/* * HTT/1 mux-demux for connections * * Copyright 2018 Christopher Faulet * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * H1 Connection flags (32 bits) */ #define H1C_F_NONE 0x00000000 /* Flags indicating why writing output data are blocked */ #define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */ #define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */ /* 0x00000004 - 0x00000008 unused */ /* Flags indicating why reading input data are blocked. */ #define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */ #define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */ #define H1C_F_IN_BUSY 0x00000040 /* mux is blocked on input waiting the other side */ /* 0x00000040 - 0x00000800 unused */ /* Flags indicating the connection state */ #define H1C_F_CS_ERROR 0x00001000 /* connection must be closed ASAP because an error occurred */ #define H1C_F_CS_SHUTW_NOW 0x00002000 /* connection must be shut down for writes ASAP */ #define H1C_F_CS_SHUTDOWN 0x00004000 /* connection is shut down */ #define H1C_F_CS_IDLE 0x00008000 /* connection is idle and may be reused * (exclusive to all H1C_F_CS flags and never set when an h1s is attached) */ #define H1C_F_WAIT_NEXT_REQ 0x00010000 /* waiting for the next request to start, use keep-alive timeout */ #define H1C_F_UPG_H2C 0x00020000 /* set if an upgrade to h2 should be done */ #define H1C_F_CO_MSG_MORE 0x00040000 /* set if CO_SFL_MSG_MORE must be set when calling xprt->snd_buf() */ #define H1C_F_CO_STREAMER 0x00080000 /* set if CO_SFL_STREAMER must be set when calling xprt->snd_buf() */ /* * H1 Stream flags (32 bits) */ #define H1S_F_NONE 0x00000000 #define H1S_F_ERROR 0x00000001 /* An error occurred on the H1 stream */ #define H1S_F_REQ_ERROR 0x00000002 /* An error occurred during the request parsing/xfer */ #define H1S_F_RES_ERROR 0x00000004 /* An error occurred during the response parsing/xfer */ #define H1S_F_REOS 0x00000008 /* End of input stream seen even if not delivered yet */ #define H1S_F_WANT_KAL 0x00000010 #define H1S_F_WANT_TUN 0x00000020 #define H1S_F_WANT_CLO 0x00000040 #define H1S_F_WANT_MSK 0x00000070 #define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */ #define H1S_F_BUF_FLUSH 0x00000100 /* Flush input buffer and don't read more data */ #define H1S_F_SPLICED_DATA 0x00000200 /* Set when the kernel splicing is in used */ #define H1S_F_PARSING_DONE 0x00000400 /* Set when incoming message parsing is finished (EOM added) */ /* 0x00000800 .. 0x00001000 unused */ #define H1S_F_HAVE_SRV_NAME 0x00002000 /* Set during output process if the server name header was added to the request */ #define H1S_F_HAVE_O_CONN 0x00004000 /* Set during output process to know connection mode was processed */ /* H1 connection descriptor */ struct h1c { struct connection *conn; struct proxy *px; uint32_t flags; /* Connection flags: H1C_F_* */ struct buffer ibuf; /* Input buffer to store data before parsing */ struct buffer obuf; /* Output buffer to store data after reformatting */ struct buffer_wait buf_wait; /* Wait list for buffer allocation */ struct wait_event wait_event; /* To be used if we're waiting for I/Os */ struct h1s *h1s; /* H1 stream descriptor */ struct task *task; /* timeout management task */ int timeout; /* idle timeout duration in ticks */ int shut_timeout; /* idle timeout duration in ticks after stream shutdown */ }; /* H1 stream descriptor */ struct h1s { struct h1c *h1c; struct conn_stream *cs; struct cs_info csinfo; /* CS info, only used for client connections */ uint32_t flags; /* Connection flags: H1S_F_* */ struct wait_event *subs; /* Address of the wait_event the conn_stream associated is waiting on */ struct session *sess; /* Associated session */ struct h1m req; struct h1m res; enum http_meth_t meth; /* HTTP request method */ uint16_t status; /* HTTP response status */ }; /* Map of headers used to convert outgoing headers */ struct h1_hdrs_map { char *name; struct eb_root map; }; /* An entry in a headers map */ struct h1_hdr_entry { struct ist name; struct ebpt_node node; }; /* Declare the headers map */ static struct h1_hdrs_map hdrs_map = { .name = NULL, .map = EB_ROOT }; /* trace source and events */ static void h1_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, const struct ist where, const struct ist func, const void *a1, const void *a2, const void *a3, const void *a4); /* The event representation is split like this : * h1c - internal H1 connection * h1s - internal H1 stream * strm - application layer * rx - data receipt * tx - data transmission * */ static const struct trace_event h1_trace_events[] = { #define H1_EV_H1C_NEW (1ULL << 0) { .mask = H1_EV_H1C_NEW, .name = "h1c_new", .desc = "new H1 connection" }, #define H1_EV_H1C_RECV (1ULL << 1) { .mask = H1_EV_H1C_RECV, .name = "h1c_recv", .desc = "Rx on H1 connection" }, #define H1_EV_H1C_SEND (1ULL << 2) { .mask = H1_EV_H1C_SEND, .name = "h1c_send", .desc = "Tx on H1 connection" }, #define H1_EV_H1C_BLK (1ULL << 3) { .mask = H1_EV_H1C_BLK, .name = "h1c_blk", .desc = "H1 connection blocked" }, #define H1_EV_H1C_WAKE (1ULL << 4) { .mask = H1_EV_H1C_WAKE, .name = "h1c_wake", .desc = "H1 connection woken up" }, #define H1_EV_H1C_END (1ULL << 5) { .mask = H1_EV_H1C_END, .name = "h1c_end", .desc = "H1 connection terminated" }, #define H1_EV_H1C_ERR (1ULL << 6) { .mask = H1_EV_H1C_ERR, .name = "h1c_err", .desc = "error on H1 connection" }, #define H1_EV_RX_DATA (1ULL << 7) { .mask = H1_EV_RX_DATA, .name = "rx_data", .desc = "receipt of any H1 data" }, #define H1_EV_RX_EOI (1ULL << 8) { .mask = H1_EV_RX_EOI, .name = "rx_eoi", .desc = "receipt of end of H1 input" }, #define H1_EV_RX_HDRS (1ULL << 9) { .mask = H1_EV_RX_HDRS, .name = "rx_headers", .desc = "receipt of H1 headers" }, #define H1_EV_RX_BODY (1ULL << 10) { .mask = H1_EV_RX_BODY, .name = "rx_body", .desc = "receipt of H1 body" }, #define H1_EV_RX_TLRS (1ULL << 11) { .mask = H1_EV_RX_TLRS, .name = "rx_trailerus", .desc = "receipt of H1 trailers" }, #define H1_EV_TX_DATA (1ULL << 12) { .mask = H1_EV_TX_DATA, .name = "tx_data", .desc = "transmission of any H1 data" }, #define H1_EV_TX_EOI (1ULL << 13) { .mask = H1_EV_TX_EOI, .name = "tx_eoi", .desc = "transmission of end of H1 input" }, #define H1_EV_TX_HDRS (1ULL << 14) { .mask = H1_EV_TX_HDRS, .name = "tx_headers", .desc = "transmission of all headers" }, #define H1_EV_TX_BODY (1ULL << 15) { .mask = H1_EV_TX_BODY, .name = "tx_body", .desc = "transmission of H1 body" }, #define H1_EV_TX_TLRS (1ULL << 16) { .mask = H1_EV_TX_TLRS, .name = "tx_trailerus", .desc = "transmission of H1 trailers" }, #define H1_EV_H1S_NEW (1ULL << 17) { .mask = H1_EV_H1S_NEW, .name = "h1s_new", .desc = "new H1 stream" }, #define H1_EV_H1S_BLK (1ULL << 18) { .mask = H1_EV_H1S_BLK, .name = "h1s_blk", .desc = "H1 stream blocked" }, #define H1_EV_H1S_END (1ULL << 19) { .mask = H1_EV_H1S_END, .name = "h1s_end", .desc = "H1 stream terminated" }, #define H1_EV_H1S_ERR (1ULL << 20) { .mask = H1_EV_H1S_ERR, .name = "h1s_err", .desc = "error on H1 stream" }, #define H1_EV_STRM_NEW (1ULL << 21) { .mask = H1_EV_STRM_NEW, .name = "strm_new", .desc = "app-layer stream creation" }, #define H1_EV_STRM_RECV (1ULL << 22) { .mask = H1_EV_STRM_RECV, .name = "strm_recv", .desc = "receiving data for stream" }, #define H1_EV_STRM_SEND (1ULL << 23) { .mask = H1_EV_STRM_SEND, .name = "strm_send", .desc = "sending data for stream" }, #define H1_EV_STRM_WAKE (1ULL << 24) { .mask = H1_EV_STRM_WAKE, .name = "strm_wake", .desc = "stream woken up" }, #define H1_EV_STRM_SHUT (1ULL << 25) { .mask = H1_EV_STRM_SHUT, .name = "strm_shut", .desc = "stream shutdown" }, #define H1_EV_STRM_END (1ULL << 26) { .mask = H1_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" }, #define H1_EV_STRM_ERR (1ULL << 27) { .mask = H1_EV_STRM_ERR, .name = "strm_err", .desc = "stream error" }, { } }; static const struct name_desc h1_trace_lockon_args[4] = { /* arg1 */ { /* already used by the connection */ }, /* arg2 */ { .name="h1s", .desc="H1 stream" }, /* arg3 */ { }, /* arg4 */ { } }; static const struct name_desc h1_trace_decoding[] = { #define H1_VERB_CLEAN 1 { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, #define H1_VERB_MINIMAL 2 { .name="minimal", .desc="report only h1c/h1s state and flags, no real decoding" }, #define H1_VERB_SIMPLE 3 { .name="simple", .desc="add request/response status line or htx info when available" }, #define H1_VERB_ADVANCED 4 { .name="advanced", .desc="add header fields or frame decoding when available" }, #define H1_VERB_COMPLETE 5 { .name="complete", .desc="add full data dump when available" }, { /* end */ } }; static struct trace_source trace_h1 = { .name = IST("h1"), .desc = "HTTP/1 multiplexer", .arg_def = TRC_ARG1_CONN, // TRACE()'s first argument is always a connection .default_cb = h1_trace, .known_events = h1_trace_events, .lockon_args = h1_trace_lockon_args, .decoding = h1_trace_decoding, .report_events = ~0, // report everything by default }; #define TRACE_SOURCE &trace_h1 INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); /* the h1c and h1s pools */ DECLARE_STATIC_POOL(pool_head_h1c, "h1c", sizeof(struct h1c)); DECLARE_STATIC_POOL(pool_head_h1s, "h1s", sizeof(struct h1s)); static int h1_recv(struct h1c *h1c); static int h1_send(struct h1c *h1c); static int h1_process(struct h1c *h1c); static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short state); static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode); static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state); static void h1_wake_stream_for_recv(struct h1s *h1s); static void h1_wake_stream_for_send(struct h1s *h1s); /* the H1 traces always expect that arg1, if non-null, is of type connection * (from which we can derive h1c), that arg2, if non-null, is of type h1s, and * that arg3, if non-null, is a htx for rx/tx headers. */ static void h1_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, const struct ist where, const struct ist func, const void *a1, const void *a2, const void *a3, const void *a4) { const struct connection *conn = a1; const struct h1c *h1c = conn ? conn->ctx : NULL; const struct h1s *h1s = a2; const struct htx *htx = a3; const size_t *val = a4; if (!h1c) h1c = (h1s ? h1s->h1c : NULL); if (!h1c || src->verbosity < H1_VERB_CLEAN) return; /* Display frontend/backend info by default */ chunk_appendf(&trace_buf, " : [%c]", (conn_is_back(h1c->conn) ? 'B' : 'F')); /* Display request and response states if h1s is defined */ if (h1s) chunk_appendf(&trace_buf, " [%s, %s]", h1m_state_str(h1s->req.state), h1m_state_str(h1s->res.state)); if (src->verbosity == H1_VERB_CLEAN) return; /* Display the value to the 4th argument (level > STATE) */ if (src->level > TRACE_LEVEL_STATE && val) chunk_appendf(&trace_buf, " - VAL=%lu", (long)*val); /* Display status-line if possible (verbosity > MINIMAL) */ if (src->verbosity > H1_VERB_MINIMAL && htx && htx_nbblks(htx)) { const struct htx_blk *blk = htx_get_head_blk(htx); const struct htx_sl *sl = htx_get_blk_ptr(htx, blk); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL) chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"", HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl), HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl), HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl)); } /* Display h1c info and, if defined, h1s info (pointer + flags) */ chunk_appendf(&trace_buf, " - h1c=%p(0x%08x)", h1c, h1c->flags); if (h1s) chunk_appendf(&trace_buf, " h1s=%p(0x%08x)", h1s, h1s->flags); if (src->verbosity == H1_VERB_MINIMAL) return; /* Display input and output buffer info (level > USER & verbosity > SIMPLE) */ if (src->level > TRACE_LEVEL_USER) { if (src->verbosity == H1_VERB_COMPLETE || (src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_H1C_RECV|H1_EV_STRM_RECV)))) chunk_appendf(&trace_buf, " ibuf=%u@%p+%u/%u", (unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf), (unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf)); if (src->verbosity == H1_VERB_COMPLETE || (src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_H1C_SEND|H1_EV_STRM_SEND)))) chunk_appendf(&trace_buf, " obuf=%u@%p+%u/%u", (unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf), (unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf)); } /* Display htx info if defined (level > USER) */ if (src->level > TRACE_LEVEL_USER && htx) { int full = 0; /* Full htx info (level > STATE && verbosity > SIMPLE) */ if (src->level > TRACE_LEVEL_STATE) { if (src->verbosity == H1_VERB_COMPLETE) full = 1; else if (src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_RX_HDRS|H1_EV_TX_HDRS))) full = 1; } chunk_memcat(&trace_buf, "\n\t", 2); htx_dump(&trace_buf, htx, full); } } /*****************************************************/ /* functions below are for dynamic buffer management */ /*****************************************************/ /* * Indicates whether or not we may receive data. The rules are the following : * - if an error or a shutdown for reads was detected on the connection we must not attempt to receive * - if the input buffer failed to be allocated or is full , we must not try * to receive * - if he input processing is busy waiting for the output side, we may * attempt to receive * - otherwise must may not attempt to receive */ static inline int h1_recv_allowed(const struct h1c *h1c) { if (h1c->flags & H1C_F_CS_ERROR) { TRACE_DEVEL("recv not allowed because of error on h1c", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); return 0; } if (h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_RD_SH|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN)) { TRACE_DEVEL("recv not allowed because of (error|read0|waitl4|waitl6) on connection", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); return 0; } if (conn_is_back(h1c->conn) && h1c->h1s && h1c->h1s->req.state == H1_MSG_RQBEFORE) { TRACE_DEVEL("recv not allowed because back and request not sent yet", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); return 0; } if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL|H1C_F_IN_BUSY))) return 1; TRACE_DEVEL("recv not allowed because input is blocked", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); return 0; } /* * Tries to grab a buffer and to re-enables processing on mux . The h1 * flags are used to figure what buffer was requested. It returns 1 if the * allocation succeeds, in which case the connection is woken up, or 0 if it's * impossible to wake up and we prefer to be woken up later. */ static int h1_buf_available(void *target) { struct h1c *h1c = target; if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc_margin(&h1c->ibuf, 0)) { TRACE_STATE("unblocking h1c, ibuf allocated", H1_EV_H1C_RECV|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn); h1c->flags &= ~H1C_F_IN_ALLOC; if (h1_recv_allowed(h1c)) tasklet_wakeup(h1c->wait_event.tasklet); return 1; } if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc_margin(&h1c->obuf, 0)) { TRACE_STATE("unblocking h1s, obuf allocated", H1_EV_TX_DATA|H1_EV_H1S_BLK|H1_EV_STRM_WAKE, h1c->conn, h1c->h1s); h1c->flags &= ~H1C_F_OUT_ALLOC; if (h1c->h1s) h1_wake_stream_for_send(h1c->h1s); return 1; } return 0; } /* * Allocate a buffer. If if fails, it adds the mux in buffer wait queue. */ static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr) { struct buffer *buf = NULL; if (likely(!MT_LIST_ADDED(&h1c->buf_wait.list)) && unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) { h1c->buf_wait.target = h1c; h1c->buf_wait.wakeup_cb = h1_buf_available; MT_LIST_ADDQ(&buffer_wq, &h1c->buf_wait.list); } return buf; } /* * Release a buffer, if any, and try to wake up entities waiting in the buffer * wait queue. */ static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr) { if (bptr->size) { b_free(bptr); offer_buffers(h1c->buf_wait.target, tasks_run_queue); } } /* returns the number of streams in use on a connection to figure if it's idle * or not. We rely on H1C_F_CS_IDLE to know if the connection is in-use or * not. This flag is only set when no H1S is attached and when the previous * stream, if any, was fully terminated without any error and in K/A mode. */ static int h1_used_streams(struct connection *conn) { struct h1c *h1c = conn->ctx; return ((h1c->flags & H1C_F_CS_IDLE) ? 0 : 1); } /* returns the number of streams still available on a connection */ static int h1_avail_streams(struct connection *conn) { return 1 - h1_used_streams(conn); } /* Refresh the h1c task timeout if necessary */ static void h1_refresh_timeout(struct h1c *h1c) { if (h1c->task) { h1c->task->expire = TICK_ETERNITY; if (h1c->flags & H1C_F_CS_SHUTDOWN) { /* half-closed connections switch to clientfin/serverfin * timeouts so that we don't hang too long on clients * that have gone away (especially in tunnel mode). */ h1c->task->expire = tick_add(now_ms, h1c->shut_timeout); task_queue(h1c->task); TRACE_DEVEL("refreshing connection's timeout (half-closed)", H1_EV_H1C_SEND, h1c->conn); } else if ((!h1c->h1s && !conn_is_back(h1c->conn)) || b_data(&h1c->obuf)) { /* front connections waiting for a stream, as well as any connection with * pending data, need a timeout. */ h1c->task->expire = tick_add(now_ms, ((h1c->flags & H1C_F_CS_SHUTW_NOW) ? h1c->shut_timeout : h1c->timeout)); task_queue(h1c->task); TRACE_DEVEL("refreshing connection's timeout", H1_EV_H1C_SEND, h1c->conn); } } } /*****************************************************************/ /* functions below are dedicated to the mux setup and management */ /*****************************************************************/ /* returns non-zero if there are input data pending for stream h1s. */ static inline size_t h1s_data_pending(const struct h1s *h1s) { const struct h1m *h1m; h1m = conn_is_back(h1s->h1c->conn) ? &h1s->res : &h1s->req; if (h1m->state == H1_MSG_DONE) return !(h1s->flags & H1S_F_PARSING_DONE); return b_data(&h1s->h1c->ibuf); } static struct conn_stream *h1s_new_cs(struct h1s *h1s) { struct conn_stream *cs; TRACE_ENTER(H1_EV_STRM_NEW, h1s->h1c->conn, h1s); cs = cs_new(h1s->h1c->conn, h1s->h1c->conn->target); if (!cs) { TRACE_DEVEL("leaving on CS allocation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, h1s->h1c->conn, h1s); goto err; } h1s->cs = cs; cs->ctx = h1s; if (h1s->flags & H1S_F_NOT_FIRST) cs->flags |= CS_FL_NOT_FIRST; if (global.tune.options & GTUNE_USE_SPLICE) { TRACE_STATE("notify the mux can use splicing", H1_EV_STRM_NEW, h1s->h1c->conn, h1s); cs->flags |= CS_FL_MAY_SPLICE; } if (stream_create_from_cs(cs) < 0) { TRACE_DEVEL("leaving on stream creation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, h1s->h1c->conn, h1s); goto err; } TRACE_LEAVE(H1_EV_STRM_NEW, h1s->h1c->conn, h1s); return cs; err: cs_free(cs); h1s->cs = NULL; return NULL; } static struct h1s *h1s_create(struct h1c *h1c, struct conn_stream *cs, struct session *sess) { struct h1s *h1s; TRACE_ENTER(H1_EV_H1S_NEW, h1c->conn); h1s = pool_alloc(pool_head_h1s); if (!h1s) goto fail; h1s->h1c = h1c; h1c->h1s = h1s; h1s->sess = sess; h1s->cs = NULL; h1s->flags = H1S_F_WANT_KAL; h1s->subs = NULL; h1m_init_req(&h1s->req); h1s->req.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); h1m_init_res(&h1s->res); h1s->res.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); h1s->status = 0; h1s->meth = HTTP_METH_OTHER; if (h1c->flags & H1C_F_WAIT_NEXT_REQ) h1s->flags |= H1S_F_NOT_FIRST; h1c->flags &= ~(H1C_F_CS_IDLE|H1C_F_WAIT_NEXT_REQ); if (!conn_is_back(h1c->conn)) { if (h1c->px->options2 & PR_O2_REQBUG_OK) h1s->req.err_pos = -1; /* For frontend connections we should always have a session */ if (!sess) h1s->sess = sess = h1c->conn->owner; /* Timers for subsequent sessions on the same HTTP 1.x connection * measure from `now`, not from the connection accept time */ if (h1s->flags & H1S_F_NOT_FIRST) { h1s->csinfo.create_date = date; h1s->csinfo.tv_create = now; h1s->csinfo.t_handshake = 0; h1s->csinfo.t_idle = -1; } else { h1s->csinfo.create_date = sess->accept_date; h1s->csinfo.tv_create = sess->tv_accept; h1s->csinfo.t_handshake = sess->t_handshake; h1s->csinfo.t_idle = -1; } } else { if (h1c->px->options2 & PR_O2_RSPBUG_OK) h1s->res.err_pos = -1; h1s->csinfo.create_date = date; h1s->csinfo.tv_create = now; h1s->csinfo.t_handshake = 0; h1s->csinfo.t_idle = -1; } /* If a conn_stream already exists, attach it to this H1S. Otherwise we * create a new one. */ if (cs) { cs->ctx = h1s; h1s->cs = cs; } else { cs = h1s_new_cs(h1s); if (!cs) goto fail; } TRACE_LEAVE(H1_EV_H1S_NEW, h1c->conn, h1s); return h1s; fail: pool_free(pool_head_h1s, h1s); TRACE_DEVEL("leaving in error", H1_EV_H1S_NEW|H1_EV_H1S_END|H1_EV_H1S_ERR, h1c->conn); return NULL; } static void h1s_destroy(struct h1s *h1s) { if (h1s) { struct h1c *h1c = h1s->h1c; TRACE_POINT(H1_EV_H1S_END, h1c->conn, h1s); h1c->h1s = NULL; if (h1s->subs) h1s->subs->events = 0; h1c->flags &= ~H1C_F_IN_BUSY; if (h1s->flags & (H1S_F_REQ_ERROR|H1S_F_RES_ERROR)) { h1c->flags |= H1C_F_CS_ERROR; TRACE_STATE("h1s on error, set error on h1c", H1_EV_H1C_ERR, h1c->conn, h1s); } if (!(h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN)) && /* No error/shutdown on h1c */ !(h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) && /* No error/shutdown on conn */ (h1s->flags & (H1S_F_WANT_KAL|H1S_F_PARSING_DONE)) == (H1S_F_WANT_KAL|H1S_F_PARSING_DONE) && /* K/A possible */ h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE) { /* req/res in DONE state */ h1c->flags |= (H1C_F_CS_IDLE|H1C_F_WAIT_NEXT_REQ); TRACE_STATE("set idle mode on h1c, waiting for the next request", H1_EV_H1C_ERR, h1c->conn, h1s); } pool_free(pool_head_h1s, h1s); } } static const struct cs_info *h1_get_cs_info(struct conn_stream *cs) { struct h1s *h1s = cs->ctx; if (h1s && !conn_is_back(cs->conn)) return &h1s->csinfo; return NULL; } /* * Initialize the mux once it's attached. It is expected that conn->ctx points * to the existing conn_stream (for outgoing connections or for incoming ones * during a mux upgrade) or NULL (for incoming ones during the connection * establishment). is always used as Input buffer and may contain * data. It is the caller responsibility to not reuse it anymore. Returns < 0 on * error. */ static int h1_init(struct connection *conn, struct proxy *proxy, struct session *sess, struct buffer *input) { struct h1c *h1c; struct task *t = NULL; void *conn_ctx = conn->ctx; TRACE_ENTER(H1_EV_H1C_NEW); h1c = pool_alloc(pool_head_h1c); if (!h1c) goto fail_h1c; h1c->conn = conn; h1c->px = proxy; h1c->flags = H1C_F_CS_IDLE; h1c->ibuf = *input; h1c->obuf = BUF_NULL; h1c->h1s = NULL; h1c->task = NULL; MT_LIST_INIT(&h1c->buf_wait.list); h1c->wait_event.tasklet = tasklet_new(); if (!h1c->wait_event.tasklet) goto fail; h1c->wait_event.tasklet->process = h1_io_cb; h1c->wait_event.tasklet->context = h1c; h1c->wait_event.events = 0; if (conn_is_back(conn)) { h1c->shut_timeout = h1c->timeout = proxy->timeout.server; if (tick_isset(proxy->timeout.serverfin)) h1c->shut_timeout = proxy->timeout.serverfin; } else { h1c->shut_timeout = h1c->timeout = proxy->timeout.client; if (tick_isset(proxy->timeout.clientfin)) h1c->shut_timeout = proxy->timeout.clientfin; } if (tick_isset(h1c->timeout)) { t = task_new(tid_bit); if (!t) goto fail; h1c->task = t; t->process = h1_timeout_task; t->context = h1c; t->expire = tick_add(now_ms, h1c->timeout); } conn->ctx = h1c; /* Always Create a new H1S */ if (!h1s_create(h1c, conn_ctx, sess)) goto fail; if (t) task_queue(t); /* Try to read, if nothing is available yet we'll just subscribe */ h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); /* mux->wake will be called soon to complete the operation */ TRACE_LEAVE(H1_EV_H1C_NEW, conn, h1c->h1s); return 0; fail: task_destroy(t); if (h1c->wait_event.tasklet) tasklet_free(h1c->wait_event.tasklet); pool_free(pool_head_h1c, h1c); fail_h1c: conn->ctx = conn_ctx; // restore saved context TRACE_DEVEL("leaving in error", H1_EV_H1C_NEW|H1_EV_H1C_END|H1_EV_H1C_ERR); return -1; } /* release function. This one should be called to free all resources allocated * to the mux. */ static void h1_release(struct h1c *h1c) { struct connection *conn = NULL; TRACE_POINT(H1_EV_H1C_END); if (h1c) { /* The connection must be aattached to this mux to be released */ if (h1c->conn && h1c->conn->ctx == h1c) conn = h1c->conn; TRACE_DEVEL("freeing h1c", H1_EV_H1C_END, conn); if (conn && h1c->flags & H1C_F_UPG_H2C) { TRACE_DEVEL("upgrading H1 to H2", H1_EV_H1C_END, conn); h1c->flags &= ~H1C_F_UPG_H2C; /* Make sure we're no longer subscribed to anything */ if (h1c->wait_event.events) conn->xprt->unsubscribe(conn, conn->xprt_ctx, h1c->wait_event.events, &h1c->wait_event); if (conn_upgrade_mux_fe(conn, NULL, &h1c->ibuf, ist("h2"), PROTO_MODE_HTTP) != -1) { /* connection successfully upgraded to H2, this * mux was already released */ return; } TRACE_DEVEL("h2 upgrade failed", H1_EV_H1C_END|H1_EV_H1C_ERR, conn); sess_log(conn->owner); /* Log if the upgrade failed */ } if (MT_LIST_ADDED(&h1c->buf_wait.list)) MT_LIST_DEL(&h1c->buf_wait.list); h1_release_buf(h1c, &h1c->ibuf); h1_release_buf(h1c, &h1c->obuf); if (h1c->task) { h1c->task->context = NULL; task_wakeup(h1c->task, TASK_WOKEN_OTHER); h1c->task = NULL; } if (h1c->wait_event.tasklet) tasklet_free(h1c->wait_event.tasklet); h1s_destroy(h1c->h1s); if (conn && h1c->wait_event.events != 0) conn->xprt->unsubscribe(conn, conn->xprt_ctx, h1c->wait_event.events, &h1c->wait_event); pool_free(pool_head_h1c, h1c); } if (conn) { conn->mux = NULL; conn->ctx = NULL; TRACE_DEVEL("freeing conn", H1_EV_H1C_END, conn); conn_stop_tracking(conn); conn_full_close(conn); if (conn->destroy_cb) conn->destroy_cb(conn); conn_free(conn); } } /******************************************************/ /* functions below are for the H1 protocol processing */ /******************************************************/ /* Parse the request version and set H1_MF_VER_11 on if the version is * greater or equal to 1.1 */ static void h1_parse_req_vsn(struct h1m *h1m, const struct htx_sl *sl) { const char *p = HTX_SL_REQ_VPTR(sl); if ((HTX_SL_REQ_VLEN(sl) == 8) && (*(p + 5) > '1' || (*(p + 5) == '1' && *(p + 7) >= '1'))) h1m->flags |= H1_MF_VER_11; } /* Parse the response version and set H1_MF_VER_11 on if the version is * greater or equal to 1.1 */ static void h1_parse_res_vsn(struct h1m *h1m, const struct htx_sl *sl) { const char *p = HTX_SL_RES_VPTR(sl); if ((HTX_SL_RES_VLEN(sl) == 8) && (*(p + 5) > '1' || (*(p + 5) == '1' && *(p + 7) >= '1'))) h1m->flags |= H1_MF_VER_11; } /* Deduce the connection mode of the client connection, depending on the * configuration and the H1 message flags. This function is called twice, the * first time when the request is parsed and the second time when the response * is parsed. */ static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m) { struct proxy *fe = h1s->h1c->px; if (h1m->flags & H1_MF_RESP) { /* Output direction: second pass */ if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || h1s->status == 101) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely to * understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement * specific parsers for such protocols, we'll want to check the * Upgrade header which contains information about that protocol * for responses with status 101 (eg: see RFC2817 about TLS). */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN; TRACE_STATE("set tunnel mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } else if (h1s->flags & H1S_F_WANT_KAL) { /* By default the client is in KAL mode. CLOSE mode mean * it is imposed by the client itself. So only change * KAL mode here. */ if (!(h1m->flags & H1_MF_XFER_LEN) || (h1m->flags & H1_MF_CONN_CLO)) { /* no length known or explicit close => close */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("detect close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } else if (!(h1m->flags & H1_MF_CONN_KAL) && (fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) { /* no explicit keep-alive and option httpclose => close */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("force close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } } } else { /* Input direction: first pass */ if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || h1m->flags & H1_MF_CONN_CLO) { /* no explicit keep-alive in HTTP/1.0 or explicit close => close*/ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("detect close mode (req)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s); } } /* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */ if (h1s->flags & H1S_F_WANT_KAL && fe->disabled) { h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("stopping, set close mode", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } } /* Deduce the connection mode of the client connection, depending on the * configuration and the H1 message flags. This function is called twice, the * first time when the request is parsed and the second time when the response * is parsed. */ static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m) { struct session *sess = h1s->sess; struct proxy *be = h1s->h1c->px; int fe_flags = sess ? sess->fe->options : 0; if (h1m->flags & H1_MF_RESP) { /* Input direction: second pass */ if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || h1s->status == 101) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely to * understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement * specific parsers for such protocols, we'll want to check the * Upgrade header which contains information about that protocol * for responses with status 101 (eg: see RFC2817 about TLS). */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN; TRACE_STATE("set tunnel mode (resp)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s); } else if (h1s->flags & H1S_F_WANT_KAL) { /* By default the server is in KAL mode. CLOSE mode mean * it is imposed by haproxy itself. So only change KAL * mode here. */ if (!(h1m->flags & H1_MF_XFER_LEN) || h1m->flags & H1_MF_CONN_CLO || !(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))){ /* no length known or explicit close or no explicit keep-alive in HTTP/1.0 => close */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("detect close mode (resp)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s); } } } else { /* Output direction: first pass */ if (h1m->flags & H1_MF_CONN_CLO) { /* explicit close => close */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("detect close mode (req)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } else if (!(h1m->flags & H1_MF_CONN_KAL) && ((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || (be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || (fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_CLO || (be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)) { /* no explicit keep-alive option httpclose/server-close => close */ h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("force close mode (req)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } } /* If KAL, check if the backend is stopping. If yes, switch in CLO mode */ if (h1s->flags & H1S_F_WANT_KAL && be->disabled) { h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("stopping, set close mode", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } } static void h1_update_req_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) { struct proxy *px = h1s->h1c->px; /* Don't update "Connection:" header in TUNNEL mode or if "Upgrage" * token is found */ if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG) return; if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) { if (!(h1m->flags & H1_MF_VER_11)) { TRACE_STATE("add \"Connection: keep-alive\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); *conn_val = ist("keep-alive"); } } else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */ if (h1m->flags & H1_MF_VER_11) { TRACE_STATE("add \"Connection: close\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); *conn_val = ist("close"); } } } static void h1_update_res_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) { /* Don't update "Connection:" header in TUNNEL mode or if "Upgrage" * token is found */ if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG) return; if (h1s->flags & H1S_F_WANT_KAL) { if (!(h1m->flags & H1_MF_VER_11) || !((h1m->flags & h1s->req.flags) & H1_MF_VER_11)) { TRACE_STATE("add \"Connection: keep-alive\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); *conn_val = ist("keep-alive"); } } else { /* H1S_F_WANT_CLO */ if (h1m->flags & H1_MF_VER_11) { TRACE_STATE("add \"Connection: close\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); *conn_val = ist("close"); } } } static void h1_process_input_conn_mode(struct h1s *h1s, struct h1m *h1m, struct htx *htx) { if (!conn_is_back(h1s->h1c->conn)) h1_set_cli_conn_mode(h1s, h1m); else h1_set_srv_conn_mode(h1s, h1m); } static void h1_process_output_conn_mode(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val) { if (!conn_is_back(h1s->h1c->conn)) h1_set_cli_conn_mode(h1s, h1m); else h1_set_srv_conn_mode(h1s, h1m); if (!(h1m->flags & H1_MF_RESP)) h1_update_req_conn_value(h1s, h1m, conn_val); else h1_update_res_conn_value(h1s, h1m, conn_val); } /* Try to adjust the case of the message header name using the global map * . */ static void h1_adjust_case_outgoing_hdr(struct h1s *h1s, struct h1m *h1m, struct ist *name) { struct ebpt_node *node; struct h1_hdr_entry *entry; /* No entry in the map, do nothing */ if (eb_is_empty(&hdrs_map.map)) return; /* No conversion fo the request headers */ if (!(h1m->flags & H1_MF_RESP) && !(h1s->h1c->px->options2 & PR_O2_H1_ADJ_BUGSRV)) return; /* No conversion fo the response headers */ if ((h1m->flags & H1_MF_RESP) && !(h1s->h1c->px->options2 & PR_O2_H1_ADJ_BUGCLI)) return; node = ebis_lookup_len(&hdrs_map.map, name->ptr, name->len); if (!node) return; entry = container_of(node, struct h1_hdr_entry, node); name->ptr = entry->name.ptr; name->len = entry->name.len; } /* Append the description of what is present in error snapshot into . * The description must be small enough to always fit in a buffer. The output * buffer may be the trash so the trash must not be used inside this function. */ static void h1_show_error_snapshot(struct buffer *out, const struct error_snapshot *es) { chunk_appendf(out, " H1 connection flags 0x%08x, H1 stream flags 0x%08x\n" " H1 msg state %s(%d), H1 msg flags 0x%08x\n" " H1 chunk len %lld bytes, H1 body len %lld bytes :\n", es->ctx.h1.c_flags, es->ctx.h1.s_flags, h1m_state_str(es->ctx.h1.state), es->ctx.h1.state, es->ctx.h1.m_flags, es->ctx.h1.m_clen, es->ctx.h1.m_blen); } /* * Capture a bad request or response and archive it in the proxy's structure. * By default it tries to report the error position as h1m->err_pos. However if * this one is not set, it will then report h1m->next, which is the last known * parsing point. The function is able to deal with wrapping buffers. It always * displays buffers as a contiguous area starting at buf->p. The direction is * determined thanks to the h1m's flags. */ static void h1_capture_bad_message(struct h1c *h1c, struct h1s *h1s, struct h1m *h1m, struct buffer *buf) { struct session *sess = h1s->sess; struct proxy *proxy = h1c->px; struct proxy *other_end; union error_snapshot_ctx ctx; if (h1s->cs && h1s->cs->data) { if (sess == NULL) sess = si_strm(h1s->cs->data)->sess; if (!(h1m->flags & H1_MF_RESP)) other_end = si_strm(h1s->cs->data)->be; else other_end = sess->fe; } else other_end = NULL; /* http-specific part now */ ctx.h1.state = h1m->state; ctx.h1.c_flags = h1c->flags; ctx.h1.s_flags = h1s->flags; ctx.h1.m_flags = h1m->flags; ctx.h1.m_clen = h1m->curr_len; ctx.h1.m_blen = h1m->body_len; proxy_capture_error(proxy, !!(h1m->flags & H1_MF_RESP), other_end, h1c->conn->target, sess, buf, 0, 0, (h1m->err_pos >= 0) ? h1m->err_pos : h1m->next, &ctx, h1_show_error_snapshot); } /* Emit the chunksize followed by a CRLF in front of data of the buffer * . It goes backwards and starts with the byte before the buffer's * head. The caller is responsible for ensuring there is enough room left before * the buffer's head for the string. */ static void h1_emit_chunk_size(struct buffer *buf, size_t chksz) { char *beg, *end; beg = end = b_head(buf); *--beg = '\n'; *--beg = '\r'; do { *--beg = hextab[chksz & 0xF]; } while (chksz >>= 4); buf->head -= (end - beg); b_add(buf, end - beg); } /* Emit a CRLF after the data of the buffer . The caller is responsible for * ensuring there is enough room left in the buffer for the string. */ static void h1_emit_chunk_crlf(struct buffer *buf) { *(b_peek(buf, b_data(buf))) = '\r'; *(b_peek(buf, b_data(buf) + 1)) = '\n'; b_add(buf, 2); } /* * Switch the request to tunnel mode. This function must only be called for * CONNECT requests. On the client side, if the response is not finished, the * mux is mark as busy on input. */ static void h1_set_req_tunnel_mode(struct h1s *h1s) { h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); h1s->req.state = H1_MSG_TUNNEL; TRACE_STATE("switch H1 request in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); if (!conn_is_back(h1s->h1c->conn)) { h1s->flags &= ~H1S_F_PARSING_DONE; if (h1s->res.state < H1_MSG_DONE) { h1s->h1c->flags |= H1C_F_IN_BUSY; TRACE_STATE("switch h1c in busy mode", H1_EV_RX_DATA|H1_EV_H1C_BLK, h1s->h1c->conn, h1s); } } else if (h1s->h1c->flags & H1C_F_IN_BUSY) { h1s->h1c->flags &= ~H1C_F_IN_BUSY; tasklet_wakeup(h1s->h1c->wait_event.tasklet); TRACE_STATE("h1c no more busy", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1s->h1c->conn, h1s); } } /* * Switch the response to tunnel mode. This function must only be called on * successful replies to CONNECT requests or on protocol switching. In this * last case, this function takes care to switch the request to tunnel mode if * possible. On the server side, if the request is not finished, the mux is mark * as busy on input. */ static void h1_set_res_tunnel_mode(struct h1s *h1s) { h1s->res.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); h1s->res.state = H1_MSG_TUNNEL; TRACE_STATE("switch H1 response in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); if (conn_is_back(h1s->h1c->conn)) { h1s->flags &= ~H1S_F_PARSING_DONE; /* On protocol switching, switch the request to tunnel mode if it is in * DONE state. Otherwise we will wait the end of the request to switch * it in tunnel mode. */ if (h1s->req.state < H1_MSG_DONE) { h1s->h1c->flags |= H1C_F_IN_BUSY; TRACE_STATE("switch h1c in busy mode", H1_EV_RX_DATA|H1_EV_H1C_BLK, h1s->h1c->conn, h1s); } else if (h1s->status == 101 && h1s->req.state == H1_MSG_DONE) { h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK); h1s->req.state = H1_MSG_TUNNEL; TRACE_STATE("switch H1 request in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } } else if (h1s->h1c->flags & H1C_F_IN_BUSY) { h1s->h1c->flags &= ~H1C_F_IN_BUSY; tasklet_wakeup(h1s->h1c->wait_event.tasklet); TRACE_STATE("h1c no more busy", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1s->h1c->conn, h1s); } } /* * Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if * it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR * flag. If relies on the function http_parse_msg_hdrs() to do the parsing. */ static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx, struct buffer *buf, size_t *ofs, size_t max) { union h1_sl h1sl; int ret = 0; TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s, 0, (size_t[]){max}); if (!(h1s->h1c->px->options2 & PR_O2_NO_H2_UPGRADE) && /* H2 upgrade supported by the proxy */ !(h1s->flags & H1S_F_NOT_FIRST) && /* It is the first transaction */ !(h1m->flags & H1_MF_RESP)) { /* It is a request */ /* Try to match H2 preface before parsing the request headers. */ ret = b_isteq(buf, 0, b_data(buf), ist(H2_CONN_PREFACE)); if (ret > 0) { goto h2c_upgrade; } } else { if (h1s->meth == HTTP_METH_CONNECT) h1m->flags |= H1_MF_METH_CONNECT; if (h1s->meth == HTTP_METH_HEAD) h1m->flags |= H1_MF_METH_HEAD; } ret = h1_parse_msg_hdrs(h1m, &h1sl, htx, buf, *ofs, max); if (!ret) { TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s); if (htx->flags & HTX_FL_PARSING_ERROR) { if (!(h1m->flags & H1_MF_RESP)) { h1s->flags |= H1S_F_REQ_ERROR; TRACE_USER("rejected H1 request", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } else { h1s->flags |= H1S_F_RES_ERROR; TRACE_USER("rejected H1 response", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } h1s->cs->flags |= CS_FL_EOI; TRACE_STATE("parsing error", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); } goto end; } if (h1m->err_pos >= 0) { /* Maybe we found an error during the parsing while we were * configured not to block on that, so we have to capture it * now. */ TRACE_STATE("Ignored parsing error", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s); h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); } if (!(h1m->flags & H1_MF_RESP)) { h1s->meth = h1sl.rq.meth; if (h1m->state == H1_MSG_TUNNEL) h1_set_req_tunnel_mode(h1s); } else { h1s->status = h1sl.st.status; if (h1m->state == H1_MSG_TUNNEL) h1_set_res_tunnel_mode(h1s); } h1_process_input_conn_mode(h1s, h1m, htx); *ofs += ret; end: TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s, 0, (size_t[]){ret}); return ret; h2c_upgrade: h1s->h1c->flags |= H1C_F_UPG_H2C; h1s->cs->flags |= CS_FL_EOI; htx->flags |= HTX_FL_UPGRADE; TRACE_DEVEL("leaving on H2 update", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_RX_EOI, h1s->h1c->conn, h1s); return 0; } /* * Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it * couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag. * If relies on the function http_parse_msg_data() to do the parsing. */ static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx **htx, struct buffer *buf, size_t *ofs, size_t max, struct buffer *htxbuf) { int ret; TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s, 0, (size_t[]){max}); ret = h1_parse_msg_data(h1m, htx, buf, *ofs, max, htxbuf); if (!ret) { TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s); if ((*htx)->flags & HTX_FL_PARSING_ERROR) { if (!(h1m->flags & H1_MF_RESP)) { h1s->flags |= H1S_F_REQ_ERROR; TRACE_USER("rejected H1 request", H1_EV_RX_DATA|H1_EV_RX_BODY|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } else { h1s->flags |= H1S_F_RES_ERROR; TRACE_USER("rejected H1 response", H1_EV_RX_DATA|H1_EV_RX_BODY|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } h1s->cs->flags |= CS_FL_EOI; TRACE_STATE("parsing error", H1_EV_RX_DATA|H1_EV_RX_BODY|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); } goto end; } if (h1s->cs && !(h1m->flags & H1_MF_CHNK) && ((h1m->state == H1_MSG_DATA && h1m->curr_len) || (h1m->state == H1_MSG_TUNNEL))) { TRACE_STATE("notify the mux can use splicing", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s); h1s->cs->flags |= CS_FL_MAY_SPLICE; } else if (h1s->cs) { TRACE_STATE("notify the mux can't use splicing anymore", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s); h1s->cs->flags &= ~CS_FL_MAY_SPLICE; } *ofs += ret; end: TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s, 0, (size_t[]){ret}); return ret; } /* * Parse HTTP/1 trailers. It returns the number of bytes parsed if > 0, or 0 if * it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR * flag and filling h1s->err_pos and h1s->err_state fields. This functions is * responsible to update the parser state . */ static size_t h1_process_trailers(struct h1s *h1s, struct h1m *h1m, struct htx *htx, struct buffer *buf, size_t *ofs, size_t max) { int ret; TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_TLRS, h1s->h1c->conn, h1s, 0, (size_t[]){max}); ret = h1_parse_msg_tlrs(h1m, htx, buf, *ofs, max); if (!ret) { TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s); if (htx->flags & HTX_FL_PARSING_ERROR) { if (!(h1m->flags & H1_MF_RESP)) { h1s->flags |= H1S_F_REQ_ERROR; TRACE_USER("rejected H1 request", H1_EV_RX_DATA|H1_EV_RX_TLRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } else { h1s->flags |= H1S_F_RES_ERROR; TRACE_USER("rejected H1 response", H1_EV_RX_DATA|H1_EV_RX_TLRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } h1s->cs->flags |= CS_FL_EOI; TRACE_STATE("parsing error", H1_EV_RX_DATA|H1_EV_RX_TLRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); } goto end; } *ofs += ret; end: TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_TLRS, h1s->h1c->conn, h1s, 0, (size_t[]){ret}); return ret; } /* * Add the EOM in the HTX message. It returns 1 on success or 0 if it couldn't * proceed. This functions is responsible to update the parser state . It * also add the flag CS_FL_EOI on the CS. */ static size_t h1_process_eom(struct h1s *h1s, struct h1m *h1m, struct htx *htx, struct buffer *buf, size_t *ofs, size_t max) { int ret; TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_EOI, h1s->h1c->conn, h1s, 0, (size_t[]){max}); ret = h1_parse_msg_eom(h1m, htx, max); if (!ret) { TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_EOI, h1s->h1c->conn, h1s); if (htx->flags & HTX_FL_PARSING_ERROR) { if (!(h1m->flags & H1_MF_RESP)) { h1s->flags |= H1S_F_REQ_ERROR; TRACE_USER("rejected H1 request", H1_EV_RX_DATA|H1_EV_RX_EOI|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } else { h1s->flags |= H1S_F_RES_ERROR; TRACE_USER("rejected H1 response", H1_EV_RX_DATA|H1_EV_RX_EOI|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); } h1s->cs->flags |= CS_FL_EOI; TRACE_STATE("parsing error", H1_EV_RX_DATA|H1_EV_RX_EOI|H1_EV_H1S_ERR, h1s->h1c->conn, h1s); h1_capture_bad_message(h1s->h1c, h1s, h1m, buf); } goto end; } h1s->flags |= H1S_F_PARSING_DONE; h1s->cs->flags |= CS_FL_EOI; end: TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_EOI, h1s->h1c->conn, h1s, 0, (size_t[]){ret}); return ret; } /* * Process incoming data. It parses data and transfer them from h1c->ibuf into * . It returns the number of bytes parsed and transferred if > 0, or 0 if * it couldn't proceed. */ static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, size_t count) { struct h1s *h1s = h1c->h1s; struct h1m *h1m; struct htx *htx; size_t ret, data; size_t total = 0; int errflag; htx = htx_from_buf(buf); TRACE_ENTER(H1_EV_RX_DATA, h1c->conn, h1s, htx, (size_t[]){count}); if (!conn_is_back(h1c->conn)) { h1m = &h1s->req; errflag = H1S_F_REQ_ERROR; } else { h1m = &h1s->res; errflag = H1S_F_RES_ERROR; } data = htx->data; if (h1s->flags & errflag) goto end; do { size_t used = htx_used_space(htx); if (h1m->state <= H1_MSG_LAST_LF) { TRACE_PROTO("parsing message headers", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s); ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count); if (!ret) break; TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request headers" : "rcvd H1 response headers"), H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s, htx, (size_t[]){ret}); if ((h1m->flags & H1_MF_RESP) && h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) { h1m_init_res(&h1s->res); h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); TRACE_STATE("1xx response rcvd", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s); } } else if (h1m->state < H1_MSG_TRAILERS) { TRACE_PROTO("parsing message payload", H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s); ret = h1_process_data(h1s, h1m, &htx, &h1c->ibuf, &total, count, buf); if (!ret && h1m->state != H1_MSG_DONE) break; TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request payload data" : "rcvd H1 response payload data"), H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s, htx, (size_t[]){ret}); } else if (h1m->state == H1_MSG_TRAILERS) { TRACE_PROTO("parsing message trailers", H1_EV_RX_DATA|H1_EV_RX_TLRS, h1c->conn, h1s); ret = h1_process_trailers(h1s, h1m, htx, &h1c->ibuf, &total, count); if (!ret && h1m->state != H1_MSG_DONE) break; TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request trailers" : "rcvd H1 response trailers"), H1_EV_RX_DATA|H1_EV_RX_TLRS, h1c->conn, h1s, htx, (size_t[]){ret}); } else if (h1m->state == H1_MSG_DONE) { if (!(h1s->flags & H1S_F_PARSING_DONE)) { if (!h1_process_eom(h1s, h1m, htx, &h1c->ibuf, &total, count)) break; TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "H1 request fully rcvd" : "H1 response fully rcvd"), H1_EV_RX_DATA|H1_EV_RX_EOI, h1c->conn, h1s, htx); } if (!(h1m->flags & H1_MF_RESP) && h1s->status == 101) h1_set_req_tunnel_mode(h1s); else if (h1s->req.state < H1_MSG_DONE || h1s->res.state < H1_MSG_DONE) { h1c->flags |= H1C_F_IN_BUSY; TRACE_STATE("switch h1c in busy mode", H1_EV_RX_DATA|H1_EV_H1C_BLK, h1c->conn, h1s); break; } else break; } else if (h1m->state == H1_MSG_TUNNEL) { TRACE_PROTO("parsing tunneled data", H1_EV_RX_DATA, h1c->conn, h1s); ret = h1_process_data(h1s, h1m, &htx, &h1c->ibuf, &total, count, buf); if (!ret) break; TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request tunneled data" : "rcvd H1 response tunneled data"), H1_EV_RX_DATA|H1_EV_RX_EOI, h1c->conn, h1s, htx, (size_t[]){ret}); } else { h1s->flags |= errflag; break; } count -= htx_used_space(htx) - used; } while (!(h1s->flags & errflag)); if (h1s->flags & errflag) { TRACE_PROTO("parsing error", H1_EV_RX_DATA, h1c->conn, h1s); goto parsing_err; } b_del(&h1c->ibuf, total); end: htx_to_buf(htx, buf); ret = htx->data - data; if ((h1c->flags & H1C_F_IN_FULL) && buf_room_for_htx_data(&h1c->ibuf)) { h1c->flags &= ~H1C_F_IN_FULL; TRACE_STATE("h1c ibuf not full anymore", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE); h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); } h1s->cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM); if (!b_data(&h1c->ibuf)) h1_release_buf(h1c, &h1c->ibuf); if (h1s_data_pending(h1s) && !htx_is_empty(htx)) h1s->cs->flags |= CS_FL_RCV_MORE | CS_FL_WANT_ROOM; else if (h1s->flags & H1S_F_REOS) { h1s->cs->flags |= CS_FL_EOS; if (h1m->state == H1_MSG_TUNNEL) h1s->cs->flags |= CS_FL_EOI; else if (h1m->state > H1_MSG_LAST_LF && h1m->state < H1_MSG_DONE) h1s->cs->flags |= CS_FL_ERROR; } TRACE_LEAVE(H1_EV_RX_DATA, h1c->conn, h1s, htx, (size_t[]){ret}); return ret; parsing_err: b_reset(&h1c->ibuf); htx_to_buf(htx, buf); TRACE_DEVEL("leaving on error", H1_EV_RX_DATA|H1_EV_STRM_ERR, h1c->conn, h1s); return 0; } /* * Process outgoing data. It parses data and transfer them from the channel buffer into * h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or * 0 if it couldn't proceed. */ static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count) { struct h1s *h1s = h1c->h1s; struct h1m *h1m; struct htx *chn_htx = NULL; struct htx_blk *blk; struct buffer tmp; size_t total = 0; int errflag; if (!count) goto end; chn_htx = htxbuf(buf); TRACE_ENTER(H1_EV_TX_DATA, h1c->conn, h1s, chn_htx, (size_t[]){count}); if (htx_is_empty(chn_htx)) goto end; if (!h1_get_buf(h1c, &h1c->obuf)) { h1c->flags |= H1C_F_OUT_ALLOC; TRACE_STATE("waiting for h1c obuf allocation", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s); goto end; } if (!conn_is_back(h1c->conn)) { h1m = &h1s->res; errflag = H1S_F_RES_ERROR; } else { h1m = &h1s->req; errflag = H1S_F_REQ_ERROR; } if (h1s->flags & errflag) goto end; /* the htx is non-empty thus has at least one block */ blk = htx_get_head_blk(chn_htx); /* Perform some optimizations to reduce the number of buffer copies. * First, if the mux's buffer is empty and the htx area contains * exactly one data block of the same size as the requested count, * then it's possible to simply swap the caller's buffer with the * mux's output buffer and adjust offsets and length to match the * entire DATA HTX block in the middle. In this case we perform a * true zero-copy operation from end-to-end. This is the situation * that happens all the time with large files. Second, if this is not * possible, but the mux's output buffer is empty, we still have an * opportunity to avoid the copy to the intermediary buffer, by making * the intermediary buffer's area point to the output buffer's area. * In this case we want to skip the HTX header to make sure that copies * remain aligned and that this operation remains possible all the * time. This goes for headers, data blocks and any data extracted from * the HTX blocks. */ if (!b_data(&h1c->obuf)) { if (htx_nbblks(chn_htx) == 1 && htx_get_blk_type(blk) == HTX_BLK_DATA && htx_get_blk_value(chn_htx, blk).len == count) { void *old_area = h1c->obuf.area; TRACE_PROTO("sending message data (zero-copy)", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx, (size_t[]){count}); h1c->obuf.area = buf->area; h1c->obuf.head = sizeof(struct htx) + blk->addr; h1c->obuf.data = count; buf->area = old_area; buf->data = buf->head = 0; chn_htx = (struct htx *)buf->area; htx_reset(chn_htx); /* The message is chunked. We need to emit the chunk * size. We have at least the size of the struct htx to * write the chunk envelope. It should be enough. */ if (h1m->flags & H1_MF_CHNK) { h1_emit_chunk_size(&h1c->obuf, count); h1_emit_chunk_crlf(&h1c->obuf); } total += count; if (h1m->state == H1_MSG_DATA) TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request payload data xferred" : "H1 response payload data xferred"), H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){count}); else TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request tunneled data xferred" : "H1 response tunneled data xferred"), H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){count}); goto out; } tmp.area = h1c->obuf.area + h1c->obuf.head; } else tmp.area = trash.area; tmp.data = 0; tmp.size = b_room(&h1c->obuf); while (count && !(h1s->flags & errflag) && blk) { struct htx_sl *sl; struct ist n, v; enum htx_blk_type type = htx_get_blk_type(blk); uint32_t sz = htx_get_blksz(blk); uint32_t vlen, chklen; vlen = sz; if (type != HTX_BLK_DATA && vlen > count) goto full; if (type == HTX_BLK_UNUSED) goto nextblk; switch (h1m->state) { case H1_MSG_RQBEFORE: if (type != HTX_BLK_REQ_SL) goto error; TRACE_USER("sending request headers", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s, chn_htx); sl = htx_get_blk_ptr(chn_htx, blk); h1s->meth = sl->info.req.meth; h1_parse_req_vsn(h1m, sl); if (!h1_format_htx_reqline(sl, &tmp)) goto full; h1m->flags |= H1_MF_XFER_LEN; if (sl->flags & HTX_SL_F_BODYLESS) h1m->flags |= H1_MF_CLEN; h1m->state = H1_MSG_HDR_FIRST; break; case H1_MSG_RPBEFORE: if (type != HTX_BLK_RES_SL) goto error; TRACE_USER("sending response headers", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s, chn_htx); sl = htx_get_blk_ptr(chn_htx, blk); h1s->status = sl->info.res.status; h1_parse_res_vsn(h1m, sl); if (!h1_format_htx_stline(sl, &tmp)) goto full; if (sl->flags & HTX_SL_F_XFER_LEN) h1m->flags |= H1_MF_XFER_LEN; if (sl->info.res.status < 200 && (sl->info.res.status == 100 || sl->info.res.status >= 102)) h1s->flags |= H1S_F_HAVE_O_CONN; h1m->state = H1_MSG_HDR_FIRST; break; case H1_MSG_HDR_FIRST: case H1_MSG_HDR_NAME: case H1_MSG_HDR_L2_LWS: if (type == HTX_BLK_EOH) goto last_lf; if (type != HTX_BLK_HDR) goto error; h1m->state = H1_MSG_HDR_NAME; n = htx_get_blk_name(chn_htx, blk); v = htx_get_blk_value(chn_htx, blk); /* Skip all pseudo-headers */ if (*(n.ptr) == ':') goto skip_hdr; if (isteq(n, ist("transfer-encoding"))) h1_parse_xfer_enc_header(h1m, v); else if (isteq(n, ist("content-length"))) { /* Only skip C-L header with invalid value. */ if (h1_parse_cont_len_header(h1m, &v) < 0) goto skip_hdr; } else if (isteq(n, ist("connection"))) { h1_parse_connection_header(h1m, &v); if (!v.len) goto skip_hdr; } /* Skip header if same name is used to add the server name */ if (!(h1m->flags & H1_MF_RESP) && h1c->px->server_id_hdr_name && isteqi(n, ist2(h1c->px->server_id_hdr_name, h1c->px->server_id_hdr_len))) goto skip_hdr; /* Try to adjust the case of the header name */ if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV)) h1_adjust_case_outgoing_hdr(h1s, h1m, &n); if (!h1_format_htx_hdr(n, v, &tmp)) goto full; skip_hdr: h1m->state = H1_MSG_HDR_L2_LWS; break; case H1_MSG_LAST_LF: if (type != HTX_BLK_EOH) goto error; last_lf: h1m->state = H1_MSG_LAST_LF; if (!(h1s->flags & H1S_F_HAVE_O_CONN)) { /* If the reply comes from haproxy while the request is * not finished, we force the connection close. */ if ((chn_htx->flags & HTX_FL_PROXY_RESP) && h1s->req.state != H1_MSG_DONE) { h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO; TRACE_STATE("force close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s); } /* the conn_mode must be processed. So do it */ n = ist("connection"); v = ist(""); h1_process_output_conn_mode(h1s, h1m, &v); if (v.len) { /* Try to adjust the case of the header name */ if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV)) h1_adjust_case_outgoing_hdr(h1s, h1m, &n); if (!h1_format_htx_hdr(n, v, &tmp)) goto full; } h1s->flags |= H1S_F_HAVE_O_CONN; } if ((h1s->meth != HTTP_METH_CONNECT && (h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) == (H1_MF_VER_11|H1_MF_XFER_LEN)) || (h1s->status >= 200 && h1s->status != 204 && h1s->status != 304 && h1s->meth != HTTP_METH_HEAD && !(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) && (h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) == (H1_MF_VER_11|H1_MF_RESP|H1_MF_XFER_LEN))) { /* chunking needed but header not seen */ n = ist("transfer-encoding"); v = ist("chunked"); if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV)) h1_adjust_case_outgoing_hdr(h1s, h1m, &n); if (!h1_format_htx_hdr(n, v, &tmp)) goto full; TRACE_STATE("add \"Transfer-Encoding: chunked\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); h1m->flags |= H1_MF_CHNK; } /* Now add the server name to a header (if requested) */ if (!(h1s->flags & H1S_F_HAVE_SRV_NAME) && !(h1m->flags & H1_MF_RESP) && h1c->px->server_id_hdr_name) { struct server *srv = objt_server(h1c->conn->target); if (srv) { n = ist2(h1c->px->server_id_hdr_name, h1c->px->server_id_hdr_len); v = ist(srv->id); /* Try to adjust the case of the header name */ if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV)) h1_adjust_case_outgoing_hdr(h1s, h1m, &n); if (!h1_format_htx_hdr(n, v, &tmp)) goto full; } TRACE_STATE("add server name header", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); h1s->flags |= H1S_F_HAVE_SRV_NAME; } if (!chunk_memcat(&tmp, "\r\n", 2)) goto full; TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request headers xferred" : "H1 response headers xferred"), H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); if (!(h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_CONNECT) { /* a CONNECT request is sent to the server. Switch it to tunnel mode. */ h1_set_req_tunnel_mode(h1s); } else if ((h1m->flags & H1_MF_RESP) && ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || h1s->status == 101)) { /* a successful reply to a CONNECT or a protocol switching is sent * to the client. Switch the response to tunnel mode. */ h1_set_res_tunnel_mode(h1s); TRACE_STATE("switch H1 response in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); } else if ((h1m->flags & H1_MF_RESP) && h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) { h1m_init_res(&h1s->res); h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR); h1s->flags &= ~H1S_F_HAVE_O_CONN; TRACE_STATE("1xx response xferred", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); } else if ((h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_HEAD) { h1m->state = H1_MSG_DONE; TRACE_STATE("HEAD response processed", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); } else h1m->state = H1_MSG_DATA; break; case H1_MSG_DATA: case H1_MSG_TUNNEL: if (type == HTX_BLK_EOM) { /* Chunked message without explicit trailers */ if (h1m->flags & H1_MF_CHNK) { if (!chunk_memcat(&tmp, "0\r\n\r\n", 5)) goto full; } goto done; } else if (type == HTX_BLK_EOT || type == HTX_BLK_TLR) { /* If the message is not chunked, never * add the last chunk. */ if ((h1m->flags & H1_MF_CHNK) && !chunk_memcat(&tmp, "0\r\n", 3)) goto full; TRACE_PROTO("sending message trailers", H1_EV_TX_DATA|H1_EV_TX_TLRS, h1c->conn, h1s, chn_htx); goto trailers; } else if (type != HTX_BLK_DATA) goto error; TRACE_PROTO("sending message data", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx, (size_t[]){sz}); if (vlen > count) { /* Get the maximum amount of data we can xferred */ vlen = count; } chklen = 0; if (h1m->flags & H1_MF_CHNK) { chklen = b_room(&tmp); chklen = ((chklen < 16) ? 1 : (chklen < 256) ? 2 : (chklen < 4096) ? 3 : (chklen < 65536) ? 4 : (chklen < 1048576) ? 5 : 8); chklen += 4; /* 2 x CRLF */ } if (vlen + chklen > b_room(&tmp)) { /* too large for the buffer */ if (chklen >= b_room(&tmp)) goto full; vlen = b_room(&tmp) - chklen; } v = htx_get_blk_value(chn_htx, blk); v.len = vlen; if (!h1_format_htx_data(v, &tmp, !!(h1m->flags & H1_MF_CHNK))) goto full; if (h1m->state == H1_MSG_DATA) TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request payload data xferred" : "H1 response payload data xferred"), H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){v.len}); else TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request tunneled data xferred" : "H1 response tunneled data xferred"), H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){v.len}); break; case H1_MSG_TRAILERS: if (type == HTX_BLK_EOM) goto done; else if (type != HTX_BLK_TLR && type != HTX_BLK_EOT) goto error; trailers: h1m->state = H1_MSG_TRAILERS; /* If the message is not chunked, ignore * trailers. It may happen with H2 messages. */ if (!(h1m->flags & H1_MF_CHNK)) break; if (type == HTX_BLK_EOT) { if (!chunk_memcat(&tmp, "\r\n", 2)) goto full; TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request trailers xferred" : "H1 response trailers xferred"), H1_EV_TX_DATA|H1_EV_TX_TLRS, h1c->conn, h1s); } else { // HTX_BLK_TLR n = htx_get_blk_name(chn_htx, blk); v = htx_get_blk_value(chn_htx, blk); /* Try to adjust the case of the header name */ if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV)) h1_adjust_case_outgoing_hdr(h1s, h1m, &n); if (!h1_format_htx_hdr(n, v, &tmp)) goto full; } break; case H1_MSG_DONE: if (type != HTX_BLK_EOM) goto error; done: h1m->state = H1_MSG_DONE; if (!(h1m->flags & H1_MF_RESP) && h1s->status == 101) { h1_set_req_tunnel_mode(h1s); TRACE_STATE("switch H1 request in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s); } else if (h1s->h1c->flags & H1C_F_IN_BUSY) { h1s->h1c->flags &= ~H1C_F_IN_BUSY; h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); TRACE_STATE("h1c no more busy", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s); } TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "H1 request fully xferred" : "H1 response fully xferred"), H1_EV_TX_DATA, h1c->conn, h1s); break; default: error: TRACE_PROTO("formatting error", H1_EV_TX_DATA, h1c->conn, h1s); /* Unexpected error during output processing */ chn_htx->flags |= HTX_FL_PROCESSING_ERROR; h1s->flags |= errflag; h1c->flags |= H1C_F_CS_ERROR; TRACE_STATE("processing error, set error on h1c/h1s", H1_EV_H1C_ERR|H1_EV_H1S_ERR, h1c->conn, h1s); TRACE_DEVEL("unexpected error", H1_EV_TX_DATA|H1_EV_STRM_ERR, h1c->conn, h1s); break; } nextblk: total += vlen; count -= vlen; if (sz == vlen) blk = htx_remove_blk(chn_htx, blk); else { htx_cut_data_blk(chn_htx, blk, vlen); break; } } copy: /* when the output buffer is empty, tmp shares the same area so that we * only have to update pointers and lengths. */ if (tmp.area == h1c->obuf.area + h1c->obuf.head) h1c->obuf.data = tmp.data; else b_putblk(&h1c->obuf, tmp.area, tmp.data); htx_to_buf(chn_htx, buf); out: if (!buf_room_for_htx_data(&h1c->obuf)) { TRACE_STATE("h1c obuf full", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s); h1c->flags |= H1C_F_OUT_FULL; } end: TRACE_LEAVE(H1_EV_TX_DATA, h1c->conn, h1s, chn_htx, (size_t[]){total}); return total; full: TRACE_STATE("h1c obuf full", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s); h1c->flags |= H1C_F_OUT_FULL; goto copy; } /*********************************************************/ /* functions below are I/O callbacks from the connection */ /*********************************************************/ static void h1_wake_stream_for_recv(struct h1s *h1s) { if (h1s && h1s->subs && h1s->subs->events & SUB_RETRY_RECV) { TRACE_POINT(H1_EV_STRM_WAKE, h1s->h1c->conn, h1s); tasklet_wakeup(h1s->subs->tasklet); h1s->subs->events &= ~SUB_RETRY_RECV; if (!h1s->subs->events) h1s->subs = NULL; } } static void h1_wake_stream_for_send(struct h1s *h1s) { if (h1s && h1s->subs && h1s->subs->events & SUB_RETRY_SEND) { TRACE_POINT(H1_EV_STRM_WAKE, h1s->h1c->conn, h1s); tasklet_wakeup(h1s->subs->tasklet); h1s->subs->events &= ~SUB_RETRY_SEND; if (!h1s->subs->events) h1s->subs = NULL; } } /* * Attempt to read data, and subscribe if none available */ static int h1_recv(struct h1c *h1c) { struct connection *conn = h1c->conn; struct h1s *h1s = h1c->h1s; size_t ret = 0, max; int rcvd = 0; int flags = 0; TRACE_ENTER(H1_EV_H1C_RECV, h1c->conn); if (h1c->wait_event.events & SUB_RETRY_RECV) { TRACE_DEVEL("leaving on sub_recv", H1_EV_H1C_RECV, h1c->conn); return (b_data(&h1c->ibuf)); } if (!h1_recv_allowed(h1c)) { TRACE_DEVEL("leaving on !recv_allowed", H1_EV_H1C_RECV, h1c->conn); rcvd = 1; goto end; } if (!h1_get_buf(h1c, &h1c->ibuf)) { h1c->flags |= H1C_F_IN_ALLOC; TRACE_STATE("waiting for h1c ibuf allocation", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); goto end; } if (h1s && (h1s->flags & (H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA))) { if (!h1s_data_pending(h1s)) h1_wake_stream_for_recv(h1s); rcvd = 1; TRACE_DEVEL("leaving on (buf_flush|spliced_data)", H1_EV_H1C_RECV, h1c->conn); goto end; } /* * If we only have a small amount of data, realign it, * it's probably cheaper than doing 2 recv() calls. */ if (b_data(&h1c->ibuf) > 0 && b_data(&h1c->ibuf) < 128) b_slow_realign(&h1c->ibuf, trash.area, 0); /* avoid useless reads after first responses */ if (h1s && ((!conn_is_back(conn) && h1s->req.state == H1_MSG_RQBEFORE) || (conn_is_back(conn) && h1s->res.state == H1_MSG_RPBEFORE))) flags |= CO_RFL_READ_ONCE; max = buf_room_for_htx_data(&h1c->ibuf); if (max) { if (h1c->flags & H1C_F_IN_FULL) { h1c->flags &= ~H1C_F_IN_FULL; TRACE_STATE("h1c ibuf not full anymore", H1_EV_H1C_RECV|H1_EV_H1C_BLK); } b_realign_if_empty(&h1c->ibuf); if (!b_data(&h1c->ibuf)) { /* try to pre-align the buffer like the rxbufs will be * to optimize memory copies. */ h1c->ibuf.head = sizeof(struct htx); } ret = conn->xprt->rcv_buf(conn, conn->xprt_ctx, &h1c->ibuf, max, flags); } if (ret > 0) { TRACE_DATA("data received", H1_EV_H1C_RECV, h1c->conn, 0, 0, (size_t[]){ret}); rcvd = 1; if (h1s && h1s->cs) { h1s->cs->flags |= (CS_FL_READ_PARTIAL|CS_FL_RCV_MORE); if (h1s->csinfo.t_idle == -1) h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake; } } if (ret > 0 || !h1_recv_allowed(h1c) || !buf_room_for_htx_data(&h1c->ibuf)) { rcvd = 1; goto end; } TRACE_STATE("failed to receive data, subscribing", H1_EV_H1C_RECV, h1c->conn); conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); end: if (ret > 0 || (conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn)) h1_wake_stream_for_recv(h1s); if (conn_xprt_read0_pending(conn) && h1s) { h1s->flags |= H1S_F_REOS; TRACE_STATE("read0 on connection", H1_EV_H1C_RECV, conn, h1s); rcvd = 1; } if (!b_data(&h1c->ibuf)) h1_release_buf(h1c, &h1c->ibuf); else if (!buf_room_for_htx_data(&h1c->ibuf)) { h1c->flags |= H1C_F_IN_FULL; TRACE_STATE("h1c ibuf full", H1_EV_H1C_RECV|H1_EV_H1C_BLK); } TRACE_LEAVE(H1_EV_H1C_RECV, h1c->conn); return rcvd; } /* * Try to send data if possible */ static int h1_send(struct h1c *h1c) { struct connection *conn = h1c->conn; unsigned int flags = 0; size_t ret; int sent = 0; TRACE_ENTER(H1_EV_H1C_SEND, h1c->conn); if (conn->flags & CO_FL_ERROR) { TRACE_DEVEL("leaving on connection error", H1_EV_H1C_SEND, h1c->conn); return 0; } if (!b_data(&h1c->obuf)) goto end; if (h1c->flags & H1C_F_CO_MSG_MORE) flags |= CO_SFL_MSG_MORE; if (h1c->flags & H1C_F_CO_STREAMER) flags |= CO_SFL_STREAMER; ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, &h1c->obuf, b_data(&h1c->obuf), flags); if (ret > 0) { TRACE_DATA("data sent", H1_EV_H1C_SEND, h1c->conn, 0, 0, (size_t[]){ret}); if (h1c->flags & H1C_F_OUT_FULL) { h1c->flags &= ~H1C_F_OUT_FULL; TRACE_STATE("h1c obuf not full anymore", H1_EV_STRM_SEND|H1_EV_H1S_BLK, h1c->conn); } b_del(&h1c->obuf, ret); sent = 1; } if (conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) { TRACE_DEVEL("connection error or output closed", H1_EV_H1C_SEND, h1c->conn); /* error or output closed, nothing to send, clear the buffer to release it */ b_reset(&h1c->obuf); } end: if (!(h1c->flags & H1C_F_OUT_FULL)) h1_wake_stream_for_send(h1c->h1s); /* We're done, no more to send */ if (!b_data(&h1c->obuf)) { TRACE_DEVEL("leaving with everything sent", H1_EV_H1C_SEND, h1c->conn); h1_release_buf(h1c, &h1c->obuf); if (h1c->flags & H1C_F_CS_SHUTW_NOW) { TRACE_STATE("process pending shutdown for writes", H1_EV_H1C_SEND, h1c->conn); h1_shutw_conn(conn, CS_SHW_NORMAL); } } else if (!(h1c->wait_event.events & SUB_RETRY_SEND)) { TRACE_STATE("more data to send, subscribing", H1_EV_H1C_SEND, h1c->conn); conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event); } TRACE_LEAVE(H1_EV_H1C_SEND, h1c->conn); return sent; } /* callback called on any event by the connection handler. * It applies changes and returns zero, or < 0 if it wants immediate * destruction of the connection. */ static int h1_process(struct h1c * h1c) { struct connection *conn = h1c->conn; struct h1s *h1s = h1c->h1s; TRACE_ENTER(H1_EV_H1C_WAKE, conn); if (!conn->ctx) return -1; if (!h1s) { if (h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN) || conn->flags & (CO_FL_ERROR|CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) goto release; if (!conn_is_back(conn) && (h1c->flags & H1C_F_CS_IDLE)) { TRACE_STATE("K/A incoming connection, create new H1 stream", H1_EV_H1C_WAKE, conn); if (!h1s_create(h1c, NULL, NULL)) goto release; } else goto end; h1s = h1c->h1s; } if (b_data(&h1c->ibuf) && h1s->csinfo.t_idle == -1) h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake; if (conn_xprt_read0_pending(conn)) { h1s->flags |= H1S_F_REOS; TRACE_STATE("read0 on connection", H1_EV_H1C_RECV, conn, h1s); } if (!h1s_data_pending(h1s) && h1s && h1s->cs && h1s->cs->data_cb->wake && (h1s->flags & H1S_F_REOS || h1c->flags & H1C_F_CS_ERROR || conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) { if (h1c->flags & H1C_F_CS_ERROR || conn->flags & CO_FL_ERROR) h1s->cs->flags |= CS_FL_ERROR; TRACE_POINT(H1_EV_STRM_WAKE, h1c->conn, h1s); h1s->cs->data_cb->wake(h1s->cs); } end: h1_refresh_timeout(h1c); TRACE_LEAVE(H1_EV_H1C_WAKE, conn); return 0; release: h1_release(h1c); TRACE_DEVEL("leaving after releasing the connection", H1_EV_H1C_WAKE); return -1; } static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short status) { struct connection *conn; struct tasklet *tl = (struct tasklet *)t; int conn_in_list; struct h1c *h1c; int ret = 0; HA_SPIN_LOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock); if (tl->context == NULL) { /* The connection has been taken over by another thread, * we're no longer responsible for it, so just free the * tasklet, and do nothing. */ HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock); tasklet_free(tl); return NULL; } h1c = ctx; conn = h1c->conn; TRACE_POINT(H1_EV_H1C_WAKE, conn); /* Remove the connection from the list, to be sure nobody attempts * to use it while we handle the I/O events */ conn_in_list = conn->flags & CO_FL_LIST_MASK; if (conn_in_list) MT_LIST_DEL(&conn->list); HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock); if (!(h1c->wait_event.events & SUB_RETRY_SEND)) ret = h1_send(h1c); if (!(h1c->wait_event.events & SUB_RETRY_RECV)) ret |= h1_recv(h1c); if (ret || !h1c->h1s) ret = h1_process(h1c); /* If we were in an idle list, we want to add it back into it, * unless h1_process() returned -1, which mean it has destroyed * the connection (testing !ret is enough, if h1_process() wasn't * called then ret will be 0 anyway. */ if (!ret && conn_in_list) { struct server *srv = objt_server(conn->target); if (conn_in_list == CO_FL_SAFE_LIST) MT_LIST_ADDQ(&srv->safe_conns[tid], &conn->list); else MT_LIST_ADDQ(&srv->idle_conns[tid], &conn->list); } return NULL; } static void h1_reset(struct connection *conn) { } static int h1_wake(struct connection *conn) { struct h1c *h1c = conn->ctx; int ret; TRACE_POINT(H1_EV_H1C_WAKE, conn); h1_send(h1c); ret = h1_process(h1c); if (ret == 0) { struct h1s *h1s = h1c->h1s; if (h1s && h1s->cs && h1s->cs->data_cb->wake) { TRACE_POINT(H1_EV_STRM_WAKE, h1c->conn, h1s); ret = h1s->cs->data_cb->wake(h1s->cs); } } return ret; } /* Connection timeout management. The principle is that if there's no receipt * nor sending for a certain amount of time, the connection is closed. */ static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state) { struct h1c *h1c = context; int expired = tick_is_expired(t->expire, now_ms); TRACE_POINT(H1_EV_H1C_WAKE, h1c ? h1c->conn : NULL); if (h1c) { if (!expired) { TRACE_DEVEL("leaving (not expired)", H1_EV_H1C_WAKE, h1c->conn); return t; } /* We're about to destroy the connection, so make sure nobody attempts * to steal it from us. */ HA_SPIN_LOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock); /* Somebody already stole the connection from us, so we should not * free it, we just have to free the task. */ if (!t->context) h1c = NULL; else if (h1c->conn->flags & CO_FL_LIST_MASK) MT_LIST_DEL(&h1c->conn->list); HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock); } task_destroy(t); if (!h1c) { /* resources were already deleted */ TRACE_DEVEL("leaving (not more h1c)", H1_EV_H1C_WAKE); return NULL; } h1c->task = NULL; /* If a stream is still attached to the mux, just set an error and wait * for the stream's timeout. Otherwise, release the mux. This is only ok * because same timeouts are used. */ if (h1c->h1s && h1c->h1s->cs) { h1c->flags |= H1C_F_CS_ERROR; TRACE_STATE("error on h1c, h1s still attached (expired)", H1_EV_H1C_WAKE|H1_EV_H1C_ERR, h1c->conn, h1c->h1s); } else h1_release(h1c); return NULL; } /*******************************************/ /* functions below are used by the streams */ /*******************************************/ /* * Attach a new stream to a connection * (Used for outgoing connections) */ static struct conn_stream *h1_attach(struct connection *conn, struct session *sess) { struct h1c *h1c = conn->ctx; struct conn_stream *cs = NULL; struct h1s *h1s; TRACE_ENTER(H1_EV_STRM_NEW, conn); if (h1c->flags & H1C_F_CS_ERROR) { TRACE_DEVEL("leaving on h1c error", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn); goto end; } cs = cs_new(h1c->conn, h1c->conn->target); if (!cs) { TRACE_DEVEL("leaving on CS allocation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn); goto end; } h1s = h1s_create(h1c, cs, sess); if (h1s == NULL) { TRACE_DEVEL("leaving on h1s creation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn); goto end; } TRACE_LEAVE(H1_EV_STRM_NEW, conn, h1s); return cs; end: cs_free(cs); return NULL; } /* Retrieves a valid conn_stream from this connection, or returns NULL. For * this mux, it's easy as we can only store a single conn_stream. */ static const struct conn_stream *h1_get_first_cs(const struct connection *conn) { struct h1c *h1c = conn->ctx; struct h1s *h1s = h1c->h1s; if (h1s) return h1s->cs; return NULL; } static void h1_destroy(void *ctx) { struct h1c *h1c = ctx; TRACE_POINT(H1_EV_H1C_END, h1c->conn); if (!h1c->h1s || !h1c->conn || h1c->conn->ctx != h1c) h1_release(h1c); } /* * Detach the stream from the connection and possibly release the connection. */ static void h1_detach(struct conn_stream *cs) { struct h1s *h1s = cs->ctx; struct h1c *h1c; struct session *sess; int is_not_first; TRACE_ENTER(H1_EV_STRM_END, h1s ? h1s->h1c->conn : NULL, h1s); cs->ctx = NULL; if (!h1s) { TRACE_LEAVE(H1_EV_STRM_END); return; } sess = h1s->sess; h1c = h1s->h1c; h1s->cs = NULL; is_not_first = h1s->flags & H1S_F_NOT_FIRST; h1s_destroy(h1s); if (conn_is_back(h1c->conn) && (h1c->flags & H1C_F_CS_IDLE)) { /* If there are any excess server data in the input buffer, * release it and close the connection ASAP (some data may * remain in the output buffer). This happens if a server sends * invalid responses. So in such case, we don't want to reuse * the connection */ if (b_data(&h1c->ibuf)) { h1_release_buf(h1c, &h1c->ibuf); h1c->flags = (h1c->flags & ~H1C_F_CS_IDLE) | H1C_F_CS_SHUTW_NOW; TRACE_DEVEL("remaining data on detach, kill connection", H1_EV_STRM_END|H1_EV_H1C_END); goto release; } if (h1c->conn->flags & CO_FL_PRIVATE) { /* Add the connection in the session server list, if not already done */ if (!session_add_conn(sess, h1c->conn, h1c->conn->target)) { h1c->conn->owner = NULL; h1c->conn->mux->destroy(h1c); goto end; } /* Always idle at this step */ if (session_check_idle_conn(sess, h1c->conn)) { /* The connection got destroyed, let's leave */ TRACE_DEVEL("outgoing connection killed", H1_EV_STRM_END|H1_EV_H1C_END); goto end; } } else { if (h1c->conn->owner == sess) h1c->conn->owner = NULL; h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); if (!srv_add_to_idle_list(objt_server(h1c->conn->target), h1c->conn, is_not_first)) { /* The server doesn't want it, let's kill the connection right away */ h1c->conn->mux->destroy(h1c); TRACE_DEVEL("outgoing connection killed", H1_EV_STRM_END|H1_EV_H1C_END); goto end; } /* At this point, the connection has been added to the * server idle list, so another thread may already have * hijacked it, so we can't do anything with it. */ return; } } release: /* We don't want to close right now unless the connection is in error or shut down for writes */ if ((h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN|H1C_F_UPG_H2C)) || (h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) || ((h1c->flags & H1C_F_CS_SHUTW_NOW) && !b_data(&h1c->obuf)) || !h1c->conn->owner) { TRACE_DEVEL("killing dead connection", H1_EV_STRM_END, h1c->conn); h1_release(h1c); } else { /* If we have a new request, process it immediately */ if (unlikely(b_data(&h1c->ibuf))) h1_process(h1c); else h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); h1_refresh_timeout(h1c); } end: TRACE_LEAVE(H1_EV_STRM_END); } static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode) { struct h1s *h1s = cs->ctx; struct h1c *h1c; if (!h1s) return; h1c = h1s->h1c; TRACE_ENTER(H1_EV_STRM_SHUT, h1c->conn, h1s); if (cs->flags & CS_FL_KILL_CONN) { TRACE_STATE("stream wants to kill the connection", H1_EV_STRM_SHUT, h1c->conn, h1s); goto do_shutr; } if (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) { TRACE_STATE("shutdown on connection (error|rd_sh|wr_sh)", H1_EV_STRM_SHUT, h1c->conn, h1s); goto do_shutr; } if ((h1c->flags & H1C_F_UPG_H2C) || (h1s->flags & H1S_F_WANT_KAL)) { TRACE_STATE("keep connection alive (upg_h2c|want_kal)", H1_EV_STRM_SHUT, h1c->conn, h1s); goto end; } do_shutr: /* NOTE: Be sure to handle abort (cf. h2_shutr) */ if (cs->flags & CS_FL_SHR) goto end; if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr) cs->conn->xprt->shutr(cs->conn, cs->conn->xprt_ctx, (mode == CS_SHR_DRAIN)); end: TRACE_LEAVE(H1_EV_STRM_SHUT, h1c->conn, h1s); } static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode) { struct h1s *h1s = cs->ctx; struct h1c *h1c; if (!h1s) return; h1c = h1s->h1c; TRACE_ENTER(H1_EV_STRM_SHUT, h1c->conn, h1s); if (cs->flags & CS_FL_KILL_CONN) { TRACE_STATE("stream wants to kill the connection", H1_EV_STRM_SHUT, h1c->conn, h1s); goto do_shutw; } if (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) { TRACE_STATE("shutdown on connection (error|rd_sh|wr_sh)", H1_EV_STRM_SHUT, h1c->conn, h1s); goto do_shutw; } if ((h1c->flags & H1C_F_UPG_H2C) || ((h1s->flags & H1S_F_WANT_KAL) && h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE)) { TRACE_STATE("keep connection alive (upg_h2c|want_kal)", H1_EV_STRM_SHUT, h1c->conn, h1s); goto end; } do_shutw: h1c->flags |= H1C_F_CS_SHUTW_NOW; if ((cs->flags & CS_FL_SHW) || b_data(&h1c->obuf)) goto end; h1_shutw_conn(cs->conn, mode); end: TRACE_LEAVE(H1_EV_STRM_SHUT, h1c->conn, h1s); } static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode) { struct h1c *h1c = conn->ctx; TRACE_ENTER(H1_EV_STRM_SHUT, conn, h1c->h1s); conn_xprt_shutw(conn); conn_sock_shutw(conn, (mode == CS_SHW_NORMAL)); h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN; TRACE_LEAVE(H1_EV_STRM_SHUT, conn, h1c->h1s); } /* Called from the upper layer, to unsubscribe from events * The pointer is not allowed to differ from the one passed to the * subscribe() call. It always returns zero. */ static int h1_unsubscribe(struct conn_stream *cs, int event_type, struct wait_event *es) { struct h1s *h1s = cs->ctx; if (!h1s) return 0; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(h1s->subs && h1s->subs != es); es->events &= ~event_type; if (!es->events) h1s->subs = NULL; if (event_type & SUB_RETRY_RECV) TRACE_DEVEL("unsubscribe(recv)", H1_EV_STRM_RECV, h1s->h1c->conn, h1s); if (event_type & SUB_RETRY_SEND) TRACE_DEVEL("unsubscribe(send)", H1_EV_STRM_SEND, h1s->h1c->conn, h1s); return 0; } /* Called from the upper layer, to subscribe to events . The * event subscriber is not allowed to change from a previous call as long * as at least one event is still subscribed. The must only be a * combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0, unless * the conn_stream was already detached, in which case it will return -1. */ static int h1_subscribe(struct conn_stream *cs, int event_type, struct wait_event *es) { struct h1s *h1s = cs->ctx; struct h1c *h1c; if (!h1s) return -1; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(h1s->subs && h1s->subs != es); es->events |= event_type; h1s->subs = es; if (event_type & SUB_RETRY_RECV) TRACE_DEVEL("subscribe(recv)", H1_EV_STRM_RECV, h1s->h1c->conn, h1s); if (event_type & SUB_RETRY_SEND) { TRACE_DEVEL("subscribe(send)", H1_EV_STRM_SEND, h1s->h1c->conn, h1s); /* * If the conn_stream attempt to subscribe, and the * mux isn't subscribed to the connection, then it * probably means the connection wasn't established * yet, so we have to subscribe. */ h1c = h1s->h1c; if (!(h1c->wait_event.events & SUB_RETRY_SEND)) h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event); } return 0; } /* Called from the upper layer, to receive data */ static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) { struct h1s *h1s = cs->ctx; struct h1c *h1c = h1s->h1c; struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res); size_t ret = 0; TRACE_ENTER(H1_EV_STRM_RECV, h1c->conn, h1s, 0, (size_t[]){count}); if (!(h1c->flags & H1C_F_IN_ALLOC)) ret = h1_process_input(h1c, buf, count); else TRACE_DEVEL("h1c ibuf not allocated", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn); if (flags & CO_RFL_BUF_FLUSH) { if (h1m->state == H1_MSG_TUNNEL || (h1m->state == H1_MSG_DATA && h1m->curr_len)) { h1s->flags |= H1S_F_BUF_FLUSH; TRACE_STATE("flush stream's buffer", H1_EV_STRM_RECV, h1c->conn, h1s); } } else { if (ret && h1s->flags & H1S_F_SPLICED_DATA) { h1s->flags &= ~H1S_F_SPLICED_DATA; TRACE_STATE("disable splicing", H1_EV_STRM_RECV, h1c->conn, h1s); } if (h1m->state != H1_MSG_DONE && !(h1c->wait_event.events & SUB_RETRY_RECV)) h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); } TRACE_LEAVE(H1_EV_STRM_RECV, h1c->conn, h1s, 0, (size_t[]){ret}); return ret; } /* Called from the upper layer, to send data */ static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags) { struct h1s *h1s = cs->ctx; struct h1c *h1c; size_t total = 0; if (!h1s) return 0; h1c = h1s->h1c; TRACE_ENTER(H1_EV_STRM_SEND, h1c->conn, h1s, 0, (size_t[]){count}); /* If we're not connected yet, or we're waiting for a handshake, stop * now, as we don't want to remove everything from the channel buffer * before we're sure we can send it. */ if (h1c->conn->flags & CO_FL_WAIT_XPRT) { TRACE_LEAVE(H1_EV_STRM_SEND, h1c->conn, h1s); return 0; } /* Inherit some flags from the upper layer */ h1c->flags &= ~(H1C_F_CO_MSG_MORE|H1C_F_CO_STREAMER); if (flags & CO_SFL_MSG_MORE) h1c->flags |= H1C_F_CO_MSG_MORE; if (flags & CO_SFL_STREAMER) h1c->flags |= H1C_F_CO_STREAMER; while (count) { size_t ret = 0; if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC))) ret = h1_process_output(h1c, buf, count); else TRACE_DEVEL("h1c obuf not allocated", H1_EV_STRM_SEND|H1_EV_H1S_BLK, h1c->conn, h1s); if ((count - ret) > 0) h1c->flags |= H1C_F_CO_MSG_MORE; if (!ret) break; total += ret; count -= ret; if ((h1c->wait_event.events & SUB_RETRY_SEND) || !h1_send(h1c)) break; } h1_refresh_timeout(h1c); TRACE_LEAVE(H1_EV_STRM_SEND, h1c->conn, h1s, 0, (size_t[]){total}); return total; } #if defined(USE_LINUX_SPLICE) /* Send and get, using splicing */ static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count) { struct h1s *h1s = cs->ctx; struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res); int ret = 0; TRACE_ENTER(H1_EV_STRM_RECV, cs->conn, h1s, 0, (size_t[]){count}); if ((h1m->flags & H1_MF_CHNK) || (h1m->state != H1_MSG_DATA && h1m->state != H1_MSG_TUNNEL)) { h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA); TRACE_STATE("disable splicing on !(msg_data|msg_tunnel)", H1_EV_STRM_RECV, cs->conn, h1s); if (!(h1s->h1c->wait_event.events & SUB_RETRY_RECV)) { TRACE_STATE("restart receiving data, subscribing", H1_EV_STRM_RECV, cs->conn, h1s); cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_RECV, &h1s->h1c->wait_event); } goto end; } if (h1s_data_pending(h1s)) { h1s->flags |= H1S_F_BUF_FLUSH; TRACE_STATE("flush input buffer before splicing", H1_EV_STRM_RECV, cs->conn, h1s); goto end; } if (!(h1s->flags & H1S_F_SPLICED_DATA)) { h1s->flags &= ~H1S_F_BUF_FLUSH; h1s->flags |= H1S_F_SPLICED_DATA; TRACE_STATE("enable splicing", H1_EV_STRM_RECV, cs->conn, h1s); } if (!h1_recv_allowed(h1s->h1c)) { TRACE_DEVEL("leaving on !recv_allowed", H1_EV_STRM_RECV, cs->conn, h1s); goto end; } if (h1m->state == H1_MSG_DATA && count > h1m->curr_len) count = h1m->curr_len; ret = cs->conn->xprt->rcv_pipe(cs->conn, cs->conn->xprt_ctx, pipe, count); if (h1m->state == H1_MSG_DATA && ret >= 0) { h1m->curr_len -= ret; if (!h1m->curr_len) { h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA); TRACE_STATE("disable splicing on !curr_len", H1_EV_STRM_RECV, cs->conn, h1s); } } end: if (conn_xprt_read0_pending(cs->conn)) { h1s->flags |= H1S_F_REOS; h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA); TRACE_STATE("read0 on connection", H1_EV_STRM_RECV, cs->conn, h1s); } if ((h1s->flags & H1S_F_REOS) || (h1m->state != H1_MSG_TUNNEL && h1m->state != H1_MSG_DATA) || (h1m->state == H1_MSG_DATA && !h1m->curr_len)) { TRACE_STATE("notify the mux can't use splicing anymore", H1_EV_STRM_RECV, h1s->h1c->conn, h1s); cs->flags &= ~CS_FL_MAY_SPLICE; } TRACE_LEAVE(H1_EV_STRM_RECV, cs->conn, h1s, 0, (size_t[]){ret}); return ret; } static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe) { struct h1s *h1s = cs->ctx; int ret = 0; TRACE_ENTER(H1_EV_STRM_SEND, cs->conn, h1s, 0, (size_t[]){pipe->data}); if (b_data(&h1s->h1c->obuf)) goto end; ret = cs->conn->xprt->snd_pipe(cs->conn, cs->conn->xprt_ctx, pipe); end: if (pipe->data) { if (!(h1s->h1c->wait_event.events & SUB_RETRY_SEND)) { TRACE_STATE("more data to send, subscribing", H1_EV_STRM_SEND, cs->conn, h1s); cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_SEND, &h1s->h1c->wait_event); } } TRACE_LEAVE(H1_EV_STRM_SEND, cs->conn, h1s, 0, (size_t[]){ret}); return ret; } #endif static int h1_ctl(struct connection *conn, enum mux_ctl_type mux_ctl, void *output) { int ret = 0; switch (mux_ctl) { case MUX_STATUS: if (!(conn->flags & CO_FL_WAIT_XPRT)) ret |= MUX_STATUS_READY; return ret; default: return -1; } } /* for debugging with CLI's "show fd" command */ static void h1_show_fd(struct buffer *msg, struct connection *conn) { struct h1c *h1c = conn->ctx; struct h1s *h1s = h1c->h1s; chunk_appendf(msg, " h1c.flg=0x%x .sub=%d .ibuf=%u@%p+%u/%u .obuf=%u@%p+%u/%u", h1c->flags, h1c->wait_event.events, (unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf), (unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf), (unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf), (unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf)); if (h1s) { char *method; if (h1s->meth < HTTP_METH_OTHER) method = http_known_methods[h1s->meth].ptr; else method = "UNKNOWN"; chunk_appendf(msg, " h1s=%p h1s.flg=0x%x .req.state=%s .res.state=%s" " .meth=%s status=%d", h1s, h1s->flags, h1m_state_str(h1s->req.state), h1m_state_str(h1s->res.state), method, h1s->status); if (h1s->cs) chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p", h1s->cs->flags, h1s->cs->data); } } /* Add an entry in the headers map. Returns -1 on error and 0 on success. */ static int add_hdr_case_adjust(const char *from, const char *to, char **err) { struct h1_hdr_entry *entry; /* Be sure there is a non-empty */ if (!strlen(to)) { memprintf(err, "expect "); return -1; } /* Be sure only the case differs between and */ if (strcasecmp(from, to)) { memprintf(err, " and must not differ execpt the case"); return -1; } /* Be sure does not already existsin the tree */ if (ebis_lookup(&hdrs_map.map, from)) { memprintf(err, "duplicate entry '%s'", from); return -1; } /* Create the entry and insert it in the tree */ entry = malloc(sizeof(*entry)); if (!entry) { memprintf(err, "out of memory"); return -1; } entry->node.key = strdup(from); entry->name.ptr = strdup(to); entry->name.len = strlen(to); if (!entry->node.key || !entry->name.ptr) { free(entry->node.key); istfree(&entry->name); free(entry); memprintf(err, "out of memory"); return -1; } ebis_insert(&hdrs_map.map, &entry->node); return 0; } /* Migrate the the connection to the current thread. * Return 0 if successful, non-zero otherwise. * Expected to be called with the old thread lock held. */ static int h1_takeover(struct connection *conn, int orig_tid) { struct h1c *h1c = conn->ctx; struct task *task; if (fd_takeover(conn->handle.fd, conn) != 0) return -1; if (conn->xprt->takeover && conn->xprt->takeover(conn, conn->xprt_ctx, orig_tid) != 0) { /* We failed to takeover the xprt, even if the connection may * still be valid, flag it as error'd, as we have already * taken over the fd, and wake the tasklet, so that it will * destroy it. */ conn->flags |= CO_FL_ERROR; tasklet_wakeup_on(h1c->wait_event.tasklet, orig_tid); return -1; } if (h1c->wait_event.events) h1c->conn->xprt->unsubscribe(h1c->conn, h1c->conn->xprt_ctx, h1c->wait_event.events, &h1c->wait_event); /* To let the tasklet know it should free itself, and do nothing else, * set its context to NULL. */ h1c->wait_event.tasklet->context = NULL; tasklet_wakeup_on(h1c->wait_event.tasklet, orig_tid); task = h1c->task; if (task) { task->context = NULL; h1c->task = NULL; __ha_barrier_store(); task_kill(task); h1c->task = task_new(tid_bit); if (!h1c->task) { h1_release(h1c); return -1; } h1c->task->process = h1_timeout_task; h1c->task->context = h1c; } h1c->wait_event.tasklet = tasklet_new(); if (!h1c->wait_event.tasklet) { h1_release(h1c); return -1; } h1c->wait_event.tasklet->process = h1_io_cb; h1c->wait_event.tasklet->context = h1c; h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event); return 0; } static void h1_hdeaders_case_adjust_deinit() { struct ebpt_node *node, *next; struct h1_hdr_entry *entry; node = ebpt_first(&hdrs_map.map); while (node) { next = ebpt_next(node); ebpt_delete(node); entry = container_of(node, struct h1_hdr_entry, node); free(entry->node.key); istfree(&entry->name); free(entry); node = next; } free(hdrs_map.name); } static int cfg_h1_headers_case_adjust_postparser() { FILE *file = NULL; char *c, *key_beg, *key_end, *value_beg, *value_end; char *err; int rc, line = 0, err_code = 0; if (!hdrs_map.name) goto end; file = fopen(hdrs_map.name, "r"); if (!file) { ha_alert("config : h1-outgoing-headers-case-adjust-file '%s': failed to open file.\n", hdrs_map.name); err_code |= ERR_ALERT | ERR_FATAL; goto end; } /* now parse all lines. The file may contain only two header name per * line, separated by spaces. All heading and trailing spaces will be * ignored. Lines starting with a # are ignored. */ while (fgets(trash.area, trash.size, file) != NULL) { line++; c = trash.area; /* strip leading spaces and tabs */ while (*c == ' ' || *c == '\t') c++; /* ignore emptu lines, or lines beginning with a dash */ if (*c == '#' || *c == '\0' || *c == '\r' || *c == '\n') continue; /* look for the end of the key */ key_beg = c; while (*c != '\0' && *c != ' ' && *c != '\t' && *c != '\n' && *c != '\r') c++; key_end = c; /* strip middle spaces and tabs */ while (*c == ' ' || *c == '\t') c++; /* look for the end of the value, it is the end of the line */ value_beg = c; while (*c && *c != '\n' && *c != '\r') c++; value_end = c; /* trim possibly trailing spaces and tabs */ while (value_end > value_beg && (value_end[-1] == ' ' || value_end[-1] == '\t')) value_end--; /* set final \0 and check entries */ *key_end = '\0'; *value_end = '\0'; err = NULL; rc = add_hdr_case_adjust(key_beg, value_beg, &err); if (rc < 0) { ha_alert("config : h1-outgoing-headers-case-adjust-file '%s' : %s at line %d.\n", hdrs_map.name, err, line); err_code |= ERR_ALERT | ERR_FATAL; free(err); goto end; } if (rc > 0) { ha_warning("config : h1-outgoing-headers-case-adjust-file '%s' : %s at line %d.\n", hdrs_map.name, err, line); err_code |= ERR_WARN; free(err); } } end: if (file) fclose(file); hap_register_post_deinit(h1_hdeaders_case_adjust_deinit); return err_code; } /* config parser for global "h1-outgoing-header-case-adjust" */ static int cfg_parse_h1_header_case_adjust(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(2, args, err, NULL)) return -1; if (!*(args[1]) || !*(args[2])) { memprintf(err, "'%s' expects and as argument.", args[0]); return -1; } return add_hdr_case_adjust(args[1], args[2], err); } /* config parser for global "h1-outgoing-headers-case-adjust-file" */ static int cfg_parse_h1_headers_case_adjust_file(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; if (!*(args[1])) { memprintf(err, "'%s' expects as argument.", args[0]); return -1; } free(hdrs_map.name); hdrs_map.name = strdup(args[1]); return 0; } /* config keyword parsers */ static struct cfg_kw_list cfg_kws = {{ }, { { CFG_GLOBAL, "h1-case-adjust", cfg_parse_h1_header_case_adjust }, { CFG_GLOBAL, "h1-case-adjust-file", cfg_parse_h1_headers_case_adjust_file }, { 0, NULL, NULL }, } }; INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); REGISTER_CONFIG_POSTPARSER("h1-headers-map", cfg_h1_headers_case_adjust_postparser); /****************************************/ /* MUX initialization and instantiation */ /****************************************/ /* The mux operations */ static const struct mux_ops mux_h1_ops = { .init = h1_init, .wake = h1_wake, .attach = h1_attach, .get_first_cs = h1_get_first_cs, .get_cs_info = h1_get_cs_info, .detach = h1_detach, .destroy = h1_destroy, .avail_streams = h1_avail_streams, .used_streams = h1_used_streams, .rcv_buf = h1_rcv_buf, .snd_buf = h1_snd_buf, #if defined(USE_LINUX_SPLICE) .rcv_pipe = h1_rcv_pipe, .snd_pipe = h1_snd_pipe, #endif .subscribe = h1_subscribe, .unsubscribe = h1_unsubscribe, .shutr = h1_shutr, .shutw = h1_shutw, .show_fd = h1_show_fd, .reset = h1_reset, .ctl = h1_ctl, .takeover = h1_takeover, .flags = MX_FL_HTX, .name = "H1", }; /* this mux registers default HTX proto */ static struct mux_proto_list mux_proto_htx = { .token = IST(""), .mode = PROTO_MODE_HTTP, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops }; INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_htx); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */