/* * General purpose functions. * * Copyright 2000-2010 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This macro returns false if the test __x is false. Many * of the following parsing function must be abort the processing * if it returns 0, so this macro is useful for writing light code. */ #define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0) /* enough to store NB_ITOA_STR integers of : * 2^64-1 = 18446744073709551615 or * -2^63 = -9223372036854775808 * * The HTML version needs room for adding the 25 characters * '' around digits at positions 3N+1 in order * to add spacing at up to 6 positions : 18 446 744 073 709 551 615 */ char itoa_str[NB_ITOA_STR][171]; int itoa_idx = 0; /* index of next itoa_str to use */ /* sometimes we'll need to quote strings (eg: in stats), and we don't expect * to quote strings larger than a max configuration line. */ char quoted_str[NB_QSTR][QSTR_SIZE + 1]; int quoted_idx = 0; /* * unsigned long long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ulltoa(unsigned long long n, char *dst, size_t size) { int i = 0; char *res; switch(n) { case 1ULL ... 9ULL: i = 0; break; case 10ULL ... 99ULL: i = 1; break; case 100ULL ... 999ULL: i = 2; break; case 1000ULL ... 9999ULL: i = 3; break; case 10000ULL ... 99999ULL: i = 4; break; case 100000ULL ... 999999ULL: i = 5; break; case 1000000ULL ... 9999999ULL: i = 6; break; case 10000000ULL ... 99999999ULL: i = 7; break; case 100000000ULL ... 999999999ULL: i = 8; break; case 1000000000ULL ... 9999999999ULL: i = 9; break; case 10000000000ULL ... 99999999999ULL: i = 10; break; case 100000000000ULL ... 999999999999ULL: i = 11; break; case 1000000000000ULL ... 9999999999999ULL: i = 12; break; case 10000000000000ULL ... 99999999999999ULL: i = 13; break; case 100000000000000ULL ... 999999999999999ULL: i = 14; break; case 1000000000000000ULL ... 9999999999999999ULL: i = 15; break; case 10000000000000000ULL ... 99999999999999999ULL: i = 16; break; case 100000000000000000ULL ... 999999999999999999ULL: i = 17; break; case 1000000000000000000ULL ... 9999999999999999999ULL: i = 18; break; case 10000000000000000000ULL ... ULLONG_MAX: i = 19; break; } if (i + 2 > size) // (i + 1) + '\0' return NULL; // too long res = dst + i + 1; *res = '\0'; for (; i >= 0; i--) { dst[i] = n % 10ULL + '0'; n /= 10ULL; } return res; } /* * unsigned long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ultoa_o(unsigned long n, char *dst, size_t size) { int i = 0; char *res; switch (n) { case 0U ... 9UL: i = 0; break; case 10U ... 99UL: i = 1; break; case 100U ... 999UL: i = 2; break; case 1000U ... 9999UL: i = 3; break; case 10000U ... 99999UL: i = 4; break; case 100000U ... 999999UL: i = 5; break; case 1000000U ... 9999999UL: i = 6; break; case 10000000U ... 99999999UL: i = 7; break; case 100000000U ... 999999999UL: i = 8; break; #if __WORDSIZE == 32 case 1000000000ULL ... ULONG_MAX: i = 9; break; #elif __WORDSIZE == 64 case 1000000000ULL ... 9999999999UL: i = 9; break; case 10000000000ULL ... 99999999999UL: i = 10; break; case 100000000000ULL ... 999999999999UL: i = 11; break; case 1000000000000ULL ... 9999999999999UL: i = 12; break; case 10000000000000ULL ... 99999999999999UL: i = 13; break; case 100000000000000ULL ... 999999999999999UL: i = 14; break; case 1000000000000000ULL ... 9999999999999999UL: i = 15; break; case 10000000000000000ULL ... 99999999999999999UL: i = 16; break; case 100000000000000000ULL ... 999999999999999999UL: i = 17; break; case 1000000000000000000ULL ... 9999999999999999999UL: i = 18; break; case 10000000000000000000ULL ... ULONG_MAX: i = 19; break; #endif } if (i + 2 > size) // (i + 1) + '\0' return NULL; // too long res = dst + i + 1; *res = '\0'; for (; i >= 0; i--) { dst[i] = n % 10U + '0'; n /= 10U; } return res; } /* * signed long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *ltoa_o(long int n, char *dst, size_t size) { char *pos = dst; if (n < 0) { if (size < 3) return NULL; // min size is '-' + digit + '\0' but another test in ultoa *pos = '-'; pos++; dst = ultoa_o(-n, pos, size - 1); } else { dst = ultoa_o(n, dst, size); } return dst; } /* * signed long long ASCII representation * * return the last char '\0' or NULL if no enough * space in dst */ char *lltoa(long long n, char *dst, size_t size) { char *pos = dst; if (n < 0) { if (size < 3) return NULL; // min size is '-' + digit + '\0' but another test in ulltoa *pos = '-'; pos++; dst = ulltoa(-n, pos, size - 1); } else { dst = ulltoa(n, dst, size); } return dst; } /* * write a ascii representation of a unsigned into dst, * return a pointer to the last character * Pad the ascii representation with '0', using size. */ char *utoa_pad(unsigned int n, char *dst, size_t size) { int i = 0; char *ret; switch(n) { case 0U ... 9U: i = 0; break; case 10U ... 99U: i = 1; break; case 100U ... 999U: i = 2; break; case 1000U ... 9999U: i = 3; break; case 10000U ... 99999U: i = 4; break; case 100000U ... 999999U: i = 5; break; case 1000000U ... 9999999U: i = 6; break; case 10000000U ... 99999999U: i = 7; break; case 100000000U ... 999999999U: i = 8; break; case 1000000000U ... 4294967295U: i = 9; break; } if (i + 2 > size) // (i + 1) + '\0' return NULL; // too long if (i < size) i = size - 2; // padding - '\0' ret = dst + i + 1; *ret = '\0'; for (; i >= 0; i--) { dst[i] = n % 10U + '0'; n /= 10U; } return ret; } /* * copies at most chars from to . Last char is always * set to 0, unless is 0. The number of chars copied is returned * (excluding the terminating zero). * This code has been optimized for size and speed : on x86, it's 45 bytes * long, uses only registers, and consumes only 4 cycles per char. */ int strlcpy2(char *dst, const char *src, int size) { char *orig = dst; if (size) { while (--size && (*dst = *src)) { src++; dst++; } *dst = 0; } return dst - orig; } /* * This function simply returns a locally allocated string containing * the ascii representation for number 'n' in decimal. */ char *ultoa_r(unsigned long n, char *buffer, int size) { char *pos; pos = buffer + size - 1; *pos-- = '\0'; do { *pos-- = '0' + n % 10; n /= 10; } while (n && pos >= buffer); return pos + 1; } /* * This function simply returns a locally allocated string containing * the ascii representation for number 'n' in decimal. */ char *lltoa_r(long long int in, char *buffer, int size) { char *pos; int neg = 0; unsigned long long int n; pos = buffer + size - 1; *pos-- = '\0'; if (in < 0) { neg = 1; n = -in; } else n = in; do { *pos-- = '0' + n % 10; n /= 10; } while (n && pos >= buffer); if (neg && pos > buffer) *pos-- = '-'; return pos + 1; } /* * This function simply returns a locally allocated string containing * the ascii representation for signed number 'n' in decimal. */ char *sltoa_r(long n, char *buffer, int size) { char *pos; if (n >= 0) return ultoa_r(n, buffer, size); pos = ultoa_r(-n, buffer + 1, size - 1) - 1; *pos = '-'; return pos; } /* * This function simply returns a locally allocated string containing * the ascii representation for number 'n' in decimal, formatted for * HTML output with tags to create visual grouping by 3 digits. The * output needs to support at least 171 characters. */ const char *ulltoh_r(unsigned long long n, char *buffer, int size) { char *start; int digit = 0; start = buffer + size; *--start = '\0'; do { if (digit == 3 && start >= buffer + 7) memcpy(start -= 7, "", 7); if (start >= buffer + 1) { *--start = '0' + n % 10; n /= 10; } if (digit == 3 && start >= buffer + 18) memcpy(start -= 18, "", 18); if (digit++ == 3) digit = 1; } while (n && start > buffer); return start; } /* * This function simply returns a locally allocated string containing the ascii * representation for number 'n' in decimal, unless n is 0 in which case it * returns the alternate string (or an empty string if the alternate string is * NULL). It use is intended for limits reported in reports, where it's * desirable not to display anything if there is no limit. Warning! it shares * the same vector as ultoa_r(). */ const char *limit_r(unsigned long n, char *buffer, int size, const char *alt) { return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : ""); } /* returns a locally allocated string containing the quoted encoding of the * input string. The output may be truncated to QSTR_SIZE chars, but it is * guaranteed that the string will always be properly terminated. Quotes are * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must * always be at least 4 chars. */ const char *qstr(const char *str) { char *ret = quoted_str[quoted_idx]; char *p, *end; if (++quoted_idx >= NB_QSTR) quoted_idx = 0; p = ret; end = ret + QSTR_SIZE; *p++ = '"'; /* always keep 3 chars to support passing "" and the ending " */ while (*str && p < end - 3) { if (*str == '"') { *p++ = '"'; *p++ = '"'; } else *p++ = *str; str++; } *p++ = '"'; return ret; } /* * Returns non-zero if character is a hex digit (0-9, a-f, A-F), else zero. * * It looks like this one would be a good candidate for inlining, but this is * not interesting because it around 35 bytes long and often called multiple * times within the same function. */ int ishex(char s) { s -= '0'; if ((unsigned char)s <= 9) return 1; s -= 'A' - '0'; if ((unsigned char)s <= 5) return 1; s -= 'a' - 'A'; if ((unsigned char)s <= 5) return 1; return 0; } /* rounds down to the closest value having max 2 digits */ unsigned int round_2dig(unsigned int i) { unsigned int mul = 1; while (i >= 100) { i /= 10; mul *= 10; } return i * mul; } /* * Checks for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an * invalid character is found, a pointer to it is returned. If everything is * fine, NULL is returned. */ const char *invalid_char(const char *name) { if (!*name) return name; while (*name) { if (!isalnum((int)(unsigned char)*name) && *name != '.' && *name != ':' && *name != '_' && *name != '-') return name; name++; } return NULL; } /* * Checks for invalid characters. Valid chars are [A-Za-z0-9_.-]. * If an invalid character is found, a pointer to it is returned. * If everything is fine, NULL is returned. */ const char *invalid_domainchar(const char *name) { if (!*name) return name; while (*name) { if (!isalnum((int)(unsigned char)*name) && *name != '.' && *name != '_' && *name != '-') return name; name++; } return NULL; } /* * converts to a struct sockaddr_storage* provided by the caller. The * caller must have zeroed first, and may have set sa->ss_family to force * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then * the function tries to guess the address family from the syntax. If the * family is forced and the format doesn't match, an error is returned. The * string is assumed to contain only an address, no port. The address can be a * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved. * The return address will only have the address family and the address set, * all other fields remain zero. The string is not supposed to be modified. * The IPv6 '::' address is IN6ADDR_ANY. If is non-zero, the hostname * is resolved, otherwise only IP addresses are resolved, and anything else * returns NULL. */ struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve) { struct hostent *he; /* max IPv6 length, including brackets and terminating NULL */ char tmpip[48]; /* check IPv6 with square brackets */ if (str[0] == '[') { size_t iplength = strlen(str); if (iplength < 4) { /* minimal size is 4 when using brackets "[::]" */ goto fail; } else if (iplength >= sizeof(tmpip)) { /* IPv6 literal can not be larger than tmpip */ goto fail; } else { if (str[iplength - 1] != ']') { /* if address started with bracket, it should end with bracket */ goto fail; } else { memcpy(tmpip, str + 1, iplength - 2); tmpip[iplength - 2] = '\0'; str = tmpip; } } } /* Any IPv6 address */ if (str[0] == ':' && str[1] == ':' && !str[2]) { if (!sa->ss_family || sa->ss_family == AF_UNSPEC) sa->ss_family = AF_INET6; else if (sa->ss_family != AF_INET6) goto fail; return sa; } /* Any address for the family, defaults to IPv4 */ if (!str[0] || (str[0] == '*' && !str[1])) { if (!sa->ss_family || sa->ss_family == AF_UNSPEC) sa->ss_family = AF_INET; return sa; } /* check for IPv6 first */ if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) && inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) { sa->ss_family = AF_INET6; return sa; } /* then check for IPv4 */ if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) && inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) { sa->ss_family = AF_INET; return sa; } if (!resolve) return NULL; if (!dns_hostname_validation(str, NULL)) return NULL; #ifdef USE_GETADDRINFO if (global.tune.options & GTUNE_USE_GAI) { struct addrinfo hints, *result; memset(&result, 0, sizeof(result)); memset(&hints, 0, sizeof(hints)); hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = 0; hints.ai_protocol = 0; if (getaddrinfo(str, NULL, &hints, &result) == 0) { if (!sa->ss_family || sa->ss_family == AF_UNSPEC) sa->ss_family = result->ai_family; else if (sa->ss_family != result->ai_family) goto fail; switch (result->ai_family) { case AF_INET: memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen); return sa; case AF_INET6: memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen); return sa; } } if (result) freeaddrinfo(result); } #endif /* try to resolve an IPv4/IPv6 hostname */ he = gethostbyname(str); if (he) { if (!sa->ss_family || sa->ss_family == AF_UNSPEC) sa->ss_family = he->h_addrtype; else if (sa->ss_family != he->h_addrtype) goto fail; switch (sa->ss_family) { case AF_INET: ((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list); return sa; case AF_INET6: ((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list); return sa; } } /* unsupported address family */ fail: return NULL; } /* * Converts to a locally allocated struct sockaddr_storage *, and a port * range or offset consisting in two integers that the caller will have to * check to find the relevant input format. The following format are supported : * * String format | address | port | low | high * addr | | 0 | 0 | 0 * addr: | | 0 | 0 | 0 * addr:port | | | | * addr:pl-ph | | | | * addr:+port | | | 0 | * addr:-port | |- | | 0 * * The detection of a port range or increment by the caller is made by * comparing and . If both are equal, then port 0 means no port * was specified. The caller may pass NULL for and if it is not * interested in retrieving port ranges. * * Note that above may also be : * - empty ("") => family will be AF_INET and address will be INADDR_ANY * - "*" => family will be AF_INET and address will be INADDR_ANY * - "::" => family will be AF_INET6 and address will be IN6ADDR_ANY * - a host name => family and address will depend on host name resolving. * * A prefix may be passed in before the address above to force the family : * - "ipv4@" => force address to resolve as IPv4 and fail if not possible. * - "ipv6@" => force address to resolve as IPv6 and fail if not possible. * - "unix@" => force address to be a path to a UNIX socket even if the * path does not start with a '/' * - 'abns@' -> force address to belong to the abstract namespace (Linux * only). These sockets are just like Unix sockets but without * the need for an underlying file system. The address is a * string. Technically it's like a Unix socket with a zero in * the first byte of the address. * - "fd@" => an integer must follow, and is a file descriptor number. * * IPv6 addresses can be declared with or without square brackets. When using * square brackets for IPv6 addresses, the port separator (colon) is optional. * If not using square brackets, and in order to avoid any ambiguity with * IPv6 addresses, the last colon ':' is mandatory even when no port is specified. * NULL is returned if the address cannot be parsed. The and ports * are always initialized if non-null, even for non-IP families. * * If is non-null, it is used as a string prefix before any path-based * address (typically the path to a unix socket). * * if is non-null, it will be filled with : * - a pointer to the FQDN of the server name to resolve if there's one, and * that the caller will have to free(), * - NULL if there was an explicit address that doesn't require resolution. * * Hostnames are only resolved if is non-null. * * When a file descriptor is passed, its value is put into the s_addr part of * the address when cast to sockaddr_in and the address family is AF_UNSPEC. */ struct sockaddr_storage *str2sa_range(const char *str, int *low, int *high, char **err, const char *pfx, char **fqdn, int resolve) { static struct sockaddr_storage ss; struct sockaddr_storage *ret = NULL; char *back, *str2; char *port1, *port2; int portl, porth, porta; int abstract = 0; portl = porth = porta = 0; if (fqdn) *fqdn = NULL; str2 = back = env_expand(strdup(str)); if (str2 == NULL) { memprintf(err, "out of memory in '%s'\n", __FUNCTION__); goto out; } if (!*str2) { memprintf(err, "'%s' resolves to an empty address (environment variable missing?)\n", str); goto out; } memset(&ss, 0, sizeof(ss)); if (strncmp(str2, "unix@", 5) == 0) { str2 += 5; abstract = 0; ss.ss_family = AF_UNIX; } else if (strncmp(str2, "abns@", 5) == 0) { str2 += 5; abstract = 1; ss.ss_family = AF_UNIX; } else if (strncmp(str2, "ipv4@", 5) == 0) { str2 += 5; ss.ss_family = AF_INET; } else if (strncmp(str2, "ipv6@", 5) == 0) { str2 += 5; ss.ss_family = AF_INET6; } else if (*str2 == '/') { ss.ss_family = AF_UNIX; } else ss.ss_family = AF_UNSPEC; if (ss.ss_family == AF_UNSPEC && strncmp(str2, "fd@", 3) == 0) { char *endptr; str2 += 3; ((struct sockaddr_in *)&ss)->sin_addr.s_addr = strtol(str2, &endptr, 10); if (!*str2 || *endptr) { memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str); goto out; } /* we return AF_UNSPEC if we use a file descriptor number */ ss.ss_family = AF_UNSPEC; } else if (ss.ss_family == AF_UNIX) { int prefix_path_len; int max_path_len; int adr_len; /* complete unix socket path name during startup or soft-restart is * .. */ prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0; max_path_len = (sizeof(((struct sockaddr_un *)&ss)->sun_path) - 1) - (prefix_path_len ? prefix_path_len + 1 + 5 + 1 + 3 : 0); adr_len = strlen(str2); if (adr_len > max_path_len) { memprintf(err, "socket path '%s' too long (max %d)\n", str, max_path_len); goto out; } /* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */ memset(((struct sockaddr_un *)&ss)->sun_path, 0, sizeof(((struct sockaddr_un *)&ss)->sun_path)); if (prefix_path_len) memcpy(((struct sockaddr_un *)&ss)->sun_path, pfx, prefix_path_len); memcpy(((struct sockaddr_un *)&ss)->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract); } else { /* IPv4 and IPv6 */ int use_fqdn = 0; char *end = str2 + strlen(str2); char *chr; /* search for : or ] whatever comes first */ for (chr = end-1; chr > str2; chr--) { if (*chr == ']' || *chr == ':') break; } if (*chr == ':') { /* Found a colon before a closing-bracket, must be a port separator. * This guarantee backward compatibility. */ *chr++ = '\0'; port1 = chr; } else { /* Either no colon and no closing-bracket * or directly ending with a closing-bracket. * However, no port. */ port1 = ""; } if (str2ip2(str2, &ss, 0) == NULL) { use_fqdn = 1; if (!resolve || str2ip2(str2, &ss, 1) == NULL) { memprintf(err, "invalid address: '%s' in '%s'\n", str2, str); goto out; } } if (isdigit((int)(unsigned char)*port1)) { /* single port or range */ port2 = strchr(port1, '-'); if (port2) *port2++ = '\0'; else port2 = port1; portl = atoi(port1); porth = atoi(port2); porta = portl; } else if (*port1 == '-') { /* negative offset */ portl = atoi(port1 + 1); porta = -portl; } else if (*port1 == '+') { /* positive offset */ porth = atoi(port1 + 1); porta = porth; } else if (*port1) { /* other any unexpected char */ memprintf(err, "invalid character '%c' in port number '%s' in '%s'\n", *port1, port1, str); goto out; } set_host_port(&ss, porta); if (use_fqdn && fqdn) { if (str2 != back) memmove(back, str2, strlen(str2) + 1); *fqdn = back; back = NULL; } } ret = &ss; out: if (low) *low = portl; if (high) *high = porth; free(back); return ret; } /* converts to a struct in_addr containing a network mask. It can be * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1 * if the conversion succeeds otherwise non-zero. */ int str2mask(const char *str, struct in_addr *mask) { if (strchr(str, '.') != NULL) { /* dotted notation */ if (!inet_pton(AF_INET, str, mask)) return 0; } else { /* mask length */ char *err; unsigned long len = strtol(str, &err, 10); if (!*str || (err && *err) || (unsigned)len > 32) return 0; if (len) mask->s_addr = htonl(~0UL << (32 - len)); else mask->s_addr = 0; } return 1; } /* convert to struct in_addr . It returns 1 if the conversion * succeeds otherwise zero. */ int cidr2dotted(int cidr, struct in_addr *mask) { if (cidr < 0 || cidr > 32) return 0; mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0; return 1; } /* Convert mask from bit length form to in_addr form. * This function never fails. */ void len2mask4(int len, struct in_addr *addr) { if (len >= 32) { addr->s_addr = 0xffffffff; return; } if (len <= 0) { addr->s_addr = 0x00000000; return; } addr->s_addr = 0xffffffff << (32 - len); addr->s_addr = htonl(addr->s_addr); } /* Convert mask from bit length form to in6_addr form. * This function never fails. */ void len2mask6(int len, struct in6_addr *addr) { len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */ len -= 32; len2mask4(len, (struct in_addr *)&addr->s6_addr[4]); len -= 32; len2mask4(len, (struct in_addr *)&addr->s6_addr[8]); len -= 32; len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */ } /* * converts to two struct in_addr* which must be pre-allocated. * The format is "addr[/mask]", where "addr" cannot be empty, and mask * is optionnal and either in the dotted or CIDR notation. * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. */ int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask) { __label__ out_free, out_err; char *c, *s; int ret_val; s = strdup(str); if (!s) return 0; memset(mask, 0, sizeof(*mask)); memset(addr, 0, sizeof(*addr)); if ((c = strrchr(s, '/')) != NULL) { *c++ = '\0'; /* c points to the mask */ if (!str2mask(c, mask)) goto out_err; } else { mask->s_addr = ~0U; } if (!inet_pton(AF_INET, s, addr)) { struct hostent *he; if (!resolve) goto out_err; if ((he = gethostbyname(s)) == NULL) { goto out_err; } else *addr = *(struct in_addr *) *(he->h_addr_list); } ret_val = 1; out_free: free(s); return ret_val; out_err: ret_val = 0; goto out_free; } /* * converts to two struct in6_addr* which must be pre-allocated. * The format is "addr[/mask]", where "addr" cannot be empty, and mask * is an optionnal number of bits (128 being the default). * Returns 1 if OK, 0 if error. */ int str62net(const char *str, struct in6_addr *addr, unsigned char *mask) { char *c, *s; int ret_val = 0; char *err; unsigned long len = 128; s = strdup(str); if (!s) return 0; memset(mask, 0, sizeof(*mask)); memset(addr, 0, sizeof(*addr)); if ((c = strrchr(s, '/')) != NULL) { *c++ = '\0'; /* c points to the mask */ if (!*c) goto out_free; len = strtoul(c, &err, 10); if ((err && *err) || (unsigned)len > 128) goto out_free; } *mask = len; /* OK we have a valid mask in */ if (!inet_pton(AF_INET6, s, addr)) goto out_free; ret_val = 1; out_free: free(s); return ret_val; } /* * Parse IPv4 address found in url. */ int url2ipv4(const char *addr, struct in_addr *dst) { int saw_digit, octets, ch; u_char tmp[4], *tp; const char *cp = addr; saw_digit = 0; octets = 0; *(tp = tmp) = 0; while (*addr) { unsigned char digit = (ch = *addr++) - '0'; if (digit > 9 && ch != '.') break; if (digit <= 9) { u_int new = *tp * 10 + digit; if (new > 255) return 0; *tp = new; if (!saw_digit) { if (++octets > 4) return 0; saw_digit = 1; } } else if (ch == '.' && saw_digit) { if (octets == 4) return 0; *++tp = 0; saw_digit = 0; } else return 0; } if (octets < 4) return 0; memcpy(&dst->s_addr, tmp, 4); return addr-cp-1; } /* * Resolve destination server from URL. Convert to a sockaddr_storage. * contain the code of the dectected scheme, the start and length of * the hostname. Actually only http and https are supported. can be NULL. * This function returns the consumed length. It is useful if you parse complete * url like http://host:port/path, because the consumed length corresponds to * the first character of the path. If the conversion fails, it returns -1. * * This function tries to resolve the DNS name if haproxy is in starting mode. * So, this function may be used during the configuration parsing. */ int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out) { const char *curr = url, *cp = url; const char *end; int ret, url_code = 0; unsigned long long int http_code = 0; int default_port; struct hostent *he; char *p; /* Firstly, try to find :// pattern */ while (curr < url+ulen && url_code != 0x3a2f2f) { url_code = ((url_code & 0xffff) << 8); url_code += (unsigned char)*curr++; } /* Secondly, if :// pattern is found, verify parsed stuff * before pattern is matching our http pattern. * If so parse ip address and port in uri. * * WARNING: Current code doesn't support dynamic async dns resolver. */ if (url_code != 0x3a2f2f) return -1; /* Copy scheme, and utrn to lower case. */ while (cp < curr - 3) http_code = (http_code << 8) + *cp++; http_code |= 0x2020202020202020ULL; /* Turn everything to lower case */ /* HTTP or HTTPS url matching */ if (http_code == 0x2020202068747470ULL) { default_port = 80; if (out) out->scheme = SCH_HTTP; } else if (http_code == 0x2020206874747073ULL) { default_port = 443; if (out) out->scheme = SCH_HTTPS; } else return -1; /* If the next char is '[', the host address is IPv6. */ if (*curr == '[') { curr++; /* Check trash size */ if (trash.size < ulen) return -1; /* Look for ']' and copy the address in a trash buffer. */ p = trash.str; for (end = curr; end < url + ulen && *end != ']'; end++, p++) *p = *end; if (*end != ']') return -1; *p = '\0'; /* Update out. */ if (out) { out->host = curr; out->host_len = end - curr; } /* Try IPv6 decoding. */ if (!inet_pton(AF_INET6, trash.str, &((struct sockaddr_in6 *)addr)->sin6_addr)) return -1; end++; /* Decode port. */ if (*end == ':') { end++; default_port = read_uint(&end, url + ulen); } ((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port); ((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6; return end - url; } else { /* We are looking for IP address. If you want to parse and * resolve hostname found in url, you can use str2sa_range(), but * be warned this can slow down global daemon performances * while handling lagging dns responses. */ ret = url2ipv4(curr, &((struct sockaddr_in *)addr)->sin_addr); if (ret) { /* Update out. */ if (out) { out->host = curr; out->host_len = ret; } curr += ret; /* Decode port. */ if (*curr == ':') { curr++; default_port = read_uint(&curr, url + ulen); } ((struct sockaddr_in *)addr)->sin_port = htons(default_port); /* Set family. */ ((struct sockaddr_in *)addr)->sin_family = AF_INET; return curr - url; } else if (global.mode & MODE_STARTING) { /* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute * synchronous DNS request only if HAProxy is in the start state. */ /* look for : or / or end */ for (end = curr; end < url + ulen && *end != '/' && *end != ':'; end++); memcpy(trash.str, curr, end - curr); trash.str[end - curr] = '\0'; /* try to resolve an IPv4/IPv6 hostname */ he = gethostbyname(trash.str); if (!he) return -1; /* Update out. */ if (out) { out->host = curr; out->host_len = end - curr; } /* Decode port. */ if (*end == ':') { end++; default_port = read_uint(&end, url + ulen); } /* Copy IP address, set port and family. */ switch (he->h_addrtype) { case AF_INET: ((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list); ((struct sockaddr_in *)addr)->sin_port = htons(default_port); ((struct sockaddr_in *)addr)->sin_family = AF_INET; return end - url; case AF_INET6: ((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list); ((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port); ((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6; return end - url; } } } return -1; } /* Tries to convert a sockaddr_storage address to text form. Upon success, the * address family is returned so that it's easy for the caller to adapt to the * output format. Zero is returned if the address family is not supported. -1 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are * supported. */ int addr_to_str(struct sockaddr_storage *addr, char *str, int size) { void *ptr; if (size < 5) return 0; *str = '\0'; switch (addr->ss_family) { case AF_INET: ptr = &((struct sockaddr_in *)addr)->sin_addr; break; case AF_INET6: ptr = &((struct sockaddr_in6 *)addr)->sin6_addr; break; case AF_UNIX: memcpy(str, "unix", 5); return addr->ss_family; default: return 0; } if (inet_ntop(addr->ss_family, ptr, str, size)) return addr->ss_family; /* failed */ return -1; } /* Tries to convert a sockaddr_storage port to text form. Upon success, the * address family is returned so that it's easy for the caller to adapt to the * output format. Zero is returned if the address family is not supported. -1 * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are * supported. */ int port_to_str(struct sockaddr_storage *addr, char *str, int size) { uint16_t port; if (size < 5) return 0; *str = '\0'; switch (addr->ss_family) { case AF_INET: port = ((struct sockaddr_in *)addr)->sin_port; break; case AF_INET6: port = ((struct sockaddr_in6 *)addr)->sin6_port; break; case AF_UNIX: memcpy(str, "unix", 5); return addr->ss_family; default: return 0; } snprintf(str, size, "%u", ntohs(port)); return addr->ss_family; } /* will try to encode the string replacing all characters tagged in * with the hexadecimal representation of their ASCII-code (2 digits) * prefixed by , and will store the result between (included) * and (excluded), and will always terminate the string with a '\0' * before . The position of the '\0' is returned if the conversion * completes. If bytes are missing between and , then the * conversion will be incomplete and truncated. If <= , the '\0' * cannot even be stored so we return without writing the 0. * The input string must also be zero-terminated. */ const char hextab[16] = "0123456789ABCDEF"; char *encode_string(char *start, char *stop, const char escape, const fd_set *map, const char *string) { if (start < stop) { stop--; /* reserve one byte for the final '\0' */ while (start < stop && *string != '\0') { if (!FD_ISSET((unsigned char)(*string), map)) *start++ = *string; else { if (start + 3 >= stop) break; *start++ = escape; *start++ = hextab[(*string >> 4) & 15]; *start++ = hextab[*string & 15]; } string++; } *start = '\0'; } return start; } /* * Same behavior as encode_string() above, except that it encodes chunk * instead of a string. */ char *encode_chunk(char *start, char *stop, const char escape, const fd_set *map, const struct chunk *chunk) { char *str = chunk->str; char *end = chunk->str + chunk->len; if (start < stop) { stop--; /* reserve one byte for the final '\0' */ while (start < stop && str < end) { if (!FD_ISSET((unsigned char)(*str), map)) *start++ = *str; else { if (start + 3 >= stop) break; *start++ = escape; *start++ = hextab[(*str >> 4) & 15]; *start++ = hextab[*str & 15]; } str++; } *start = '\0'; } return start; } /* * Tries to prefix characters tagged in the with the * character. contains the input to be escaped. The result will be * stored between (included) and (excluded). The function * will always try to terminate the resulting string with a '\0' before * , and will return its position if the conversion completes. */ char *escape_chunk(char *start, char *stop, const char escape, const fd_set *map, const struct chunk *chunk) { char *str = chunk->str; char *end = chunk->str + chunk->len; if (start < stop) { stop--; /* reserve one byte for the final '\0' */ while (start < stop && str < end) { if (!FD_ISSET((unsigned char)(*str), map)) *start++ = *str; else { if (start + 2 >= stop) break; *start++ = escape; *start++ = *str; } str++; } *start = '\0'; } return start; } /* Check a string for using it in a CSV output format. If the string contains * one of the following four char <">, <,>, CR or LF, the string is * encapsulated between <"> and the <"> are escaped by a <""> sequence. * is the input string to be escaped. The function assumes that * the input string is null-terminated. * * If is 0, the result is returned escaped but without double quote. * It is useful if the escaped string is used between double quotes in the * format. * * printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash)); * * If is 1, the converter puts the quotes only if any reserved character * is present. If is 2, the converter always puts the quotes. * * is a struct chunk used for storing the output string. * * The function returns the converted string on its output. If an error * occurs, the function returns an empty string. This type of output is useful * for using the function directly as printf() argument. * * If the output buffer is too short to contain the input string, the result * is truncated. * * This function appends the encoding to the existing output chunk, and it * guarantees that it starts immediately at the first available character of * the chunk. Please use csv_enc() instead if you want to replace the output * chunk. */ const char *csv_enc_append(const char *str, int quote, struct chunk *output) { char *end = output->str + output->size; char *out = output->str + output->len; char *ptr = out; if (quote == 1) { /* automatic quoting: first verify if we'll have to quote the string */ if (!strpbrk(str, "\n\r,\"")) quote = 0; } if (quote) *ptr++ = '"'; while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */ *ptr = *str; if (*str == '"') { ptr++; if (ptr >= end - 2) { ptr--; break; } *ptr = '"'; } ptr++; str++; } if (quote) *ptr++ = '"'; *ptr = '\0'; output->len = ptr - output->str; return out; } /* Decode an URL-encoded string in-place. The resulting string might * be shorter. If some forbidden characters are found, the conversion is * aborted, the string is truncated before the issue and a negative value is * returned, otherwise the operation returns the length of the decoded string. */ int url_decode(char *string) { char *in, *out; int ret = -1; in = string; out = string; while (*in) { switch (*in) { case '+' : *out++ = ' '; break; case '%' : if (!ishex(in[1]) || !ishex(in[2])) goto end; *out++ = (hex2i(in[1]) << 4) + hex2i(in[2]); in += 2; break; default: *out++ = *in; break; } in++; } ret = out - string; /* success */ end: *out = 0; return ret; } unsigned int str2ui(const char *s) { return __str2ui(s); } unsigned int str2uic(const char *s) { return __str2uic(s); } unsigned int strl2ui(const char *s, int len) { return __strl2ui(s, len); } unsigned int strl2uic(const char *s, int len) { return __strl2uic(s, len); } unsigned int read_uint(const char **s, const char *end) { return __read_uint(s, end); } /* This function reads an unsigned integer from the string pointed to by and * returns it. The pointer is adjusted to point to the first unread char. The * function automatically stops at . If the number overflows, the 2^64-1 * value is returned. */ unsigned long long int read_uint64(const char **s, const char *end) { const char *ptr = *s; unsigned long long int i = 0, tmp; unsigned int j; while (ptr < end) { /* read next char */ j = *ptr - '0'; if (j > 9) goto read_uint64_end; /* add char to the number and check overflow. */ tmp = i * 10; if (tmp / 10 != i) { i = ULLONG_MAX; goto read_uint64_eat; } if (ULLONG_MAX - tmp < j) { i = ULLONG_MAX; goto read_uint64_eat; } i = tmp + j; ptr++; } read_uint64_eat: /* eat each numeric char */ while (ptr < end) { if ((unsigned int)(*ptr - '0') > 9) break; ptr++; } read_uint64_end: *s = ptr; return i; } /* This function reads an integer from the string pointed to by and returns * it. The pointer is adjusted to point to the first unread char. The function * automatically stops at . Il the number is bigger than 2^63-2, the 2^63-1 * value is returned. If the number is lowest than -2^63-1, the -2^63 value is * returned. */ long long int read_int64(const char **s, const char *end) { unsigned long long int i = 0; int neg = 0; /* Look for minus char. */ if (**s == '-') { neg = 1; (*s)++; } else if (**s == '+') (*s)++; /* convert as positive number. */ i = read_uint64(s, end); if (neg) { if (i > 0x8000000000000000ULL) return LLONG_MIN; return -i; } if (i > 0x7fffffffffffffffULL) return LLONG_MAX; return i; } /* This one is 7 times faster than strtol() on athlon with checks. * It returns the value of the number composed of all valid digits read, * and can process negative numbers too. */ int strl2ic(const char *s, int len) { int i = 0; int j, k; if (len > 0) { if (*s != '-') { /* positive number */ while (len-- > 0) { j = (*s++) - '0'; k = i * 10; if (j > 9) break; i = k + j; } } else { /* negative number */ s++; while (--len > 0) { j = (*s++) - '0'; k = i * 10; if (j > 9) break; i = k - j; } } } return i; } /* This function reads exactly chars from and converts them to a * signed integer which it stores into . It accurately detects any error * (truncated string, invalid chars, overflows). It is meant to be used in * applications designed for hostile environments. It returns zero when the * number has successfully been converted, non-zero otherwise. When an error * is returned, the value is left untouched. It is yet 5 to 40 times * faster than strtol(). */ int strl2irc(const char *s, int len, int *ret) { int i = 0; int j; if (!len) return 1; if (*s != '-') { /* positive number */ while (len-- > 0) { j = (*s++) - '0'; if (j > 9) return 1; /* invalid char */ if (i > INT_MAX / 10) return 1; /* check for multiply overflow */ i = i * 10; if (i + j < i) return 1; /* check for addition overflow */ i = i + j; } } else { /* negative number */ s++; while (--len > 0) { j = (*s++) - '0'; if (j > 9) return 1; /* invalid char */ if (i < INT_MIN / 10) return 1; /* check for multiply overflow */ i = i * 10; if (i - j > i) return 1; /* check for subtract overflow */ i = i - j; } } *ret = i; return 0; } /* This function reads exactly chars from and converts them to a * signed integer which it stores into . It accurately detects any error * (truncated string, invalid chars, overflows). It is meant to be used in * applications designed for hostile environments. It returns zero when the * number has successfully been converted, non-zero otherwise. When an error * is returned, the value is left untouched. It is about 3 times slower * than str2irc(). */ int strl2llrc(const char *s, int len, long long *ret) { long long i = 0; int j; if (!len) return 1; if (*s != '-') { /* positive number */ while (len-- > 0) { j = (*s++) - '0'; if (j > 9) return 1; /* invalid char */ if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */ i = i * 10LL; if (i + j < i) return 1; /* check for addition overflow */ i = i + j; } } else { /* negative number */ s++; while (--len > 0) { j = (*s++) - '0'; if (j > 9) return 1; /* invalid char */ if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */ i = i * 10LL; if (i - j > i) return 1; /* check for subtract overflow */ i = i - j; } } *ret = i; return 0; } /* This function is used with pat_parse_dotted_ver(). It converts a string * composed by two number separated by a dot. Each part must contain in 16 bits * because internally they will be represented as a 32-bit quantity stored in * a 64-bit integer. It returns zero when the number has successfully been * converted, non-zero otherwise. When an error is returned, the value * is left untouched. * * "1.3" -> 0x0000000000010003 * "65535.65535" -> 0x00000000ffffffff */ int strl2llrc_dotted(const char *text, int len, long long *ret) { const char *end = &text[len]; const char *p; long long major, minor; /* Look for dot. */ for (p = text; p < end; p++) if (*p == '.') break; /* Convert major. */ if (strl2llrc(text, p - text, &major) != 0) return 1; /* Check major. */ if (major >= 65536) return 1; /* Convert minor. */ minor = 0; if (p < end) if (strl2llrc(p + 1, end - (p + 1), &minor) != 0) return 1; /* Check minor. */ if (minor >= 65536) return 1; /* Compose value. */ *ret = (major << 16) | (minor & 0xffff); return 0; } /* This function parses a time value optionally followed by a unit suffix among * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit * expected by the caller. The computation does its best to avoid overflows. * The value is returned in if everything is fine, and a NULL is returned * by the function. In case of error, a pointer to the error is returned and * is left untouched. Values are automatically rounded up when needed. */ const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags) { unsigned imult, idiv; unsigned omult, odiv; unsigned value; omult = odiv = 1; switch (unit_flags & TIME_UNIT_MASK) { case TIME_UNIT_US: omult = 1000000; break; case TIME_UNIT_MS: omult = 1000; break; case TIME_UNIT_S: break; case TIME_UNIT_MIN: odiv = 60; break; case TIME_UNIT_HOUR: odiv = 3600; break; case TIME_UNIT_DAY: odiv = 86400; break; default: break; } value = 0; while (1) { unsigned int j; j = *text - '0'; if (j > 9) break; text++; value *= 10; value += j; } imult = idiv = 1; switch (*text) { case '\0': /* no unit = default unit */ imult = omult = idiv = odiv = 1; break; case 's': /* second = unscaled unit */ break; case 'u': /* microsecond : "us" */ if (text[1] == 's') { idiv = 1000000; text++; } break; case 'm': /* millisecond : "ms" or minute: "m" */ if (text[1] == 's') { idiv = 1000; text++; } else imult = 60; break; case 'h': /* hour : "h" */ imult = 3600; break; case 'd': /* day : "d" */ imult = 86400; break; default: return text; break; } if (omult % idiv == 0) { omult /= idiv; idiv = 1; } if (idiv % omult == 0) { idiv /= omult; omult = 1; } if (imult % odiv == 0) { imult /= odiv; odiv = 1; } if (odiv % imult == 0) { odiv /= imult; imult = 1; } value = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv); *ret = value; return NULL; } /* this function converts the string starting at to an unsigned int * stored in . If an error is detected, the pointer to the unexpected * character is returned. If the conversio is succesful, NULL is returned. */ const char *parse_size_err(const char *text, unsigned *ret) { unsigned value = 0; while (1) { unsigned int j; j = *text - '0'; if (j > 9) break; if (value > ~0U / 10) return text; value *= 10; if (value > (value + j)) return text; value += j; text++; } switch (*text) { case '\0': break; case 'K': case 'k': if (value > ~0U >> 10) return text; value = value << 10; break; case 'M': case 'm': if (value > ~0U >> 20) return text; value = value << 20; break; case 'G': case 'g': if (value > ~0U >> 30) return text; value = value << 30; break; default: return text; } if (*text != '\0' && *++text != '\0') return text; *ret = value; return NULL; } /* * Parse binary string written in hexadecimal (source) and store the decoded * result into binstr and set binstrlen to the lengh of binstr. Memory for * binstr is allocated by the function. In case of error, returns 0 with an * error message in err. In succes case, it returns the consumed length. */ int parse_binary(const char *source, char **binstr, int *binstrlen, char **err) { int len; const char *p = source; int i,j; int alloc; len = strlen(source); if (len % 2) { memprintf(err, "an even number of hex digit is expected"); return 0; } len = len >> 1; if (!*binstr) { *binstr = calloc(len, sizeof(char)); if (!*binstr) { memprintf(err, "out of memory while loading string pattern"); return 0; } alloc = 1; } else { if (*binstrlen < len) { memprintf(err, "no space avalaible in the buffer. expect %d, provides %d", len, *binstrlen); return 0; } alloc = 0; } *binstrlen = len; i = j = 0; while (j < len) { if (!ishex(p[i++])) goto bad_input; if (!ishex(p[i++])) goto bad_input; (*binstr)[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]); } return len << 1; bad_input: memprintf(err, "an hex digit is expected (found '%c')", p[i-1]); if (alloc) free(binstr); return 0; } /* copies at most characters from and always terminates with '\0' */ char *my_strndup(const char *src, int n) { int len = 0; char *ret; while (len < n && src[len]) len++; ret = (char *)malloc(len + 1); if (!ret) return ret; memcpy(ret, src, len); ret[len] = '\0'; return ret; } /* * search needle in haystack * returns the pointer if found, returns NULL otherwise */ const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen) { const void *c = NULL; unsigned char f; if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen)) return NULL; f = *(char *)needle; c = haystack; while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) { if ((haystacklen - (c - haystack)) < needlelen) return NULL; if (memcmp(c, needle, needlelen) == 0) return c; ++c; } return NULL; } /* This function returns the first unused key greater than or equal to in * ID tree . Zero is returned if no place is found. */ unsigned int get_next_id(struct eb_root *root, unsigned int key) { struct eb32_node *used; do { used = eb32_lookup_ge(root, key); if (!used || used->key > key) return key; /* key is available */ key++; } while (key); return key; } /* This function compares a sample word possibly followed by blanks to another * clean word. The compare is case-insensitive. 1 is returned if both are equal, * otherwise zero. This intends to be used when checking HTTP headers for some * values. Note that it validates a word followed only by blanks but does not * validate a word followed by blanks then other chars. */ int word_match(const char *sample, int slen, const char *word, int wlen) { if (slen < wlen) return 0; while (wlen) { char c = *sample ^ *word; if (c && c != ('A' ^ 'a')) return 0; sample++; word++; slen--; wlen--; } while (slen) { if (*sample != ' ' && *sample != '\t') return 0; sample++; slen--; } return 1; } /* Converts any text-formatted IPv4 address to a host-order IPv4 address. It * is particularly fast because it avoids expensive operations such as * multiplies, which are optimized away at the end. It requires a properly * formated address though (3 points). */ unsigned int inetaddr_host(const char *text) { const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; register unsigned int dig100, dig10, dig1; int s; const char *p, *d; dig1 = dig10 = dig100 = ascii_zero; s = 24; p = text; while (1) { if (((unsigned)(*p - '0')) <= 9) { p++; continue; } /* here, we have a complete byte between and

(exclusive) */ if (p == text) goto end; d = p - 1; dig1 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig10 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig100 |= (unsigned int)(*d << s); end: if (!s || *p != '.') break; s -= 8; text = ++p; } dig100 -= ascii_zero; dig10 -= ascii_zero; dig1 -= ascii_zero; return ((dig100 * 10) + dig10) * 10 + dig1; } /* * Idem except the first unparsed character has to be passed in . */ unsigned int inetaddr_host_lim(const char *text, const char *stop) { const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; register unsigned int dig100, dig10, dig1; int s; const char *p, *d; dig1 = dig10 = dig100 = ascii_zero; s = 24; p = text; while (1) { if (((unsigned)(*p - '0')) <= 9 && p < stop) { p++; continue; } /* here, we have a complete byte between and

(exclusive) */ if (p == text) goto end; d = p - 1; dig1 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig10 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig100 |= (unsigned int)(*d << s); end: if (!s || p == stop || *p != '.') break; s -= 8; text = ++p; } dig100 -= ascii_zero; dig10 -= ascii_zero; dig1 -= ascii_zero; return ((dig100 * 10) + dig10) * 10 + dig1; } /* * Idem except the pointer to first unparsed byte is returned into which * must not be NULL. */ unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret) { const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; register unsigned int dig100, dig10, dig1; int s; char *p, *d; dig1 = dig10 = dig100 = ascii_zero; s = 24; p = text; while (1) { if (((unsigned)(*p - '0')) <= 9 && p < stop) { p++; continue; } /* here, we have a complete byte between and

(exclusive) */ if (p == text) goto end; d = p - 1; dig1 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig10 |= (unsigned int)(*d << s); if (d == text) goto end; d--; dig100 |= (unsigned int)(*d << s); end: if (!s || p == stop || *p != '.') break; s -= 8; text = ++p; } *ret = p; dig100 -= ascii_zero; dig10 -= ascii_zero; dig1 -= ascii_zero; return ((dig100 * 10) + dig10) * 10 + dig1; } /* Convert a fixed-length string to an IP address. Returns 0 in case of error, * or the number of chars read in case of success. Maybe this could be replaced * by one of the functions above. Also, apparently this function does not support * hosts above 255 and requires exactly 4 octets. * The destination is only modified on success. */ int buf2ip(const char *buf, size_t len, struct in_addr *dst) { const char *addr; int saw_digit, octets, ch; u_char tmp[4], *tp; const char *cp = buf; saw_digit = 0; octets = 0; *(tp = tmp) = 0; for (addr = buf; addr - buf < len; addr++) { unsigned char digit = (ch = *addr) - '0'; if (digit > 9 && ch != '.') break; if (digit <= 9) { u_int new = *tp * 10 + digit; if (new > 255) return 0; *tp = new; if (!saw_digit) { if (++octets > 4) return 0; saw_digit = 1; } } else if (ch == '.' && saw_digit) { if (octets == 4) return 0; *++tp = 0; saw_digit = 0; } else return 0; } if (octets < 4) return 0; memcpy(&dst->s_addr, tmp, 4); return addr - cp; } /* This function converts the string in of the len to * struct in6_addr which must be allocated by the caller. * This function returns 1 in success case, otherwise zero. * The destination is only modified on success. */ int buf2ip6(const char *buf, size_t len, struct in6_addr *dst) { char null_term_ip6[INET6_ADDRSTRLEN + 1]; struct in6_addr out; if (len > INET6_ADDRSTRLEN) return 0; memcpy(null_term_ip6, buf, len); null_term_ip6[len] = '\0'; if (!inet_pton(AF_INET6, null_term_ip6, &out)) return 0; *dst = out; return 1; } /* To be used to quote config arg positions. Returns the short string at * surrounded by simple quotes if is valid and non-empty, or "end of line" * if ptr is NULL or empty. The string is locally allocated. */ const char *quote_arg(const char *ptr) { static char val[32]; int i; if (!ptr || !*ptr) return "end of line"; val[0] = '\''; for (i = 1; i < sizeof(val) - 2 && *ptr; i++) val[i] = *ptr++; val[i++] = '\''; val[i] = '\0'; return val; } /* returns an operator among STD_OP_* for string or < 0 if unknown */ int get_std_op(const char *str) { int ret = -1; if (*str == 'e' && str[1] == 'q') ret = STD_OP_EQ; else if (*str == 'n' && str[1] == 'e') ret = STD_OP_NE; else if (*str == 'l') { if (str[1] == 'e') ret = STD_OP_LE; else if (str[1] == 't') ret = STD_OP_LT; } else if (*str == 'g') { if (str[1] == 'e') ret = STD_OP_GE; else if (str[1] == 't') ret = STD_OP_GT; } if (ret == -1 || str[2] != '\0') return -1; return ret; } /* hash a 32-bit integer to another 32-bit integer */ unsigned int full_hash(unsigned int a) { return __full_hash(a); } /* Return non-zero if IPv4 address is part of the network, * otherwise zero. */ int in_net_ipv4(struct in_addr *addr, struct in_addr *mask, struct in_addr *net) { return((addr->s_addr & mask->s_addr) == (net->s_addr & mask->s_addr)); } /* Return non-zero if IPv6 address is part of the network, * otherwise zero. */ int in_net_ipv6(struct in6_addr *addr, struct in6_addr *mask, struct in6_addr *net) { int i; for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++) if (((((int *)addr)[i] & ((int *)mask)[i])) != (((int *)net)[i] & ((int *)mask)[i])) return 0; return 1; } /* RFC 4291 prefix */ const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF }; /* Map IPv4 adress on IPv6 address, as specified in RFC 3513. * Input and output may overlap. */ void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr) { struct in_addr tmp_addr; tmp_addr.s_addr = sin_addr->s_addr; memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)); memcpy(sin6_addr->s6_addr+12, &tmp_addr.s_addr, 4); } /* Map IPv6 adress on IPv4 address, as specified in RFC 3513. * Return true if conversion is possible and false otherwise. */ int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr) { if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) { memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]), sizeof(struct in_addr)); return 1; } return 0; } char *human_time(int t, short hz_div) { static char rv[sizeof("24855d23h")+1]; // longest of "23h59m" and "59m59s" char *p = rv; char *end = rv + sizeof(rv); int cnt=2; // print two numbers if (unlikely(t < 0 || hz_div <= 0)) { snprintf(p, end - p, "?"); return rv; } if (unlikely(hz_div > 1)) t /= hz_div; if (t >= DAY) { p += snprintf(p, end - p, "%dd", t / DAY); cnt--; } if (cnt && t % DAY / HOUR) { p += snprintf(p, end - p, "%dh", t % DAY / HOUR); cnt--; } if (cnt && t % HOUR / MINUTE) { p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE); cnt--; } if ((cnt && t % MINUTE) || !t) // also display '0s' p += snprintf(p, end - p, "%ds", t % MINUTE / SEC); return rv; } const char *monthname[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; /* date2str_log: write a date in the format : * sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d", * tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, * tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000); * * without using sprintf. return a pointer to the last char written (\0) or * NULL if there isn't enough space. */ char *date2str_log(char *dst, struct tm *tm, struct timeval *date, size_t size) { if (size < 25) /* the size is fixed: 24 chars + \0 */ return NULL; dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day *dst++ = '/'; memcpy(dst, monthname[tm->tm_mon], 3); // month dst += 3; *dst++ = '/'; dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes *dst++ = '.'; utoa_pad((unsigned int)(date->tv_usec/1000), dst, 4); // millisecondes dst += 3; // only the 3 first digits *dst = '\0'; return dst; } /* gmt2str_log: write a date in the format : * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf * return a pointer to the last char written (\0) or * NULL if there isn't enough space. */ char *gmt2str_log(char *dst, struct tm *tm, size_t size) { if (size < 27) /* the size is fixed: 26 chars + \0 */ return NULL; dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day *dst++ = '/'; memcpy(dst, monthname[tm->tm_mon], 3); // month dst += 3; *dst++ = '/'; dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes *dst++ = ' '; *dst++ = '+'; *dst++ = '0'; *dst++ = '0'; *dst++ = '0'; *dst++ = '0'; *dst = '\0'; return dst; } /* localdate2str_log: write a date in the format : * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf * * return a pointer to the last char written (\0) or * * NULL if there isn't enough space. */ char *localdate2str_log(char *dst, struct tm *tm, size_t size) { if (size < 27) /* the size is fixed: 26 chars + \0 */ return NULL; dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day *dst++ = '/'; memcpy(dst, monthname[tm->tm_mon], 3); // month dst += 3; *dst++ = '/'; dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes *dst++ = ':'; dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes *dst++ = ' '; memcpy(dst, localtimezone, 5); // timezone dst += 5; *dst = '\0'; return dst; } /* This function check a char. It returns true and updates * and pointer to the new position if the * character is found. */ static inline int parse_expect_char(const char **date, int *len, char c) { if (*len < 1 || **date != c) return 0; (*len)--; (*date)++; return 1; } /* This function expects a string of len . It return true and updates. * and if the string matches, otherwise, it returns false. */ static inline int parse_strcmp(const char **date, int *len, char *str, int l) { if (*len < l || strncmp(*date, str, l) != 0) return 0; (*len) -= l; (*date) += l; return 1; } /* This macro converts 3 chars name in integer. */ #define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c)) /* day-name = %x4D.6F.6E ; "Mon", case-sensitive * / %x54.75.65 ; "Tue", case-sensitive * / %x57.65.64 ; "Wed", case-sensitive * / %x54.68.75 ; "Thu", case-sensitive * / %x46.72.69 ; "Fri", case-sensitive * / %x53.61.74 ; "Sat", case-sensitive * / %x53.75.6E ; "Sun", case-sensitive * * This array must be alphabetically sorted */ static inline int parse_http_dayname(const char **date, int *len, struct tm *tm) { if (*len < 3) return 0; switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { case STR2I3('M','o','n'): tm->tm_wday = 1; break; case STR2I3('T','u','e'): tm->tm_wday = 2; break; case STR2I3('W','e','d'): tm->tm_wday = 3; break; case STR2I3('T','h','u'): tm->tm_wday = 4; break; case STR2I3('F','r','i'): tm->tm_wday = 5; break; case STR2I3('S','a','t'): tm->tm_wday = 6; break; case STR2I3('S','u','n'): tm->tm_wday = 7; break; default: return 0; } *len -= 3; *date += 3; return 1; } /* month = %x4A.61.6E ; "Jan", case-sensitive * / %x46.65.62 ; "Feb", case-sensitive * / %x4D.61.72 ; "Mar", case-sensitive * / %x41.70.72 ; "Apr", case-sensitive * / %x4D.61.79 ; "May", case-sensitive * / %x4A.75.6E ; "Jun", case-sensitive * / %x4A.75.6C ; "Jul", case-sensitive * / %x41.75.67 ; "Aug", case-sensitive * / %x53.65.70 ; "Sep", case-sensitive * / %x4F.63.74 ; "Oct", case-sensitive * / %x4E.6F.76 ; "Nov", case-sensitive * / %x44.65.63 ; "Dec", case-sensitive * * This array must be alphabetically sorted */ static inline int parse_http_monthname(const char **date, int *len, struct tm *tm) { if (*len < 3) return 0; switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { case STR2I3('J','a','n'): tm->tm_mon = 0; break; case STR2I3('F','e','b'): tm->tm_mon = 1; break; case STR2I3('M','a','r'): tm->tm_mon = 2; break; case STR2I3('A','p','r'): tm->tm_mon = 3; break; case STR2I3('M','a','y'): tm->tm_mon = 4; break; case STR2I3('J','u','n'): tm->tm_mon = 5; break; case STR2I3('J','u','l'): tm->tm_mon = 6; break; case STR2I3('A','u','g'): tm->tm_mon = 7; break; case STR2I3('S','e','p'): tm->tm_mon = 8; break; case STR2I3('O','c','t'): tm->tm_mon = 9; break; case STR2I3('N','o','v'): tm->tm_mon = 10; break; case STR2I3('D','e','c'): tm->tm_mon = 11; break; default: return 0; } *len -= 3; *date += 3; return 1; } /* day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive * / %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive * / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive * / %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive * / %x46.72.69.64.61.79 ; "Friday", case-sensitive * / %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive * / %x53.75.6E.64.61.79 ; "Sunday", case-sensitive * * This array must be alphabetically sorted */ static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm) { if (*len < 6) /* Minimum length. */ return 0; switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { case STR2I3('M','o','n'): RET0_UNLESS(parse_strcmp(date, len, "Monday", 6)); tm->tm_wday = 1; return 1; case STR2I3('T','u','e'): RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7)); tm->tm_wday = 2; return 1; case STR2I3('W','e','d'): RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9)); tm->tm_wday = 3; return 1; case STR2I3('T','h','u'): RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8)); tm->tm_wday = 4; return 1; case STR2I3('F','r','i'): RET0_UNLESS(parse_strcmp(date, len, "Friday", 6)); tm->tm_wday = 5; return 1; case STR2I3('S','a','t'): RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8)); tm->tm_wday = 6; return 1; case STR2I3('S','u','n'): RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6)); tm->tm_wday = 7; return 1; } return 0; } /* This function parses exactly 1 digit and returns the numeric value in "digit". */ static inline int parse_digit(const char **date, int *len, int *digit) { if (*len < 1 || **date < '0' || **date > '9') return 0; *digit = (**date - '0'); (*date)++; (*len)--; return 1; } /* This function parses exactly 2 digits and returns the numeric value in "digit". */ static inline int parse_2digit(const char **date, int *len, int *digit) { int value; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) = value * 10; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) += value; return 1; } /* This function parses exactly 4 digits and returns the numeric value in "digit". */ static inline int parse_4digit(const char **date, int *len, int *digit) { int value; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) = value * 1000; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) += value * 100; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) += value * 10; RET0_UNLESS(parse_digit(date, len, &value)); (*digit) += value; return 1; } /* time-of-day = hour ":" minute ":" second * ; 00:00:00 - 23:59:60 (leap second) * * hour = 2DIGIT * minute = 2DIGIT * second = 2DIGIT */ static inline int parse_http_time(const char **date, int *len, struct tm *tm) { RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */ RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */ RET0_UNLESS(parse_2digit(date, len, &tm->tm_min)); /* min 2DIGIT */ RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */ RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec)); /* sec 2DIGIT */ return 1; } /* From RFC7231 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 * * IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT * ; fixed length/zone/capitalization subset of the format * ; see Section 3.3 of [RFC5322] * * * date1 = day SP month SP year * ; e.g., 02 Jun 1982 * * day = 2DIGIT * year = 4DIGIT * * GMT = %x47.4D.54 ; "GMT", case-sensitive * * time-of-day = hour ":" minute ":" second * ; 00:00:00 - 23:59:60 (leap second) * * hour = 2DIGIT * minute = 2DIGIT * second = 2DIGIT * * DIGIT = decimal 0-9 */ int parse_imf_date(const char *date, int len, struct tm *tm) { RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */ RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */ tm->tm_year -= 1900; RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */ tm->tm_isdst = -1; tm->tm_gmtoff = 0; return 1; } /* From RFC7231 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 * * rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT * date2 = day "-" month "-" 2DIGIT * ; e.g., 02-Jun-82 * * day = 2DIGIT */ int parse_rfc850_date(const char *date, int len, struct tm *tm) { int year; RET0_UNLESS(parse_http_ldayname(&date, &len, tm)); /* Read the day name */ RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */ RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */ RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */ RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */ /* year = 2DIGIT * * Recipients of a timestamp value in rfc850-(*date) format, which uses a * two-digit year, MUST interpret a timestamp that appears to be more * than 50 years in the future as representing the most recent year in * the past that had the same last two digits. */ RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year)); /* expect SP */ if (!parse_expect_char(&date, &len, ' ')) { /* Maybe we have the date with 4 digits. */ RET0_UNLESS(parse_2digit(&date, &len, &year)); tm->tm_year = (tm->tm_year * 100 + year) - 1900; /* expect SP */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); } else { /* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the * tm_year is the number of year since 1900, so for +1900, we * do nothing, and for +2000, we add 100. */ if (tm->tm_year <= 60) tm->tm_year += 100; } RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */ tm->tm_isdst = -1; tm->tm_gmtoff = 0; return 1; } /* From RFC7231 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 * * asctime-date = day-name SP date3 SP time-of-day SP year * date3 = month SP ( 2DIGIT / ( SP 1DIGIT )) * ; e.g., Jun 2 * * HTTP-date is case sensitive. A sender MUST NOT generate additional * whitespace in an HTTP-date beyond that specifically included as SP in * the grammar. */ int parse_asctime_date(const char *date, int len, struct tm *tm) { RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ /* expect SP and 1DIGIT or 2DIGIT */ if (parse_expect_char(&date, &len, ' ')) RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday)); else RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */ tm->tm_year -= 1900; tm->tm_isdst = -1; tm->tm_gmtoff = 0; return 1; } /* From RFC7231 * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 * * HTTP-date = IMF-fixdate / obs-date * obs-date = rfc850-date / asctime-date * * parses an HTTP date in the RFC format and is accepted * alternatives. is the strinf containing the date, * len is the len of the string. is filled with the * parsed time. We must considers this time as GMT. */ int parse_http_date(const char *date, int len, struct tm *tm) { if (parse_imf_date(date, len, tm)) return 1; if (parse_rfc850_date(date, len, tm)) return 1; if (parse_asctime_date(date, len, tm)) return 1; return 0; } /* Dynamically allocates a string of the proper length to hold the formatted * output. NULL is returned on error. The caller is responsible for freeing the * memory area using free(). The resulting string is returned in if the * pointer is not NULL. A previous version of might be used to build the * new string, and it will be freed before returning if it is not NULL, which * makes it possible to build complex strings from iterative calls without * having to care about freeing intermediate values, as in the example below : * * memprintf(&err, "invalid argument: '%s'", arg); * ... * memprintf(&err, "parser said : <%s>\n", *err); * ... * free(*err); * * This means that must be initialized to NULL before first invocation. * The return value also holds the allocated string, which eases error checking * and immediate consumption. If the output pointer is not used, NULL must be * passed instead and it will be ignored. The returned message will then also * be NULL so that the caller does not have to bother with freeing anything. * * It is also convenient to use it without any free except the last one : * err = NULL; * if (!fct1(err)) report(*err); * if (!fct2(err)) report(*err); * if (!fct3(err)) report(*err); * free(*err); */ char *memprintf(char **out, const char *format, ...) { va_list args; char *ret = NULL; int allocated = 0; int needed = 0; if (!out) return NULL; do { /* vsnprintf() will return the required length even when the * target buffer is NULL. We do this in a loop just in case * intermediate evaluations get wrong. */ va_start(args, format); needed = vsnprintf(ret, allocated, format, args); va_end(args); if (needed < allocated) { /* Note: on Solaris 8, the first iteration always * returns -1 if allocated is zero, so we force a * retry. */ if (!allocated) needed = 0; else break; } allocated = needed + 1; ret = realloc(ret, allocated); } while (ret); if (needed < 0) { /* an error was encountered */ free(ret); ret = NULL; } if (out) { free(*out); *out = ret; } return ret; } /* Used to add spaces before each line of , unless there is only one line. * The input argument is automatically freed and reassigned. The result will have to be * freed by the caller. It also supports being passed a NULL which results in the same * output. * Example of use : * parse(cmd, &err); (callee: memprintf(&err, ...)) * fprintf(stderr, "Parser said: %s\n", indent_error(&err)); * free(err); */ char *indent_msg(char **out, int level) { char *ret, *in, *p; int needed = 0; int lf = 0; int lastlf = 0; int len; if (!out || !*out) return NULL; in = *out - 1; while ((in = strchr(in + 1, '\n')) != NULL) { lastlf = in - *out; lf++; } if (!lf) /* single line, no LF, return it as-is */ return *out; len = strlen(*out); if (lf == 1 && lastlf == len - 1) { /* single line, LF at end, strip it and return as-is */ (*out)[lastlf] = 0; return *out; } /* OK now we have at least one LF, we need to process the whole string * as a multi-line string. What we'll do : * - prefix with an LF if there is none * - add spaces before each line * This means at most ( 1 + level + (len-lf) + lf*<1+level) ) = * 1 + level + len + lf * level = 1 + level * (lf + 1) + len. */ needed = 1 + level * (lf + 1) + len + 1; p = ret = malloc(needed); in = *out; /* skip initial LFs */ while (*in == '\n') in++; /* copy each line, prefixed with LF and spaces, and without the trailing LF */ while (*in) { *p++ = '\n'; memset(p, ' ', level); p += level; do { *p++ = *in++; } while (*in && *in != '\n'); if (*in) in++; } *p = 0; free(*out); *out = ret; return ret; } /* Convert occurrences of environment variables in the input string to their * corresponding value. A variable is identified as a series of alphanumeric * characters or underscores following a '$' sign. The string must be * free()able. NULL returns NULL. The resulting string might be reallocated if * some expansion is made. Variable names may also be enclosed into braces if * needed (eg: to concatenate alphanum characters). */ char *env_expand(char *in) { char *txt_beg; char *out; char *txt_end; char *var_beg; char *var_end; char *value; char *next; int out_len; int val_len; if (!in) return in; value = out = NULL; out_len = 0; txt_beg = in; do { /* look for next '$' sign in */ for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++); if (!*txt_end && !out) /* end and no expansion performed */ return in; val_len = 0; next = txt_end; if (*txt_end == '$') { char save; var_beg = txt_end + 1; if (*var_beg == '{') var_beg++; var_end = var_beg; while (isalnum((int)(unsigned char)*var_end) || *var_end == '_') { var_end++; } next = var_end; if (*var_end == '}' && (var_beg > txt_end + 1)) next++; /* get value of the variable name at this location */ save = *var_end; *var_end = '\0'; value = getenv(var_beg); *var_end = save; val_len = value ? strlen(value) : 0; } out = realloc(out, out_len + (txt_end - txt_beg) + val_len + 1); if (txt_end > txt_beg) { memcpy(out + out_len, txt_beg, txt_end - txt_beg); out_len += txt_end - txt_beg; } if (val_len) { memcpy(out + out_len, value, val_len); out_len += val_len; } out[out_len] = 0; txt_beg = next; } while (*txt_beg); /* here we know that was allocated and that we don't need anymore */ free(in); return out; } /* same as strstr() but case-insensitive and with limit length */ const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2) { char *pptr, *sptr, *start; unsigned int slen, plen; unsigned int tmp1, tmp2; if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found return NULL; if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match return str1; if (len_str1 < len_str2) // pattern is longer than string => search is not found return NULL; for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) { while (toupper(*start) != toupper(*str2)) { start++; slen--; tmp1++; if (tmp1 >= len_str1) return NULL; /* if pattern longer than string */ if (slen < plen) return NULL; } sptr = start; pptr = (char *)str2; tmp2 = 0; while (toupper(*sptr) == toupper(*pptr)) { sptr++; pptr++; tmp2++; if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */ return start; if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */ return NULL; } } return NULL; } /* This function read the next valid utf8 char. * is the byte srray to be decode, is its length. * The function returns decoded char encoded like this: * The 4 msb are the return code (UTF8_CODE_*), the 4 lsb * are the length read. The decoded character is stored in . */ unsigned char utf8_next(const char *s, int len, unsigned int *c) { const unsigned char *p = (unsigned char *)s; int dec; unsigned char code = UTF8_CODE_OK; if (len < 1) return UTF8_CODE_OK; /* Check the type of UTF8 sequence * * 0... .... 0x00 <= x <= 0x7f : 1 byte: ascii char * 10.. .... 0x80 <= x <= 0xbf : invalid sequence * 110. .... 0xc0 <= x <= 0xdf : 2 bytes * 1110 .... 0xe0 <= x <= 0xef : 3 bytes * 1111 0... 0xf0 <= x <= 0xf7 : 4 bytes * 1111 10.. 0xf8 <= x <= 0xfb : 5 bytes * 1111 110. 0xfc <= x <= 0xfd : 6 bytes * 1111 111. 0xfe <= x <= 0xff : invalid sequence */ switch (*p) { case 0x00 ... 0x7f: *c = *p; return UTF8_CODE_OK | 1; case 0x80 ... 0xbf: *c = *p; return UTF8_CODE_BADSEQ | 1; case 0xc0 ... 0xdf: if (len < 2) { *c = *p; return UTF8_CODE_BADSEQ | 1; } *c = *p & 0x1f; dec = 1; break; case 0xe0 ... 0xef: if (len < 3) { *c = *p; return UTF8_CODE_BADSEQ | 1; } *c = *p & 0x0f; dec = 2; break; case 0xf0 ... 0xf7: if (len < 4) { *c = *p; return UTF8_CODE_BADSEQ | 1; } *c = *p & 0x07; dec = 3; break; case 0xf8 ... 0xfb: if (len < 5) { *c = *p; return UTF8_CODE_BADSEQ | 1; } *c = *p & 0x03; dec = 4; break; case 0xfc ... 0xfd: if (len < 6) { *c = *p; return UTF8_CODE_BADSEQ | 1; } *c = *p & 0x01; dec = 5; break; case 0xfe ... 0xff: default: *c = *p; return UTF8_CODE_BADSEQ | 1; } p++; while (dec > 0) { /* need 0x10 for the 2 first bits */ if ( ( *p & 0xc0 ) != 0x80 ) return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff); /* add data at char */ *c = ( *c << 6 ) | ( *p & 0x3f ); dec--; p++; } /* Check ovelong encoding. * 1 byte : 5 + 6 : 11 : 0x80 ... 0x7ff * 2 bytes : 4 + 6 + 6 : 16 : 0x800 ... 0xffff * 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff */ if (( *c <= 0x7f && (p-(unsigned char *)s) > 1) || (*c >= 0x80 && *c <= 0x7ff && (p-(unsigned char *)s) > 2) || (*c >= 0x800 && *c <= 0xffff && (p-(unsigned char *)s) > 3) || (*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4)) code |= UTF8_CODE_OVERLONG; /* Check invalid UTF8 range. */ if ((*c >= 0xd800 && *c <= 0xdfff) || (*c >= 0xfffe && *c <= 0xffff)) code |= UTF8_CODE_INVRANGE; return code | ((p-(unsigned char *)s)&0x0f); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */