/* * HTTP protocol analyzer * * Copyright 2000-2011 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This function handles a server error at the stream interface level. The * stream interface is assumed to be already in a closed state. An optional * message is copied into the input buffer. * The error flags are set to the values in arguments. Any pending request * in this buffer will be lost. */ static void http_server_error(struct stream *s, struct stream_interface *si, int err, int finst, const struct buffer *msg) { if (IS_HTX_STRM(s)) return htx_server_error(s, si, err, finst, msg); FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg)); channel_auto_read(si_oc(si)); channel_abort(si_oc(si)); channel_auto_close(si_oc(si)); channel_erase(si_oc(si)); channel_auto_close(si_ic(si)); channel_auto_read(si_ic(si)); if (msg) co_inject(si_ic(si), msg->area, msg->data); if (!(s->flags & SF_ERR_MASK)) s->flags |= err; if (!(s->flags & SF_FINST_MASK)) s->flags |= finst; } /* This function returns the appropriate error location for the given stream * and message. */ struct buffer *http_error_message(struct stream *s) { const int msgnum = http_get_status_idx(s->txn->status); if (IS_HTX_STRM(s)) return htx_error_message(s); if (s->be->errmsg[msgnum].area) return &s->be->errmsg[msgnum]; else if (strm_fe(s)->errmsg[msgnum].area) return &strm_fe(s)->errmsg[msgnum]; else return &http_err_chunks[msgnum]; } void http_reply_and_close(struct stream *s, short status, struct buffer *msg) { if (IS_HTX_STRM(s)) return htx_reply_and_close(s, status, msg); s->txn->flags &= ~TX_WAIT_NEXT_RQ; FLT_STRM_CB(s, flt_http_reply(s, status, msg)); si_retnclose(&s->si[0], msg); } /* Parse the URI from the given transaction (which is assumed to be in request * phase) and look for the "/" beginning the PATH. If not found, return NULL. * It is returned otherwise. */ char *http_txn_get_path(const struct http_txn *txn) { struct ist ret; if (!txn->req.chn->buf.size) return NULL; ret = http_get_path(ist2(ci_head(txn->req.chn) + txn->req.sl.rq.u, txn->req.sl.rq.u_l)); return ret.ptr; } /* Returns a 302 for a redirectable request that reaches a server working in * in redirect mode. This may only be called just after the stream interface * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will * follow normal proxy processing. NOTE: this function is designed to support * being called once data are scheduled for forwarding. */ void http_perform_server_redirect(struct stream *s, struct stream_interface *si) { struct http_txn *txn; struct server *srv; char *path; int len, rewind; if (IS_HTX_STRM(s)) return htx_perform_server_redirect(s, si); /* 1: create the response header */ trash.data = strlen(HTTP_302); memcpy(trash.area, HTTP_302, trash.data); srv = __objt_server(s->target); /* 2: add the server's prefix */ if (trash.data + srv->rdr_len > trash.size) return; /* special prefix "/" means don't change URL */ if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') { memcpy(trash.area + trash.data, srv->rdr_pfx, srv->rdr_len); trash.data += srv->rdr_len; } /* 3: add the request URI. Since it was already forwarded, we need * to temporarily rewind the buffer. */ txn = s->txn; c_rew(&s->req, rewind = http_hdr_rewind(&txn->req)); path = http_txn_get_path(txn); len = b_dist(&s->req.buf, path, c_ptr(&s->req, txn->req.sl.rq.u + txn->req.sl.rq.u_l)); c_adv(&s->req, rewind); if (!path) return; if (trash.data + len > trash.size - 4) /* 4 for CRLF-CRLF */ return; memcpy(trash.area + trash.data, path, len); trash.data += len; if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.area + trash.data, "\r\nProxy-Connection: close\r\n\r\n", 29); trash.data += 29; } else { memcpy(trash.area + trash.data, "\r\nConnection: close\r\n\r\n", 23); trash.data += 23; } /* prepare to return without error. */ si_shutr(si); si_shutw(si); si->err_type = SI_ET_NONE; si->state = SI_ST_CLO; /* send the message */ txn->status = 302; http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, &trash); /* FIXME: we should increase a counter of redirects per server and per backend. */ srv_inc_sess_ctr(srv); srv_set_sess_last(srv); } /* Return the error message corresponding to si->err_type. It is assumed * that the server side is closed. Note that err_type is actually a * bitmask, where almost only aborts may be cumulated with other * values. We consider that aborted operations are more important * than timeouts or errors due to the fact that nobody else in the * logs might explain incomplete retries. All others should avoid * being cumulated. It should normally not be possible to have multiple * aborts at once, but just in case, the first one in sequence is reported. * Note that connection errors appearing on the second request of a keep-alive * connection are not reported since this allows the client to retry. */ void http_return_srv_error(struct stream *s, struct stream_interface *si) { int err_type = si->err_type; /* set s->txn->status for http_error_message(s) */ s->txn->status = 503; if (err_type & SI_ET_QUEUE_ABRT) http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q, http_error_message(s)); else if (err_type & SI_ET_CONN_ABRT) http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s)); else if (err_type & SI_ET_QUEUE_TO) http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q, http_error_message(s)); else if (err_type & SI_ET_QUEUE_ERR) http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q, http_error_message(s)); else if (err_type & SI_ET_CONN_TO) http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s)); else if (err_type & SI_ET_CONN_ERR) http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C, (s->flags & SF_SRV_REUSED) ? NULL : http_error_message(s)); else if (err_type & SI_ET_CONN_RES) http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s)); else { /* SI_ET_CONN_OTHER and others */ s->txn->status = 500; http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C, http_error_message(s)); } } extern const char sess_term_cond[8]; extern const char sess_fin_state[8]; extern const char *monthname[12]; DECLARE_POOL(pool_head_http_txn, "http_txn", sizeof(struct http_txn)); DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN); struct pool_head *pool_head_requri = NULL; struct pool_head *pool_head_capture = NULL; /* * Capture headers from message starting at according to header list * , and fill the pointers appropriately. */ void http_capture_headers(char *som, struct hdr_idx *idx, char **cap, struct cap_hdr *cap_hdr) { char *eol, *sol, *col, *sov; int cur_idx; struct cap_hdr *h; int len; sol = som + hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; col = sol; while (col < eol && *col != ':') col++; sov = col + 1; while (sov < eol && HTTP_IS_LWS(*sov)) sov++; for (h = cap_hdr; h; h = h->next) { if (h->namelen && (h->namelen == col - sol) && (strncasecmp(sol, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc(h->pool); if (cap[h->index] == NULL) { ha_alert("HTTP capture : out of memory.\n"); continue; } len = eol - sov; if (len > h->len) len = h->len; memcpy(cap[h->index], sov, len); cap[h->index][len]=0; } } sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } } /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the * conversion succeeded, 0 in case of error. If the request was already 1.X, * nothing is done and 1 is returned. */ int http_upgrade_v09_to_v10(struct http_txn *txn) { int delta; char *cur_end; struct http_msg *msg = &txn->req; if (msg->sl.rq.v_l != 0) return 1; /* RFC 1945 allows only GET for HTTP/0.9 requests */ if (txn->meth != HTTP_METH_GET) return 0; cur_end = ci_head(msg->chn) + msg->sl.rq.l; if (msg->sl.rq.u_l == 0) { /* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */ return 0; } /* add HTTP version */ delta = b_rep_blk(&msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11); http_msg_move_end(msg, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(msg, HTTP_MSG_RQMETH, ci_head(msg->chn), cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return 0; /* we have a full HTTP/1.0 request now and we know that * we have either a CR or an LF at . */ hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); return 1; } /* Parse the Connection: header of an HTTP request, looking for both "close" * and "keep-alive" values. If we already know that some headers may safely * be removed, we remove them now. The flags are used for that : * - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses) * - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1). * Presence of the "Upgrade" token is also checked and reported. * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was * found, and TX_CON_*_SET is adjusted depending on what is left so only * harmless combinations may be removed. Do not call that after changes have * been processed. */ void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; if (txn->flags & TX_HDR_CONN_PRS) return; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } ctx.idx = 0; txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET); while (http_find_header2(hdr_val, hdr_len, ci_head(msg->chn), &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { txn->flags |= TX_HDR_CONN_KAL; if (to_del & 2) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_KAL_SET; } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { txn->flags |= TX_HDR_CONN_CLO; if (to_del & 1) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_CLO_SET; } else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) { txn->flags |= TX_HDR_CONN_UPG; } } txn->flags |= TX_HDR_CONN_PRS; return; } /* Apply desired changes on the Connection: header. Values may be removed and/or * added depending on the flags, which are exclusively composed of * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left. */ void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; ctx.idx = 0; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET); while (http_find_header2(hdr_val, hdr_len, ci_head(msg->chn), &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { if (wanted & TX_CON_KAL_SET) txn->flags |= TX_CON_KAL_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { if (wanted & TX_CON_CLO_SET) txn->flags |= TX_CON_CLO_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } } if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) return; if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) { txn->flags |= TX_CON_CLO_SET; hdr_val = "Connection: close"; hdr_len = 17; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: close"; hdr_len = 23; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) { txn->flags |= TX_CON_KAL_SET; hdr_val = "Connection: keep-alive"; hdr_len = 22; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: keep-alive"; hdr_len = 28; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } return; } void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg) { struct proxy *fe = strm_fe(s); int tmp = TX_CON_WANT_KAL; if (IS_HTX_STRM(s)) return htx_adjust_conn_mode(s, txn); if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN) tmp = TX_CON_WANT_TUN; if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) tmp = TX_CON_WANT_SCL; if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) tmp = TX_CON_WANT_CLO; if ((txn->flags & TX_CON_WANT_MSK) < tmp) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; if (!(txn->flags & TX_HDR_CONN_PRS) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { /* parse the Connection header and possibly clean it */ int to_del = 0; if ((msg->flags & HTTP_MSGF_VER_11) || ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && !((fe->options2|s->be->options2) & PR_O2_FAKE_KA))) to_del |= 2; /* remove "keep-alive" */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" */ http_parse_connection_header(txn, msg, to_del); } /* check if client or config asks for explicit close in KAL/SCL */ if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) && ((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */ (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */ !(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */ fe->state == PR_STSTOPPED)) /* frontend is stopping */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; } /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_request(struct stream *s, struct channel *req, int an_bit) { /* * We will parse the partial (or complete) lines. * We will check the request syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * ci_head(req) = beginning of request * ci_head(req) + msg->eoh = end of processed headers / start of current one * ci_tail(req) = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte * * At end of parsing, we may perform a capture of the error (if any), and * we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE). * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and * finally headers capture. */ int cur_idx; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; if (IS_HTX_STRM(s)) return htx_wait_for_request(s, req, an_bit); DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; /* If there is data available for analysis, log the end of the idle time. */ if (c_data(req) && s->logs.t_idle == -1) s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake; /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (c_data(req) && msg->msg_state < HTTP_MSG_ERROR) { if (txn->flags & TX_NOT_FIRST) { if (unlikely(!channel_is_rewritable(req))) { if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto failed_keep_alive; /* some data has still not left the buffer, wake us once that's done */ channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ req->flags |= CF_WAKE_WRITE; return 0; } if (unlikely(ci_tail(req) < c_ptr(req, msg->next) || ci_tail(req) > b_wrap(&req->buf) - global.tune.maxrewrite)) channel_slow_realign(req, trash.area); } if (likely(msg->next < ci_data(req))) /* some unparsed data are available */ http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && msg->msg_state >= HTTP_MSG_BODY)) { char *eol, *sol; sol = ci_head(req); /* this is a bit complex : in case of error on the request line, * we know that rq.l is still zero, so we display only the part * up to the end of the line (truncated by debug_hdr). */ eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : ci_data(req)); debug_hdr("clireq", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("clihdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * requests are checked first. When waiting for a second request * on a keep-alive stream, if we encounter and error, close, t/o, * we note the error in the stream flags but don't set any state. * Since the error will be noted there, it will not be counted by * process_stream() as a frontend error. * Last, we may increase some tracked counters' http request errors on * the cases that are deliberately the client's fault. For instance, * a timeout or connection reset is not counted as an error. However * a bad request is. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* * First, let's catch bad requests. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { stream_inc_http_req_ctr(s); stream_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(sess->fe); goto return_bad_req; } /* 1: Since we are in header mode, if there's no space * left for headers, we won't be able to free more * later, so the stream will never terminate. We * must terminate it now. */ if (unlikely(channel_full(req, global.tune.maxrewrite))) { /* FIXME: check if URI is set and return Status * 414 Request URI too long instead. */ stream_inc_http_req_ctr(s); stream_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(sess->fe); if (msg->err_pos < 0) msg->err_pos = ci_data(req); goto return_bad_req; } /* 2: have we encountered a read error ? */ else if (req->flags & CF_READ_ERROR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; /* we cannot return any message on error */ if (msg->err_pos >= 0) { http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); stream_inc_http_err_ctr(s); } txn->status = 400; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, NULL); req->analysers &= AN_REQ_FLT_END; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 3: has the read timeout expired ? */ else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; /* read timeout : give up with an error message. */ if (msg->err_pos >= 0) { http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); stream_inc_http_err_ctr(s); } txn->status = 408; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, http_error_message(s)); req->analysers &= AN_REQ_FLT_END; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 4: have we encountered a close ? */ else if (req->flags & CF_SHUTR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; if (msg->err_pos >= 0) http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); txn->status = 400; msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, http_error_message(s)); req->analysers &= AN_REQ_FLT_END; stream_inc_http_err_ctr(s); stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ if (sess->listener->options & LI_O_NOQUICKACK && ci_data(req)) { /* We need more data, we have to re-enable quick-ack in case we * previously disabled it, otherwise we might cause the client * to delay next data. */ conn_set_quickack(objt_conn(sess->origin), 1); } if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) { /* If the client starts to talk, let's fall back to * request timeout processing. */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* just set the request timeout once at the beginning of the request */ if (!tick_isset(req->analyse_exp)) { if ((msg->msg_state == HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ) && tick_isset(s->be->timeout.httpka)) req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka); else req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); } /* we're not ready yet */ return 0; failed_keep_alive: /* Here we process low-level errors for keep-alive requests. In * short, if the request is not the first one and it experiences * a timeout, read error or shutdown, we just silently close so * that the client can try again. */ txn->status = 0; msg->msg_state = HTTP_MSG_RQBEFORE; req->analysers &= AN_REQ_FLT_END; s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ http_reply_and_close(s, txn->status, NULL); return 0; } /* OK now we have a complete HTTP request with indexed headers. Let's * complete the request parsing by setting a few fields we will need * later. At this point, we have the last CRLF at req->buf.data + msg->eoh. * If the request is in HTTP/0.9 form, the rule is still true, and eoh * points to the CRLF of the request line. msg->next points to the first * byte after the last LF. msg->sov points to the first byte of data. * msg->eol cannot be trusted because it may have been left uninitialized * (for instance in the absence of headers). */ stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */ if (txn->flags & TX_WAIT_NEXT_RQ) { /* kill the pending keep-alive timeout */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* Maybe we found in invalid header name while we were configured not * to block on that, so we have to capture it now. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); /* * 1: identify the method */ txn->meth = find_http_meth(ci_head(req), msg->sl.rq.m_l); /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; else if (txn->meth == HTTP_METH_OTHER && msg->sl.rq.m_l == 3 && memcmp(ci_head(req), "PRI", 3) == 0) { /* PRI is reserved for the HTTP/2 preface */ msg->err_pos = 0; goto return_bad_req; } /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((sess->fe->monitor_uri_len != 0) && (sess->fe->monitor_uri_len == msg->sl.rq.u_l) && !memcmp(ci_head(req) + msg->sl.rq.u, sess->fe->monitor_uri, sess->fe->monitor_uri_len))) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SF_MONITOR; _HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } } /* nothing to fail, let's reply normally */ txn->status = 200; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) { int urilen = msg->sl.rq.l; if (urilen >= global.tune.requri_len ) urilen = global.tune.requri_len - 1; memcpy(txn->uri, ci_head(req), urilen); txn->uri[urilen] = 0; if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) s->do_log(s); } else { ha_alert("HTTP logging : out of memory.\n"); } } /* RFC7230#2.6 has enforced the format of the HTTP version string to be * exactly one digit "." one digit. This check may be disabled using * option accept-invalid-http-request. */ if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) { if (msg->sl.rq.v_l != 8) { msg->err_pos = msg->sl.rq.v; goto return_bad_req; } if (ci_head(req)[msg->sl.rq.v + 4] != '/' || !isdigit((unsigned char)ci_head(req)[msg->sl.rq.v + 5]) || ci_head(req)[msg->sl.rq.v + 6] != '.' || !isdigit((unsigned char)ci_head(req)[msg->sl.rq.v + 7])) { msg->err_pos = msg->sl.rq.v + 4; goto return_bad_req; } } else { /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) goto return_bad_req; } /* ... and check if the request is HTTP/1.1 or above */ if ((msg->sl.rq.v_l == 8) && ((ci_head(req)[msg->sl.rq.v + 5] > '1') || ((ci_head(req)[msg->sl.rq.v + 5] == '1') && (ci_head(req)[msg->sl.rq.v + 7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG); /* if the frontend has "option http-use-proxy-header", we'll check if * we have what looks like a proxied connection instead of a connection, * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. * Note that this is *not* RFC-compliant, however browsers and proxies * happen to do that despite being non-standard :-( * We consider that a request not beginning with either '/' or '*' is * a proxied connection, which covers both "scheme://location" and * CONNECT ip:port. */ if ((sess->fe->options2 & PR_O2_USE_PXHDR) && ci_head(req)[msg->sl.rq.u] != '/' && ci_head(req)[msg->sl.rq.u] != '*') txn->flags |= TX_USE_PX_CONN; /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap)) http_capture_headers(ci_head(req), &txn->hdr_idx, s->req_cap, sess->fe->req_cap); /* 6: determine the transfer-length according to RFC2616 #4.4, updated * by RFC7230#3.3.3 : * * The length of a message body is determined by one of the following * (in order of precedence): * * 1. Any response to a HEAD request and any response with a 1xx * (Informational), 204 (No Content), or 304 (Not Modified) status * code is always terminated by the first empty line after the * header fields, regardless of the header fields present in the * message, and thus cannot contain a message body. * * 2. Any 2xx (Successful) response to a CONNECT request implies that * the connection will become a tunnel immediately after the empty * line that concludes the header fields. A client MUST ignore any * Content-Length or Transfer-Encoding header fields received in * such a message. * * 3. If a Transfer-Encoding header field is present and the chunked * transfer coding (Section 4.1) is the final encoding, the message * body length is determined by reading and decoding the chunked * data until the transfer coding indicates the data is complete. * * If a Transfer-Encoding header field is present in a response and * the chunked transfer coding is not the final encoding, the * message body length is determined by reading the connection until * it is closed by the server. If a Transfer-Encoding header field * is present in a request and the chunked transfer coding is not * the final encoding, the message body length cannot be determined * reliably; the server MUST respond with the 400 (Bad Request) * status code and then close the connection. * * If a message is received with both a Transfer-Encoding and a * Content-Length header field, the Transfer-Encoding overrides the * Content-Length. Such a message might indicate an attempt to * perform request smuggling (Section 9.5) or response splitting * (Section 9.4) and ought to be handled as an error. A sender MUST * remove the received Content-Length field prior to forwarding such * a message downstream. * * 4. If a message is received without Transfer-Encoding and with * either multiple Content-Length header fields having differing * field-values or a single Content-Length header field having an * invalid value, then the message framing is invalid and the * recipient MUST treat it as an unrecoverable error. If this is a * request message, the server MUST respond with a 400 (Bad Request) * status code and then close the connection. If this is a response * message received by a proxy, the proxy MUST close the connection * to the server, discard the received response, and send a 502 (Bad * Gateway) response to the client. If this is a response message * received by a user agent, the user agent MUST close the * connection to the server and discard the received response. * * 5. If a valid Content-Length header field is present without * Transfer-Encoding, its decimal value defines the expected message * body length in octets. If the sender closes the connection or * the recipient times out before the indicated number of octets are * received, the recipient MUST consider the message to be * incomplete and close the connection. * * 6. If this is a request message and none of the above are true, then * the message body length is zero (no message body is present). * * 7. Otherwise, this is a response message without a declared message * body length, so the message body length is determined by the * number of octets received prior to the server closing the * connection. */ ctx.idx = 0; /* set TE_CHNK and XFER_LEN only if "chunked" is seen last */ while (http_find_header2("Transfer-Encoding", 17, ci_head(req), &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= HTTP_MSGF_TE_CHNK; else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* chunked not last, return badreq */ goto return_bad_req; } } /* Chunked requests must have their content-length removed */ ctx.idx = 0; if (msg->flags & HTTP_MSGF_TE_CHNK) { while (http_find_header2("Content-Length", 14, ci_head(req), &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); } else while (http_find_header2("Content-Length", 14, ci_head(req), &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - ci_head(req); goto return_bad_req; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - ci_head(req); goto return_bad_req; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - ci_head(req); goto return_bad_req; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - ci_head(req); goto return_bad_req; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN; msg->body_len = msg->chunk_len = cl; } /* even bodyless requests have a known length */ msg->flags |= HTTP_MSGF_XFER_LEN; /* Until set to anything else, the connection mode is set as Keep-Alive. It will * only change if both the request and the config reference something else. * Option httpclose by itself sets tunnel mode where headers are mangled. * However, if another mode is set, it will affect it (eg: server-close/ * keep-alive + httpclose = close). Note that we avoid to redo the same work * if FE and BE have the same settings (common). The method consists in * checking if options changed between the two calls (implying that either * one is non-null, or one of them is non-null and we are there for the first * time. */ if (!(txn->flags & TX_HDR_CONN_PRS) || ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE))) http_adjust_conn_mode(s, txn, msg); /* we may have to wait for the request's body */ if ((s->be->options & PR_O_WREQ_BODY) && (msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK))) req->analysers |= AN_REQ_HTTP_BODY; /* * RFC7234#4: * A cache MUST write through requests with methods * that are unsafe (Section 4.2.1 of [RFC7231]) to * the origin server; i.e., a cache is not allowed * to generate a reply to such a request before * having forwarded the request and having received * a corresponding response. * * RFC7231#4.2.1: * Of the request methods defined by this * specification, the GET, HEAD, OPTIONS, and TRACE * methods are defined to be safe. */ if (likely(txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD || txn->meth == HTTP_METH_OPTIONS || txn->meth == HTTP_METH_TRACE)) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); } txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s)); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; return 0; } /* This function prepares an applet to handle the stats. It can deal with the * "100-continue" expectation, check that admin rules are met for POST requests, * and program a response message if something was unexpected. It cannot fail * and always relies on the stats applet to complete the job. It does not touch * analysers nor counters, which are left to the caller. It does not touch * s->target which is supposed to already point to the stats applet. The caller * is expected to have already assigned an appctx to the stream. */ int http_handle_stats(struct stream *s, struct channel *req) { struct stats_admin_rule *stats_admin_rule; struct stream_interface *si = &s->si[1]; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct uri_auth *uri_auth = s->be->uri_auth; const char *uri, *h, *lookup; struct appctx *appctx; appctx = si_appctx(si); memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats)); appctx->st1 = appctx->st2 = 0; appctx->ctx.stats.st_code = STAT_STATUS_INIT; appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */ if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD)) appctx->ctx.stats.flags |= STAT_CHUNKED; uri = ci_head(msg->chn) + msg->sl.rq.u; lookup = uri + uri_auth->uri_len; for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) { if (memcmp(h, ";up", 3) == 0) { appctx->ctx.stats.flags |= STAT_HIDE_DOWN; break; } } if (uri_auth->refresh) { for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) { if (memcmp(h, ";norefresh", 10) == 0) { appctx->ctx.stats.flags |= STAT_NO_REFRESH; break; } } } for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) { if (memcmp(h, ";csv", 4) == 0) { appctx->ctx.stats.flags &= ~STAT_FMT_HTML; break; } } for (h = lookup; h <= uri + msg->sl.rq.u_l - 6; h++) { if (memcmp(h, ";typed", 6) == 0) { appctx->ctx.stats.flags &= ~STAT_FMT_HTML; appctx->ctx.stats.flags |= STAT_FMT_TYPED; break; } } for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { if (memcmp(h, ";st=", 4) == 0) { int i; h += 4; appctx->ctx.stats.st_code = STAT_STATUS_UNKN; for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { if (strncmp(stat_status_codes[i], h, 4) == 0) { appctx->ctx.stats.st_code = i; break; } } break; } } appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) { int itx = 0; const char *h2; char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1]; const char *err; h += strlen(STAT_SCOPE_INPUT_NAME) + 1; h2 = h; appctx->ctx.stats.scope_str = h2 - ci_head(msg->chn); while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') { itx++; h++; } if (itx > STAT_SCOPE_TXT_MAXLEN) itx = STAT_SCOPE_TXT_MAXLEN; appctx->ctx.stats.scope_len = itx; /* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */ memcpy(scope_txt, h2, itx); scope_txt[itx] = '\0'; err = invalid_char(scope_txt); if (err) { /* bad char in search text => clear scope */ appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; } break; } } /* now check whether we have some admin rules for this request */ list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) { int ret = 1; if (stats_admin_rule->cond) { ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ appctx->ctx.stats.flags |= STAT_ADMIN; break; } } if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) appctx->st0 = STAT_HTTP_HEAD; else if (txn->meth == HTTP_METH_POST && (msg->flags & HTTP_MSGF_CNT_LEN)) { if (appctx->ctx.stats.flags & STAT_ADMIN) { /* we'll need the request body, possibly after sending 100-continue */ if (msg->msg_state < HTTP_MSG_DATA) req->analysers |= AN_REQ_HTTP_BODY; appctx->st0 = STAT_HTTP_POST; } else { /* POST without admin level */ appctx->ctx.stats.flags &= ~STAT_CHUNKED; appctx->ctx.stats.st_code = STAT_STATUS_DENY; appctx->st0 = STAT_HTTP_LAST; } } else { /* Unsupported method or chunked POST */ appctx->ctx.stats.flags &= ~STAT_CHUNKED; appctx->ctx.stats.st_code = STAT_STATUS_IVAL; appctx->st0 = STAT_HTTP_LAST; } s->task->nice = -32; /* small boost for HTTP statistics */ return 1; } int http_transform_header_str(struct stream* s, struct http_msg *msg, const char* name, unsigned int name_len, const char *str, struct my_regex *re, int action) { struct hdr_idx *idx = &s->txn->hdr_idx; struct buffer *output = get_trash_chunk(); /* Choose the header browsing function. */ switch (action) { case ACT_HTTP_REPLACE_VAL: return http_legacy_replace_header(idx, msg, name, name_len, str, re, output); case ACT_HTTP_REPLACE_HDR: return http_legacy_replace_full_header(idx, msg, name, name_len, str, re, output); default: /* impossible */ return -1; } } static int http_transform_header(struct stream* s, struct http_msg *msg, const char* name, unsigned int name_len, struct list *fmt, struct my_regex *re, int action) { struct buffer *replace; int ret = -1; replace = alloc_trash_chunk(); if (!replace) goto leave; replace->data = build_logline(s, replace->area, replace->size, fmt); if (replace->data >= replace->size - 1) goto leave; ret = http_transform_header_str(s, msg, name, name_len, replace->area, re, action); leave: free_trash_chunk(replace); return ret; } /* * Build an HTTP Early Hint HTTP 103 response header with as name and with a value * built according to log line format. * If is NULL, it is allocated and the HTTP 103 response first * line is inserted before the header. If an error occurred is * released and NULL is returned. On success the updated buffer is returned. */ static struct buffer *http_apply_early_hint_rule(struct stream* s, struct buffer *early_hints, const char* name, unsigned int name_len, struct list *fmt) { if (!early_hints) { early_hints = alloc_trash_chunk(); if (!early_hints) goto fail; if (!chunk_memcat(early_hints, HTTP_103.ptr, HTTP_103.len)) goto fail; } if (!chunk_memcat(early_hints, name, name_len) || !chunk_memcat(early_hints, ": ", 2)) goto fail; early_hints->data += build_logline(s, b_tail(early_hints), b_room(early_hints), fmt); if (!chunk_memcat(early_hints, "\r\n", 2)) goto fail; return early_hints; fail: free_trash_chunk(early_hints); return NULL; } /* Sends an HTTP 103 response. Before sending it, the last CRLF finishing the * response is added. If an error occurred or if another response was already * sent, this function does nothing. */ static void http_send_early_hints(struct stream *s, struct buffer *early_hints) { struct channel *chn = s->txn->rsp.chn; char *cur_ptr = ci_head(chn); int ret; /* If a response was already sent, skip early hints */ if (s->txn->status > 0) return; if (!chunk_memcat(early_hints, "\r\n", 2)) return; ret = b_rep_blk(&chn->buf, cur_ptr, cur_ptr, b_head(early_hints), b_data(early_hints)); c_adv(chn, ret); chn->total += ret; } /* Executes the http-request rules for stream , proxy and * transaction . Returns the verdict of the first rule that prevents * further processing of the request (auth, deny, ...), and defaults to * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT * on txn->flags if it encounters a tarpit rule. If is not NULL * and a deny/tarpit rule is matched, it will be filled with this rule's deny * status. */ enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s, int *deny_status) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct act_rule *rule; struct hdr_ctx ctx; const char *auth_realm; struct buffer *early_hints = NULL; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_flags = 0; int len; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_ACTION_DENY: if (deny_status) *deny_status = rule->deny_status; rule_ret = HTTP_RULE_RES_DENY; goto end; case ACT_HTTP_REQ_TARPIT: txn->flags |= TX_CLTARPIT; if (deny_status) *deny_status = rule->deny_status; rule_ret = HTTP_RULE_RES_DENY; goto end; case ACT_HTTP_REQ_AUTH: /* Be sure to send any pending HTTP 103 response first */ if (early_hints) { http_send_early_hints(s, early_hints); free_trash_chunk(early_hints); early_hints = NULL; } /* Auth might be performed on regular http-req rules as well as on stats */ auth_realm = rule->arg.auth.realm; if (!auth_realm) { if (px->uri_auth && rules == &px->uri_auth->http_req_rules) auth_realm = STATS_DEFAULT_REALM; else auth_realm = px->id; } /* send 401/407 depending on whether we use a proxy or not. We still * count one error, because normal browsing won't significantly * increase the counter but brute force attempts will. */ chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm); txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401; http_reply_and_close(s, txn->status, &trash); stream_inc_http_err_ctr(s); rule_ret = HTTP_RULE_RES_ABRT; goto end; case ACT_HTTP_REDIR: /* Be sure to send any pending HTTP 103 response first */ if (early_hints) { http_send_early_hints(s, early_hints); free_trash_chunk(early_hints); early_hints = NULL; } rule_ret = HTTP_RULE_RES_DONE; if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) rule_ret = HTTP_RULE_RES_BADREQ; goto end; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: conn_set_tos(objt_conn(sess->origin), rule->arg.tos); break; case ACT_HTTP_SET_MARK: conn_set_mark(objt_conn(sess->origin), rule->arg.mark); break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } break; case ACT_HTTP_DEL_HDR: ctx.idx = 0; /* remove all occurrences of the header */ while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: { /* The scope of the trash buffer must be limited to this function. The * build_logline() function can execute a lot of other function which * can use the trash buffer. So for limiting the scope of this global * buffer, we build first the header value using build_logline, and * after we store the header name. */ struct buffer *replace; replace = alloc_trash_chunk(); if (!replace) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } len = rule->arg.hdr_add.name_len + 2, len += build_logline(s, replace->area + len, replace->size - len, &rule->arg.hdr_add.fmt); memcpy(replace->area, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); replace->area[rule->arg.hdr_add.name_len] = ':'; replace->area[rule->arg.hdr_add.name_len + 1] = ' '; replace->data = len; if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.idx = 0; while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } } if (http_header_add_tail2(&txn->req, &txn->hdr_idx, replace->area, replace->data) < 0) { static unsigned char rate_limit = 0; if ((rate_limit++ & 255) == 0) { replace->area[rule->arg.hdr_add.name_len] = 0; send_log(px, LOG_WARNING, "Proxy %s failed to add or set the request header '%s' for request #%u. You might need to increase tune.maxrewrite.", px->id, replace->area, s->uniq_id); } _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); if (sess->fe != s->be) _HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); } free_trash_chunk(replace); break; } case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); pat_ref_delete(ref, key->area); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* add entry only if it does not already exist */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); if (pat_ref_find_elt(ref, key->area) == NULL) pat_ref_add(ref, key->area, NULL, NULL); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; struct buffer *key, *value; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* allocate value */ value = alloc_trash_chunk(); if (!value) { free_trash_chunk(key); rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* collect value */ value->data = build_logline(s, value->area, value->size, &rule->arg.map.value); value->area[value->data] = '\0'; /* perform update */ if (pat_ref_find_elt(ref, key->area) != NULL) /* update entry if it exists */ pat_ref_set(ref, key->area, value->area, NULL); else /* insert a new entry */ pat_ref_add(ref, key->area, value->area, NULL); free_trash_chunk(key); free_trash_chunk(value); break; } case ACT_HTTP_EARLY_HINT: if (!(txn->req.flags & HTTP_MSGF_VER_11)) break; early_hints = http_apply_early_hint_rule(s, early_hints, rule->arg.early_hint.name, rule->arg.early_hint.name_len, &rule->arg.early_hint.fmt); if (!early_hints) { rule_ret = HTTP_RULE_RES_DONE; goto end; } break; case ACT_CUSTOM: if ((s->req.flags & CF_READ_ERROR) || ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && !(s->si[0].flags & SI_FL_CLEAN_ABRT) && (px->options & PR_O_ABRT_CLOSE))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_DONE; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; } break; case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: /* Note: only the first valid tracking parameter of each * applies. */ if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { struct stktable *t; struct stksess *ts; struct stktable_key *key; void *ptr1, *ptr2; t = rule->arg.trk_ctr.table.t; key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); if (key && (ts = stktable_get_entry(t, key))) { stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); /* let's count a new HTTP request as it's the first time we do it */ ptr1 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); ptr2 = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); if (ptr1 || ptr2) { HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); if (ptr1) stktable_data_cast(ptr1, http_req_cnt)++; if (ptr2) update_freq_ctr_period(&stktable_data_cast(ptr2, http_req_rate), t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ stktable_touch_local(t, ts, 0); } stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); if (sess->fe != s->be) stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); } } break; /* other flags exists, but normally, they never be matched. */ default: break; } } end: if (early_hints) { http_send_early_hints(s, early_hints); free_trash_chunk(early_hints); } /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Executes the http-response rules for stream and proxy . It * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP, * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT * is returned, the process can continue the evaluation of next rule list. If * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ * is returned, it means the operation could not be processed and a server error * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a * deny rule. If *YIELD is returned, the caller must call again the function * with the same context. */ enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct act_rule *rule; struct hdr_ctx ctx; enum rule_result rule_ret = HTTP_RULE_RES_CONT; int act_flags = 0; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: switch (rule->action) { case ACT_ACTION_ALLOW: rule_ret = HTTP_RULE_RES_STOP; /* "allow" rules are OK */ goto end; case ACT_ACTION_DENY: txn->flags |= TX_SVDENY; rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: conn_set_tos(objt_conn(sess->origin), rule->arg.tos); break; case ACT_HTTP_SET_MARK: conn_set_mark(objt_conn(sess->origin), rule->arg.mark); break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } break; case ACT_HTTP_DEL_HDR: ctx.idx = 0; /* remove all occurrences of the header */ while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, ci_head(txn->rsp.chn), &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); } break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: { struct buffer *replace; replace = alloc_trash_chunk(); if (!replace) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } chunk_printf(replace, "%s: ", rule->arg.hdr_add.name); memcpy(replace->area, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); replace->data = rule->arg.hdr_add.name_len; replace->area[replace->data++] = ':'; replace->area[replace->data++] = ' '; replace->data += build_logline(s, replace->area + replace->data, replace->size - replace->data, &rule->arg.hdr_add.fmt); if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.idx = 0; while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, ci_head(txn->rsp.chn), &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); } } if (http_header_add_tail2(&txn->rsp, &txn->hdr_idx, replace->area, replace->data) < 0) { static unsigned char rate_limit = 0; if ((rate_limit++ & 255) == 0) { replace->area[rule->arg.hdr_add.name_len] = 0; send_log(px, LOG_WARNING, "Proxy %s failed to add or set the response header '%s' for request #%u. You might need to increase tune.maxrewrite.", px->id, replace->area, s->uniq_id); } _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_rewrites, 1); if (sess->fe != s->be) _HA_ATOMIC_ADD(&s->be->be_counters.failed_rewrites, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_rewrites, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_rewrites, 1); } free_trash_chunk(replace); break; } case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); pat_ref_delete(ref, key->area); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; struct buffer *key; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* perform update */ /* check if the entry already exists */ if (pat_ref_find_elt(ref, key->area) == NULL) pat_ref_add(ref, key->area, NULL, NULL); free_trash_chunk(key); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; struct buffer *key, *value; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* allocate key */ key = alloc_trash_chunk(); if (!key) { rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* allocate value */ value = alloc_trash_chunk(); if (!value) { free_trash_chunk(key); rule_ret = HTTP_RULE_RES_BADREQ; goto end; } /* collect key */ key->data = build_logline(s, key->area, key->size, &rule->arg.map.key); key->area[key->data] = '\0'; /* collect value */ value->data = build_logline(s, value->area, value->size, &rule->arg.map.value); value->area[value->data] = '\0'; /* perform update */ HA_SPIN_LOCK(PATREF_LOCK, &ref->lock); if (pat_ref_find_elt(ref, key->area) != NULL) /* update entry if it exists */ pat_ref_set(ref, key->area, value->area, NULL); else /* insert a new entry */ pat_ref_add(ref, key->area, value->area, NULL); HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock); free_trash_chunk(key); free_trash_chunk(value); break; } case ACT_HTTP_REDIR: rule_ret = HTTP_RULE_RES_DONE; if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) rule_ret = HTTP_RULE_RES_BADREQ; goto end; case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: /* Note: only the first valid tracking parameter of each * applies. */ if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) { struct stktable *t; struct stksess *ts; struct stktable_key *key; void *ptr; t = rule->arg.trk_ctr.table.t; key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); if (key && (ts = stktable_get_entry(t, key))) { stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts); HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); /* let's count a new HTTP request as it's the first time we do it */ ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); if (ptr) stktable_data_cast(ptr, http_req_cnt)++; ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); /* When the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. Normally this is done when receiving the response * but here we're tracking after this ought to have been done so we have * to do it on purpose. */ if ((unsigned)(txn->status - 400) < 100) { ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT); if (ptr) stktable_data_cast(ptr, http_err_cnt)++; ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1); } HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ stktable_touch_local(t, ts, 0); stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT); if (sess->fe != s->be) stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND); } } break; case ACT_CUSTOM: if ((s->req.flags & CF_READ_ERROR) || ((s->req.flags & (CF_SHUTR|CF_READ_NULL)) && !(s->si[0].flags & SI_FL_CLEAN_ABRT) && (px->options & PR_O_ABRT_CLOSE))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: rule_ret = HTTP_RULE_RES_STOP; goto end; case ACT_RET_YIELD: s->current_rule = rule; rule_ret = HTTP_RULE_RES_YIELD; goto end; } break; /* other flags exists, but normally, they never be matched. */ default: break; } } end: /* we reached the end of the rules, nothing to report */ return rule_ret; } /* Perform an HTTP redirect based on the information in . The function * returns non-zero on success, or zero in case of a, irrecoverable error such * as too large a request to build a valid response. */ int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn) { struct http_msg *req = &txn->req; struct http_msg *res = &txn->rsp; const char *msg_fmt; struct buffer *chunk; int ret = 0; if (IS_HTX_STRM(s)) return htx_apply_redirect_rule(rule, s, txn); chunk = alloc_trash_chunk(); if (!chunk) goto leave; /* build redirect message */ switch(rule->code) { case 308: msg_fmt = HTTP_308; break; case 307: msg_fmt = HTTP_307; break; case 303: msg_fmt = HTTP_303; break; case 301: msg_fmt = HTTP_301; break; case 302: default: msg_fmt = HTTP_302; break; } if (unlikely(!chunk_strcpy(chunk, msg_fmt))) goto leave; switch(rule->type) { case REDIRECT_TYPE_SCHEME: { const char *path; const char *host; struct hdr_ctx ctx; int pathlen; int hostlen; host = ""; hostlen = 0; ctx.idx = 0; if (http_find_header2("Host", 4, ci_head(req->chn), &txn->hdr_idx, &ctx)) { host = ctx.line + ctx.val; hostlen = ctx.vlen; } path = http_txn_get_path(txn); /* build message using path */ if (path) { pathlen = req->sl.rq.u_l + (ci_head(req->chn) + req->sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (rule->rdr_str) { /* this is an old "redirect" rule */ /* check if we can add scheme + "://" + host + path */ if (chunk->data + rule->rdr_len + 3 + hostlen + pathlen > chunk->size - 4) goto leave; /* add scheme */ memcpy(chunk->area + chunk->data, rule->rdr_str, rule->rdr_len); chunk->data += rule->rdr_len; } else { /* add scheme with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); /* check if we can add scheme + "://" + host + path */ if (chunk->data + 3 + hostlen + pathlen > chunk->size - 4) goto leave; } /* add "://" */ memcpy(chunk->area + chunk->data, "://", 3); chunk->data += 3; /* add host */ memcpy(chunk->area + chunk->data, host, hostlen); chunk->data += hostlen; /* add path */ memcpy(chunk->area + chunk->data, path, pathlen); chunk->data += pathlen; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data > chunk->size - 5) goto leave; chunk->area[chunk->data] = '/'; chunk->data++; } break; } case REDIRECT_TYPE_PREFIX: { const char *path; int pathlen; path = http_txn_get_path(txn); /* build message using path */ if (path) { pathlen = req->sl.rq.u_l + (ci_head(req->chn) + req->sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (rule->rdr_str) { /* this is an old "redirect" rule */ if (chunk->data + rule->rdr_len + pathlen > chunk->size - 4) goto leave; /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { memcpy(chunk->area + chunk->data, rule->rdr_str, rule->rdr_len); chunk->data += rule->rdr_len; } } else { /* add prefix with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); /* Check length */ if (chunk->data + pathlen > chunk->size - 4) goto leave; } /* add path */ memcpy(chunk->area + chunk->data, path, pathlen); chunk->data += pathlen; /* append a slash at the end of the location if needed and missing */ if (chunk->data && chunk->area[chunk->data - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (chunk->data > chunk->size - 5) goto leave; chunk->area[chunk->data] = '/'; chunk->data++; } break; } case REDIRECT_TYPE_LOCATION: default: if (rule->rdr_str) { /* this is an old "redirect" rule */ if (chunk->data + rule->rdr_len > chunk->size - 4) goto leave; /* add location */ memcpy(chunk->area + chunk->data, rule->rdr_str, rule->rdr_len); chunk->data += rule->rdr_len; } else { /* add location with executing log format */ chunk->data += build_logline(s, chunk->area + chunk->data, chunk->size - chunk->data, &rule->rdr_fmt); /* Check left length */ if (chunk->data > chunk->size - 4) goto leave; } break; } if (rule->cookie_len) { memcpy(chunk->area + chunk->data, "\r\nSet-Cookie: ", 14); chunk->data += 14; memcpy(chunk->area + chunk->data, rule->cookie_str, rule->cookie_len); chunk->data += rule->cookie_len; } /* add end of headers and the keep-alive/close status. */ txn->status = rule->code; /* let's log the request time */ s->logs.tv_request = now; if (((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { /* keep-alive possible */ if (!(req->flags & HTTP_MSGF_VER_11)) { if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(chunk->area + chunk->data, "\r\nProxy-Connection: keep-alive", 30); chunk->data += 30; } else { memcpy(chunk->area + chunk->data, "\r\nConnection: keep-alive", 24); chunk->data += 24; } } memcpy(chunk->area + chunk->data, "\r\n\r\n", 4); chunk->data += 4; FLT_STRM_CB(s, flt_http_reply(s, txn->status, chunk)); co_inject(res->chn, chunk->area, chunk->data); /* "eat" the request */ b_del(&req->chn->buf, req->sov); req->next -= req->sov; req->sov = 0; s->req.analysers = AN_REQ_HTTP_XFER_BODY | (s->req.analysers & AN_REQ_FLT_END); s->res.analysers = AN_RES_HTTP_XFER_BODY | (s->res.analysers & AN_RES_FLT_END); req->msg_state = HTTP_MSG_CLOSED; res->msg_state = HTTP_MSG_DONE; /* Trim any possible response */ b_set_data(&res->chn->buf, co_data(res->chn)); res->next = res->sov = 0; /* let the server side turn to SI_ST_CLO */ channel_shutw_now(req->chn); } else { /* keep-alive not possible */ if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(chunk->area + chunk->data, "\r\nProxy-Connection: close\r\n\r\n", 29); chunk->data += 29; } else { memcpy(chunk->area + chunk->data, "\r\nConnection: close\r\n\r\n", 23); chunk->data += 23; } http_reply_and_close(s, txn->status, chunk); req->chn->analysers &= AN_REQ_FLT_END; } if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; ret = 1; leave: free_trash_chunk(chunk); return ret; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct redirect_rule *rule; struct cond_wordlist *wl; enum rule_result verdict; int deny_status = HTTP_ERR_403; struct connection *conn = objt_conn(sess->origin); if (IS_HTX_STRM(s)) return htx_process_req_common(s, req, an_bit, px); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ goto return_prx_yield; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); /* just in case we have some per-backend tracking */ stream_inc_be_http_req_ctr(s); /* evaluate http-request rules */ if (!LIST_ISEMPTY(&px->http_req_rules)) { verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s, &deny_status); switch (verdict) { case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ goto return_prx_yield; case HTTP_RULE_RES_CONT: case HTTP_RULE_RES_STOP: /* nothing to do */ break; case HTTP_RULE_RES_DENY: /* deny or tarpit */ if (txn->flags & TX_CLTARPIT) goto tarpit; goto deny; case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */ goto return_prx_cond; case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ goto done; case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ goto return_bad_req; } } if (conn && (conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_HANDSHAKE))) { struct hdr_ctx ctx; ctx.idx = 0; if (!http_find_header2("Early-Data", strlen("Early-Data"), ci_head(&s->req), &txn->hdr_idx, &ctx)) { if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, "Early-Data: 1", strlen("Early-Data: 1")) < 0)) { goto return_bad_req; } } } /* OK at this stage, we know that the request was accepted according to * the http-request rules, we can check for the stats. Note that the * URI is detected *before* the req* rules in order not to be affected * by a possible reqrep, while they are processed *after* so that a * reqdeny can still block them. This clearly needs to change in 1.6! */ if (stats_check_uri(&s->si[1], txn, px)) { s->target = &http_stats_applet.obj_type; if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target)))) { txn->status = 500; s->logs.tv_request = now; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto return_prx_cond; } /* parse the whole stats request and extract the relevant information */ http_handle_stats(s, req); verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, &deny_status); /* not all actions implemented: deny, allow, auth */ if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */ goto deny; if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */ goto return_prx_cond; } /* evaluate the req* rules except reqadd */ if (px->req_exp != NULL) { if (apply_filters_to_request(s, req, px) < 0) goto return_bad_req; if (txn->flags & TX_CLDENY) goto deny; if (txn->flags & TX_CLTARPIT) { deny_status = HTTP_ERR_500; goto tarpit; } } /* add request headers from the rule sets in the same order */ list_for_each_entry(wl, &px->req_add, list) { if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, wl->s, strlen(wl->s)) < 0)) goto return_bad_req; } /* Proceed with the stats now. */ if (unlikely(objt_applet(s->target) == &http_stats_applet) || unlikely(objt_applet(s->target) == &http_cache_applet)) { /* process the stats request now */ if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ _HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; /* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */ req->analysers &= (AN_REQ_HTTP_BODY | AN_REQ_FLT_HTTP_HDRS | AN_REQ_FLT_END); req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; goto done; } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (!http_apply_redirect_rule(rule, s, txn)) goto return_bad_req; goto done; } /* POST requests may be accompanied with an "Expect: 100-Continue" header. * If this happens, then the data will not come immediately, so we must * send all what we have without waiting. Note that due to the small gain * in waiting for the body of the request, it's easier to simply put the * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove * itself once used. */ req->flags |= CF_SEND_DONTWAIT; done: /* done with this analyser, continue with next ones that the calling * points will have set, if any. */ req->analyse_exp = TICK_ETERNITY; done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */ req->analysers &= ~an_bit; return 1; tarpit: /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) manage_client_side_cookies(s, req); /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ channel_erase(&s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); txn->status = http_err_codes[deny_status]; req->analysers &= AN_REQ_FLT_END; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); stream_inc_http_err_ctr(s); _HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); if (sess->fe != s->be) _HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); goto done_without_exp; deny: /* this request was blocked (denied) */ /* Allow cookie logging */ if (s->be->cookie_name || sess->fe->capture_name) manage_client_side_cookies(s, req); txn->flags |= TX_CLDENY; txn->status = http_err_codes[deny_status]; s->logs.tv_request = now; http_reply_and_close(s, txn->status, http_error_message(s)); stream_inc_http_err_ctr(s); _HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_req, 1); if (sess->fe != s->be) _HA_ATOMIC_ADD(&s->be->be_counters.denied_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->denied_req, 1); goto return_prx_cond; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); } txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s)); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; return 0; return_prx_yield: channel_dont_connect(req); return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req.analysers. */ int http_process_request(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct connection *cli_conn = objt_conn(strm_sess(s)->origin); if (IS_HTX_STRM(s)) return htx_process_request(s, req, an_bit); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ channel_dont_connect(req); return 0; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ /* * If HTTP PROXY is set we simply get remote server address parsing * incoming request. Note that this requires that a connection is * allocated on the server side. */ if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) { struct connection *conn; char *path; /* Note that for now we don't reuse existing proxy connections */ if (unlikely((conn = cs_conn(si_alloc_cs(&s->si[1], NULL))) == NULL)) { txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 500; req->analysers &= AN_REQ_FLT_END; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } path = http_txn_get_path(txn); if (url2sa(ci_head(req) + msg->sl.rq.u, path ? path - (ci_head(req) + msg->sl.rq.u) : msg->sl.rq.u_l, &conn->addr.to, NULL) == -1) goto return_bad_req; /* if the path was found, we have to remove everything between * ci_head(req) + msg->sl.rq.u and path (excluded). If it was not * found, we need to replace from ci_head(req) + msg->sl.rq.u for * u_l characters by a single "/". */ if (path) { char *cur_ptr = ci_head(req); char *cur_end = cur_ptr + txn->req.sl.rq.l; int delta; delta = b_rep_blk(&req->buf, cur_ptr + msg->sl.rq.u, path, NULL, 0); http_msg_move_end(&txn->req, delta); cur_end += delta; if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) goto return_bad_req; } else { char *cur_ptr = ci_head(req); char *cur_end = cur_ptr + txn->req.sl.rq.l; int delta; delta = b_rep_blk(&req->buf, cur_ptr + msg->sl.rq.u, cur_ptr + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1); http_msg_move_end(&txn->req, delta); cur_end += delta; if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) goto return_bad_req; } } /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if (s->be->cookie_name || sess->fe->capture_name) manage_client_side_cookies(s, req); /* add unique-id if "header-unique-id" is specified */ if (!LIST_ISEMPTY(&sess->fe->format_unique_id) && !s->unique_id) { if ((s->unique_id = pool_alloc(pool_head_uniqueid)) == NULL) goto return_bad_req; s->unique_id[0] = '\0'; build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id); } if (sess->fe->header_unique_id && s->unique_id) { if (chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id) < 0) goto return_bad_req; if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, trash.data) < 0)) goto return_bad_req; } /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) { struct hdr_ctx ctx = { .idx = 0 }; if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) && http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name, s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len, ci_head(req), &txn->hdr_idx, &ctx)) { /* The header is set to be added only if none is present * and we found it, so don't do anything. */ } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!sess->fe->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr) != sess->fe->except_net.s_addr) && (!s->be->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr) != s->be->except_net.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.area, s->be->fwdfor_hdr_name, len); } else { len = sess->fe->fwdfor_hdr_len; memcpy(trash.area, sess->fe->fwdfor_hdr_name, len); } len += snprintf(trash.area + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) goto return_bad_req; } } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ int len; char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.area, s->be->fwdfor_hdr_name, len); } else { len = sess->fe->fwdfor_hdr_len; memcpy(trash.area, sess->fe->fwdfor_hdr_name, len); } len += snprintf(trash.area + len, trash.size - len, ": %s", pn); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) goto return_bad_req; } } /* * 10: add X-Original-To if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_ORGTO) { /* FIXME: don't know if IPv6 can handle that case too. */ if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Original-To header unless the destination IP is * in the 'except' network range. */ conn_get_to_addr(cli_conn); if (cli_conn->addr.to.ss_family == AF_INET && ((!sess->fe->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr) != sess->fe->except_to.s_addr) && (!s->be->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr) != s->be->except_to.s_addr))) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-original-to, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->orgto_hdr_len) { len = s->be->orgto_hdr_len; memcpy(trash.area, s->be->orgto_hdr_name, len); } else { len = sess->fe->orgto_hdr_len; memcpy(trash.area, sess->fe->orgto_hdr_name, len); } len += snprintf(trash.area + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, len) < 0)) goto return_bad_req; } } } /* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set. * If an "Upgrade" token is found, the header is left untouched in order not to have * to deal with some servers bugs : some of them fail an Upgrade if anything but * "Upgrade" is present in the Connection header. */ if (!(txn->flags & TX_HDR_CONN_UPG) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { unsigned int want_flags = 0; if (msg->flags & HTTP_MSGF_VER_11) { if ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && !((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_CLO_SET; } else { if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || ((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_KAL_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) && s->txn->meth == HTTP_METH_POST && (s->be->lbprm.algo & BE_LB_ALGO) == BE_LB_ALGO_PH && (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) { channel_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } req->analysers &= ~AN_REQ_FLT_XFER_DATA; req->analysers |= AN_REQ_HTTP_XFER_BODY; /* We expect some data from the client. Unless we know for sure * we already have a full request, we have to re-enable quick-ack * in case we previously disabled it, otherwise we might cause * the client to delay further data. */ if ((sess->listener->options & LI_O_NOQUICKACK) && ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->body_len > ci_data(req) - txn->req.eoh - 2))) conn_set_quickack(cli_conn, 1); /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; s->logs.tv_request = now; /* OK let's go on with the BODY now */ return 1; return_bad_req: /* let's centralize all bad requests */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(sess->fe, s, msg, msg->err_state, sess->fe); } txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; req->analysers &= AN_REQ_FLT_END; http_reply_and_close(s, txn->status, http_error_message(s)); _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int http_process_tarpit(struct stream *s, struct channel *req, int an_bit) { struct http_txn *txn = s->txn; if (IS_HTX_STRM(s)) return htx_process_tarpit(s, req, an_bit); /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ channel_dont_connect(req); if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 && !tick_is_expired(req->analyse_exp, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); if (!(req->flags & CF_READ_ERROR)) http_reply_and_close(s, txn->status, http_error_message(s)); req->analysers &= AN_REQ_FLT_END; req->analyse_exp = TICK_ETERNITY; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_T; return 0; } /* This function is an analyser which waits for the HTTP request body. It waits * for either the buffer to be full, or the full advertised contents to have * reached the buffer. It must only be called after the standard HTTP request * processing has occurred, because it expects the request to be parsed and will * look for the Expect header. It may send a 100-Continue interim response. It * takes in input any state starting from HTTP_MSG_BODY and leaves with one of * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it * needs to read more data, or 1 once it has completed its analysis. */ int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->req; if (IS_HTX_STRM(s)) return htx_wait_for_request_body(s, req, an_bit); /* We have to parse the HTTP request body to find any required data. * "balance url_param check_post" should have been the only way to get * into this. We were brought here after HTTP header analysis, so all * related structures are ready. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* This is the first call */ if (msg->msg_state < HTTP_MSG_BODY) goto missing_data; if (msg->msg_state < HTTP_MSG_100_SENT) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (msg->flags & HTTP_MSGF_VER_11) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ if (http_find_header2("Expect", 6, ci_head(req), &txn->hdr_idx, &ctx) && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { co_inject(&s->res, HTTP_100.ptr, HTTP_100.len); http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } } msg->msg_state = HTTP_MSG_100_SENT; } /* we have msg->sov which points to the first byte of message body. * ci_head(req) still points to the beginning of the message. We * must save the body in msg->next because it survives buffer * re-alignments. */ msg->next = msg->sov; if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } if (!(msg->flags & HTTP_MSGF_TE_CHNK)) { /* We're in content-length mode, we just have to wait for enough data. */ if (http_body_bytes(msg) < msg->body_len) goto missing_data; /* OK we have everything we need now */ goto http_end; } /* OK here we're parsing a chunked-encoded message */ if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->sov and ->next to point to the body and switch to DATA or * TRAILERS state. */ unsigned int chunk; int ret = h1_parse_chunk_size(&req->buf, co_data(req) + msg->next, c_data(req), &chunk); if (!ret) goto missing_data; else if (ret < 0) { msg->err_pos = ci_data(req) + ret; if (msg->err_pos < 0) msg->err_pos += req->buf.size; stream_inc_http_err_ctr(s); goto return_bad_req; } msg->chunk_len = chunk; msg->body_len += chunk; msg->sol = ret; msg->next += ret; msg->msg_state = msg->chunk_len ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS; } /* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state. * We have the first data byte is in msg->sov + msg->sol. We're waiting * for at least a whole chunk or the whole content length bytes after * msg->sov + msg->sol. */ if (msg->msg_state == HTTP_MSG_TRAILERS) goto http_end; if (http_body_bytes(msg) >= msg->body_len) /* we have enough bytes now */ goto http_end; missing_data: /* we get here if we need to wait for more data. If the buffer is full, * we have the maximum we can expect. */ if (channel_full(req, global.tune.maxrewrite)) goto http_end; if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { txn->status = 408; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; goto return_err_msg; } /* we get here if we need to wait for more data */ if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) { /* Not enough data. We'll re-use the http-request * timeout here. Ideally, we should set the timeout * relative to the accept() date. We just set the * request timeout once at the beginning of the * request. */ channel_dont_connect(req); if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); return 0; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.tv_request = now; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return_err_msg: req->analysers &= AN_REQ_FLT_END; _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); return 0; } /* send a server's name with an outgoing request over an established connection. * Note: this function is designed to be called once the request has been scheduled * for being forwarded. This is the reason why it rewinds the buffer before * proceeding. */ int http_send_name_header(struct stream *s, struct proxy* be, const char* srv_name) { struct hdr_ctx ctx; struct http_txn *txn = s->txn; char *hdr_name = be->server_id_hdr_name; int hdr_name_len = be->server_id_hdr_len; struct channel *chn = txn->req.chn; char *hdr_val; unsigned int old_o, old_i; if (IS_HTX_STRM(s)) return htx_send_name_header(s, be, srv_name); ctx.idx = 0; old_o = http_hdr_rewind(&txn->req); if (old_o) { /* The request was already skipped, let's restore it */ c_rew(chn, old_o); txn->req.next += old_o; txn->req.sov += old_o; } old_i = ci_data(chn); while (http_find_header2(hdr_name, hdr_name_len, ci_head(txn->req.chn), &txn->hdr_idx, &ctx)) { /* remove any existing values from the header */ http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } /* Add the new header requested with the server value */ hdr_val = trash.area; memcpy(hdr_val, hdr_name, hdr_name_len); hdr_val += hdr_name_len; *hdr_val++ = ':'; *hdr_val++ = ' '; hdr_val += strlcpy2(hdr_val, srv_name, trash.area + trash.size - hdr_val); http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.area, hdr_val - trash.area); if (old_o) { /* If this was a forwarded request, we must readjust the amount of * data to be forwarded in order to take into account the size * variations. Note that the current state is >= HTTP_MSG_BODY, * so we don't have to adjust ->sol. */ old_o += ci_data(chn) - old_i; c_adv(chn, old_o); txn->req.next -= old_o; txn->req.sov -= old_o; } return 0; } /* Terminate current transaction and prepare a new one. This is very tricky * right now but it works. */ void http_end_txn_clean_session(struct stream *s) { int prev_status = s->txn->status; struct proxy *fe = strm_fe(s); struct proxy *be = s->be; struct conn_stream *cs; struct connection *srv_conn; struct server *srv; unsigned int prev_flags = s->txn->flags; /* FIXME: We need a more portable way of releasing a backend's and a * server's connections. We need a safer way to reinitialize buffer * flags. We also need a more accurate method for computing per-request * data. */ cs = objt_cs(s->si[1].end); srv_conn = cs_conn(cs); /* unless we're doing keep-alive, we want to quickly close the connection * to the server. */ if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || !si_conn_ready(&s->si[1]) || !srv_conn->owner) { s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF; si_shutr(&s->si[1]); si_shutw(&s->si[1]); } if (s->flags & SF_BE_ASSIGNED) { _HA_ATOMIC_SUB(&be->beconn, 1); if (unlikely(s->srv_conn)) sess_change_server(s, NULL); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); stream_process_counters(s); if (s->txn->status) { int n; n = s->txn->status / 100; if (n < 1 || n > 5) n = 0; if (fe->mode == PR_MODE_HTTP) { _HA_ATOMIC_ADD(&fe->fe_counters.p.http.rsp[n], 1); } if ((s->flags & SF_BE_ASSIGNED) && (be->mode == PR_MODE_HTTP)) { _HA_ATOMIC_ADD(&be->be_counters.p.http.rsp[n], 1); _HA_ATOMIC_ADD(&be->be_counters.p.http.cum_req, 1); } } /* don't count other requests' data */ s->logs.bytes_in -= ci_data(&s->req); s->logs.bytes_out -= ci_data(&s->res); /* we may need to know the position in the queue */ pendconn_free(s); /* let's do a final log if we need it */ if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait && !(s->flags & SF_MONITOR) && (!(fe->options & PR_O_NULLNOLOG) || s->req.total)) { s->do_log(s); } /* stop tracking content-based counters */ stream_stop_content_counters(s); stream_update_time_stats(s); /* reset the profiling counter */ s->task->calls = 0; s->task->cpu_time = 0; s->task->lat_time = 0; s->task->call_date = (profiling & HA_PROF_TASKS) ? now_mono_time() : 0; s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ s->logs.t_handshake = 0; /* There are no handshake in keep alive connection. */ s->logs.t_idle = -1; tv_zero(&s->logs.tv_request); s->logs.t_queue = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */ s->logs.srv_queue_pos = 0; /* we will get this number soon */ s->logs.bytes_in = s->req.total = ci_data(&s->req); s->logs.bytes_out = s->res.total = ci_data(&s->res); if (objt_server(s->target)) { if (s->flags & SF_CURR_SESS) { s->flags &= ~SF_CURR_SESS; _HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); } if (may_dequeue_tasks(objt_server(s->target), be)) process_srv_queue(objt_server(s->target)); } s->target = NULL; /* If we're doing keepalive, first call the mux detach() method * to let it know we want to detach without freing the connection. * We then can call si_release_endpoint() to destroy the conn_stream */ if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || !si_conn_ready(&s->si[1]) || (srv_conn && srv_conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) srv_conn = NULL; else if (!srv_conn->owner) { srv_conn->owner = s->sess; /* Add it unconditionally to the session list, it'll be removed * later if needed by session_check_idle_conn(), once we'll * have released the endpoint and know if it no longer has * attached streams, and so an idling connection */ if (!session_add_conn(s->sess, srv_conn, s->target)) { srv_conn->owner = NULL; /* Try to add the connection to the server idle list. * If it fails, as the connection no longer has an * owner, it will be destroy later by * si_release_endpoint(), anyway */ srv_add_to_idle_list(objt_server(srv_conn->target), srv_conn); srv_conn = NULL; } } si_release_endpoint(&s->si[1]); if (srv_conn && srv_conn->owner == s->sess) { if (session_check_idle_conn(s->sess, srv_conn) != 0) srv_conn = NULL; } s->si[1].state = s->si[1].prev_state = SI_ST_INI; s->si[1].err_type = SI_ET_NONE; s->si[1].conn_retries = 0; /* used for logging too */ s->si[1].exp = TICK_ETERNITY; s->si[1].flags &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */ s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA); s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA); s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST); s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED); s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP); hlua_ctx_destroy(s->hlua); s->hlua = NULL; s->txn->meth = 0; http_reset_txn(s); s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ; if (prev_status == 401 || prev_status == 407) { /* In HTTP keep-alive mode, if we receive a 401, we still have * a chance of being able to send the visitor again to the same * server over the same connection. This is required by some * broken protocols such as NTLM, and anyway whenever there is * an opportunity for sending the challenge to the proper place, * it's better to do it (at least it helps with debugging), at * least for non-deterministic load balancing algorithms. */ s->txn->flags |= TX_PREFER_LAST; } /* Never ever allow to reuse a connection from a non-reuse backend */ if (srv_conn && (be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR) srv_conn->flags |= CO_FL_PRIVATE; if (fe->options2 & PR_O2_INDEPSTR) s->si[1].flags |= SI_FL_INDEP_STR; if (fe->options2 & PR_O2_NODELAY) { s->req.flags |= CF_NEVER_WAIT; s->res.flags |= CF_NEVER_WAIT; } /* we're removing the analysers, we MUST re-enable events detection. * We don't enable close on the response channel since it's either * already closed, or in keep-alive with an idle connection handler. */ channel_auto_read(&s->req); channel_auto_close(&s->req); channel_auto_read(&s->res); /* we're in keep-alive with an idle connection, monitor it if not already done */ if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) { srv = objt_server(srv_conn->target); if (srv) { if (srv_conn->flags & CO_FL_PRIVATE) LIST_ADD(&srv->priv_conns[tid], &srv_conn->list); else if (prev_flags & TX_NOT_FIRST) /* note: we check the request, not the connection, but * this is valid for strategies SAFE and AGGR, and in * case of ALWS, we don't care anyway. */ LIST_ADD(&srv->safe_conns[tid], &srv_conn->list); else LIST_ADD(&srv->idle_conns[tid], &srv_conn->list); } } s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0; s->res.analysers = 0; } /* This function updates the request state machine according to the response * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_req_state(struct stream *s) { struct channel *chn = &s->req; struct http_txn *txn = s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->req.msg_state; if (unlikely(txn->req.msg_state < HTTP_MSG_DONE)) return 0; if (txn->req.msg_state == HTTP_MSG_DONE) { /* No need to read anymore, the request was completely parsed. * We can shut the read side unless we want to abort_on_close, * or we have a POST request. The issue with POST requests is * that some browsers still send a CRLF after the request, and * this CRLF must be read so that it does not remain in the kernel * buffers, otherwise a close could cause an RST on some systems * (eg: Linux). * Note that if we're using keep-alive on the client side, we'd * rather poll now and keep the polling enabled for the whole * stream's life than enabling/disabling it between each * response and next request. */ if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && (!(s->be->options & PR_O_ABRT_CLOSE) || (s->si[0].flags & SI_FL_CLEAN_ABRT)) && txn->meth != HTTP_METH_POST) channel_dont_read(chn); /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ s->si[1].flags |= SI_FL_NOHALF; /* In any case we've finished parsing the request so we must * disable Nagle when sending data because 1) we're not going * to shut this side, and 2) the server is waiting for us to * send pending data. */ chn->flags |= CF_NEVER_WAIT; if (txn->rsp.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->rsp.msg_state < HTTP_MSG_DONE) { /* The server has not finished to respond, so we * don't want to move in order not to upset it. */ goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : queue a connection close to the server */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) channel_shutw_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the stream is complete * once both states are CLOSED. * * However, there is an exception if the response * length is undefined. In this case, we need to wait * the close from the server. The response will be * switched in TUNNEL mode until the end. */ if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) && txn->rsp.msg_state != HTTP_MSG_CLOSED) goto check_channel_flags; if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Tunnel mode * will not have any analyser so it needs to poll for reads. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) { channel_auto_read(chn); txn->req.msg_state = HTTP_MSG_TUNNEL; } } goto check_channel_flags; } if (txn->req.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; } goto wait_other_side; } if (txn->req.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* if we don't know whether the server will close, we need to hard close */ if (txn->rsp.flags & HTTP_MSGF_XFER_LEN) s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */ /* see above in MSG_DONE why we only do this in these states */ if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && (!(s->be->options & PR_O_ABRT_CLOSE) || (s->si[0].flags & SI_FL_CLEAN_ABRT))) channel_dont_read(chn); goto wait_other_side; } check_channel_flags: /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ txn->req.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } wait_other_side: return txn->req.msg_state != old_state || chn->flags != old_flags; } /* This function updates the response state machine according to the request * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_res_state(struct stream *s) { struct channel *chn = &s->res; struct http_txn *txn = s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->rsp.msg_state; if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE)) return 0; if (txn->rsp.msg_state == HTTP_MSG_DONE) { /* In theory, we don't need to read anymore, but we must * still monitor the server connection for a possible close * while the request is being uploaded, so we don't disable * reading. */ /* channel_dont_read(chn); */ if (txn->req.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->req.msg_state < HTTP_MSG_DONE) { /* The client seems to still be sending data, probably * because we got an error response during an upload. * We have the choice of either breaking the connection * or letting it pass through. Let's do the later. */ goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : shut read and wait for the request * side to close its output buffer. The caller will detect * when we're in DONE and the other is in CLOSED and will * catch that for the final cleanup. */ if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW))) channel_shutr_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the stream is complete * once both states are CLOSED. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Tunnel will * need to forward remaining data. Keep-alive will need to monitor * for connection closing. */ channel_auto_read(chn); chn->flags |= CF_NEVER_WAIT; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) txn->rsp.msg_state = HTTP_MSG_TUNNEL; } goto check_channel_flags; } if (txn->rsp.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->rsp.err_state = txn->rsp.msg_state; txn->rsp.msg_state = HTTP_MSG_ERROR; _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); } goto wait_other_side; } if (txn->rsp.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* drop any pending data */ channel_truncate(chn); channel_auto_close(chn); channel_auto_read(chn); goto wait_other_side; } check_channel_flags: /* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */ if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ txn->rsp.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } wait_other_side: /* We force the response to leave immediately if we're waiting for the * other side, since there is no pending shutdown to push it out. */ if (!channel_is_empty(chn)) chn->flags |= CF_SEND_DONTWAIT; return txn->rsp.msg_state != old_state || chn->flags != old_flags; } /* Resync the request and response state machines. */ void http_resync_states(struct stream *s) { struct http_txn *txn = s->txn; #ifdef DEBUG_FULL int old_req_state = txn->req.msg_state; int old_res_state = txn->rsp.msg_state; #endif http_sync_req_state(s); while (1) { if (!http_sync_res_state(s)) break; if (!http_sync_req_state(s)) break; } DPRINTF(stderr,"[%u] %s: stream=%p old=%s,%s cur=%s,%s " "req->analysers=0x%08x res->analysers=0x%08x\n", now_ms, __FUNCTION__, s, h1_msg_state_str(old_req_state), h1_msg_state_str(old_res_state), h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state), s->req.analysers, s->res.analysers); /* OK, both state machines agree on a compatible state. * There are a few cases we're interested in : * - HTTP_MSG_CLOSED on both sides means we've reached the end in both * directions, so let's simply disable both analysers. * - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either * means we must abort the request. * - HTTP_MSG_TUNNEL on either means we have to disable analyser on * corresponding channel. * - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE * on the response with server-close mode means we've completed one * request and we must re-initialize the server connection. */ if (txn->req.msg_state == HTTP_MSG_CLOSED && txn->rsp.msg_state == HTTP_MSG_CLOSED) { s->req.analysers &= AN_REQ_FLT_END; channel_auto_close(&s->req); channel_auto_read(&s->req); s->res.analysers &= AN_RES_FLT_END; channel_auto_close(&s->res); channel_auto_read(&s->res); } else if (txn->rsp.msg_state == HTTP_MSG_CLOSED || txn->rsp.msg_state == HTTP_MSG_ERROR || txn->req.msg_state == HTTP_MSG_ERROR) { s->res.analysers &= AN_RES_FLT_END; channel_auto_close(&s->res); channel_auto_read(&s->res); s->req.analysers &= AN_REQ_FLT_END; channel_abort(&s->req); channel_auto_close(&s->req); channel_auto_read(&s->req); channel_truncate(&s->req); } else if (txn->req.msg_state == HTTP_MSG_TUNNEL || txn->rsp.msg_state == HTTP_MSG_TUNNEL) { if (txn->req.msg_state == HTTP_MSG_TUNNEL) { s->req.analysers &= AN_REQ_FLT_END; if (HAS_REQ_DATA_FILTERS(s)) s->req.analysers |= AN_REQ_FLT_XFER_DATA; } if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) { s->res.analysers &= AN_RES_FLT_END; if (HAS_RSP_DATA_FILTERS(s)) s->res.analysers |= AN_RES_FLT_XFER_DATA; } channel_auto_close(&s->req); channel_auto_read(&s->req); channel_auto_close(&s->res); channel_auto_read(&s->res); } else if ((txn->req.msg_state == HTTP_MSG_DONE || txn->req.msg_state == HTTP_MSG_CLOSED) && txn->rsp.msg_state == HTTP_MSG_DONE && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { /* server-close/keep-alive: terminate this transaction, * possibly killing the server connection and reinitialize * a fresh-new transaction, but only once we're sure there's * enough room in the request and response buffer to process * another request. They must not hold any pending output data * and the response buffer must realigned * (realign is done is http_end_txn_clean_session). */ if (co_data(&s->req)) s->req.flags |= CF_WAKE_WRITE; else if (co_data(&s->res)) s->res.flags |= CF_WAKE_WRITE; else { s->req.analysers = AN_REQ_FLT_END; s->res.analysers = AN_RES_FLT_END; txn->flags |= TX_WAIT_CLEANUP; } } } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done. */ int http_request_forward_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->req; short status = 0; int ret; if (IS_HTX_STRM(s)) return htx_request_forward_body(s, req, an_bit); DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((req->flags & CF_SHUTW) && (req->to_forward || co_data(req)))) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); } /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->msg_state == HTTP_MSG_BODY) { msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK) ? HTTP_MSG_CHUNK_SIZE : HTTP_MSG_DATA); /* TODO/filters: when http-buffer-request option is set or if a * rule on url_param exists, the first chunk size could be * already parsed. In that case, msg->next is after the chunk * size (including the CRLF after the size). So this case should * be handled to */ } /* Some post-connect processing might want us to refrain from starting to * forward data. Currently, the only reason for this is "balance url_param" * whichs need to parse/process the request after we've enabled forwarding. */ if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) { if (!(s->res.flags & CF_READ_ATTACHED)) { channel_auto_connect(req); req->flags |= CF_WAKE_CONNECT; channel_dont_close(req); /* don't fail on early shutr */ goto waiting; } msg->flags &= ~HTTP_MSGF_WAIT_CONN; } /* in most states, we should abort in case of early close */ channel_auto_close(req); if (req->to_forward) { /* We can't process the buffer's contents yet */ req->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } if (msg->msg_state < HTTP_MSG_DONE) { ret = ((msg->flags & HTTP_MSGF_TE_CHNK) ? http_msg_forward_chunked_body(s, msg) : http_msg_forward_body(s, msg)); if (!ret) goto missing_data_or_waiting; if (ret < 0) goto return_bad_req; } /* other states, DONE...TUNNEL */ /* we don't want to forward closes on DONE except in tunnel mode. */ if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) channel_dont_close(req); http_resync_states(s); if (!(req->analysers & an_bit)) { if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (req->flags & CF_SHUTW) { /* request errors are most likely due to the * server aborting the transfer. */ goto return_srv_abort; } if (msg->err_pos >= 0) http_capture_bad_message(sess->fe, s, msg, msg->err_state, s->be); goto return_bad_req; } return 1; } /* If "option abortonclose" is set on the backend, we want to monitor * the client's connection and forward any shutdown notification to the * server, which will decide whether to close or to go on processing the * request. We only do that in tunnel mode, and not in other modes since * it can be abused to exhaust source ports. */ if ((s->be->options & PR_O_ABRT_CLOSE) && !(s->si[0].flags & SI_FL_CLEAN_ABRT)) { channel_auto_read(req); if ((req->flags & (CF_SHUTR|CF_READ_NULL)) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)) s->si[1].flags |= SI_FL_NOLINGER; channel_auto_close(req); } else if (s->txn->meth == HTTP_METH_POST) { /* POST requests may require to read extra CRLF sent by broken * browsers and which could cause an RST to be sent upon close * on some systems (eg: Linux). */ channel_auto_read(req); } return 0; missing_data_or_waiting: /* stop waiting for data if the input is closed before the end */ if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) goto return_cli_abort; waiting: /* waiting for the last bits to leave the buffer */ if (req->flags & CF_SHUTW) goto return_srv_abort; /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. * And when content-length is used, we never want to let the possible * shutdown be forwarded to the other side, as the state machine will * take care of it once the client responds. It's also important to * prevent TIME_WAITs from accumulating on the backend side, and for * HTTP/2 where the last frame comes with a shutdown. */ if (msg->flags & (HTTP_MSGF_TE_CHNK|HTTP_MSGF_CNT_LEN)) channel_dont_close(req); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (msg->flags & HTTP_MSGF_TE_CHNK) req->flags |= CF_EXPECT_MORE; return 0; return_cli_abort: _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; status = 400; goto return_error; return_srv_abort: _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; status = 502; goto return_error; return_bad_req: /* let's centralize all bad requests */ _HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; status = 400; return_error: txn->req.err_state = txn->req.msg_state; txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status > 0) { /* Note: we don't send any error if some data were already sent */ http_reply_and_close(s, txn->status, NULL); } else { txn->status = status; http_reply_and_close(s, txn->status, http_error_message(s)); } req->analysers &= AN_REQ_FLT_END; s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */ if (!(s->flags & SF_FINST_MASK)) s->flags |= ((txn->rsp.msg_state < HTTP_MSG_ERROR) ? SF_FINST_H : SF_FINST_D); return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; struct connection *srv_conn; int use_close_only; int cur_idx; int n; srv_conn = cs_conn(objt_cs(s->si[1].end)); if (IS_HTX_STRM(s)) return htx_wait_for_response(s, rep, an_bit); DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, ci_data(rep), rep->analysers); /* * Now parse the partial (or complete) lines. * We will check the response syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * ci_head(rep) = beginning of response * ci_head(rep) + msg->eoh = end of processed headers / start of current one * ci_tail(rep) = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte */ next_one: /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (c_data(rep) && msg->msg_state < HTTP_MSG_ERROR) { if (unlikely(!channel_is_rewritable(rep))) { /* some data has still not left the buffer, wake us once that's done */ if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto abort_response; channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ rep->flags |= CF_WAKE_WRITE; return 0; } if (unlikely(ci_tail(rep) < c_ptr(rep, msg->next) || ci_tail(rep) > b_wrap(&rep->buf) - global.tune.maxrewrite)) channel_slow_realign(rep, trash.area); if (likely(msg->next < ci_data(rep))) http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && msg->msg_state >= HTTP_MSG_BODY)) { char *eol, *sol; sol = ci_head(rep); eol = sol + (msg->sl.st.l ? msg->sl.st.l : ci_data(rep)); debug_hdr("srvrep", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("srvhdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* Invalid response */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { /* we detected a parsing error. We want to archive this response * in the dedicated proxy area for later troubleshooting. */ hdr_response_bad: if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); } abort_response: channel_auto_close(rep); rep->analysers &= AN_RES_FLT_END; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* too large response does not fit in buffer. */ else if (channel_full(rep, global.tune.maxrewrite)) { if (msg->err_pos < 0) msg->err_pos = ci_data(rep); goto hdr_response_bad; } /* read error */ else if (rep->flags & CF_READ_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); } channel_auto_close(rep); rep->analysers &= AN_RES_FLT_END; txn->status = 502; /* Check to see if the server refused the early data. * If so, just send a 425 */ if (objt_cs(s->si[1].end)) { struct connection *conn = objt_cs(s->si[1].end)->conn; if (conn->err_code == CO_ER_SSL_EARLY_FAILED) txn->status = 425; } s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* read timeout : return a 504 to the client. */ else if (rep->flags & CF_READ_TIMEOUT) { if (msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); } channel_auto_close(rep); rep->analysers &= AN_RES_FLT_END; txn->status = 504; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVTO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* client abort with an abortonclose */ else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) { _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); rep->analysers &= AN_RES_FLT_END; channel_auto_close(rep); txn->status = 400; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } /* close from server, capture the response if the server has started to respond */ else if (rep->flags & CF_SHUTR) { if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); } channel_auto_close(rep); rep->analysers &= AN_RES_FLT_END; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* write error to client (we don't send any message then) */ else if (rep->flags & CF_WRITE_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); rep->analysers &= AN_RES_FLT_END; channel_auto_close(rep); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(s->be, s, msg, msg->err_state, sess->fe); /* * 1: get the status code */ n = ci_head(rep)[msg->sl.st.c] - '0'; if (n < 1 || n > 5) n = 0; /* when the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. */ if (n == 4) stream_inc_http_err_ctr(s); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.p.http.rsp[n], 1); /* RFC7230#2.6 has enforced the format of the HTTP version string to be * exactly one digit "." one digit. This check may be disabled using * option accept-invalid-http-response. */ if (!(s->be->options2 & PR_O2_RSPBUG_OK)) { if (msg->sl.st.v_l != 8) { msg->err_pos = 0; goto hdr_response_bad; } if (ci_head(rep)[4] != '/' || !isdigit((unsigned char)ci_head(rep)[5]) || ci_head(rep)[6] != '.' || !isdigit((unsigned char)ci_head(rep)[7])) { msg->err_pos = 4; goto hdr_response_bad; } } /* check if the response is HTTP/1.1 or above */ if ((msg->sl.st.v_l == 8) && ((ci_head(rep)[5] > '1') || ((ci_head(rep)[5] == '1') && (ci_head(rep)[7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET); /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; txn->status = strl2ui(ci_head(rep) + msg->sl.st.c, msg->sl.st.c_l); /* Adjust server's health based on status code. Note: status codes 501 * and 505 are triggered on demand by client request, so we must not * count them as server failures. */ if (objt_server(s->target)) { if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_OK); else health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_STS); } /* * We may be facing a 100-continue response, or any other informational * 1xx response which is non-final, in which case this is not the right * response, and we're waiting for the next one. Let's allow this response * to go to the client and wait for the next one. There's an exception for * 101 which is used later in the code to switch protocols. */ if (txn->status < 200 && (txn->status == 100 || txn->status >= 102)) { hdr_idx_init(&txn->hdr_idx); msg->next -= channel_forward(rep, msg->next); msg->msg_state = HTTP_MSG_RPBEFORE; txn->status = 0; s->logs.t_data = -1; /* was not a response yet */ FLT_STRM_CB(s, flt_http_reset(s, msg)); goto next_one; } /* * 2: check for cacheability. */ switch (txn->status) { case 200: case 203: case 204: case 206: case 300: case 301: case 404: case 405: case 410: case 414: case 501: break; default: /* RFC7231#6.1: * Responses with status codes that are defined as * cacheable by default (e.g., 200, 203, 204, 206, * 300, 301, 404, 405, 410, 414, and 501 in this * specification) can be reused by a cache with * heuristic expiration unless otherwise indicated * by the method definition or explicit cache * controls [RFC7234]; all other status codes are * not cacheable by default. */ txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK); break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap)) http_capture_headers(ci_head(rep), &txn->hdr_idx, s->res_cap, sess->fe->rsp_cap); /* 4: determine the transfer-length according to RFC2616 #4.4, updated * by RFC7230#3.3.3 : * * The length of a message body is determined by one of the following * (in order of precedence): * * 1. Any 2xx (Successful) response to a CONNECT request implies that * the connection will become a tunnel immediately after the empty * line that concludes the header fields. A client MUST ignore * any Content-Length or Transfer-Encoding header fields received * in such a message. Any 101 response (Switching Protocols) is * managed in the same manner. * * 2. Any response to a HEAD request and any response with a 1xx * (Informational), 204 (No Content), or 304 (Not Modified) status * code is always terminated by the first empty line after the * header fields, regardless of the header fields present in the * message, and thus cannot contain a message body. * * 3. If a Transfer-Encoding header field is present and the chunked * transfer coding (Section 4.1) is the final encoding, the message * body length is determined by reading and decoding the chunked * data until the transfer coding indicates the data is complete. * * If a Transfer-Encoding header field is present in a response and * the chunked transfer coding is not the final encoding, the * message body length is determined by reading the connection until * it is closed by the server. If a Transfer-Encoding header field * is present in a request and the chunked transfer coding is not * the final encoding, the message body length cannot be determined * reliably; the server MUST respond with the 400 (Bad Request) * status code and then close the connection. * * If a message is received with both a Transfer-Encoding and a * Content-Length header field, the Transfer-Encoding overrides the * Content-Length. Such a message might indicate an attempt to * perform request smuggling (Section 9.5) or response splitting * (Section 9.4) and ought to be handled as an error. A sender MUST * remove the received Content-Length field prior to forwarding such * a message downstream. * * 4. If a message is received without Transfer-Encoding and with * either multiple Content-Length header fields having differing * field-values or a single Content-Length header field having an * invalid value, then the message framing is invalid and the * recipient MUST treat it as an unrecoverable error. If this is a * request message, the server MUST respond with a 400 (Bad Request) * status code and then close the connection. If this is a response * message received by a proxy, the proxy MUST close the connection * to the server, discard the received response, and send a 502 (Bad * Gateway) response to the client. If this is a response message * received by a user agent, the user agent MUST close the * connection to the server and discard the received response. * * 5. If a valid Content-Length header field is present without * Transfer-Encoding, its decimal value defines the expected message * body length in octets. If the sender closes the connection or * the recipient times out before the indicated number of octets are * received, the recipient MUST consider the message to be * incomplete and close the connection. * * 6. If this is a request message and none of the above are true, then * the message body length is zero (no message body is present). * * 7. Otherwise, this is a response message without a declared message * body length, so the message body length is determined by the * number of octets received prior to the server closing the * connection. */ /* Skip parsing if no content length is possible. The response flags * remain 0 as well as the chunk_len, which may or may not mirror * the real header value, and we note that we know the response's length. * FIXME: should we parse anyway and return an error on chunked encoding ? */ if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || txn->status == 101)) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely * to understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement specific * parsers for such protocols, we'll want to check the Upgrade * header which contains information about that protocol for * responses with status 101 (eg: see RFC2817 about TLS). */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN; msg->flags |= HTTP_MSGF_XFER_LEN; goto end; } if (txn->meth == HTTP_METH_HEAD || (txn->status >= 100 && txn->status < 200) || txn->status == 204 || txn->status == 304) { msg->flags |= HTTP_MSGF_XFER_LEN; goto skip_content_length; } use_close_only = 0; ctx.idx = 0; while (http_find_header2("Transfer-Encoding", 17, ci_head(rep), &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); break; } } /* Chunked responses must have their content-length removed */ ctx.idx = 0; if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) { while (http_find_header2("Content-Length", 14, ci_head(rep), &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); } else while (http_find_header2("Content-Length", 14, ci_head(rep), &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - ci_head(rep); goto hdr_response_bad; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - ci_head(rep); goto hdr_response_bad; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - ci_head(rep); goto hdr_response_bad; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - ci_head(rep); goto hdr_response_bad; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; msg->body_len = msg->chunk_len = cl; } /* check for NTML authentication headers in 401 (WWW-Authenticate) and * 407 (Proxy-Authenticate) responses and set the connection to private */ if (srv_conn && txn->status == 401) { /* check for Negotiate/NTLM WWW-Authenticate headers */ ctx.idx = 0; while (http_find_header2("WWW-Authenticate", 16, ci_head(rep), &txn->hdr_idx, &ctx)) { if ((ctx.vlen >= 9 && word_match(ctx.line + ctx.val, ctx.vlen, "Negotiate", 9)) || (ctx.vlen >= 4 && word_match(ctx.line + ctx.val, ctx.vlen, "NTLM", 4))) srv_conn->flags |= CO_FL_PRIVATE; } } else if (srv_conn && txn->status == 407) { /* check for Negotiate/NTLM Proxy-Authenticate headers */ ctx.idx = 0; while (http_find_header2("Proxy-Authenticate", 18, ci_head(rep), &txn->hdr_idx, &ctx)) { if ((ctx.vlen >= 9 && word_match(ctx.line + ctx.val, ctx.vlen, "Negotiate", 9)) || (ctx.vlen >= 4 && word_match(ctx.line + ctx.val, ctx.vlen, "NTLM", 4))) srv_conn->flags |= CO_FL_PRIVATE; } } skip_content_length: /* Now we have to check if we need to modify the Connection header. * This is more difficult on the response than it is on the request, * because we can have two different HTTP versions and we don't know * how the client will interprete a response. For instance, let's say * that the client sends a keep-alive request in HTTP/1.0 and gets an * HTTP/1.1 response without any header. Maybe it will bound itself to * HTTP/1.0 because it only knows about it, and will consider the lack * of header as a close, or maybe it knows HTTP/1.1 and can consider * the lack of header as a keep-alive. Thus we will use two flags * indicating how a request MAY be understood by the client. In case * of multiple possibilities, we'll fix the header to be explicit. If * ambiguous cases such as both close and keepalive are seen, then we * will fall back to explicit close. Note that we won't take risks with * HTTP/1.0 clients which may not necessarily understand keep-alive. * See doc/internals/connection-header.txt for the complete matrix. */ if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { int to_del = 0; /* on unknown transfer length, we must close */ if (!(msg->flags & HTTP_MSGF_XFER_LEN)) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; /* now adjust header transformations depending on current state */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { to_del |= 2; /* remove "keep-alive" on any response */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" for HTTP/1.0 responses */ } else { /* SCL / KAL */ to_del |= 1; /* remove "close" on any response */ if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11) to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */ } /* Parse and remove some headers from the connection header */ http_parse_connection_header(txn, msg, to_del); /* Some keep-alive responses are converted to Server-close if * the server wants to close. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) { if ((txn->flags & TX_HDR_CONN_CLO) || (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11))) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL; } } end: /* we want to have the response time before we start processing it */ s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now); /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; channel_auto_close(rep); return 1; abort_keep_alive: /* A keep-alive request to the server failed on a network error. * The client is required to retry. We need to close without returning * any other information so that the client retries. */ txn->status = 0; rep->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; channel_auto_close(rep); s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ channel_truncate(rep); http_reply_and_close(s, txn->status, NULL); return 0; } /* This function performs all the processing enabled for the current response. * It normally returns 1 unless it wants to break. It relies on buffers flags, * and updates s->res.analysers. It might make sense to explode it into several * other functions. It works like process_request (see indications above). */ int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct proxy *cur_proxy; struct cond_wordlist *wl; enum rule_result ret = HTTP_RULE_RES_CONT; if (IS_HTX_STRM(s)) return htx_process_res_common(s, rep, an_bit, px); DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, ci_data(rep), rep->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; /* The stats applet needs to adjust the Connection header but we don't * apply any filter there. */ if (unlikely(objt_applet(s->target) == &http_stats_applet)) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; goto skip_filters; } /* * We will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. * * Maybe we are in resume condiion. In this case I choose the * "struct proxy" which contains the rule list matching the resume * pointer. If none of theses "struct proxy" match, I initialise * the process with the first one. * * In fact, I check only correspondance betwwen the current list * pointer and the ->fe rule list. If it doesn't match, I initialize * the loop with the ->be. */ if (s->current_rule_list == &sess->fe->http_res_rules) cur_proxy = sess->fe; else cur_proxy = s->be; while (1) { struct proxy *rule_set = cur_proxy; /* evaluate http-response rules */ if (ret == HTTP_RULE_RES_CONT) { ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s); if (ret == HTTP_RULE_RES_BADREQ) goto return_srv_prx_502; if (ret == HTTP_RULE_RES_DONE) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } } /* we need to be called again. */ if (ret == HTTP_RULE_RES_YIELD) { channel_dont_close(rep); return 0; } /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (apply_filters_to_response(s, rep, rule_set) < 0) { return_bad_resp: if (objt_server(s->target)) { _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); } _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); return_srv_prx_502: rep->analysers &= AN_RES_FLT_END; txn->status = 502; s->logs.t_data = -1; /* was not a valid response */ s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1); _HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); goto return_srv_prx_502; } /* add response headers from the rule sets in the same order */ list_for_each_entry(wl, &rule_set->rsp_add, list) { if (txn->status < 200 && txn->status != 101) break; if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, wl->s, strlen(wl->s)) < 0)) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == sess->fe) break; cur_proxy = sess->fe; } /* After this point, this anayzer can't return yield, so we can * remove the bit corresponding to this analyzer from the list. * * Note that the intermediate returns and goto found previously * reset the analyzers. */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; /* OK that's all we can do for 1xx responses */ if (unlikely(txn->status < 200 && txn->status != 101)) goto skip_header_mangling; /* * Now check for a server cookie. */ if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE)) manage_server_side_cookies(s, rep); /* * Check for cache-control or pragma headers if required. */ if ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) check_response_for_cacheability(s, rep); /* * Add server cookie in the response if needed */ if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) && !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) && (!(s->flags & SF_DIRECT) || ((s->be->cookie_maxidle || txn->cookie_last_date) && (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || (s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && !(s->flags & SF_IGNORE_PRST)) { /* the server is known, it's not the one the client requested, or the * cookie's last seen date needs to be refreshed. We have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ if (!objt_server(s->target)->cookie) { chunk_printf(&trash, "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", s->be->cookie_name); } else { chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie); if (s->be->cookie_maxidle || s->be->cookie_maxlife) { /* emit last_date, which is mandatory */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64((date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; if (s->be->cookie_maxlife) { /* emit first_date, which is either the original one or * the current date. */ trash.area[trash.data++] = COOKIE_DELIM_DATE; s30tob64(txn->cookie_first_date ? txn->cookie_first_date >> 2 : (date.tv_sec+3) >> 2, trash.area + trash.data); trash.data += 5; } } chunk_appendf(&trash, "; path=/"); } if (s->be->cookie_domain) chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain); if (s->be->ck_opts & PR_CK_HTTPONLY) chunk_appendf(&trash, "; HttpOnly"); if (s->be->ck_opts & PR_CK_SECURE) chunk_appendf(&trash, "; Secure"); if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.area, trash.data) < 0)) goto return_bad_resp; txn->flags &= ~TX_SCK_MASK; if (__objt_server(s->target)->cookie && (s->flags & SF_DIRECT)) /* the server did not change, only the date was updated */ txn->flags |= TX_SCK_UPDATED; else txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, "Cache-control: private", 22) < 0)) goto return_bad_resp; } } /* * Check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && (s->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_secu, 1); _HA_ATOMIC_ADD(&s->be->be_counters.denied_resp, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.denied_resp, 1); if (sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->denied_resp, 1); ha_alert("Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); send_log(s->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); goto return_srv_prx_502; } skip_filters: /* * Adjust "Connection: close" or "Connection: keep-alive" if needed. * If an "Upgrade" token is found, the header is left untouched in order * not to have to deal with some client bugs : some of them fail an upgrade * if anything but "Upgrade" is present in the Connection header. We don't * want to touch any 101 response either since it's switching to another * protocol. */ if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { unsigned int want_flags = 0; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* we want a keep-alive response here. Keep-alive header * required if either side is not 1.1. */ if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11)) want_flags |= TX_CON_KAL_SET; } else { /* CLO */ /* we want a close response here. Close header required if * the server is 1.1, regardless of the client. */ if (msg->flags & HTTP_MSGF_VER_11) want_flags |= TX_CON_CLO_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } skip_header_mangling: /* Always enter in the body analyzer */ rep->analysers &= ~AN_RES_FLT_XFER_DATA; rep->analysers |= AN_RES_HTTP_XFER_BODY; /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_data; /* to get a valid end date */ s->logs.bytes_out = txn->rsp.eoh; s->do_log(s); s->logs.bytes_out = 0; } return 1; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * * It is capable of compressing response data both in content-length mode and * in chunked mode. The state machines follows different flows depending on * whether content-length and chunked modes are used, since there are no * trailers in content-length : * * chk-mode cl-mode * ,----- BODY -----. * / \ * V size > 0 V chk-mode * .--> SIZE -------------> DATA -------------> CRLF * | | size == 0 | last byte | * | v final crlf v inspected | * | TRAILERS -----------> DONE | * | | * `----------------------------------------------' * * Compression only happens in the DATA state, and must be flushed in final * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding * is performed at once on final states for all bytes parsed, or when leaving * on missing data. */ int http_response_forward_body(struct stream *s, struct channel *res, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->rsp; int ret; if (IS_HTX_STRM(s)) return htx_response_forward_body(s, res, an_bit); DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, res, res->rex, res->wex, res->flags, ci_data(res), res->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((res->flags & CF_SHUTW) && (res->to_forward || co_data(res))) || !s->req.analysers) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->err_state = msg->msg_state; msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); return 1; } /* in most states, we should abort in case of early close */ channel_auto_close(res); if (msg->msg_state == HTTP_MSG_BODY) { msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK) ? HTTP_MSG_CHUNK_SIZE : HTTP_MSG_DATA); } if (res->to_forward) { /* We can't process the buffer's contents yet */ res->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } if (msg->msg_state < HTTP_MSG_DONE) { ret = ((msg->flags & HTTP_MSGF_TE_CHNK) ? http_msg_forward_chunked_body(s, msg) : http_msg_forward_body(s, msg)); if (!ret) goto missing_data_or_waiting; if (ret < 0) goto return_bad_res; } /* other states, DONE...TUNNEL */ /* for keep-alive we don't want to forward closes on DONE */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); http_resync_states(s); if (!(res->analysers & an_bit)) { if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (res->flags & CF_SHUTW) { /* response errors are most likely due to the * client aborting the transfer. */ goto return_cli_abort; } if (msg->err_pos >= 0) http_capture_bad_message(s->be, s, msg, msg->err_state, strm_fe(s)); goto return_bad_res; } return 1; } return 0; missing_data_or_waiting: if (res->flags & CF_SHUTW) goto return_cli_abort; /* stop waiting for data if the input is closed before the end. If the * client side was already closed, it means that the client has aborted, * so we don't want to count this as a server abort. Otherwise it's a * server abort. */ if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) { if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW)) goto return_cli_abort; /* If we have some pending data, we continue the processing */ if (!ci_data(res)) goto return_srv_abort; } /* we need to obey the req analyser, so if it leaves, we must too */ if (!s->req.analysers) goto return_bad_res; /* When TE: chunked is used, we need to get there again to parse * remaining chunks even if the server has closed, so we don't want to * set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side * or if there are filters registered on the stream, we don't want to * forward a close */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || HAS_DATA_FILTERS(s, res) || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING)) res->flags |= CF_EXPECT_MORE; /* the stream handler will take care of timeouts and errors */ return 0; return_srv_abort: _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; goto return_error; return_cli_abort: _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; goto return_error; return_bad_res: _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (objt_server(s->target)) { _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1); health_adjust(__objt_server(s->target), HANA_STATUS_HTTP_RSP); } if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; return_error: txn->rsp.err_state = txn->rsp.msg_state; txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ http_reply_and_close(s, txn->status, NULL); res->analysers &= AN_RES_FLT_END; s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */ if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; return 0; } int http_msg_forward_body(struct stream *s, struct http_msg *msg) { struct channel *chn = msg->chn; int ret; /* Here we have the guarantee to be in HTTP_MSG_DATA or HTTP_MSG_ENDING state */ if (msg->msg_state == HTTP_MSG_ENDING) goto ending; /* Neither content-length, nor transfer-encoding was found, so we must * read the body until the server connection is closed. In that case, we * eat data as they come. Of course, this happens for response only. */ if (!(msg->flags & HTTP_MSGF_XFER_LEN)) { unsigned long long len = ci_data(chn) - msg->next; msg->chunk_len += len; msg->body_len += len; } ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg), /* default_ret */ MIN(msg->chunk_len, ci_data(chn) - msg->next), /* on_error */ goto error); msg->next += ret; msg->chunk_len -= ret; if (msg->chunk_len) { /* input empty or output full */ if (ci_data(chn) > msg->next) chn->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } /* This check can only be true for a response. HTTP_MSGF_XFER_LEN is * always set for a request. */ if (!(msg->flags & HTTP_MSGF_XFER_LEN)) { /* The server still sending data that should be filtered */ if (!(chn->flags & CF_SHUTR) && HAS_DATA_FILTERS(s, chn)) goto missing_data_or_waiting; msg->msg_state = HTTP_MSG_TUNNEL; goto ending; } msg->msg_state = HTTP_MSG_ENDING; ending: /* we may have some pending data starting at res->buf.p such as a last * chunk of data or trailers. */ ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), /* default_ret */ msg->next, /* on_error */ goto error); c_adv(chn, ret); msg->next -= ret; if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)) msg->sov -= ret; if (msg->next) goto waiting; FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg), /* default_ret */ 1, /* on_error */ goto error, /* on_wait */ goto waiting); if (msg->msg_state == HTTP_MSG_ENDING) msg->msg_state = HTTP_MSG_DONE; return 1; missing_data_or_waiting: /* we may have some pending data starting at chn->buf.p */ ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), /* default_ret */ msg->next, /* on_error */ goto error); c_adv(chn, ret); msg->next -= ret; if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0) msg->sov -= ret; if (!HAS_DATA_FILTERS(s, chn)) msg->chunk_len -= channel_forward(chn, msg->chunk_len); waiting: return 0; error: return -1; } int http_msg_forward_chunked_body(struct stream *s, struct http_msg *msg) { struct channel *chn = msg->chn; unsigned int chunk; int ret; /* Here we have the guarantee to be in one of the following state: * HTTP_MSG_DATA, HTTP_MSG_CHUNK_SIZE, HTTP_MSG_CHUNK_CRLF, * HTTP_MSG_TRAILERS or HTTP_MSG_ENDING. */ if (msg->msg_state == HTTP_MSG_ENDING) goto ending; /* Don't parse chunks if there is no input data */ if (!ci_data(chn)) goto waiting; switch_states: switch (msg->msg_state) { case HTTP_MSG_DATA: ret = FLT_STRM_DATA_CB(s, chn, flt_http_data(s, msg), /* default_ret */ MIN(msg->chunk_len, ci_data(chn) - msg->next), /* on_error */ goto error); msg->next += ret; msg->chunk_len -= ret; if (msg->chunk_len) { /* input empty or output full */ if (ci_data(chn) > msg->next) chn->flags |= CF_WAKE_WRITE; goto missing_data_or_waiting; } /* nothing left to forward for this chunk*/ msg->msg_state = HTTP_MSG_CHUNK_CRLF; /* fall through for HTTP_MSG_CHUNK_CRLF */ case HTTP_MSG_CHUNK_CRLF: /* we want the CRLF after the data */ ret = h1_skip_chunk_crlf(&chn->buf, co_data(chn) + msg->next, c_data(chn)); if (ret == 0) goto missing_data_or_waiting; if (ret < 0) { msg->err_pos = ci_data(chn) + ret; if (msg->err_pos < 0) msg->err_pos += chn->buf.size; goto chunk_parsing_error; } msg->next += ret; msg->msg_state = HTTP_MSG_CHUNK_SIZE; /* fall through for HTTP_MSG_CHUNK_SIZE */ case HTTP_MSG_CHUNK_SIZE: /* read the chunk size and assign it to ->chunk_len, * then set ->next to point to the body and switch to * DATA or TRAILERS state. */ ret = h1_parse_chunk_size(&chn->buf, co_data(chn) + msg->next, c_data(chn), &chunk); if (ret == 0) goto missing_data_or_waiting; if (ret < 0) { msg->err_pos = ci_data(chn) + ret; if (msg->err_pos < 0) msg->err_pos += chn->buf.size; goto chunk_parsing_error; } msg->sol = ret; msg->next += ret; msg->chunk_len = chunk; msg->body_len += chunk; if (msg->chunk_len) { msg->msg_state = HTTP_MSG_DATA; goto switch_states; } msg->msg_state = HTTP_MSG_TRAILERS; /* fall through for HTTP_MSG_TRAILERS */ case HTTP_MSG_TRAILERS: ret = http_forward_trailers(msg); if (ret < 0) goto chunk_parsing_error; FLT_STRM_DATA_CB(s, chn, flt_http_chunk_trailers(s, msg), /* default_ret */ 1, /* on_error */ goto error); msg->next += msg->sol; if (!ret) goto missing_data_or_waiting; break; default: /* This should no happen in this function */ goto error; } msg->msg_state = HTTP_MSG_ENDING; ending: /* we may have some pending data starting at res->buf.p such as a last * chunk of data or trailers. */ ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), /* default_ret */ msg->next, /* on_error */ goto error); c_adv(chn, ret); msg->next -= ret; if (unlikely(!(chn->flags & CF_WROTE_DATA) || msg->sov > 0)) msg->sov -= ret; if (msg->next) goto waiting; FLT_STRM_DATA_CB(s, chn, flt_http_end(s, msg), /* default_ret */ 1, /* on_error */ goto error, /* on_wait */ goto waiting); msg->msg_state = HTTP_MSG_DONE; return 1; missing_data_or_waiting: /* we may have some pending data starting at chn->buf.p */ ret = FLT_STRM_DATA_CB(s, chn, flt_http_forward_data(s, msg, msg->next), /* default_ret */ msg->next, /* on_error */ goto error); c_adv(chn, ret); msg->next -= ret; if (!(chn->flags & CF_WROTE_DATA) || msg->sov > 0) msg->sov -= ret; if (!HAS_DATA_FILTERS(s, chn)) msg->chunk_len -= channel_forward(chn, msg->chunk_len); waiting: return 0; chunk_parsing_error: if (msg->err_pos >= 0) { if (chn->flags & CF_ISRESP) http_capture_bad_message(s->be, s, msg, msg->msg_state, strm_fe(s)); else http_capture_bad_message(strm_fe(s), s, msg, msg->msg_state, s->be); } error: return -1; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = s->txn; struct hdr_idx_elem *cur_hdr; int delta, len; last_hdr = 0; cur_next = ci_head(req) + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; last_hdr = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; last_hdr = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, cur_ptr, exp->replace, pmatch); if (len < 0) return -1; delta = b_rep_blk(&req->buf, cur_ptr, cur_end, trash.area, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); break; case ACT_REMOVE: delta = b_rep_blk(&req->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->req, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp) { char *cur_ptr, *cur_end; int done; struct http_txn *txn = s->txn; int delta, len; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = ci_head(req); cur_end = cur_ptr + txn->req.sl.rq.l; /* Now we have the request line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; done = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, cur_ptr, exp->replace, pmatch); if (len < 0) return -1; delta = b_rep_blk(&req->buf, cur_ptr, cur_end, trash.area, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->req, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full request and we know that we have either a CR * or an LF at . */ txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } return done; } /* * Apply all the req filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->req_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) break; if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) continue; /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the request line. */ ret = apply_filter_to_req_line(s, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0)) return -1; } } return 0; } /* Delete a value in a header between delimiters and in buffer * . The number of characters displaced is returned, and the pointer to * the first delimiter is updated if required. The function tries as much as * possible to respect the following principles : * - replace delimiter by the one unless points to a * colon, in which case is simply removed * - set exactly one space character after the new first delimiter, unless * there are not enough characters in the block being moved to do so. * - remove unneeded spaces before the previous delimiter and after the new * one. * * It is the caller's responsibility to ensure that : * - points to a valid delimiter or the colon ; * - points to a valid delimiter or the final CR/LF ; * - there are non-space chars before ; * - there is a CR/LF at or after . */ static int del_hdr_value(struct buffer *buf, char **from, char *next) { char *prev = *from; if (*prev == ':') { /* We're removing the first value, preserve the colon and add a * space if possible. */ if (!HTTP_IS_CRLF(*next)) next++; prev++; if (prev < next) *prev++ = ' '; while (HTTP_IS_SPHT(*next)) next++; } else { /* Remove useless spaces before the old delimiter. */ while (HTTP_IS_SPHT(*(prev-1))) prev--; *from = prev; /* copy the delimiter and if possible a space if we're * not at the end of the line. */ if (!HTTP_IS_CRLF(*next)) { *prev++ = *next++; if (prev + 1 < next) *prev++ = ' '; while (HTTP_IS_SPHT(*next)) next++; } } return b_rep_blk(buf, prev, next, NULL, 0); } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. This code is quite complex because * of the multiple very crappy and ambiguous syntaxes we have to support. it * highly recommended not to touch this part without a good reason ! */ void manage_client_side_cookies(struct stream *s, struct channel *req) { struct http_txn *txn = s->txn; struct session *sess = s->sess; int preserve_hdr; int cur_idx, old_idx; char *hdr_beg, *hdr_end, *hdr_next, *del_from; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers, we start with the start line. */ old_idx = 0; hdr_next = ci_head(req) + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6); if (!val) { old_idx = cur_idx; continue; } del_from = NULL; /* nothing to be deleted */ preserve_hdr = 0; /* assume we may kill the whole header */ /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it. * * Note: RFC2965 is unclear about the processing of spaces around * the equal sign in the ATTR=VALUE form. A careful inspection of * the RFC explicitly allows spaces before it, and not within the * tokens (attrs or values). An inspection of RFC2109 allows that * too but section 10.1.3 lets one think that spaces may be allowed * after the equal sign too, resulting in some (rare) buggy * implementations trying to do that. So let's do what servers do. * Latest ietf draft forbids spaces all around. Also, earlier RFCs * allowed quoted strings in values, with any possible character * after a backslash, including control chars and delimitors, which * causes parsing to become ambiguous. Browsers also allow spaces * within values even without quotes. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header. All of these headers are valid : * * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n * | | | | | | | | | * | | | | | | | | hdr_end <--+ * | | | | | | | +--> next * | | | | | | +----> val_end * | | | | | +-----------> val_beg * | | | | +--------------> equal * | | | +----------------> att_end * | | +---------------------> att_beg * | +--------------------------> prev * +--------------------------------> hdr_beg */ for (prev = hdr_beg + 6; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ',' || *equal == ';') break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else { val_beg = val_end = next = equal; } /* We have nothing to do with attributes beginning with '$'. However, * they will automatically be removed if a header before them is removed, * since they're supposed to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(&req->buf, &del_from, prev); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } continue; } /* if there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = b_rep_blk(&req->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = b_rep_blk(&req->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->req, stripped_before); } /* now everything is as on the diagram above */ /* First, let's see if we want to capture this cookie. We check * that we don't already have a client side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->cli_cookie, att_beg, log_len); txn->cli_cookie[log_len] = 0; } } /* Persistence cookies in passive, rewrite or insert mode have the * following form : * * Cookie: NAME=SRV[|[|]] * * For cookies in prefix mode, the form is : * * Cookie: NAME=SRV~VALUE */ if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { struct server *srv = s->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID between val_beg and delim, and the original cookie between * delim+1 and val_end. Otherwise, delim==val_end : * * Cookie: NAME=SRV; # in all but prefix modes * Cookie: NAME=SRV~OPAQUE ; # in prefix mode * | || || | |+-> next * | || || | +--> val_end * | || || +---------> delim * | || |+------------> val_beg * | || +-------------> att_end = equal * | |+-----------------> att_beg * | +------------------> prev * +-------------------------> hdr_beg */ if (s->be->ck_opts & PR_CK_PFX) { for (delim = val_beg; delim < val_end; delim++) if (*delim == COOKIE_DELIM) break; } else { char *vbar1; delim = val_end; /* Now check if the cookie contains a date field, which would * appear after a vertical bar ('|') just after the server name * and before the delimiter. */ vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); if (vbar1) { /* OK, so left of the bar is the server's cookie and * right is the last seen date. It is a base64 encoded * 30-bit value representing the UNIX date since the * epoch in 4-second quantities. */ int val; delim = vbar1++; if (val_end - vbar1 >= 5) { val = b64tos30(vbar1); if (val > 0) txn->cookie_last_date = val << 2; } /* look for a second vertical bar */ vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); if (vbar1 && (val_end - vbar1 > 5)) { val = b64tos30(vbar1 + 1); if (val > 0) txn->cookie_first_date = val << 2; } } } /* if the cookie has an expiration date and the proxy wants to check * it, then we do that now. We first check if the cookie is too old, * then only if it has expired. We detect strict overflow because the * time resolution here is not great (4 seconds). Cookies with dates * in the future are ignored if their offset is beyond one day. This * allows an admin to fix timezone issues without expiring everyone * and at the same time avoids keeping unwanted side effects for too * long. */ if (txn->cookie_first_date && s->be->cookie_maxlife && (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) || ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_OLD; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } else if (txn->cookie_last_date && s->be->cookie_maxidle && (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) || ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_EXPIRED; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. * The same behaviour is applied when persistence must be ignored. */ if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - val_beg) && !memcmp(val_beg, srv->cookie, delim - val_beg)) { if ((srv->cur_state != SRV_ST_STOPPED) || (s->be->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { /* we found the server and we can use it */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN; s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } else { /* we found a server, but it's down, * mark it as such and go on in case * another one is available. */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { /* no server matched this cookie or we deliberately skipped it */ txn->flags &= ~TX_CK_MASK; if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) txn->flags |= TX_CK_UNUSED; else txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidently removed later, * if we're in cookie prefix mode */ if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { int delta; /* negative */ delta = b_rep_blk(&req->buf, val_beg, delim + 1, NULL, 0); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); del_from = NULL; preserve_hdr = 1; /* we want to keep this cookie */ } else if (del_from == NULL && (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { del_from = prev; } } else { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(&req->buf, &del_from, prev); if (att_beg >= del_from) att_beg += delta; if (att_end >= del_from) att_end += delta; val_beg += delta; val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } } /* continue with next cookie on this header line */ att_beg = next; } /* for each cookie */ /* There are no more cookies on this line. * We may still have one (or several) marked for deletion at the * end of the line. We must do this now in two ways : * - if some cookies must be preserved, we only delete from the * mark to the end of line ; * - if nothing needs to be preserved, simply delete the whole header */ if (del_from) { int delta; if (preserve_hdr) { delta = del_hdr_value(&req->buf, &del_from, hdr_end); hdr_end = del_from; cur_hdr->len += delta; } else { delta = b_rep_blk(&req->buf, hdr_beg, hdr_next, NULL, 0); /* FIXME: this should be a separate function */ txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; } hdr_next += delta; http_msg_move_end(&txn->req, delta); } /* check next header */ old_idx = cur_idx; } } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = s->txn; struct hdr_idx_elem *cur_hdr; int delta, len; last_hdr = 0; cur_next = ci_head(rtr) + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; last_hdr = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, cur_ptr, exp->replace, pmatch); if (len < 0) return -1; delta = b_rep_blk(&rtr->buf, cur_ptr, cur_end, trash.area, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); break; case ACT_REMOVE: delta = b_rep_blk(&rtr->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp) { char *cur_ptr, *cur_end; int done; struct http_txn *txn = s->txn; int delta, len; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = ci_head(rtr); cur_end = cur_ptr + txn->rsp.sl.st.l; /* Now we have the status line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: len = exp_replace(trash.area, trash.size, cur_ptr, exp->replace, pmatch); if (len < 0) return -1; delta = b_rep_blk(&rtr->buf, cur_ptr, cur_end, trash.area, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->rsp, delta); cur_end += delta; cur_end = (char *)http_parse_stsline(&txn->rsp, HTTP_MSG_RPVER, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full respnse and we know that we have either a CR * or an LF at . */ txn->status = strl2ui(ci_head(rtr) + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } return done; } /* * Apply all the resp filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->rsp_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & TX_SVDENY) break; if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the status line. */ ret = apply_filter_to_sts_line(s, rtr, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0)) return -1; } } return 0; } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. This function is also used when we * just need to know if there is a cookie (eg: for check-cache). */ void manage_server_side_cookies(struct stream *s, struct channel *res) { struct http_txn *txn = s->txn; struct session *sess = s->sess; struct server *srv; int is_cookie2; int cur_idx, old_idx, delta; char *hdr_beg, *hdr_end, *hdr_next; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; hdr_next = ci_head(res) + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Set-Cookie" and "Set-Cookie2" headers. */ is_cookie2 = 0; prev = hdr_beg + 10; val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10); if (!val) { val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11); if (!val) { old_idx = cur_idx; continue; } is_cookie2 = 1; prev = hdr_beg + 11; } /* OK, right now we know we have a Set-Cookie* at hdr_beg, and * points to the colon. */ txn->flags |= TX_SCK_PRESENT; /* Maybe we only wanted to see if there was a Set-Cookie (eg: * check-cache is enabled) and we are not interested in checking * them. Warning, the cookie capture is declared in the frontend. */ if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL) return; /* OK so now we know we have to process this response cookie. * The format of the Set-Cookie header is slightly different * from the format of the Cookie header in that it does not * support the comma as a cookie delimiter (thus the header * cannot be folded) because the Expires attribute described in * the original Netscape's spec may contain an unquoted date * with a comma inside. We have to live with this because * many browsers don't support Max-Age and some browsers don't * support quoted strings. However the Set-Cookie2 header is * clean. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header (in case of set-cookie2). A special * pointer, points to the beginning of the set-cookie-av * fields after the first semi-colon. The pointer points * either to the end of line (set-cookie) or next unquoted comma * (set-cookie2). All of these headers are valid : * * Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n * | | | | | | | | | | * | | | | | | | | +-> next hdr_end <--+ * | | | | | | | +------------> scav * | | | | | | +--------------> val_end * | | | | | +--------------------> val_beg * | | | | +----------------------> equal * | | | +------------------------> att_end * | | +----------------------------> att_beg * | +------------------------------> prev * +-----------------------------------------> hdr_beg */ for (; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg)) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ',')) break; if (HTTP_IS_SPHT(*equal++)) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg)) val_beg++; /* find the end of the value, respecting quotes */ next = http_find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1))) val_end--; } else { /* points to next comma, semi-colon or EOL */ val_beg = val_end = next = equal; } if (next < hdr_end) { /* Set-Cookie2 supports multiple cookies, and points to * a colon or semi-colon before the end. So skip all attr-value * pairs and look for the next comma. For Set-Cookie, since * commas are permitted in values, skip to the end. */ if (is_cookie2) next = http_find_hdr_value_end(next, hdr_end); else next = hdr_end; } /* Now everything is as on the diagram above */ /* Ignore cookies with no equal sign */ if (equal == val_end) continue; /* If there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = b_rep_blk(&res->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = b_rep_blk(&res->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->rsp, stripped_before); } /* First, let's see if we want to capture this cookie. We check * that we don't already have a server side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->srv_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) { ha_alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->srv_cookie, att_beg, log_len); txn->srv_cookie[log_len] = 0; } } srv = objt_server(s->target); /* now check if we need to process it for persistence */ if (!(s->flags & SF_IGNORE_PRST) && (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { /* assume passive cookie by default */ txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_FOUND; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (s->be->ck_opts & PR_CK_PSV) { /* The "preserve" flag was set, we don't want to touch the * server's cookie. */ } else if ((srv && (s->be->ck_opts & PR_CK_INS)) || ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) { /* this cookie must be deleted */ if (*prev == ':' && next == hdr_end) { /* whole header */ delta = b_rep_blk(&res->buf, hdr_beg, hdr_next, NULL, 0); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; hdr_next += delta; http_msg_move_end(&txn->rsp, delta); /* note: while both invalid now, and * are still equal, so the for() will stop as expected. */ } else { /* just remove the value */ int delta = del_hdr_value(&res->buf, &prev, next); next = prev; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); } txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_DELETED; /* and go on with next cookie */ } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) { /* replace bytes val_beg->val_end with the cookie name associated * with this server since we know it. */ delta = b_rep_blk(&res->buf, val_beg, val_end, srv->cookie, srv->cklen); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimiter between them.. */ delta = b_rep_blk(&res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); val_beg[srv->cklen] = COOKIE_DELIM; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } } /* that's done for this cookie, check the next one on the same * line when next != hdr_end (only if is_cookie2). */ } /* check next header */ old_idx = cur_idx; } } /* * Parses the Cache-Control and Pragma request header fields to determine if * the request may be served from the cache and/or if it is cacheable. Updates * s->txn->flags. */ void check_request_for_cacheability(struct stream *s, struct channel *chn) { struct http_txn *txn = s->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int pragma_found; int cc_found; int cur_idx; if (IS_HTX_STRM(s)) return htx_check_request_for_cacheability(s, chn); if ((txn->flags & (TX_CACHEABLE|TX_CACHE_IGNORE)) == TX_CACHE_IGNORE) return; /* nothing more to do here */ cur_idx = 0; pragma_found = cc_found = 0; cur_next = ci_head(chn) + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { pragma_found = 1; continue; } } /* Don't use the cache and don't try to store if we found the * Authorization header */ val = http_header_match2(cur_ptr, cur_end, "Authorization", 13); if (val) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; txn->flags |= TX_CACHE_IGNORE; continue; } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ cc_found = 1; p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2. We don't check the * values after max-age, max-stale nor min-fresh, we simply don't * use the cache when they're specified. */ if (((p2 - p1 == 7) && strncasecmp(p1, "max-age", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "max-stale", 9) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "min-fresh", 9) == 0)) { txn->flags |= TX_CACHE_IGNORE; continue; } if ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } } /* RFC7234#5.4: * When the Cache-Control header field is also present and * understood in a request, Pragma is ignored. * When the Cache-Control header field is not present in a * request, caches MUST consider the no-cache request * pragma-directive as having the same effect as if * "Cache-Control: no-cache" were present. */ if (!cc_found && pragma_found) txn->flags |= TX_CACHE_IGNORE; } /* * Check if response is cacheable or not. Updates s->txn->flags. */ void check_response_for_cacheability(struct stream *s, struct channel *rtr) { struct http_txn *txn = s->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int cur_idx; if (IS_HTX_STRM(s)) return htx_check_response_for_cacheability(s, rtr); if (txn->status < 200) { /* do not try to cache interim responses! */ txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } /* Iterate through the headers. * we start with the start line. */ cur_idx = 0; cur_next = ci_head(rtr) + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2 */ if (p2 < cur_end && *p2 == '=') { if (((cur_end - p2) > 1 && (p2 - p1 == 7) && strncasecmp(p1, "max-age=0", 9) == 0) || ((cur_end - p2) > 1 && (p2 - p1 == 8) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; continue; } /* we have something of the form no-cache="set-cookie" */ if ((cur_end - p1 >= 21) && strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 && (p1[20] == '"' || p1[20] == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* * In a GET, HEAD or POST request, check if the requested URI matches the stats uri * for the current backend. * * It is assumed that the request is either a HEAD, GET, or POST and that the * uri_auth field is valid. * * Returns 1 if stats should be provided, otherwise 0. */ int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend) { struct uri_auth *uri_auth = backend->uri_auth; struct http_msg *msg = &txn->req; const char *uri = ci_head(msg->chn)+ msg->sl.rq.u; if (!uri_auth) return 0; if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) return 0; /* check URI size */ if (uri_auth->uri_len > msg->sl.rq.u_l) return 0; if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; return 1; } /* Append the description of what is present in error snapshot into . * The description must be small enough to always fit in a trash. The output * buffer may be the trash so the trash must not be used inside this function. */ void http_show_error_snapshot(struct buffer *out, const struct error_snapshot *es) { chunk_appendf(out, " stream #%d, stream flags 0x%08x, tx flags 0x%08x\n" " HTTP msg state %s(%d), msg flags 0x%08x\n" " HTTP chunk len %lld bytes, HTTP body len %lld bytes, channel flags 0x%08x :\n", es->ctx.http.sid, es->ctx.http.s_flags, es->ctx.http.t_flags, h1_msg_state_str(es->ctx.http.state), es->ctx.http.state, es->ctx.http.m_flags, es->ctx.http.m_clen, es->ctx.http.m_blen, es->ctx.http.b_flags); } /* * Capture a bad request or response and archive it in the proxy's structure. * By default it tries to report the error position as msg->err_pos. However if * this one is not set, it will then report msg->next, which is the last known * parsing point. The function is able to deal with wrapping buffers. It always * displays buffers as a contiguous area starting at buf->p. The direction is * determined thanks to the channel's flags. */ void http_capture_bad_message(struct proxy *proxy, struct stream *s, struct http_msg *msg, enum h1_state state, struct proxy *other_end) { union error_snapshot_ctx ctx; long ofs; /* http-specific part now */ ctx.http.sid = s->uniq_id; ctx.http.state = state; ctx.http.b_flags = msg->chn->flags; ctx.http.s_flags = s->flags; ctx.http.t_flags = s->txn->flags; ctx.http.m_flags = msg->flags; ctx.http.m_clen = msg->chunk_len; ctx.http.m_blen = msg->body_len; ofs = msg->chn->total - ci_data(msg->chn); if (ofs < 0) ofs = 0; proxy_capture_error(proxy, !!(msg->chn->flags & CF_ISRESP), other_end, s->target, strm_sess(s), &msg->chn->buf, ofs, co_data(msg->chn), (msg->err_pos >= 0) ? msg->err_pos : msg->next, &ctx, http_show_error_snapshot); } /* * Print a debug line with a header. Always stop at the first CR or LF char, * so it is safe to pass it a full buffer if needed. If is not NULL, an * arrow is printed after the line which contains the pointer. */ void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end) { struct session *sess = strm_sess(s); int max; chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id, dir, objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->handle.fd : -1, objt_cs(s->si[1].end) ? (unsigned short)objt_cs(s->si[1].end)->conn->handle.fd : -1); for (max = 0; start + max < end; max++) if (start[max] == '\r' || start[max] == '\n') break; UBOUND(max, trash.size - trash.data - 3); trash.data += strlcpy2(trash.area + trash.data, start, max + 1); trash.area[trash.data++] = '\n'; shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); } /* Allocate a new HTTP transaction for stream unless there is one already. * The hdr_idx is allocated as well. In case of allocation failure, everything * allocated is freed and NULL is returned. Otherwise the new transaction is * assigned to the stream and returned. */ struct http_txn *http_alloc_txn(struct stream *s) { struct http_txn *txn = s->txn; if (txn) return txn; txn = pool_alloc(pool_head_http_txn); if (!txn) return txn; txn->hdr_idx.size = global.tune.max_http_hdr; txn->hdr_idx.v = pool_alloc(pool_head_hdr_idx); if (!txn->hdr_idx.v) { pool_free(pool_head_http_txn, txn); return NULL; } s->txn = txn; return txn; } void http_txn_reset_req(struct http_txn *txn) { txn->req.flags = 0; txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */ txn->req.next = 0; txn->req.chunk_len = 0LL; txn->req.body_len = 0LL; txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */ } void http_txn_reset_res(struct http_txn *txn) { txn->rsp.flags = 0; txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */ txn->rsp.next = 0; txn->rsp.chunk_len = 0LL; txn->rsp.body_len = 0LL; txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */ } /* * Initialize a new HTTP transaction for stream . It is assumed that all * the required fields are properly allocated and that we only need to (re)init * them. This should be used before processing any new request. */ void http_init_txn(struct stream *s) { struct http_txn *txn = s->txn; struct proxy *fe = strm_fe(s); struct conn_stream *cs = objt_cs(s->si[0].end); txn->flags = ((cs && cs->flags & CS_FL_NOT_FIRST) ? (TX_NOT_FIRST|TX_WAIT_NEXT_RQ) : 0); txn->status = -1; *(unsigned int *)txn->cache_hash = 0; txn->cookie_first_date = 0; txn->cookie_last_date = 0; txn->srv_cookie = NULL; txn->cli_cookie = NULL; txn->uri = NULL; http_txn_reset_req(txn); http_txn_reset_res(txn); txn->req.chn = &s->req; txn->rsp.chn = &s->res; txn->auth.method = HTTP_AUTH_UNKNOWN; txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */ if (fe->options2 & PR_O2_REQBUG_OK) txn->req.err_pos = -1; /* let buggy requests pass */ if (txn->hdr_idx.v) hdr_idx_init(&txn->hdr_idx); vars_init(&s->vars_txn, SCOPE_TXN); vars_init(&s->vars_reqres, SCOPE_REQ); } /* to be used at the end of a transaction */ void http_end_txn(struct stream *s) { struct http_txn *txn = s->txn; struct proxy *fe = strm_fe(s); /* these ones will have been dynamically allocated */ pool_free(pool_head_requri, txn->uri); pool_free(pool_head_capture, txn->cli_cookie); pool_free(pool_head_capture, txn->srv_cookie); pool_free(pool_head_uniqueid, s->unique_id); s->unique_id = NULL; txn->uri = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; if (s->req_cap) { struct cap_hdr *h; for (h = fe->req_cap; h; h = h->next) pool_free(h->pool, s->req_cap[h->index]); memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *)); } if (s->res_cap) { struct cap_hdr *h; for (h = fe->rsp_cap; h; h = h->next) pool_free(h->pool, s->res_cap[h->index]); memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *)); } if (!LIST_ISEMPTY(&s->vars_txn.head)) vars_prune(&s->vars_txn, s->sess, s); if (!LIST_ISEMPTY(&s->vars_reqres.head)) vars_prune(&s->vars_reqres, s->sess, s); } /* to be used at the end of a transaction to prepare a new one */ void http_reset_txn(struct stream *s) { http_end_txn(s); http_init_txn(s); /* reinitialise the current rule list pointer to NULL. We are sure that * any rulelist match the NULL pointer. */ s->current_rule_list = NULL; s->be = strm_fe(s); s->logs.logwait = strm_fe(s)->to_log; s->logs.level = 0; stream_del_srv_conn(s); s->target = NULL; /* re-init store persistence */ s->store_count = 0; s->uniq_id = _HA_ATOMIC_XADD(&global.req_count, 1); s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */ /* We must trim any excess data from the response buffer, because we * may have blocked an invalid response from a server that we don't * want to accidently forward once we disable the analysers, nor do * we want those data to come along with next response. A typical * example of such data would be from a buggy server responding to * a HEAD with some data, or sending more than the advertised * content-length. */ if (unlikely(ci_data(&s->res))) b_set_data(&s->res.buf, co_data(&s->res)); /* Now we can realign the response buffer */ c_realign_if_empty(&s->res); s->req.rto = strm_fe(s)->timeout.client; s->req.wto = TICK_ETERNITY; s->res.rto = TICK_ETERNITY; s->res.wto = strm_fe(s)->timeout.client; s->req.rex = TICK_ETERNITY; s->req.wex = TICK_ETERNITY; s->req.analyse_exp = TICK_ETERNITY; s->res.rex = TICK_ETERNITY; s->res.wex = TICK_ETERNITY; s->res.analyse_exp = TICK_ETERNITY; s->si[1].hcto = TICK_ETERNITY; } /* This function executes one of the set-{method,path,query,uri} actions. It * takes the string from the variable 'replace' with length 'len', then modifies * the relevant part of the request line accordingly. Then it updates various * pointers to the next elements which were moved, and the total buffer length. * It finds the action to be performed in p[2], previously filled by function * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal * error, though this can be revisited when this code is finally exploited. * * 'action' can be '0' to replace method, '1' to replace path, '2' to replace * query string and 3 to replace uri. * * In query string case, the mark question '?' must be set at the start of the * string by the caller, event if the replacement query string is empty. */ int http_replace_req_line(int action, const char *replace, int len, struct proxy *px, struct stream *s) { struct http_txn *txn = s->txn; char *cur_ptr, *cur_end; int offset = 0; int delta; if (IS_HTX_STRM(s)) return htx_req_replace_stline(action, replace, len, px, s); switch (action) { case 0: // method cur_ptr = ci_head(&s->req); cur_end = cur_ptr + txn->req.sl.rq.m_l; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.m_l += delta; txn->req.sl.rq.u += delta; txn->req.sl.rq.v += delta; break; case 1: // path cur_ptr = http_txn_get_path(txn); if (!cur_ptr) cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; cur_end = cur_ptr; while (cur_end < ci_head(&s->req) + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?') cur_end++; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; case 2: // query offset = 1; cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; cur_end = cur_ptr + txn->req.sl.rq.u_l; while (cur_ptr < cur_end && *cur_ptr != '?') cur_ptr++; /* skip the question mark or indicate that we must insert it * (but only if the format string is not empty then). */ if (cur_ptr < cur_end) cur_ptr++; else if (len > 1) offset = 0; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; case 3: // uri cur_ptr = ci_head(&s->req) + txn->req.sl.rq.u; cur_end = cur_ptr + txn->req.sl.rq.u_l; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; default: return -1; } /* commit changes and adjust end of message */ delta = b_rep_blk(&s->req.buf, cur_ptr, cur_end, replace + offset, len - offset); txn->req.sl.rq.l += delta; txn->hdr_idx.v[0].len += delta; http_msg_move_end(&txn->req, delta); return 0; } /* This function replace the HTTP status code and the associated message. The * variable contains the new status code. This function never fails. */ void http_set_status(unsigned int status, const char *reason, struct stream *s) { struct http_txn *txn = s->txn; char *cur_ptr, *cur_end; int delta; char *res; int c_l; const char *msg = reason; int msg_len; if (IS_HTX_STRM(s)) return htx_res_set_status(status, reason, s); chunk_reset(&trash); res = ultoa_o(status, trash.area, trash.size); c_l = res - trash.area; trash.area[c_l] = ' '; trash.data = c_l + 1; /* Do we have a custom reason format string? */ if (msg == NULL) msg = http_get_reason(status); msg_len = strlen(msg); strncpy(&trash.area[trash.data], msg, trash.size - trash.data); trash.data += msg_len; cur_ptr = ci_head(&s->res) + txn->rsp.sl.st.c; cur_end = ci_head(&s->res) + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l; /* commit changes and adjust message */ delta = b_rep_blk(&s->res.buf, cur_ptr, cur_end, trash.area, trash.data); /* adjust res line offsets and lengths */ txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l; txn->rsp.sl.st.c_l = c_l; txn->rsp.sl.st.r_l = msg_len; delta = trash.data - (cur_end - cur_ptr); txn->rsp.sl.st.l += delta; txn->hdr_idx.v[0].len += delta; http_msg_move_end(&txn->rsp, delta); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */