: resync = 0; /* Analyse response */ if (unlikely(s->rep->flags & BF_HIJACK)) { /* In inject mode, we wake up everytime something has * happened on the write side of the buffer. */ unsigned int flags = s->rep->flags; if ((s->rep->flags & (BF_WRITE_PARTIAL|BF_WRITE_ERROR|BF_SHUTW)) && !(s->rep->flags & BF_FULL)) { s->rep->hijacker(s, s->rep); } s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; if ((s->rep->flags ^ flags) & BF_MASK_STATIC) resync = 1; } else if ((s->rep->flags & BF_MASK_ANALYSER) || (s->rep->flags ^ rpf_last) & BF_MASK_STATIC) { unsigned int flags = s->rep->flags; if (s->rep->prod->state >= SI_ST_EST) { /* it's up to the analysers to reset write_ena */ buffer_write_ena(s->rep); } s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; if ((s->rep->flags ^ flags) & BF_MASK_STATIC) resync = 1; } /* If noone is interested in analysing data, it's time to forward * everything. We will wake up from time to time when either send_max * or to_forward are reached. */ if (!s->rep->analysers && !(s->rep->flags & (BF_HIJACK|BF_SHUTW)) && (s->rep->prod->state >= SI_ST_EST)) { /* This buffer is freewheeling, there's no analyser nor hijacker * attached to it. If any data are left in, we'll permit them to * move. */ buffer_flush(s->rep); /* If the producer is still connected, we'll schedule large blocks * of data to be forwarded from the producer to the consumer (which * might possibly not be connected yet). */ if (!(s->rep->flags & BF_SHUTR) && s->rep->to_forward < FORWARD_DEFAULT_SIZE) buffer_forward(s->rep, FORWARD_DEFAULT_SIZE); } /* reflect what the L7 analysers have seen last */ rpf_last = s->rep->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* * FIXME: this is probably where we should produce error responses. */ /* first, let's check if the request buffer needs to shutdown(write) */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_EMPTY|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) == (BF_EMPTY|BF_WRITE_ENA|BF_SHUTR))) buffer_shutw_now(s->rep); /* shutdown(write) pending */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW)) == BF_SHUTW_NOW)) s->rep->cons->shutw(s->rep->cons); /* shutdown(write) done on the client side, we must stop the server too */ if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW)) buffer_shutr_now(s->rep); /* shutdown(read) pending */ if (unlikely((s->rep->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW)) s->rep->prod->shutr(s->rep->prod); /* * Here we want to check if we need to resync or not. */ if ((s->rep->flags ^ rpf_last) & BF_MASK_STATIC) resync = 1; s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; if (s->req->prod->state == SI_ST_DIS) goto resync_stream_interface; if (s->req->flags != rqf_last) goto resync_request; if (resync) goto resync_response; if (likely(s->rep->cons->state != SI_ST_CLO)) { if (s->rep->cons->state == SI_ST_EST) stream_sock_data_finish(s->rep->cons); s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE & BF_CLEAR_TIMEOUT; s->si[0].prev_state = s->si[0].state; s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP); /* Trick: if a request is being waiting for the server to respond, * and if we know the server can timeout, we don't want the timeout * to expire on the client side first, but we're still interested * in passing data from the client to the server (eg: POST). Thus, * we can cancel the client's request timeout if the server's * request timeout is set and the server has not yet sent a response. */ if ((s->rep->flags & (BF_WRITE_ENA|BF_SHUTR)) == 0 && (tick_isset(s->req->wex) || tick_isset(s->rep->rex))) { s->req->flags |= BF_READ_NOEXP; s->req->rex = TICK_ETERNITY; } t->expire = tick_first(tick_first(s->req->rex, s->req->wex), tick_first(s->rep->rex, s->rep->wex)); if (s->req->analysers) t->expire = tick_first(t->expire, s->req->analyse_exp); if (s->si[0].exp) t->expire = tick_first(t->expire, s->si[0].exp); return t; } actconn--; if (s->listener) { s->listener->nbconn--; if (s->listener->state == LI_FULL && s->listener->nbconn < s->listener->maxconn) { /* we should reactivate the listener */ EV_FD_SET(s->listener->fd, DIR_RD); s->listener->state = LI_READY; } } /* the task MUST not be in the run queue anymore */ session_free(s); task_delete(t); task_free(t); return NULL; } __attribute__((constructor)) static void __uxst_protocol_init(void) { protocol_register(&proto_unix); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */