/* * SSL/TLS transport layer over SOCK_STREAM sockets * * Copyright (C) 2012 EXCELIANCE, Emeric Brun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Acknowledgement: * We'd like to specially thank the Stud project authors for a very clean * and well documented code which helped us understand how the OpenSSL API * ought to be used in non-blocking mode. This is one difficult part which * is not easy to get from the OpenSSL doc, and reading the Stud code made * it much more obvious than the examples in the OpenSSL package. Keep up * the good works, guys ! * * Stud is an extremely efficient and scalable SSL/TLS proxy which combines * particularly well with haproxy. For more info about this project, visit : * https://github.com/bumptech/stud * */ /* Note: do NOT include openssl/xxx.h here, do it in openssl-compat.h */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* ***** READ THIS before adding code here! ***** * * Due to API incompatibilities between multiple OpenSSL versions and their * derivatives, it's often tempting to add macros to (re-)define certain * symbols. Please do not do this here, and do it in common/openssl-compat.h * exclusively so that the whole code consistently uses the same macros. * * Whenever possible if a macro is missing in certain versions, it's better * to conditionally define it in openssl-compat.h than using lots of ifdefs. */ int sslconns = 0; int totalsslconns = 0; int nb_engines = 0; static struct eb_root cert_issuer_tree = EB_ROOT; /* issuers tree from "issuers-chain-path" */ struct global_ssl global_ssl = { #ifdef LISTEN_DEFAULT_CIPHERS .listen_default_ciphers = LISTEN_DEFAULT_CIPHERS, #endif #ifdef CONNECT_DEFAULT_CIPHERS .connect_default_ciphers = CONNECT_DEFAULT_CIPHERS, #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) #ifdef LISTEN_DEFAULT_CIPHERSUITES .listen_default_ciphersuites = LISTEN_DEFAULT_CIPHERSUITES, #endif #ifdef CONNECT_DEFAULT_CIPHERSUITES .connect_default_ciphersuites = CONNECT_DEFAULT_CIPHERSUITES, #endif #endif .listen_default_ssloptions = BC_SSL_O_NONE, .connect_default_ssloptions = SRV_SSL_O_NONE, .listen_default_sslmethods.flags = MC_SSL_O_ALL, .listen_default_sslmethods.min = CONF_TLSV_NONE, .listen_default_sslmethods.max = CONF_TLSV_NONE, .connect_default_sslmethods.flags = MC_SSL_O_ALL, .connect_default_sslmethods.min = CONF_TLSV_NONE, .connect_default_sslmethods.max = CONF_TLSV_NONE, #ifdef DEFAULT_SSL_MAX_RECORD .max_record = DEFAULT_SSL_MAX_RECORD, #endif .default_dh_param = SSL_DEFAULT_DH_PARAM, .ctx_cache = DEFAULT_SSL_CTX_CACHE, .capture_cipherlist = 0, .extra_files = SSL_GF_ALL, }; static BIO_METHOD *ha_meth; DECLARE_STATIC_POOL(ssl_sock_ctx_pool, "ssl_sock_ctx_pool", sizeof(struct ssl_sock_ctx)); static struct task *ssl_sock_io_cb(struct task *, void *, unsigned short); static int ssl_sock_handshake(struct connection *conn, unsigned int flag); /* Methods to implement OpenSSL BIO */ static int ha_ssl_write(BIO *h, const char *buf, int num) { struct buffer tmpbuf; struct ssl_sock_ctx *ctx; int ret; ctx = BIO_get_data(h); tmpbuf.size = num; tmpbuf.area = (void *)(uintptr_t)buf; tmpbuf.data = num; tmpbuf.head = 0; ret = ctx->xprt->snd_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, num, 0); if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) { BIO_set_retry_write(h); ret = -1; } else if (ret == 0) BIO_clear_retry_flags(h); return ret; } static int ha_ssl_gets(BIO *h, char *buf, int size) { return 0; } static int ha_ssl_puts(BIO *h, const char *str) { return ha_ssl_write(h, str, strlen(str)); } static int ha_ssl_read(BIO *h, char *buf, int size) { struct buffer tmpbuf; struct ssl_sock_ctx *ctx; int ret; ctx = BIO_get_data(h); tmpbuf.size = size; tmpbuf.area = buf; tmpbuf.data = 0; tmpbuf.head = 0; ret = ctx->xprt->rcv_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, size, 0); if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))) { BIO_set_retry_read(h); ret = -1; } else if (ret == 0) BIO_clear_retry_flags(h); return ret; } static long ha_ssl_ctrl(BIO *h, int cmd, long arg1, void *arg2) { int ret = 0; switch (cmd) { case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; } return ret; } static int ha_ssl_new(BIO *h) { BIO_set_init(h, 1); BIO_set_data(h, NULL); BIO_clear_flags(h, ~0); return 1; } static int ha_ssl_free(BIO *data) { return 1; } #if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) static HA_RWLOCK_T *ssl_rwlocks; unsigned long ssl_id_function(void) { return (unsigned long)tid; } void ssl_locking_function(int mode, int n, const char * file, int line) { if (mode & CRYPTO_LOCK) { if (mode & CRYPTO_READ) HA_RWLOCK_RDLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRLOCK(SSL_LOCK, &ssl_rwlocks[n]); } else { if (mode & CRYPTO_READ) HA_RWLOCK_RDUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); } } static int ssl_locking_init(void) { int i; ssl_rwlocks = malloc(sizeof(HA_RWLOCK_T)*CRYPTO_num_locks()); if (!ssl_rwlocks) return -1; for (i = 0 ; i < CRYPTO_num_locks() ; i++) HA_RWLOCK_INIT(&ssl_rwlocks[i]); CRYPTO_set_id_callback(ssl_id_function); CRYPTO_set_locking_callback(ssl_locking_function); return 0; } #endif __decl_hathreads(HA_SPINLOCK_T ckch_lock); /* * deduplicate cafile (and crlfile) */ struct cafile_entry { X509_STORE *ca_store; STACK_OF(X509_NAME) *ca_list; struct ebmb_node node; char path[0]; }; static struct eb_root cafile_tree = EB_ROOT_UNIQUE; static X509_STORE* ssl_store_get0_locations_file(char *path) { struct ebmb_node *eb; eb = ebst_lookup(&cafile_tree, path); if (eb) { struct cafile_entry *ca_e; ca_e = ebmb_entry(eb, struct cafile_entry, node); return ca_e->ca_store; } return NULL; } int ssl_store_load_locations_file(char *path) { if (ssl_store_get0_locations_file(path) == NULL) { struct cafile_entry *ca_e; X509_STORE *store = X509_STORE_new(); if (X509_STORE_load_locations(store, path, NULL)) { int pathlen; pathlen = strlen(path); ca_e = calloc(1, sizeof(*ca_e) + pathlen + 1); if (ca_e) { memcpy(ca_e->path, path, pathlen + 1); ca_e->ca_store = store; ebst_insert(&cafile_tree, &ca_e->node); return 1; } } X509_STORE_free(store); return 0; } return 1; } /* mimic what X509_STORE_load_locations do with store_ctx */ static int ssl_set_cert_crl_file(X509_STORE *store_ctx, char *path) { X509_STORE *store; store = ssl_store_get0_locations_file(path); if (store_ctx && store) { int i; X509_OBJECT *obj; STACK_OF(X509_OBJECT) *objs = X509_STORE_get0_objects(store); for (i = 0; i < sk_X509_OBJECT_num(objs); i++) { obj = sk_X509_OBJECT_value(objs, i); switch (X509_OBJECT_get_type(obj)) { case X509_LU_X509: X509_STORE_add_cert(store_ctx, X509_OBJECT_get0_X509(obj)); break; case X509_LU_CRL: X509_STORE_add_crl(store_ctx, X509_OBJECT_get0_X509_CRL(obj)); break; default: break; } } return 1; } return 0; } /* SSL_CTX_load_verify_locations substitute, internally call X509_STORE_load_locations */ static int ssl_set_verify_locations_file(SSL_CTX *ctx, char *path) { X509_STORE *store_ctx = SSL_CTX_get_cert_store(ctx); return ssl_set_cert_crl_file(store_ctx, path); } /* Extract CA_list from CA_file already in tree. Duplicate ca_name is tracking with ebtree. It's simplify openssl compatibility. Return a shared ca_list: SSL_dup_CA_list must be used before set it on SSL_CTX. */ static STACK_OF(X509_NAME)* ssl_get_client_ca_file(char *path) { struct ebmb_node *eb; struct cafile_entry *ca_e; eb = ebst_lookup(&cafile_tree, path); if (!eb) return NULL; ca_e = ebmb_entry(eb, struct cafile_entry, node); if (ca_e->ca_list == NULL) { int i; unsigned long key; struct eb_root ca_name_tree = EB_ROOT; struct eb64_node *node, *back; struct { struct eb64_node node; X509_NAME *xname; } *ca_name; STACK_OF(X509_OBJECT) *objs; STACK_OF(X509_NAME) *skn; X509 *x; X509_NAME *xn; skn = sk_X509_NAME_new_null(); /* take x509 from cafile_tree */ objs = X509_STORE_get0_objects(ca_e->ca_store); for (i = 0; i < sk_X509_OBJECT_num(objs); i++) { x = X509_OBJECT_get0_X509(sk_X509_OBJECT_value(objs, i)); if (!x) continue; xn = X509_get_subject_name(x); if (!xn) continue; /* Check for duplicates. */ key = X509_NAME_hash(xn); for (node = eb64_lookup(&ca_name_tree, key), ca_name = NULL; node && ca_name == NULL; node = eb64_next(node)) { ca_name = container_of(node, typeof(*ca_name), node); if (X509_NAME_cmp(xn, ca_name->xname) != 0) ca_name = NULL; } /* find a duplicate */ if (ca_name) continue; ca_name = calloc(1, sizeof *ca_name); xn = X509_NAME_dup(xn); if (!ca_name || !xn || !sk_X509_NAME_push(skn, xn)) { free(ca_name); X509_NAME_free(xn); sk_X509_NAME_pop_free(skn, X509_NAME_free); sk_X509_NAME_free(skn); skn = NULL; break; } ca_name->node.key = key; ca_name->xname = xn; eb64_insert(&ca_name_tree, &ca_name->node); } ca_e->ca_list = skn; /* remove temporary ca_name tree */ node = eb64_first(&ca_name_tree); while (node) { ca_name = container_of(node, typeof(*ca_name), node); back = eb64_next(node); eb64_delete(node); free(ca_name); node = back; } } return ca_e->ca_list; } struct pool_head *pool_head_ssl_capture = NULL; int ssl_capture_ptr_index = -1; static int ssl_app_data_index = -1; #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) struct list tlskeys_reference = LIST_HEAD_INIT(tlskeys_reference); #endif #ifndef OPENSSL_NO_ENGINE unsigned int openssl_engines_initialized; struct list openssl_engines = LIST_HEAD_INIT(openssl_engines); struct ssl_engine_list { struct list list; ENGINE *e; }; #endif #ifndef OPENSSL_NO_DH static int ssl_dh_ptr_index = -1; static DH *global_dh = NULL; static DH *local_dh_1024 = NULL; static DH *local_dh_2048 = NULL; static DH *local_dh_4096 = NULL; static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen); #endif /* OPENSSL_NO_DH */ #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) /* X509V3 Extensions that will be added on generated certificates */ #define X509V3_EXT_SIZE 5 static char *x509v3_ext_names[X509V3_EXT_SIZE] = { "basicConstraints", "nsComment", "subjectKeyIdentifier", "authorityKeyIdentifier", "keyUsage", }; static char *x509v3_ext_values[X509V3_EXT_SIZE] = { "CA:FALSE", "\"OpenSSL Generated Certificate\"", "hash", "keyid,issuer:always", "nonRepudiation,digitalSignature,keyEncipherment" }; /* LRU cache to store generated certificate */ static struct lru64_head *ssl_ctx_lru_tree = NULL; static unsigned int ssl_ctx_lru_seed = 0; static unsigned int ssl_ctx_serial; __decl_rwlock(ssl_ctx_lru_rwlock); #endif // SSL_CTRL_SET_TLSEXT_HOSTNAME #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL /* The order here matters for picking a default context, * keep the most common keytype at the bottom of the list */ const char *SSL_SOCK_KEYTYPE_NAMES[] = { "dsa", "ecdsa", "rsa" }; #endif static struct shared_context *ssl_shctx = NULL; /* ssl shared session cache */ static struct eb_root *sh_ssl_sess_tree; /* ssl shared session tree */ /* Dedicated callback functions for heartbeat and clienthello. */ #ifdef TLS1_RT_HEARTBEAT static void ssl_sock_parse_heartbeat(struct connection *conn, int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl); #endif static void ssl_sock_parse_clienthello(struct connection *conn, int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl); /* List head of all registered SSL/TLS protocol message callbacks. */ struct list ssl_sock_msg_callbacks = LIST_HEAD_INIT(ssl_sock_msg_callbacks); /* Registers the function in order to be called on SSL/TLS protocol * message processing. It will return 0 if the function is not set * or if it fails to allocate memory. */ int ssl_sock_register_msg_callback(ssl_sock_msg_callback_func func) { struct ssl_sock_msg_callback *cbk; if (!func) return 0; cbk = calloc(1, sizeof(*cbk)); if (!cbk) { ha_alert("out of memory in ssl_sock_register_msg_callback().\n"); return 0; } cbk->func = func; LIST_ADDQ(&ssl_sock_msg_callbacks, &cbk->list); return 1; } /* Used to register dedicated SSL/TLS protocol message callbacks. */ static int ssl_sock_register_msg_callbacks(void) { #ifdef TLS1_RT_HEARTBEAT if (!ssl_sock_register_msg_callback(ssl_sock_parse_heartbeat)) return ERR_ABORT; #endif if (global_ssl.capture_cipherlist > 0) { if (!ssl_sock_register_msg_callback(ssl_sock_parse_clienthello)) return ERR_ABORT; } return 0; } /* Used to free all SSL/TLS protocol message callbacks that were * registered by using ssl_sock_register_msg_callback(). */ static void ssl_sock_unregister_msg_callbacks(void) { struct ssl_sock_msg_callback *cbk, *cbkback; list_for_each_entry_safe(cbk, cbkback, &ssl_sock_msg_callbacks, list) { LIST_DEL(&cbk->list); free(cbk); } } SSL *ssl_sock_get_ssl_object(struct connection *conn) { if (!ssl_sock_is_ssl(conn)) return NULL; return ((struct ssl_sock_ctx *)(conn->xprt_ctx))->ssl; } /* * This function gives the detail of the SSL error. It is used only * if the debug mode and the verbose mode are activated. It dump all * the SSL error until the stack was empty. */ static forceinline void ssl_sock_dump_errors(struct connection *conn) { unsigned long ret; if (unlikely(global.mode & MODE_DEBUG)) { while(1) { ret = ERR_get_error(); if (ret == 0) return; fprintf(stderr, "fd[%04x] OpenSSL error[0x%lx] %s: %s\n", (unsigned short)conn->handle.fd, ret, ERR_func_error_string(ret), ERR_reason_error_string(ret)); } } } #ifndef OPENSSL_NO_ENGINE int ssl_init_single_engine(const char *engine_id, const char *def_algorithms) { int err_code = ERR_ABORT; ENGINE *engine; struct ssl_engine_list *el; /* grab the structural reference to the engine */ engine = ENGINE_by_id(engine_id); if (engine == NULL) { ha_alert("ssl-engine %s: failed to get structural reference\n", engine_id); goto fail_get; } if (!ENGINE_init(engine)) { /* the engine couldn't initialise, release it */ ha_alert("ssl-engine %s: failed to initialize\n", engine_id); goto fail_init; } if (ENGINE_set_default_string(engine, def_algorithms) == 0) { ha_alert("ssl-engine %s: failed on ENGINE_set_default_string\n", engine_id); goto fail_set_method; } el = calloc(1, sizeof(*el)); el->e = engine; LIST_ADD(&openssl_engines, &el->list); nb_engines++; if (global_ssl.async) global.ssl_used_async_engines = nb_engines; return 0; fail_set_method: /* release the functional reference from ENGINE_init() */ ENGINE_finish(engine); fail_init: /* release the structural reference from ENGINE_by_id() */ ENGINE_free(engine); fail_get: return err_code; } #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* * openssl async fd handler */ void ssl_async_fd_handler(int fd) { struct ssl_sock_ctx *ctx = fdtab[fd].owner; /* fd is an async enfine fd, we must stop * to poll this fd until it is requested */ fd_stop_recv(fd); fd_cant_recv(fd); /* crypto engine is available, let's notify the associated * connection that it can pursue its processing. */ ssl_sock_io_cb(NULL, ctx, 0); } /* * openssl async delayed SSL_free handler */ void ssl_async_fd_free(int fd) { SSL *ssl = fdtab[fd].owner; OSSL_ASYNC_FD all_fd[32]; size_t num_all_fds = 0; int i; /* We suppose that the async job for a same SSL * * are serialized. So if we are awake it is * because the running job has just finished * and we can remove all async fds safely */ SSL_get_all_async_fds(ssl, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(ssl, all_fd, &num_all_fds); for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); /* Now we can safely call SSL_free, no more pending job in engines */ SSL_free(ssl); _HA_ATOMIC_SUB(&sslconns, 1); _HA_ATOMIC_SUB(&jobs, 1); } /* * function used to manage a returned SSL_ERROR_WANT_ASYNC * and enable/disable polling for async fds */ static inline void ssl_async_process_fds(struct ssl_sock_ctx *ctx) { OSSL_ASYNC_FD add_fd[32]; OSSL_ASYNC_FD del_fd[32]; SSL *ssl = ctx->ssl; size_t num_add_fds = 0; size_t num_del_fds = 0; int i; SSL_get_changed_async_fds(ssl, NULL, &num_add_fds, NULL, &num_del_fds); if (num_add_fds > 32 || num_del_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_changed_async_fds(ssl, add_fd, &num_add_fds, del_fd, &num_del_fds); /* We remove unused fds from the fdtab */ for (i=0 ; i < num_del_fds ; i++) fd_remove(del_fd[i]); /* We add new fds to the fdtab */ for (i=0 ; i < num_add_fds ; i++) { fd_insert(add_fd[i], ctx, ssl_async_fd_handler, tid_bit); } num_add_fds = 0; SSL_get_all_async_fds(ssl, NULL, &num_add_fds); if (num_add_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } /* We activate the polling for all known async fds */ SSL_get_all_async_fds(ssl, add_fd, &num_add_fds); for (i=0 ; i < num_add_fds ; i++) { fd_want_recv(add_fd[i]); /* To ensure that the fd cache won't be used * We'll prefer to catch a real RD event * because handling an EAGAIN on this fd will * result in a context switch and also * some engines uses a fd in blocking mode. */ fd_cant_recv(add_fd[i]); } } #endif #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) /* * This function returns the number of seconds elapsed * since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the * date presented un ASN1_GENERALIZEDTIME. * * In parsing error case, it returns -1. */ static long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d) { long epoch; char *p, *end; const unsigned short month_offset[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int year, month; if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1; p = (char *)d->data; end = p + d->length; if (end - p < 4) return -1; year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0'; p += 4; if (end - p < 2) return -1; month = 10 * (p[0] - '0') + p[1] - '0'; if (month < 1 || month > 12) return -1; /* Compute the number of seconds since 1 jan 1970 and the beginning of current month We consider leap years and the current month ( '9') goto nosec; if (end - p < 2) return -1; /* Add the seconds of the current minute */ epoch += 10 * (p[0] - '0') + p[1] - '0'; p += 2; if (p == end) return -1; /* Ignore seconds float part if present */ if (p[0] == '.') { do { if (++p == end) return -1; } while (p[0] >= '0' && p[0] <= '9'); } nosec: if (p[0] == 'Z') { if (end - p != 1) return -1; return epoch; } else if (p[0] == '+') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } else if (p[0] == '-') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } return -1; } /* * struct alignment works here such that the key.key is the same as key_data * Do not change the placement of key_data */ struct certificate_ocsp { struct ebmb_node key; unsigned char key_data[OCSP_MAX_CERTID_ASN1_LENGTH]; struct buffer response; long expire; }; struct ocsp_cbk_arg { int is_single; int single_kt; union { struct certificate_ocsp *s_ocsp; /* * m_ocsp will have multiple entries dependent on key type * Entry 0 - DSA * Entry 1 - ECDSA * Entry 2 - RSA */ struct certificate_ocsp *m_ocsp[SSL_SOCK_NUM_KEYTYPES]; }; }; static struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE; /* This function starts to check if the OCSP response (in DER format) contained * in chunk 'ocsp_response' is valid (else exits on error). * If 'cid' is not NULL, it will be compared to the OCSP certificate ID * contained in the OCSP Response and exits on error if no match. * If it's a valid OCSP Response: * If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container * pointed by 'ocsp'. * If 'ocsp' is NULL, the function looks up into the OCSP response's * containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted * from the response) and exits on error if not found. Finally, If an OCSP response is * already present in the container, it will be overwritten. * * Note: OCSP response containing more than one OCSP Single response is not * considered valid. * * Returns 0 on success, 1 in error case. */ static int ssl_sock_load_ocsp_response(struct buffer *ocsp_response, struct certificate_ocsp *ocsp, OCSP_CERTID *cid, char **err) { OCSP_RESPONSE *resp; OCSP_BASICRESP *bs = NULL; OCSP_SINGLERESP *sr; OCSP_CERTID *id; unsigned char *p = (unsigned char *) ocsp_response->area; int rc , count_sr; ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL; int reason; int ret = 1; resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p, ocsp_response->data); if (!resp) { memprintf(err, "Unable to parse OCSP response"); goto out; } rc = OCSP_response_status(resp); if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) { memprintf(err, "OCSP response status not successful"); goto out; } bs = OCSP_response_get1_basic(resp); if (!bs) { memprintf(err, "Failed to get basic response from OCSP Response"); goto out; } count_sr = OCSP_resp_count(bs); if (count_sr > 1) { memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr); goto out; } sr = OCSP_resp_get0(bs, 0); if (!sr) { memprintf(err, "Failed to get OCSP single response"); goto out; } id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr); rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd); if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) { memprintf(err, "OCSP single response: certificate status is unknown"); goto out; } if (!nextupd) { memprintf(err, "OCSP single response: missing nextupdate"); goto out; } rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1); if (!rc) { memprintf(err, "OCSP single response: no longer valid."); goto out; } if (cid) { if (OCSP_id_cmp(id, cid)) { memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer"); goto out; } } if (!ocsp) { unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH]; unsigned char *p; rc = i2d_OCSP_CERTID(id, NULL); if (!rc) { memprintf(err, "OCSP single response: Unable to encode Certificate ID"); goto out; } if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) { memprintf(err, "OCSP single response: Certificate ID too long"); goto out; } p = key; memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH); i2d_OCSP_CERTID(id, &p); ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH); if (!ocsp) { memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer"); goto out; } } /* According to comments on "chunk_dup", the previous chunk buffer will be freed */ if (!chunk_dup(&ocsp->response, ocsp_response)) { memprintf(err, "OCSP response: Memory allocation error"); goto out; } ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW; ret = 0; out: ERR_clear_error(); if (bs) OCSP_BASICRESP_free(bs); if (resp) OCSP_RESPONSE_free(resp); return ret; } /* * External function use to update the OCSP response in the OCSP response's * containers tree. The chunk 'ocsp_response' must contain the OCSP response * to update in DER format. * * Returns 0 on success, 1 in error case. */ int ssl_sock_update_ocsp_response(struct buffer *ocsp_response, char **err) { return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err); } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16], unsigned char *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) { struct tls_keys_ref *ref; union tls_sess_key *keys; struct connection *conn; int head; int i; int ret = -1; /* error by default */ conn = SSL_get_ex_data(s, ssl_app_data_index); ref = __objt_listener(conn->target)->bind_conf->keys_ref; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); keys = ref->tlskeys; head = ref->tls_ticket_enc_index; if (enc) { memcpy(key_name, keys[head].name, 16); if(!RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH)) goto end; if (ref->key_size_bits == 128) { if(!EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[head].key_128.aes_key, iv)) goto end; HMAC_Init_ex(hctx, keys[head].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL); ret = 1; } else if (ref->key_size_bits == 256 ) { if(!EVP_EncryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[head].key_256.aes_key, iv)) goto end; HMAC_Init_ex(hctx, keys[head].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL); ret = 1; } } else { for (i = 0; i < TLS_TICKETS_NO; i++) { if (!memcmp(key_name, keys[(head + i) % TLS_TICKETS_NO].name, 16)) goto found; } ret = 0; goto end; found: if (ref->key_size_bits == 128) { HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL); if(!EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_128.aes_key, iv)) goto end; /* 2 for key renewal, 1 if current key is still valid */ ret = i ? 2 : 1; } else if (ref->key_size_bits == 256) { HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL); if(!EVP_DecryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_256.aes_key, iv)) goto end; /* 2 for key renewal, 1 if current key is still valid */ ret = i ? 2 : 1; } } end: HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); return ret; } struct tls_keys_ref *tlskeys_ref_lookup(const char *filename) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->filename && strcmp(filename, ref->filename) == 0) return ref; return NULL; } struct tls_keys_ref *tlskeys_ref_lookupid(int unique_id) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->unique_id == unique_id) return ref; return NULL; } /* Update the key into ref: if keysize doesn't * match existing ones, this function returns -1 * else it returns 0 on success. */ int ssl_sock_update_tlskey_ref(struct tls_keys_ref *ref, struct buffer *tlskey) { if (ref->key_size_bits == 128) { if (tlskey->data != sizeof(struct tls_sess_key_128)) return -1; } else if (ref->key_size_bits == 256) { if (tlskey->data != sizeof(struct tls_sess_key_256)) return -1; } else return -1; HA_RWLOCK_WRLOCK(TLSKEYS_REF_LOCK, &ref->lock); memcpy((char *) (ref->tlskeys + ((ref->tls_ticket_enc_index + 2) % TLS_TICKETS_NO)), tlskey->area, tlskey->data); ref->tls_ticket_enc_index = (ref->tls_ticket_enc_index + 1) % TLS_TICKETS_NO; HA_RWLOCK_WRUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); return 0; } int ssl_sock_update_tlskey(char *filename, struct buffer *tlskey, char **err) { struct tls_keys_ref *ref = tlskeys_ref_lookup(filename); if(!ref) { memprintf(err, "Unable to locate the referenced filename: %s", filename); return 1; } if (ssl_sock_update_tlskey_ref(ref, tlskey) < 0) { memprintf(err, "Invalid key size"); return 1; } return 0; } /* This function finalize the configuration parsing. Its set all the * automatic ids. It's called just after the basic checks. It returns * 0 on success otherwise ERR_*. */ static int tlskeys_finalize_config(void) { int i = 0; struct tls_keys_ref *ref, *ref2, *ref3; struct list tkr = LIST_HEAD_INIT(tkr); list_for_each_entry(ref, &tlskeys_reference, list) { if (ref->unique_id == -1) { /* Look for the first free id. */ while (1) { list_for_each_entry(ref2, &tlskeys_reference, list) { if (ref2->unique_id == i) { i++; break; } } if (&ref2->list == &tlskeys_reference) break; } /* Uses the unique id and increment it for the next entry. */ ref->unique_id = i; i++; } } /* This sort the reference list by id. */ list_for_each_entry_safe(ref, ref2, &tlskeys_reference, list) { LIST_DEL(&ref->list); list_for_each_entry(ref3, &tkr, list) { if (ref->unique_id < ref3->unique_id) { LIST_ADDQ(&ref3->list, &ref->list); break; } } if (&ref3->list == &tkr) LIST_ADDQ(&tkr, &ref->list); } /* swap root */ LIST_ADD(&tkr, &tlskeys_reference); LIST_DEL(&tkr); return 0; } #endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */ #ifndef OPENSSL_NO_OCSP int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype) { switch (evp_keytype) { case EVP_PKEY_RSA: return 2; case EVP_PKEY_DSA: return 0; case EVP_PKEY_EC: return 1; } return -1; } /* * Callback used to set OCSP status extension content in server hello. */ int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg) { struct certificate_ocsp *ocsp; struct ocsp_cbk_arg *ocsp_arg; char *ssl_buf; EVP_PKEY *ssl_pkey; int key_type; int index; ocsp_arg = arg; ssl_pkey = SSL_get_privatekey(ssl); if (!ssl_pkey) return SSL_TLSEXT_ERR_NOACK; key_type = EVP_PKEY_base_id(ssl_pkey); if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type) ocsp = ocsp_arg->s_ocsp; else { /* For multiple certs per context, we have to find the correct OCSP response based on * the certificate type */ index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index < 0) return SSL_TLSEXT_ERR_NOACK; ocsp = ocsp_arg->m_ocsp[index]; } if (!ocsp || !ocsp->response.area || !ocsp->response.data || (ocsp->expire < now.tv_sec)) return SSL_TLSEXT_ERR_NOACK; ssl_buf = OPENSSL_malloc(ocsp->response.data); if (!ssl_buf) return SSL_TLSEXT_ERR_NOACK; memcpy(ssl_buf, ocsp->response.area, ocsp->response.data); SSL_set_tlsext_status_ocsp_resp(ssl, ssl_buf, ocsp->response.data); return SSL_TLSEXT_ERR_OK; } #endif #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) /* * This function enables the handling of OCSP status extension on 'ctx' if a * ocsp_response buffer was found in the cert_key_and_chain. To enable OCSP * status extension, the issuer's certificate is mandatory. It should be * present in ckch->ocsp_issuer. * * In addition, the ckch->ocsp_reponse buffer is loaded as a DER format of an * OCSP response. If file is empty or content is not a valid OCSP response, * OCSP status extension is enabled but OCSP response is ignored (a warning is * displayed). * * Returns 1 if no ".ocsp" file found, 0 if OCSP status extension is * successfully enabled, or -1 in other error case. */ #ifndef OPENSSL_IS_BORINGSSL static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain) { X509 *x, *issuer; OCSP_CERTID *cid = NULL; int i, ret = -1; struct certificate_ocsp *ocsp = NULL, *iocsp; char *warn = NULL; unsigned char *p; void (*callback) (void); x = ckch->cert; if (!x) goto out; issuer = ckch->ocsp_issuer; /* take issuer from chain over ocsp_issuer, is what is done historicaly */ if (chain) { /* check if one of the certificate of the chain is the issuer */ for (i = 0; i < sk_X509_num(chain); i++) { X509 *ti = sk_X509_value(chain, i); if (X509_check_issued(ti, x) == X509_V_OK) { issuer = ti; break; } } } if (!issuer) goto out; cid = OCSP_cert_to_id(0, x, issuer); if (!cid) goto out; i = i2d_OCSP_CERTID(cid, NULL); if (!i || (i > OCSP_MAX_CERTID_ASN1_LENGTH)) goto out; ocsp = calloc(1, sizeof(*ocsp)); if (!ocsp) goto out; p = ocsp->key_data; i2d_OCSP_CERTID(cid, &p); iocsp = (struct certificate_ocsp *)ebmb_insert(&cert_ocsp_tree, &ocsp->key, OCSP_MAX_CERTID_ASN1_LENGTH); if (iocsp == ocsp) ocsp = NULL; #ifndef SSL_CTX_get_tlsext_status_cb # define SSL_CTX_get_tlsext_status_cb(ctx, cb) \ *cb = (void (*) (void))ctx->tlsext_status_cb; #endif SSL_CTX_get_tlsext_status_cb(ctx, &callback); if (!callback) { struct ocsp_cbk_arg *cb_arg = calloc(1, sizeof(*cb_arg)); EVP_PKEY *pkey; cb_arg->is_single = 1; cb_arg->s_ocsp = iocsp; pkey = X509_get_pubkey(x); cb_arg->single_kt = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); SSL_CTX_set_tlsext_status_cb(ctx, ssl_sock_ocsp_stapling_cbk); SSL_CTX_set_tlsext_status_arg(ctx, cb_arg); } else { /* * If the ctx has a status CB, then we have previously set an OCSP staple for this ctx * Update that cb_arg with the new cert's staple */ struct ocsp_cbk_arg *cb_arg; struct certificate_ocsp *tmp_ocsp; int index; int key_type; EVP_PKEY *pkey; #ifdef SSL_CTX_get_tlsext_status_arg SSL_CTX_ctrl(ctx, SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG, 0, &cb_arg); #else cb_arg = ctx->tlsext_status_arg; #endif /* * The following few lines will convert cb_arg from a single ocsp to multi ocsp * the order of operations below matter, take care when changing it */ tmp_ocsp = cb_arg->s_ocsp; index = ssl_sock_get_ocsp_arg_kt_index(cb_arg->single_kt); cb_arg->s_ocsp = NULL; cb_arg->m_ocsp[index] = tmp_ocsp; cb_arg->is_single = 0; cb_arg->single_kt = 0; pkey = X509_get_pubkey(x); key_type = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index >= 0 && !cb_arg->m_ocsp[index]) cb_arg->m_ocsp[index] = iocsp; } ret = 0; warn = NULL; if (ssl_sock_load_ocsp_response(ckch->ocsp_response, ocsp, cid, &warn)) { memprintf(&warn, "Loading: %s. Content will be ignored", warn ? warn : "failure"); ha_warning("%s.\n", warn); } out: if (cid) OCSP_CERTID_free(cid); if (ocsp) free(ocsp); if (warn) free(warn); return ret; } #else /* OPENSSL_IS_BORINGSSL */ static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain) { return SSL_CTX_set_ocsp_response(ctx, (const uint8_t *)ckch->ocsp_response->area, ckch->ocsp_response->data); } #endif #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) #define CT_EXTENSION_TYPE 18 int sctl_ex_index = -1; int ssl_sock_sctl_add_cbk(SSL *ssl, unsigned ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg) { struct buffer *sctl = add_arg; *out = (unsigned char *) sctl->area; *outlen = sctl->data; return 1; } int ssl_sock_sctl_parse_cbk(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg) { return 1; } static int ssl_sock_load_sctl(SSL_CTX *ctx, struct buffer *sctl) { int ret = -1; if (!SSL_CTX_add_server_custom_ext(ctx, CT_EXTENSION_TYPE, ssl_sock_sctl_add_cbk, NULL, sctl, ssl_sock_sctl_parse_cbk, NULL)) goto out; SSL_CTX_set_ex_data(ctx, sctl_ex_index, sctl); ret = 0; out: return ret; } #endif void ssl_sock_infocbk(const SSL *ssl, int where, int ret) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct ssl_sock_ctx *ctx = conn->xprt_ctx; BIO *write_bio; (void)ret; /* shut gcc stupid warning */ #ifndef SSL_OP_NO_RENEGOTIATION /* Please note that BoringSSL defines this macro to zero so don't * change this to #if and do not assign a default value to this macro! */ if (where & SSL_CB_HANDSHAKE_START) { /* Disable renegotiation (CVE-2009-3555) */ if ((conn->flags & (CO_FL_WAIT_L6_CONN | CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == 0) { conn->flags |= CO_FL_ERROR; conn->err_code = CO_ER_SSL_RENEG; } } #endif if ((where & SSL_CB_ACCEPT_LOOP) == SSL_CB_ACCEPT_LOOP) { if (!(ctx->xprt_st & SSL_SOCK_ST_FL_16K_WBFSIZE)) { /* Long certificate chains optimz If write and read bios are different, we consider that the buffering was activated, so we rise the output buffer size from 4k to 16k */ write_bio = SSL_get_wbio(ssl); if (write_bio != SSL_get_rbio(ssl)) { BIO_set_write_buffer_size(write_bio, 16384); ctx->xprt_st |= SSL_SOCK_ST_FL_16K_WBFSIZE; } } } } /* Callback is called for each certificate of the chain during a verify ok is set to 1 if preverify detect no error on current certificate. Returns 0 to break the handshake, 1 otherwise. */ int ssl_sock_bind_verifycbk(int ok, X509_STORE_CTX *x_store) { SSL *ssl; struct connection *conn; struct ssl_sock_ctx *ctx; int err, depth; ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_ex_data(ssl, ssl_app_data_index); ctx = conn->xprt_ctx; ctx->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE; if (ok) /* no errors */ return ok; depth = X509_STORE_CTX_get_error_depth(x_store); err = X509_STORE_CTX_get_error(x_store); /* check if CA error needs to be ignored */ if (depth > 0) { if (!SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st)) { ctx->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err); ctx->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth); } if (err < 64 && __objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CA_FAIL; return 0; } if (!SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st)) ctx->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err); /* check if certificate error needs to be ignored */ if (err < 64 && __objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CRT_FAIL; return 0; } #ifdef TLS1_RT_HEARTBEAT static void ssl_sock_parse_heartbeat(struct connection *conn, int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl) { /* test heartbeat received (write_p is set to 0 for a received record) */ if ((content_type == TLS1_RT_HEARTBEAT) && (write_p == 0)) { struct ssl_sock_ctx *ctx = conn->xprt_ctx; const unsigned char *p = buf; unsigned int payload; ctx->xprt_st |= SSL_SOCK_RECV_HEARTBEAT; /* Check if this is a CVE-2014-0160 exploitation attempt. */ if (*p != TLS1_HB_REQUEST) return; if (len < 1 + 2 + 16) /* 1 type + 2 size + 0 payload + 16 padding */ goto kill_it; payload = (p[1] * 256) + p[2]; if (3 + payload + 16 <= len) return; /* OK no problem */ kill_it: /* We have a clear heartbleed attack (CVE-2014-0160), the * advertised payload is larger than the advertised packet * length, so we have garbage in the buffer between the * payload and the end of the buffer (p+len). We can't know * if the SSL stack is patched, and we don't know if we can * safely wipe out the area between p+3+len and payload. * So instead, we prevent the response from being sent by * setting the max_send_fragment to 0 and we report an SSL * error, which will kill this connection. It will be reported * above as SSL_ERROR_SSL while an other handshake failure with * a heartbeat message will be reported as SSL_ERROR_SYSCALL. */ ssl->max_send_fragment = 0; SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_SSL_HANDSHAKE_FAILURE); } } #endif static void ssl_sock_parse_clienthello(struct connection *conn, int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl) { struct ssl_capture *capture; unsigned char *msg; unsigned char *end; size_t rec_len; /* This function is called for "from client" and "to server" * connections. The combination of write_p == 0 and content_type == 22 * is only available during "from client" connection. */ /* "write_p" is set to 0 is the bytes are received messages, * otherwise it is set to 1. */ if (write_p != 0) return; /* content_type contains the type of message received or sent * according with the SSL/TLS protocol spec. This message is * encoded with one byte. The value 256 (two bytes) is used * for designing the SSL/TLS record layer. According with the * rfc6101, the expected message (other than 256) are: * - change_cipher_spec(20) * - alert(21) * - handshake(22) * - application_data(23) * - (255) * We are interessed by the handshake and specially the client * hello. */ if (content_type != 22) return; /* The message length is at least 4 bytes, containing the * message type and the message length. */ if (len < 4) return; /* First byte of the handshake message id the type of * message. The known types are: * - hello_request(0) * - client_hello(1) * - server_hello(2) * - certificate(11) * - server_key_exchange (12) * - certificate_request(13) * - server_hello_done(14) * We are interested by the client hello. */ msg = (unsigned char *)buf; if (msg[0] != 1) return; /* Next three bytes are the length of the message. The total length * must be this decoded length + 4. If the length given as argument * is not the same, we abort the protocol dissector. */ rec_len = (msg[1] << 16) + (msg[2] << 8) + msg[3]; if (len < rec_len + 4) return; msg += 4; end = msg + rec_len; if (end < msg) return; /* Expect 2 bytes for protocol version (1 byte for major and 1 byte * for minor, the random, composed by 4 bytes for the unix time and * 28 bytes for unix payload. So we jump 1 + 1 + 4 + 28. */ msg += 1 + 1 + 4 + 28; if (msg > end) return; /* Next, is session id: * if present, we have to jump by length + 1 for the size information * if not present, we have to jump by 1 only */ if (msg[0] > 0) msg += msg[0]; msg += 1; if (msg > end) return; /* Next two bytes are the ciphersuite length. */ if (msg + 2 > end) return; rec_len = (msg[0] << 8) + msg[1]; msg += 2; if (msg + rec_len > end || msg + rec_len < msg) return; capture = pool_alloc_dirty(pool_head_ssl_capture); if (!capture) return; /* Compute the xxh64 of the ciphersuite. */ capture->xxh64 = XXH64(msg, rec_len, 0); /* Capture the ciphersuite. */ capture->ciphersuite_len = (global_ssl.capture_cipherlist < rec_len) ? global_ssl.capture_cipherlist : rec_len; memcpy(capture->ciphersuite, msg, capture->ciphersuite_len); SSL_set_ex_data(ssl, ssl_capture_ptr_index, capture); } /* Callback is called for ssl protocol analyse */ void ssl_sock_msgcbk(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct ssl_sock_msg_callback *cbk; /* Try to call all callback functions that were registered by using * ssl_sock_register_msg_callback(). */ list_for_each_entry(cbk, &ssl_sock_msg_callbacks, list) { cbk->func(conn, write_p, version, content_type, buf, len, ssl); } } #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) static int ssl_sock_srv_select_protos(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { struct server *srv = arg; if (SSL_select_next_proto(out, outlen, in, inlen, (unsigned char *)srv->ssl_ctx.npn_str, srv->ssl_ctx.npn_len) == OPENSSL_NPN_NEGOTIATED) return SSL_TLSEXT_ERR_OK; return SSL_TLSEXT_ERR_NOACK; } #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) /* This callback is used so that the server advertises the list of * negotiable protocols for NPN. */ static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { struct ssl_bind_conf *conf = arg; *data = (const unsigned char *)conf->npn_str; *len = conf->npn_len; return SSL_TLSEXT_ERR_OK; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation /* This callback is used so that the server advertises the list of * negotiable protocols for ALPN. */ static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, void *arg) { struct ssl_bind_conf *conf = arg; if (SSL_select_next_proto((unsigned char**) out, outlen, (const unsigned char *)conf->alpn_str, conf->alpn_len, server, server_len) != OPENSSL_NPN_NEGOTIATED) { return SSL_TLSEXT_ERR_NOACK; } return SSL_TLSEXT_ERR_OK; } #endif #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifndef SSL_NO_GENERATE_CERTIFICATES /* Create a X509 certificate with the specified servername and serial. This * function returns a SSL_CTX object or NULL if an error occurs. */ static SSL_CTX * ssl_sock_do_create_cert(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; EVP_PKEY *capkey = bind_conf->ca_sign_pkey; SSL_CTX *ssl_ctx = NULL; X509 *newcrt = NULL; EVP_PKEY *pkey = NULL; SSL *tmp_ssl = NULL; CONF *ctmp = NULL; X509_NAME *name; const EVP_MD *digest; X509V3_CTX ctx; unsigned int i; int key_type; /* Get the private key of the default certificate and use it */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x10002000L) pkey = SSL_CTX_get0_privatekey(bind_conf->default_ctx); #else tmp_ssl = SSL_new(bind_conf->default_ctx); if (tmp_ssl) pkey = SSL_get_privatekey(tmp_ssl); #endif if (!pkey) goto mkcert_error; /* Create the certificate */ if (!(newcrt = X509_new())) goto mkcert_error; /* Set version number for the certificate (X509v3) and the serial * number */ if (X509_set_version(newcrt, 2L) != 1) goto mkcert_error; ASN1_INTEGER_set(X509_get_serialNumber(newcrt), _HA_ATOMIC_ADD(&ssl_ctx_serial, 1)); /* Set duration for the certificate */ if (!X509_gmtime_adj(X509_getm_notBefore(newcrt), (long)-60*60*24) || !X509_gmtime_adj(X509_getm_notAfter(newcrt),(long)60*60*24*365)) goto mkcert_error; /* set public key in the certificate */ if (X509_set_pubkey(newcrt, pkey) != 1) goto mkcert_error; /* Set issuer name from the CA */ if (!(name = X509_get_subject_name(cacert))) goto mkcert_error; if (X509_set_issuer_name(newcrt, name) != 1) goto mkcert_error; /* Set the subject name using the same, but the CN */ name = X509_NAME_dup(name); if (X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC, (const unsigned char *)servername, -1, -1, 0) != 1) { X509_NAME_free(name); goto mkcert_error; } if (X509_set_subject_name(newcrt, name) != 1) { X509_NAME_free(name); goto mkcert_error; } X509_NAME_free(name); /* Add x509v3 extensions as specified */ ctmp = NCONF_new(NULL); X509V3_set_ctx(&ctx, cacert, newcrt, NULL, NULL, 0); for (i = 0; i < X509V3_EXT_SIZE; i++) { X509_EXTENSION *ext; if (!(ext = X509V3_EXT_nconf(ctmp, &ctx, x509v3_ext_names[i], x509v3_ext_values[i]))) goto mkcert_error; if (!X509_add_ext(newcrt, ext, -1)) { X509_EXTENSION_free(ext); goto mkcert_error; } X509_EXTENSION_free(ext); } /* Sign the certificate with the CA private key */ key_type = EVP_PKEY_base_id(capkey); if (key_type == EVP_PKEY_DSA) digest = EVP_sha1(); else if (key_type == EVP_PKEY_RSA) digest = EVP_sha256(); else if (key_type == EVP_PKEY_EC) digest = EVP_sha256(); else { #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000000fL) && !defined(OPENSSL_IS_BORINGSSL) int nid; if (EVP_PKEY_get_default_digest_nid(capkey, &nid) <= 0) goto mkcert_error; if (!(digest = EVP_get_digestbynid(nid))) goto mkcert_error; #else goto mkcert_error; #endif } if (!(X509_sign(newcrt, capkey, digest))) goto mkcert_error; /* Create and set the new SSL_CTX */ if (!(ssl_ctx = SSL_CTX_new(SSLv23_server_method()))) goto mkcert_error; if (!SSL_CTX_use_PrivateKey(ssl_ctx, pkey)) goto mkcert_error; if (!SSL_CTX_use_certificate(ssl_ctx, newcrt)) goto mkcert_error; if (!SSL_CTX_check_private_key(ssl_ctx)) goto mkcert_error; if (newcrt) X509_free(newcrt); #ifndef OPENSSL_NO_DH SSL_CTX_set_tmp_dh_callback(ssl_ctx, ssl_get_tmp_dh); #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) { const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); EC_KEY *ecc; int nid; if ((nid = OBJ_sn2nid(ecdhe)) == NID_undef) goto end; if (!(ecc = EC_KEY_new_by_curve_name(nid))) goto end; SSL_CTX_set_tmp_ecdh(ssl_ctx, ecc); EC_KEY_free(ecc); } #endif end: return ssl_ctx; mkcert_error: if (ctmp) NCONF_free(ctmp); if (tmp_ssl) SSL_free(tmp_ssl); if (ssl_ctx) SSL_CTX_free(ssl_ctx); if (newcrt) X509_free(newcrt); return NULL; } SSL_CTX * ssl_sock_create_cert(struct connection *conn, const char *servername, unsigned int key) { struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; struct ssl_sock_ctx *ctx = conn->xprt_ctx; return ssl_sock_do_create_cert(servername, bind_conf, ctx->ssl); } /* Do a lookup for a certificate in the LRU cache used to store generated * certificates and immediately assign it to the SSL session if not null. */ SSL_CTX * ssl_sock_assign_generated_cert(unsigned int key, struct bind_conf *bind_conf, SSL *ssl) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_lookup(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (lru && lru->domain) { if (ssl) SSL_set_SSL_CTX(ssl, (SSL_CTX *)lru->data); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return (SSL_CTX *)lru->data; } HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); } return NULL; } /* Same as but without SSL session. This * function is not thread-safe, it should only be used to check if a certificate * exists in the lru cache (with no warranty it will not be removed by another * thread). It is kept for backward compatibility. */ SSL_CTX * ssl_sock_get_generated_cert(unsigned int key, struct bind_conf *bind_conf) { return ssl_sock_assign_generated_cert(key, bind_conf, NULL); } /* Set a certificate int the LRU cache used to store generated * certificate. Return 0 on success, otherwise -1 */ int ssl_sock_set_generated_cert(SSL_CTX *ssl_ctx, unsigned int key, struct bind_conf *bind_conf) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (!lru) { HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return -1; } if (lru->domain && lru->data) lru->free((SSL_CTX *)lru->data); lru64_commit(lru, ssl_ctx, bind_conf->ca_sign_cert, 0, (void (*)(void *))SSL_CTX_free); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 0; } return -1; } /* Compute the key of the certificate. */ unsigned int ssl_sock_generated_cert_key(const void *data, size_t len) { return XXH32(data, len, ssl_ctx_lru_seed); } /* Generate a cert and immediately assign it to the SSL session so that the cert's * refcount is maintained regardless of the cert's presence in the LRU cache. */ static int ssl_sock_generate_certificate(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; SSL_CTX *ssl_ctx = NULL; struct lru64 *lru = NULL; unsigned int key; key = ssl_sock_generated_cert_key(servername, strlen(servername)); if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, cacert, 0); if (lru && lru->domain) ssl_ctx = (SSL_CTX *)lru->data; if (!ssl_ctx && lru) { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); lru64_commit(lru, ssl_ctx, cacert, 0, (void (*)(void *))SSL_CTX_free); } SSL_set_SSL_CTX(ssl, ssl_ctx); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 1; } else { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); SSL_set_SSL_CTX(ssl, ssl_ctx); /* No LRU cache, this CTX will be released as soon as the session dies */ SSL_CTX_free(ssl_ctx); return 1; } return 0; } static int ssl_sock_generate_certificate_from_conn(struct bind_conf *bind_conf, SSL *ssl) { unsigned int key; struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); if (conn_get_dst(conn)) { key = ssl_sock_generated_cert_key(conn->dst, get_addr_len(conn->dst)); if (ssl_sock_assign_generated_cert(key, bind_conf, ssl)) return 1; } return 0; } #endif /* !defined SSL_NO_GENERATE_CERTIFICATES */ #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_SSLv3 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, SSLv3_server_method()) : SSL_CTX_set_ssl_version(ctx, SSLv3_client_method()); #endif } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_client_method()); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_1 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_1_client_method()); #endif } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_2 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_2_client_method()); #endif } /* TLSv1.2 is the last supported version in this context. */ static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {} /* Unusable in this context. */ static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {} #else /* openssl >= 1.1.0 */ static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, SSL3_VERSION) : SSL_CTX_set_min_proto_version(ctx, SSL3_VERSION); } static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, SSL3_VERSION) : SSL_set_min_proto_version(ssl, SSL3_VERSION); } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_VERSION); } static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_VERSION); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_1_VERSION); } static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_1_VERSION); } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION); } static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_2_VERSION) : SSL_set_min_proto_version(ssl, TLS1_2_VERSION); } static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION); #endif } static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_3_VERSION) : SSL_set_min_proto_version(ssl, TLS1_3_VERSION); #endif } #endif static void ctx_set_None_func(SSL_CTX *ctx, set_context_func c) { } static void ssl_set_None_func(SSL *ssl, set_context_func c) { } struct methodVersions methodVersions[] = { {0, 0, ctx_set_None_func, ssl_set_None_func, "NONE"}, /* CONF_TLSV_NONE */ {SSL_OP_NO_SSLv3, MC_SSL_O_NO_SSLV3, ctx_set_SSLv3_func, ssl_set_SSLv3_func, "SSLv3"}, /* CONF_SSLV3 */ {SSL_OP_NO_TLSv1, MC_SSL_O_NO_TLSV10, ctx_set_TLSv10_func, ssl_set_TLSv10_func, "TLSv1.0"}, /* CONF_TLSV10 */ {SSL_OP_NO_TLSv1_1, MC_SSL_O_NO_TLSV11, ctx_set_TLSv11_func, ssl_set_TLSv11_func, "TLSv1.1"}, /* CONF_TLSV11 */ {SSL_OP_NO_TLSv1_2, MC_SSL_O_NO_TLSV12, ctx_set_TLSv12_func, ssl_set_TLSv12_func, "TLSv1.2"}, /* CONF_TLSV12 */ {SSL_OP_NO_TLSv1_3, MC_SSL_O_NO_TLSV13, ctx_set_TLSv13_func, ssl_set_TLSv13_func, "TLSv1.3"}, /* CONF_TLSV13 */ }; static void ssl_sock_switchctx_set(SSL *ssl, SSL_CTX *ctx) { SSL_set_verify(ssl, SSL_CTX_get_verify_mode(ctx), ssl_sock_bind_verifycbk); SSL_set_client_CA_list(ssl, SSL_dup_CA_list(SSL_CTX_get_client_CA_list(ctx))); SSL_set_SSL_CTX(ssl, ctx); } #if ((HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) || defined(OPENSSL_IS_BORINGSSL)) static int ssl_sock_switchctx_err_cbk(SSL *ssl, int *al, void *priv) { struct bind_conf *s = priv; (void)al; /* shut gcc stupid warning */ if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) || s->generate_certs) return SSL_TLSEXT_ERR_OK; return SSL_TLSEXT_ERR_NOACK; } #ifdef OPENSSL_IS_BORINGSSL static int ssl_sock_switchctx_cbk(const struct ssl_early_callback_ctx *ctx) { SSL *ssl = ctx->ssl; #else static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *arg) { #endif struct connection *conn; struct bind_conf *s; const uint8_t *extension_data; size_t extension_len; int has_rsa_sig = 0, has_ecdsa_sig = 0; char *wildp = NULL; const uint8_t *servername; size_t servername_len; struct ebmb_node *node, *n, *node_ecdsa = NULL, *node_rsa = NULL, *node_anonymous = NULL; int allow_early = 0; int i; conn = SSL_get_ex_data(ssl, ssl_app_data_index); s = __objt_listener(conn->target)->bind_conf; if (s->ssl_conf.early_data) allow_early = 1; #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #endif /* * The server_name extension was given too much extensibility when it * was written, so parsing the normal case is a bit complex. */ size_t len; if (extension_len <= 2) goto abort; /* Extract the length of the supplied list of names. */ len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; /* * The list in practice only has a single element, so we only consider * the first one. */ if (len == 0 || *extension_data++ != TLSEXT_NAMETYPE_host_name) goto abort; extension_len = len - 1; /* Now we can finally pull out the byte array with the actual hostname. */ if (extension_len <= 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len == 0 || len + 2 > extension_len || len > TLSEXT_MAXLEN_host_name || memchr(extension_data, 0, len) != NULL) goto abort; servername = extension_data; servername_len = len; } else { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) { goto allow_early; } #endif /* without SNI extension, is the default_ctx (need SSL_TLSEXT_ERR_NOACK) */ if (!s->strict_sni) { HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); goto allow_early; } goto abort; } /* extract/check clientHello information */ #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #endif uint8_t sign; size_t len; if (extension_len < 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; if (len % 2 != 0) goto abort; for (; len > 0; len -= 2) { extension_data++; /* hash */ sign = *extension_data++; switch (sign) { case TLSEXT_signature_rsa: has_rsa_sig = 1; break; case TLSEXT_signature_ecdsa: has_ecdsa_sig = 1; break; default: continue; } if (has_ecdsa_sig && has_rsa_sig) break; } } else { /* without TLSEXT_TYPE_signature_algorithms extension (< TLSv1.2) */ has_rsa_sig = 1; } if (has_ecdsa_sig) { /* in very rare case: has ecdsa sign but not a ECDSA cipher */ const SSL_CIPHER *cipher; size_t len; const uint8_t *cipher_suites; has_ecdsa_sig = 0; #ifdef OPENSSL_IS_BORINGSSL len = ctx->cipher_suites_len; cipher_suites = ctx->cipher_suites; #else len = SSL_client_hello_get0_ciphers(ssl, &cipher_suites); #endif if (len % 2 != 0) goto abort; for (; len != 0; len -= 2, cipher_suites += 2) { #ifdef OPENSSL_IS_BORINGSSL uint16_t cipher_suite = (cipher_suites[0] << 8) | cipher_suites[1]; cipher = SSL_get_cipher_by_value(cipher_suite); #else cipher = SSL_CIPHER_find(ssl, cipher_suites); #endif if (cipher && SSL_CIPHER_get_auth_nid(cipher) == NID_auth_ecdsa) { has_ecdsa_sig = 1; break; } } } for (i = 0; i < trash.size && i < servername_len; i++) { trash.area[i] = tolower(servername[i]); if (!wildp && (trash.area[i] == '.')) wildp = &trash.area[i]; } trash.area[i] = 0; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); for (i = 0; i < 2; i++) { if (i == 0) /* lookup in full qualified names */ node = ebst_lookup(&s->sni_ctx, trash.area); else if (i == 1 && wildp) /* lookup in wildcards names */ node = ebst_lookup(&s->sni_w_ctx, wildp); else break; for (n = node; n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { switch(container_of(n, struct sni_ctx, name)->kinfo.sig) { case TLSEXT_signature_ecdsa: if (!node_ecdsa) node_ecdsa = n; break; case TLSEXT_signature_rsa: if (!node_rsa) node_rsa = n; break; default: /* TLSEXT_signature_anonymous|dsa */ if (!node_anonymous) node_anonymous = n; break; } } } /* select by key_signature priority order */ node = (has_ecdsa_sig && node_ecdsa) ? node_ecdsa : ((has_rsa_sig && node_rsa) ? node_rsa : (node_anonymous ? node_anonymous : (node_ecdsa ? node_ecdsa /* no ecdsa signature case (< TLSv1.2) */ : node_rsa /* no rsa signature case (far far away) */ ))); if (node) { /* switch ctx */ struct ssl_bind_conf *conf = container_of(node, struct sni_ctx, name)->conf; ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); if (conf) { methodVersions[conf->ssl_methods.min].ssl_set_version(ssl, SET_MIN); methodVersions[conf->ssl_methods.max].ssl_set_version(ssl, SET_MAX); if (conf->early_data) allow_early = 1; } HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); goto allow_early; } } HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(trash.area, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ goto allow_early; } #endif if (!s->strict_sni) { /* no certificate match, is the default_ctx */ HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); } allow_early: #ifdef OPENSSL_IS_BORINGSSL if (allow_early) SSL_set_early_data_enabled(ssl, 1); #else if (!allow_early) SSL_set_max_early_data(ssl, 0); #endif return 1; abort: /* abort handshake (was SSL_TLSEXT_ERR_ALERT_FATAL) */ conn->err_code = CO_ER_SSL_HANDSHAKE; #ifdef OPENSSL_IS_BORINGSSL return ssl_select_cert_error; #else *al = SSL_AD_UNRECOGNIZED_NAME; return 0; #endif } #else /* OPENSSL_IS_BORINGSSL */ /* Sets the SSL ctx of to match the advertised server name. Returns a * warning when no match is found, which implies the default (first) cert * will keep being used. */ static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *priv) { const char *servername; const char *wildp = NULL; struct ebmb_node *node, *n; struct bind_conf *s = priv; int i; (void)al; /* shut gcc stupid warning */ servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (!servername) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) return SSL_TLSEXT_ERR_OK; #endif if (s->strict_sni) return SSL_TLSEXT_ERR_ALERT_FATAL; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_NOACK; } for (i = 0; i < trash.size; i++) { if (!servername[i]) break; trash.area[i] = tolower(servername[i]); if (!wildp && (trash.area[i] == '.')) wildp = &trash.area[i]; } trash.area[i] = 0; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); node = NULL; /* lookup in full qualified names */ for (n = ebst_lookup(&s->sni_ctx, trash.area); n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { node = n; break; } } if (!node && wildp) { /* lookup in wildcards names */ for (n = ebst_lookup(&s->sni_w_ctx, wildp); n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { node = n; break; } } } if (!node) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(servername, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } #endif if (s->strict_sni) { HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_ALERT_FATAL; } ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } /* switch ctx */ ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } #endif /* (!) OPENSSL_IS_BORINGSSL */ #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ #ifndef OPENSSL_NO_DH static DH * ssl_get_dh_1024(void) { static unsigned char dh1024_p[]={ 0xFA,0xF9,0x2A,0x22,0x2A,0xA7,0x7F,0xE1,0x67,0x4E,0x53,0xF7, 0x56,0x13,0xC3,0xB1,0xE3,0x29,0x6B,0x66,0x31,0x6A,0x7F,0xB3, 0xC2,0x68,0x6B,0xCB,0x1D,0x57,0x39,0x1D,0x1F,0xFF,0x1C,0xC9, 0xA6,0xA4,0x98,0x82,0x31,0x5D,0x25,0xFF,0x8A,0xE0,0x73,0x96, 0x81,0xC8,0x83,0x79,0xC1,0x5A,0x04,0xF8,0x37,0x0D,0xA8,0x3D, 0xAE,0x74,0xBC,0xDB,0xB6,0xA4,0x75,0xD9,0x71,0x8A,0xA0,0x17, 0x9E,0x2D,0xC8,0xA8,0xDF,0x2C,0x5F,0x82,0x95,0xF8,0x92,0x9B, 0xA7,0x33,0x5F,0x89,0x71,0xC8,0x2D,0x6B,0x18,0x86,0xC4,0x94, 0x22,0xA5,0x52,0x8D,0xF6,0xF6,0xD2,0x37,0x92,0x0F,0xA5,0xCC, 0xDB,0x7B,0x1D,0x3D,0xA1,0x31,0xB7,0x80,0x8F,0x0B,0x67,0x5E, 0x36,0xA5,0x60,0x0C,0xF1,0x95,0x33,0x8B, }; static unsigned char dh1024_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh1024_p, sizeof dh1024_p, NULL); g = BN_bin2bn(dh1024_g, sizeof dh1024_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_2048(void) { static unsigned char dh2048_p[]={ 0xEC,0x86,0xF8,0x70,0xA0,0x33,0x16,0xEC,0x05,0x1A,0x73,0x59, 0xCD,0x1F,0x8B,0xF8,0x29,0xE4,0xD2,0xCF,0x52,0xDD,0xC2,0x24, 0x8D,0xB5,0x38,0x9A,0xFB,0x5C,0xA4,0xE4,0xB2,0xDA,0xCE,0x66, 0x50,0x74,0xA6,0x85,0x4D,0x4B,0x1D,0x30,0xB8,0x2B,0xF3,0x10, 0xE9,0xA7,0x2D,0x05,0x71,0xE7,0x81,0xDF,0x8B,0x59,0x52,0x3B, 0x5F,0x43,0x0B,0x68,0xF1,0xDB,0x07,0xBE,0x08,0x6B,0x1B,0x23, 0xEE,0x4D,0xCC,0x9E,0x0E,0x43,0xA0,0x1E,0xDF,0x43,0x8C,0xEC, 0xBE,0xBE,0x90,0xB4,0x51,0x54,0xB9,0x2F,0x7B,0x64,0x76,0x4E, 0x5D,0xD4,0x2E,0xAE,0xC2,0x9E,0xAE,0x51,0x43,0x59,0xC7,0x77, 0x9C,0x50,0x3C,0x0E,0xED,0x73,0x04,0x5F,0xF1,0x4C,0x76,0x2A, 0xD8,0xF8,0xCF,0xFC,0x34,0x40,0xD1,0xB4,0x42,0x61,0x84,0x66, 0x42,0x39,0x04,0xF8,0x68,0xB2,0x62,0xD7,0x55,0xED,0x1B,0x74, 0x75,0x91,0xE0,0xC5,0x69,0xC1,0x31,0x5C,0xDB,0x7B,0x44,0x2E, 0xCE,0x84,0x58,0x0D,0x1E,0x66,0x0C,0xC8,0x44,0x9E,0xFD,0x40, 0x08,0x67,0x5D,0xFB,0xA7,0x76,0x8F,0x00,0x11,0x87,0xE9,0x93, 0xF9,0x7D,0xC4,0xBC,0x74,0x55,0x20,0xD4,0x4A,0x41,0x2F,0x43, 0x42,0x1A,0xC1,0xF2,0x97,0x17,0x49,0x27,0x37,0x6B,0x2F,0x88, 0x7E,0x1C,0xA0,0xA1,0x89,0x92,0x27,0xD9,0x56,0x5A,0x71,0xC1, 0x56,0x37,0x7E,0x3A,0x9D,0x05,0xE7,0xEE,0x5D,0x8F,0x82,0x17, 0xBC,0xE9,0xC2,0x93,0x30,0x82,0xF9,0xF4,0xC9,0xAE,0x49,0xDB, 0xD0,0x54,0xB4,0xD9,0x75,0x4D,0xFA,0x06,0xB8,0xD6,0x38,0x41, 0xB7,0x1F,0x77,0xF3, }; static unsigned char dh2048_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh2048_p, sizeof dh2048_p, NULL); g = BN_bin2bn(dh2048_g, sizeof dh2048_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_4096(void) { static unsigned char dh4096_p[]={ 0xDE,0x16,0x94,0xCD,0x99,0x58,0x07,0xF1,0xF7,0x32,0x96,0x11, 0x04,0x82,0xD4,0x84,0x72,0x80,0x99,0x06,0xCA,0xF0,0xA3,0x68, 0x07,0xCE,0x64,0x50,0xE7,0x74,0x45,0x20,0x80,0x5E,0x4D,0xAD, 0xA5,0xB6,0xED,0xFA,0x80,0x6C,0x3B,0x35,0xC4,0x9A,0x14,0x6B, 0x32,0xBB,0xFD,0x1F,0x17,0x8E,0xB7,0x1F,0xD6,0xFA,0x3F,0x7B, 0xEE,0x16,0xA5,0x62,0x33,0x0D,0xED,0xBC,0x4E,0x58,0xE5,0x47, 0x4D,0xE9,0xAB,0x8E,0x38,0xD3,0x6E,0x90,0x57,0xE3,0x22,0x15, 0x33,0xBD,0xF6,0x43,0x45,0xB5,0x10,0x0A,0xBE,0x2C,0xB4,0x35, 0xB8,0x53,0x8D,0xAD,0xFB,0xA7,0x1F,0x85,0x58,0x41,0x7A,0x79, 0x20,0x68,0xB3,0xE1,0x3D,0x08,0x76,0xBF,0x86,0x0D,0x49,0xE3, 0x82,0x71,0x8C,0xB4,0x8D,0x81,0x84,0xD4,0xE7,0xBE,0x91,0xDC, 0x26,0x39,0x48,0x0F,0x35,0xC4,0xCA,0x65,0xE3,0x40,0x93,0x52, 0x76,0x58,0x7D,0xDD,0x51,0x75,0xDC,0x69,0x61,0xBF,0x47,0x2C, 0x16,0x68,0x2D,0xC9,0x29,0xD3,0xE6,0xC0,0x99,0x48,0xA0,0x9A, 0xC8,0x78,0xC0,0x6D,0x81,0x67,0x12,0x61,0x3F,0x71,0xBA,0x41, 0x1F,0x6C,0x89,0x44,0x03,0xBA,0x3B,0x39,0x60,0xAA,0x28,0x55, 0x59,0xAE,0xB8,0xFA,0xCB,0x6F,0xA5,0x1A,0xF7,0x2B,0xDD,0x52, 0x8A,0x8B,0xE2,0x71,0xA6,0x5E,0x7E,0xD8,0x2E,0x18,0xE0,0x66, 0xDF,0xDD,0x22,0x21,0x99,0x52,0x73,0xA6,0x33,0x20,0x65,0x0E, 0x53,0xE7,0x6B,0x9B,0xC5,0xA3,0x2F,0x97,0x65,0x76,0xD3,0x47, 0x23,0x77,0x12,0xB6,0x11,0x7B,0x24,0xED,0xF1,0xEF,0xC0,0xE2, 0xA3,0x7E,0x67,0x05,0x3E,0x96,0x4D,0x45,0xC2,0x18,0xD1,0x73, 0x9E,0x07,0xF3,0x81,0x6E,0x52,0x63,0xF6,0x20,0x76,0xB9,0x13, 0xD2,0x65,0x30,0x18,0x16,0x09,0x16,0x9E,0x8F,0xF1,0xD2,0x10, 0x5A,0xD3,0xD4,0xAF,0x16,0x61,0xDA,0x55,0x2E,0x18,0x5E,0x14, 0x08,0x54,0x2E,0x2A,0x25,0xA2,0x1A,0x9B,0x8B,0x32,0xA9,0xFD, 0xC2,0x48,0x96,0xE1,0x80,0xCA,0xE9,0x22,0x17,0xBB,0xCE,0x3E, 0x9E,0xED,0xC7,0xF1,0x1F,0xEC,0x17,0x21,0xDC,0x7B,0x82,0x48, 0x8E,0xBB,0x4B,0x9D,0x5B,0x04,0x04,0xDA,0xDB,0x39,0xDF,0x01, 0x40,0xC3,0xAA,0x26,0x23,0x89,0x75,0xC6,0x0B,0xD0,0xA2,0x60, 0x6A,0xF1,0xCC,0x65,0x18,0x98,0x1B,0x52,0xD2,0x74,0x61,0xCC, 0xBD,0x60,0xAE,0xA3,0xA0,0x66,0x6A,0x16,0x34,0x92,0x3F,0x41, 0x40,0x31,0x29,0xC0,0x2C,0x63,0xB2,0x07,0x8D,0xEB,0x94,0xB8, 0xE8,0x47,0x92,0x52,0x93,0x6A,0x1B,0x7E,0x1A,0x61,0xB3,0x1B, 0xF0,0xD6,0x72,0x9B,0xF1,0xB0,0xAF,0xBF,0x3E,0x65,0xEF,0x23, 0x1D,0x6F,0xFF,0x70,0xCD,0x8A,0x4C,0x8A,0xA0,0x72,0x9D,0xBE, 0xD4,0xBB,0x24,0x47,0x4A,0x68,0xB5,0xF5,0xC6,0xD5,0x7A,0xCD, 0xCA,0x06,0x41,0x07,0xAD,0xC2,0x1E,0xE6,0x54,0xA7,0xAD,0x03, 0xD9,0x12,0xC1,0x9C,0x13,0xB1,0xC9,0x0A,0x43,0x8E,0x1E,0x08, 0xCE,0x50,0x82,0x73,0x5F,0xA7,0x55,0x1D,0xD9,0x59,0xAC,0xB5, 0xEA,0x02,0x7F,0x6C,0x5B,0x74,0x96,0x98,0x67,0x24,0xA3,0x0F, 0x15,0xFC,0xA9,0x7D,0x3E,0x67,0xD1,0x70,0xF8,0x97,0xF3,0x67, 0xC5,0x8C,0x88,0x44,0x08,0x02,0xC7,0x2B, }; static unsigned char dh4096_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh4096_p, sizeof dh4096_p, NULL); g = BN_bin2bn(dh4096_g, sizeof dh4096_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } /* Returns Diffie-Hellman parameters matching the private key length but not exceeding global_ssl.default_dh_param */ static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen) { DH *dh = NULL; EVP_PKEY *pkey = SSL_get_privatekey(ssl); int type; type = pkey ? EVP_PKEY_base_id(pkey) : EVP_PKEY_NONE; /* The keylen supplied by OpenSSL can only be 512 or 1024. See ssl3_send_server_key_exchange() in ssl/s3_srvr.c */ if (type == EVP_PKEY_RSA || type == EVP_PKEY_DSA) { keylen = EVP_PKEY_bits(pkey); } if (keylen > global_ssl.default_dh_param) { keylen = global_ssl.default_dh_param; } if (keylen >= 4096) { dh = local_dh_4096; } else if (keylen >= 2048) { dh = local_dh_2048; } else { dh = local_dh_1024; } return dh; } static DH * ssl_sock_get_dh_from_file(const char *filename) { DH *dh = NULL; BIO *in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, filename) <= 0) goto end; dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL); end: if (in) BIO_free(in); ERR_clear_error(); return dh; } int ssl_sock_load_global_dh_param_from_file(const char *filename) { global_dh = ssl_sock_get_dh_from_file(filename); if (global_dh) { return 0; } return -1; } #endif /* This function allocates a sni_ctx and adds it to the ckch_inst */ static int ckch_inst_add_cert_sni(SSL_CTX *ctx, struct ckch_inst *ckch_inst, struct bind_conf *s, struct ssl_bind_conf *conf, struct pkey_info kinfo, char *name, int order) { struct sni_ctx *sc; int wild = 0, neg = 0; if (*name == '!') { neg = 1; name++; } if (*name == '*') { wild = 1; name++; } /* !* filter is a nop */ if (neg && wild) return order; if (*name) { int j, len; len = strlen(name); for (j = 0; j < len && j < trash.size; j++) trash.area[j] = tolower(name[j]); if (j >= trash.size) return -1; trash.area[j] = 0; sc = malloc(sizeof(struct sni_ctx) + len + 1); if (!sc) return -1; memcpy(sc->name.key, trash.area, len + 1); SSL_CTX_up_ref(ctx); sc->ctx = ctx; sc->conf = conf; sc->kinfo = kinfo; sc->order = order++; sc->neg = neg; sc->wild = wild; sc->name.node.leaf_p = NULL; sc->ckch_inst = ckch_inst; LIST_ADDQ(&ckch_inst->sni_ctx, &sc->by_ckch_inst); } return order; } /* * Insert the sni_ctxs that are listed in the ckch_inst, in the bind_conf's sni_ctx tree * This function can't return an error. * * *CAUTION*: The caller must lock the sni tree if called in multithreading mode */ void ssl_sock_load_cert_sni(struct ckch_inst *ckch_inst, struct bind_conf *bind_conf) { struct sni_ctx *sc0, *sc0b, *sc1; struct ebmb_node *node; int def = 0; list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) { /* ignore if sc0 was already inserted in a tree */ if (sc0->name.node.leaf_p) continue; /* Check for duplicates. */ if (sc0->wild) node = ebst_lookup(&bind_conf->sni_w_ctx, (char *)sc0->name.key); else node = ebst_lookup(&bind_conf->sni_ctx, (char *)sc0->name.key); for (; node; node = ebmb_next_dup(node)) { sc1 = ebmb_entry(node, struct sni_ctx, name); if (sc1->ctx == sc0->ctx && sc1->conf == sc0->conf && sc1->neg == sc0->neg && sc1->wild == sc0->wild) { /* it's a duplicate, we should remove and free it */ LIST_DEL(&sc0->by_ckch_inst); SSL_CTX_free(sc0->ctx); free(sc0); sc0 = NULL; break; } } /* if duplicate, ignore the insertion */ if (!sc0) continue; if (sc0->wild) ebst_insert(&bind_conf->sni_w_ctx, &sc0->name); else ebst_insert(&bind_conf->sni_ctx, &sc0->name); /* replace the default_ctx if required with the first ctx */ if (ckch_inst->is_default && !def) { SSL_CTX_free(bind_conf->default_ctx); SSL_CTX_up_ref(sc0->ctx); bind_conf->default_ctx = sc0->ctx; def = 1; } } } /* * tree used to store the ckchs ordered by filename/bundle name */ struct eb_root ckchs_tree = EB_ROOT_UNIQUE; /* tree of crtlist (crt-list/directory) */ struct eb_root crtlists_tree = EB_ROOT_UNIQUE; /* Loads Diffie-Hellman parameter from a ckchs to an SSL_CTX. * If there is no DH parameter available in the ckchs, the global * DH parameter is loaded into the SSL_CTX and if there is no * DH parameter available in ckchs nor in global, the default * DH parameters are applied on the SSL_CTX. * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if a reason of the error is availabine in err * ERR_WARN if a warning is available into err * The value 0 means there is no error nor warning and * the operation succeed. */ #ifndef OPENSSL_NO_DH static int ssl_sock_load_dh_params(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, const char *path, char **err) { int ret = 0; DH *dh = NULL; if (ckch && ckch->dh) { dh = ckch->dh; if (!SSL_CTX_set_tmp_dh(ctx, dh)) { memprintf(err, "%sunable to load the DH parameter specified in '%s'", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } if (ssl_dh_ptr_index >= 0) { /* store a pointer to the DH params to avoid complaining about ssl-default-dh-param not being set for this SSL_CTX */ SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, dh); } } else if (global_dh) { if (!SSL_CTX_set_tmp_dh(ctx, global_dh)) { memprintf(err, "%sunable to use the global DH parameter for certificate '%s'", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } } else { /* Clear openssl global errors stack */ ERR_clear_error(); if (global_ssl.default_dh_param <= 1024) { /* we are limited to DH parameter of 1024 bits anyway */ if (local_dh_1024 == NULL) local_dh_1024 = ssl_get_dh_1024(); if (local_dh_1024 == NULL) { memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n", err && *err ? *err : "", path); ret |= ERR_ALERT | ERR_FATAL; goto end; } if (!SSL_CTX_set_tmp_dh(ctx, local_dh_1024)) { memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } } else { SSL_CTX_set_tmp_dh_callback(ctx, ssl_get_tmp_dh); } } end: ERR_clear_error(); return ret; } #endif /* Loads the info in ckch into ctx * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err * The value 0 means there is no error nor warning and * the operation succeed. */ static int ssl_sock_put_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch, SSL_CTX *ctx, char **err) { int errcode = 0; STACK_OF(X509) *find_chain = NULL; if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) { memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; return errcode; } if (!SSL_CTX_use_certificate(ctx, ckch->cert)) { memprintf(err, "%sunable to load SSL certificate into SSL Context '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } if (ckch->chain) { find_chain = ckch->chain; } else { /* Find Certificate Chain in global */ struct issuer_chain *issuer; issuer = ssl_get0_issuer_chain(ckch->cert); if (issuer) find_chain = issuer->chain; } /* Load all certs in the ckch into the ctx_chain for the ssl_ctx */ if (find_chain) #ifdef SSL_CTX_set1_chain if (!SSL_CTX_set1_chain(ctx, find_chain)) { memprintf(err, "%sunable to load chain certificate into SSL Context '%s'. Make sure you are linking against Openssl >= 1.0.2.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } #else { /* legacy compat (< openssl 1.0.2) */ X509 *ca; STACK_OF(X509) *chain; chain = X509_chain_up_ref(find_chain); while ((ca = sk_X509_shift(chain))) if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) { memprintf(err, "%sunable to load chain certificate into SSL Context '%s'.\n", err && *err ? *err : "", path); X509_free(ca); sk_X509_pop_free(chain, X509_free); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif #ifndef OPENSSL_NO_DH /* store a NULL pointer to indicate we have not yet loaded a custom DH param file */ if (ssl_dh_ptr_index >= 0) { SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, NULL); } errcode |= ssl_sock_load_dh_params(ctx, ckch, path, err); if (errcode & ERR_CODE) { memprintf(err, "%sunable to load DH parameters from file '%s'.\n", err && *err ? *err : "", path); goto end; } #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) if (sctl_ex_index >= 0 && ckch->sctl) { if (ssl_sock_load_sctl(ctx, ckch->sctl) < 0) { memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) /* Load OCSP Info into context */ if (ckch->ocsp_response) { if (ssl_sock_load_ocsp(ctx, ckch, find_chain) < 0) { memprintf(err, "%s '%s.ocsp' is present and activates OCSP but it is impossible to compute the OCSP certificate ID (maybe the issuer could not be found)'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif end: return errcode; } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL static int ssl_sock_populate_sni_keytypes_hplr(const char *str, struct eb_root *sni_keytypes, int key_index) { struct sni_keytype *s_kt = NULL; struct ebmb_node *node; int i; for (i = 0; i < trash.size; i++) { if (!str[i]) break; trash.area[i] = tolower(str[i]); } trash.area[i] = 0; node = ebst_lookup(sni_keytypes, trash.area); if (!node) { /* CN not found in tree */ s_kt = malloc(sizeof(struct sni_keytype) + i + 1); /* Using memcpy here instead of strncpy. * strncpy will cause sig_abrt errors under certain versions of gcc with -O2 * See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60792 */ if (!s_kt) return -1; memcpy(s_kt->name.key, trash.area, i+1); s_kt->keytypes = 0; ebst_insert(sni_keytypes, &s_kt->name); } else { /* CN found in tree */ s_kt = container_of(node, struct sni_keytype, name); } /* Mark that this CN has the keytype of key_index via keytypes mask */ s_kt->keytypes |= 1<= 0x1000200fL /* * Take a ckch_store which contains a multi-certificate bundle. * Group these certificates into a set of SSL_CTX* * based on shared and unique CN and SAN entries. Add these SSL_CTX* to the SNI tree. * * This will allow the user to explicitly group multiple cert/keys for a single purpose * * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err * */ int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { int i = 0, n = 0; struct cert_key_and_chain *certs_and_keys; struct eb_root sni_keytypes_map = EB_ROOT; struct ebmb_node *node; struct ebmb_node *next; /* Array of SSL_CTX pointers corresponding to each possible combo * of keytypes */ struct key_combo_ctx key_combos[SSL_SOCK_POSSIBLE_KT_COMBOS] = { {0} }; int errcode = 0; X509_NAME *xname = NULL; char *str = NULL; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names = NULL; #endif struct ckch_inst *ckch_inst; *ckchi = NULL; if (!ckchs || !ckchs->ckch || !ckchs->multi) { memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n", err && *err ? *err : "", path); return ERR_ALERT | ERR_FATAL; } ckch_inst = ckch_inst_new(); if (!ckch_inst) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } certs_and_keys = ckchs->ckch; /* Process each ckch and update keytypes for each CN/SAN * for example, if CN/SAN www.a.com is associated with * certs with keytype 0 and 2, then at the end of the loop, * www.a.com will have: * keyindex = 0 | 1 | 4 = 5 */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { int ret; if (!ssl_sock_is_ckch_valid(&certs_and_keys[n])) continue; if (fcount) { for (i = 0; i < fcount; i++) { ret = ssl_sock_populate_sni_keytypes_hplr(sni_filter[i], &sni_keytypes_map, n); if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } else { /* A lot of the following code is OpenSSL boilerplate for processing CN's and SAN's, * so the line that contains logic is marked via comments */ xname = X509_get_subject_name(certs_and_keys[n].cert); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { /* Important line is here */ ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } /* Do the above logic for each SAN */ #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(certs_and_keys[n].cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { /* Important line is here */ ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } } } } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ } /* If no files found, return error */ if (eb_is_empty(&sni_keytypes_map)) { memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* We now have a map of CN/SAN to keytypes that are loaded in * Iterate through the map to create the SSL_CTX's (if needed) * and add each CTX to the SNI tree * * Some math here: * There are 2^n - 1 possible combinations, each unique * combination is denoted by the key in the map. Each key * has a value between 1 and 2^n - 1. Conveniently, the array * of SSL_CTX* is sized 2^n. So, we can simply use the i'th * entry in the array to correspond to the unique combo (key) * associated with i. This unique key combo (i) will be associated * with combos[i-1] */ node = ebmb_first(&sni_keytypes_map); while (node) { SSL_CTX *cur_ctx; char cur_file[MAXPATHLEN+1]; const struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; str = (char *)container_of(node, struct sni_keytype, name)->name.key; i = container_of(node, struct sni_keytype, name)->keytypes; cur_ctx = key_combos[i-1].ctx; if (cur_ctx == NULL) { /* need to create SSL_CTX */ cur_ctx = SSL_CTX_new(SSLv23_server_method()); if (cur_ctx == NULL) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* Load all required certs/keys/chains/OCSPs info into SSL_CTX */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (i & (1<default_ctx) { for (i = SSL_SOCK_POSSIBLE_KT_COMBOS - 1; i >= 0; i--) { if (key_combos[i].ctx) { bind_conf->default_ctx = key_combos[i].ctx; bind_conf->default_ssl_conf = ssl_conf; ckch_inst->is_default = 1; SSL_CTX_up_ref(bind_conf->default_ctx); break; } } } ckch_inst->bind_conf = bind_conf; ckch_inst->ssl_conf = ssl_conf; ckch_inst->ckch_store = ckchs; end: if (names) sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); node = ebmb_first(&sni_keytypes_map); while (node) { next = ebmb_next(node); ebmb_delete(node); free(ebmb_entry(node, struct sni_keytype, name)); node = next; } /* we need to free the ctx since we incremented the refcount where it's used */ for (i = 0; i < SSL_SOCK_POSSIBLE_KT_COMBOS; i++) { if (key_combos[i].ctx) SSL_CTX_free(key_combos[i].ctx); } if (errcode & ERR_CODE && ckch_inst) { if (ckch_inst->is_default) { SSL_CTX_free(bind_conf->default_ctx); bind_conf->default_ctx = NULL; } ckch_inst_free(ckch_inst); ckch_inst = NULL; } *ckchi = ckch_inst; return errcode; } #else /* This is a dummy, that just logs an error and returns error */ int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", path, strerror(errno)); return ERR_ALERT | ERR_FATAL; } #endif /* #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL: Support for loading multiple certs into a single SSL_CTX */ /* * This function allocate a ckch_inst and create its snis * * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err */ int ckch_inst_new_load_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { SSL_CTX *ctx; int i; int order = 0; X509_NAME *xname; char *str; EVP_PKEY *pkey; struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names; #endif struct cert_key_and_chain *ckch; struct ckch_inst *ckch_inst = NULL; int errcode = 0; *ckchi = NULL; if (!ckchs || !ckchs->ckch) return ERR_FATAL; ckch = ckchs->ckch; ctx = SSL_CTX_new(SSLv23_server_method()); if (!ctx) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto error; } errcode |= ssl_sock_put_ckch_into_ctx(path, ckch, ctx, err); if (errcode & ERR_CODE) goto error; ckch_inst = ckch_inst_new(); if (!ckch_inst) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto error; } pkey = X509_get_pubkey(ckch->cert); if (pkey) { kinfo.bits = EVP_PKEY_bits(pkey); switch(EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: kinfo.sig = TLSEXT_signature_rsa; break; case EVP_PKEY_EC: kinfo.sig = TLSEXT_signature_ecdsa; break; case EVP_PKEY_DSA: kinfo.sig = TLSEXT_signature_dsa; break; } EVP_PKEY_free(pkey); } if (fcount) { while (fcount--) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, sni_filter[fcount], order); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } else { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(ckch->cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order); OPENSSL_free(str); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ xname = X509_get_subject_name(ckch->cert); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order); OPENSSL_free(str); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } } /* we must not free the SSL_CTX anymore below, since it's already in * the tree, so it will be discovered and cleaned in time. */ #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME if (bind_conf->default_ctx) { memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } #endif if (!bind_conf->default_ctx) { bind_conf->default_ctx = ctx; bind_conf->default_ssl_conf = ssl_conf; ckch_inst->is_default = 1; SSL_CTX_up_ref(ctx); } /* everything succeed, the ckch instance can be used */ ckch_inst->bind_conf = bind_conf; ckch_inst->ssl_conf = ssl_conf; ckch_inst->ckch_store = ckchs; SSL_CTX_free(ctx); /* we need to free the ctx since we incremented the refcount where it's used */ *ckchi = ckch_inst; return errcode; error: /* free the allocated sni_ctxs */ if (ckch_inst) { if (ckch_inst->is_default) SSL_CTX_free(ctx); ckch_inst_free(ckch_inst); ckch_inst = NULL; } SSL_CTX_free(ctx); return errcode; } /* Returns a set of ERR_* flags possibly with an error in . */ static int ssl_sock_load_ckchs(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckch_inst, char **err) { int errcode = 0; /* we found the ckchs in the tree, we can use it directly */ if (ckchs->multi) errcode |= ckch_inst_new_load_multi_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, ckch_inst, err); else errcode |= ckch_inst_new_load_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, ckch_inst, err); if (errcode & ERR_CODE) return errcode; ssl_sock_load_cert_sni(*ckch_inst, bind_conf); /* succeed, add the instance to the ckch_store's list of instance */ LIST_ADDQ(&ckchs->ckch_inst, &((*ckch_inst)->by_ckchs)); return errcode; } /* Make sure openssl opens /dev/urandom before the chroot. The work is only * done once. Zero is returned if the operation fails. No error is returned * if the random is said as not implemented, because we expect that openssl * will use another method once needed. */ static int ssl_initialize_random() { unsigned char random; static int random_initialized = 0; if (!random_initialized && RAND_bytes(&random, 1) != 0) random_initialized = 1; return random_initialized; } /* Load a crt-list file, this is done in 2 parts: * - store the content of the file in a crtlist structure with crtlist_entry structures * - generate the instances by iterating on entries in the crtlist struct * * Nothing is locked there, this function is used in the configuration parser. * * Returns a set of ERR_* flags possibly with an error in . */ int ssl_sock_load_cert_list_file(char *file, int dir, struct bind_conf *bind_conf, struct proxy *curproxy, char **err) { struct crtlist *crtlist = NULL; struct ebmb_node *eb; struct crtlist_entry *entry = NULL; struct bind_conf_list *bind_conf_node = NULL; int cfgerr = 0; char *end; bind_conf_node = malloc(sizeof(*bind_conf_node)); if (!bind_conf_node) { memprintf(err, "%sCan't alloc memory!\n", err && *err ? *err : ""); cfgerr |= ERR_FATAL | ERR_ALERT; goto error; } bind_conf_node->next = NULL; bind_conf_node->bind_conf = bind_conf; /* strip trailing slashes, including first one */ for (end = file + strlen(file) - 1; end >= file && *end == '/'; end--) *end = 0; /* look for an existing crtlist or create one */ eb = ebst_lookup(&crtlists_tree, file); if (eb) { crtlist = ebmb_entry(eb, struct crtlist, node); } else { /* load a crt-list OR a directory */ if (dir) cfgerr |= crtlist_load_cert_dir(file, bind_conf, &crtlist, err); else cfgerr |= crtlist_parse_file(file, bind_conf, curproxy, &crtlist, err); if (!(cfgerr & ERR_CODE)) ebst_insert(&crtlists_tree, &crtlist->node); } if (cfgerr & ERR_CODE) { cfgerr |= ERR_FATAL | ERR_ALERT; goto error; } /* generates ckch instance from the crtlist_entry */ list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) { struct ckch_store *store; struct ckch_inst *ckch_inst = NULL; store = entry->node.key; cfgerr |= ssl_sock_load_ckchs(store->path, store, bind_conf, entry->ssl_conf, entry->filters, entry->fcount, &ckch_inst, err); if (cfgerr & ERR_CODE) { memprintf(err, "error processing line %d in file '%s' : %s", entry->linenum, file, *err); goto error; } LIST_ADDQ(&entry->ckch_inst, &ckch_inst->by_crtlist_entry); ckch_inst->crtlist_entry = entry; } /* add the bind_conf to the list */ bind_conf_node->next = crtlist->bind_conf; crtlist->bind_conf = bind_conf_node; return cfgerr; error: { struct crtlist_entry *lastentry; struct ckch_inst *inst, *s_inst; lastentry = entry; /* which entry we tried to generate last */ if (lastentry) { list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) { if (entry == lastentry) /* last entry we tried to generate, no need to go further */ break; list_for_each_entry_safe(inst, s_inst, &entry->ckch_inst, by_crtlist_entry) { /* this was not generated for this bind_conf, skip */ if (inst->bind_conf != bind_conf) continue; /* free the sni_ctx and instance */ ckch_inst_free(inst); } } } free(bind_conf_node); } return cfgerr; } /* Returns a set of ERR_* flags possibly with an error in . */ int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, char **err) { struct stat buf; char fp[MAXPATHLEN+1]; int cfgerr = 0; struct ckch_store *ckchs; struct ckch_inst *ckch_inst = NULL; if ((ckchs = ckchs_lookup(path))) { /* we found the ckchs in the tree, we can use it directly */ return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } if (stat(path, &buf) == 0) { if (S_ISDIR(buf.st_mode) == 0) { ckchs = ckchs_load_cert_file(path, 0, err); if (!ckchs) return ERR_ALERT | ERR_FATAL; return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } else { return ssl_sock_load_cert_list_file(path, 1, bind_conf, bind_conf->frontend, err); } } else { /* stat failed, could be a bundle */ if (global_ssl.extra_files & SSL_GF_BUNDLE) { /* try to load a bundle if it is permitted */ ckchs = ckchs_load_cert_file(path, 1, err); if (!ckchs) return ERR_ALERT | ERR_FATAL; cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } else { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", fp, strerror(errno)); cfgerr |= ERR_ALERT | ERR_FATAL; } } return cfgerr; } /* Create an initial CTX used to start the SSL connection before switchctx */ static int ssl_sock_initial_ctx(struct bind_conf *bind_conf) { SSL_CTX *ctx = NULL; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | SSL_OP_PRIORITIZE_CHACHA | SSL_OP_CIPHER_SERVER_PREFERENCE; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; struct tls_version_filter *conf_ssl_methods = &bind_conf->ssl_conf.ssl_methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; int cfgerr = 0; const int default_min_ver = CONF_TLSV12; ctx = SSL_CTX_new(SSLv23_server_method()); bind_conf->initial_ctx = ctx; if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("Proxy '%s': no-sslv3/no-tlsv1x are ignored for bind '%s' at [%s:%d]. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); else flags = conf_ssl_methods->flags; min = conf_ssl_methods->min; max = conf_ssl_methods->max; /* default minimum is TLSV12, */ if (!min) { if (!max || (max >= default_min_ver)) { min = default_min_ver; } else { ha_warning("Proxy '%s': Ambiguous configuration for bind '%s' at [%s:%d]: the ssl-min-ver value is not configured and the ssl-max-ver value is lower than the default ssl-min-ver value (%s). " "Setting the ssl-min-ver to %s. Use 'ssl-min-ver' to fix this.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line, methodVersions[default_min_ver].name, methodVersions[max].name); min = max; } } /* Real min and max should be determinate with configuration and openssl's capabilities */ if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("Proxy '%s': SSL/TLS versions range not contiguous for bind '%s' at [%s:%d]. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr += 1; } /* save real min/max in bind_conf */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any surprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_SERVER); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; if (bind_conf->ssl_options & BC_SSL_O_PREF_CLIE_CIPH) options &= ~SSL_OP_CIPHER_SERVER_PREFERENCE; #ifdef SSL_OP_NO_RENEGOTIATION options |= SSL_OP_NO_RENEGOTIATION; #endif SSL_CTX_set_options(ctx, options); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); if (global_ssl.life_time) SSL_CTX_set_timeout(ctx, global_ssl.life_time); #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifdef OPENSSL_IS_BORINGSSL SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #elif defined(SSL_OP_NO_ANTI_REPLAY) if (bind_conf->ssl_conf.early_data) SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY); SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #else SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); #endif SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); #endif return cfgerr; } static inline void sh_ssl_sess_free_blocks(struct shared_block *first, struct shared_block *block) { if (first == block) { struct sh_ssl_sess_hdr *sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; if (first->len > 0) sh_ssl_sess_tree_delete(sh_ssl_sess); } } /* return first block from sh_ssl_sess */ static inline struct shared_block *sh_ssl_sess_first_block(struct sh_ssl_sess_hdr *sh_ssl_sess) { return (struct shared_block *)((unsigned char *)sh_ssl_sess - ((struct shared_block *)NULL)->data); } /* store a session into the cache * s_id : session id padded with zero to SSL_MAX_SSL_SESSION_ID_LENGTH * data: asn1 encoded session * data_len: asn1 encoded session length * Returns 1 id session was stored (else 0) */ static int sh_ssl_sess_store(unsigned char *s_id, unsigned char *data, int data_len) { struct shared_block *first; struct sh_ssl_sess_hdr *sh_ssl_sess, *oldsh_ssl_sess; first = shctx_row_reserve_hot(ssl_shctx, NULL, data_len + sizeof(struct sh_ssl_sess_hdr)); if (!first) { /* Could not retrieve enough free blocks to store that session */ return 0; } /* STORE the key in the first elem */ sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; memcpy(sh_ssl_sess->key_data, s_id, SSL_MAX_SSL_SESSION_ID_LENGTH); first->len = sizeof(struct sh_ssl_sess_hdr); /* it returns the already existing node or current node if none, never returns null */ oldsh_ssl_sess = sh_ssl_sess_tree_insert(sh_ssl_sess); if (oldsh_ssl_sess != sh_ssl_sess) { /* NOTE: Row couldn't be in use because we lock read & write function */ /* release the reserved row */ shctx_row_dec_hot(ssl_shctx, first); /* replace the previous session already in the tree */ sh_ssl_sess = oldsh_ssl_sess; /* ignore the previous session data, only use the header */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_inc_hot(ssl_shctx, first); first->len = sizeof(struct sh_ssl_sess_hdr); } if (shctx_row_data_append(ssl_shctx, first, NULL, data, data_len) < 0) { shctx_row_dec_hot(ssl_shctx, first); return 0; } shctx_row_dec_hot(ssl_shctx, first); return 1; } /* SSL callback used when a new session is created while connecting to a server */ static int ssl_sess_new_srv_cb(SSL *ssl, SSL_SESSION *sess) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct server *s; s = __objt_server(conn->target); if (!(s->ssl_ctx.options & SRV_SSL_O_NO_REUSE)) { int len; unsigned char *ptr; len = i2d_SSL_SESSION(sess, NULL); if (s->ssl_ctx.reused_sess[tid].ptr && s->ssl_ctx.reused_sess[tid].allocated_size >= len) { ptr = s->ssl_ctx.reused_sess[tid].ptr; } else { free(s->ssl_ctx.reused_sess[tid].ptr); ptr = s->ssl_ctx.reused_sess[tid].ptr = malloc(len); s->ssl_ctx.reused_sess[tid].allocated_size = len; } if (s->ssl_ctx.reused_sess[tid].ptr) { s->ssl_ctx.reused_sess[tid].size = i2d_SSL_SESSION(sess, &ptr); } } else { free(s->ssl_ctx.reused_sess[tid].ptr); s->ssl_ctx.reused_sess[tid].ptr = NULL; } return 0; } /* SSL callback used on new session creation */ int sh_ssl_sess_new_cb(SSL *ssl, SSL_SESSION *sess) { unsigned char encsess[SHSESS_MAX_DATA_LEN]; /* encoded session */ unsigned char encid[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* encoded id */ unsigned char *p; int data_len; unsigned int sid_length; const unsigned char *sid_data; /* Session id is already stored in to key and session id is known * so we don't store it to keep size. * note: SSL_SESSION_set1_id is using * a memcpy so we need to use a different pointer * than sid_data or sid_ctx_data to avoid valgrind * complaining. */ sid_data = SSL_SESSION_get_id(sess, &sid_length); /* copy value in an other buffer */ memcpy(encid, sid_data, sid_length); /* pad with 0 */ if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) memset(encid + sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH-sid_length); /* force length to zero to avoid ASN1 encoding */ SSL_SESSION_set1_id(sess, encid, 0); /* force length to zero to avoid ASN1 encoding */ SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, 0); /* check if buffer is large enough for the ASN1 encoded session */ data_len = i2d_SSL_SESSION(sess, NULL); if (data_len > SHSESS_MAX_DATA_LEN) goto err; p = encsess; /* process ASN1 session encoding before the lock */ i2d_SSL_SESSION(sess, &p); shctx_lock(ssl_shctx); /* store to cache */ sh_ssl_sess_store(encid, encsess, data_len); shctx_unlock(ssl_shctx); err: /* reset original length values */ SSL_SESSION_set1_id(sess, encid, sid_length); SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); return 0; /* do not increment session reference count */ } /* SSL callback used on lookup an existing session cause none found in internal cache */ SSL_SESSION *sh_ssl_sess_get_cb(SSL *ssl, __OPENSSL_110_CONST__ unsigned char *key, int key_len, int *do_copy) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char data[SHSESS_MAX_DATA_LEN], *p; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; SSL_SESSION *sess; struct shared_block *first; global.shctx_lookups++; /* allow the session to be freed automatically by openssl */ *do_copy = 0; /* tree key is zeros padded sessionid */ if (key_len < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, key, key_len); memset(tmpkey + key_len, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - key_len); key = tmpkey; } /* lock cache */ shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(key); if (!sh_ssl_sess) { /* no session found: unlock cache and exit */ shctx_unlock(ssl_shctx); global.shctx_misses++; return NULL; } /* sh_ssl_sess (shared_block->data) is at the end of shared_block */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_data_get(ssl_shctx, first, data, sizeof(struct sh_ssl_sess_hdr), first->len-sizeof(struct sh_ssl_sess_hdr)); shctx_unlock(ssl_shctx); /* decode ASN1 session */ p = data; sess = d2i_SSL_SESSION(NULL, (const unsigned char **)&p, first->len-sizeof(struct sh_ssl_sess_hdr)); /* Reset session id and session id contenxt */ if (sess) { SSL_SESSION_set1_id(sess, key, key_len); SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); } return sess; } /* SSL callback used to signal session is no more used in internal cache */ void sh_ssl_sess_remove_cb(SSL_CTX *ctx, SSL_SESSION *sess) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; unsigned int sid_length; const unsigned char *sid_data; (void)ctx; sid_data = SSL_SESSION_get_id(sess, &sid_length); /* tree key is zeros padded sessionid */ if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, sid_data, sid_length); memset(tmpkey+sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - sid_length); sid_data = tmpkey; } shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(sid_data); if (sh_ssl_sess) { /* free session */ sh_ssl_sess_tree_delete(sh_ssl_sess); } /* unlock cache */ shctx_unlock(ssl_shctx); } /* Set session cache mode to server and disable openssl internal cache. * Set shared cache callbacks on an ssl context. * Shared context MUST be firstly initialized */ void ssl_set_shctx(SSL_CTX *ctx) { SSL_CTX_set_session_id_context(ctx, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); if (!ssl_shctx) { SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF); return; } SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); /* Set callbacks */ SSL_CTX_sess_set_new_cb(ctx, sh_ssl_sess_new_cb); SSL_CTX_sess_set_get_cb(ctx, sh_ssl_sess_get_cb); SSL_CTX_sess_set_remove_cb(ctx, sh_ssl_sess_remove_cb); } /* * This function applies the SSL configuration on a SSL_CTX * It returns an error code and fills the buffer */ int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, SSL_CTX *ctx, char **err) { struct proxy *curproxy = bind_conf->frontend; int cfgerr = 0; int verify = SSL_VERIFY_NONE; struct ssl_bind_conf __maybe_unused *ssl_conf_cur; const char *conf_ciphers; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) const char *conf_ciphersuites; #endif const char *conf_curves = NULL; if (ssl_conf) { struct tls_version_filter *conf_ssl_methods = &ssl_conf->ssl_methods; int i, min, max; int flags = MC_SSL_O_ALL; /* Real min and max should be determinate with configuration and openssl's capabilities */ min = conf_ssl_methods->min ? conf_ssl_methods->min : bind_conf->ssl_conf.ssl_methods.min; max = conf_ssl_methods->max ? conf_ssl_methods->max : bind_conf->ssl_conf.ssl_methods.max; if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); min = max = CONF_TLSV_NONE; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) max = i; else min = max = i; } /* save real min/max */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; if (!min) { memprintf(err, "%sProxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", err && *err ? *err : "", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } } switch ((ssl_conf && ssl_conf->verify) ? ssl_conf->verify : bind_conf->ssl_conf.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_OPTIONAL: verify = SSL_VERIFY_PEER; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT; break; } SSL_CTX_set_verify(ctx, verify, ssl_sock_bind_verifycbk); if (verify & SSL_VERIFY_PEER) { char *ca_file = (ssl_conf && ssl_conf->ca_file) ? ssl_conf->ca_file : bind_conf->ssl_conf.ca_file; char *ca_verify_file = (ssl_conf && ssl_conf->ca_verify_file) ? ssl_conf->ca_verify_file : bind_conf->ssl_conf.ca_verify_file; char *crl_file = (ssl_conf && ssl_conf->crl_file) ? ssl_conf->crl_file : bind_conf->ssl_conf.crl_file; if (ca_file || ca_verify_file) { /* set CAfile to verify */ if (ca_file && !ssl_set_verify_locations_file(ctx, ca_file)) { memprintf(err, "%sProxy '%s': unable to set CA file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ca_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } if (ca_verify_file && !ssl_set_verify_locations_file(ctx, ca_verify_file)) { memprintf(err, "%sProxy '%s': unable to set CA-no-names file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ca_verify_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } if (ca_file && !((ssl_conf && ssl_conf->no_ca_names) || bind_conf->ssl_conf.no_ca_names)) { /* set CA names for client cert request, function returns void */ SSL_CTX_set_client_CA_list(ctx, SSL_dup_CA_list(ssl_get_client_ca_file(ca_file))); } } else { memprintf(err, "%sProxy '%s': verify is enabled but no CA file specified for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #ifdef X509_V_FLAG_CRL_CHECK if (crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(ctx); if (!ssl_set_cert_crl_file(store, crl_file)) { memprintf(err, "%sProxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, crl_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif ERR_clear_error(); } #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) if(bind_conf->keys_ref) { if (!SSL_CTX_set_tlsext_ticket_key_cb(ctx, ssl_tlsext_ticket_key_cb)) { memprintf(err, "%sProxy '%s': unable to set callback for TLS ticket validation for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } } #endif ssl_set_shctx(ctx); conf_ciphers = (ssl_conf && ssl_conf->ciphers) ? ssl_conf->ciphers : bind_conf->ssl_conf.ciphers; if (conf_ciphers && !SSL_CTX_set_cipher_list(ctx, conf_ciphers)) { memprintf(err, "%sProxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_ciphers, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) conf_ciphersuites = (ssl_conf && ssl_conf->ciphersuites) ? ssl_conf->ciphersuites : bind_conf->ssl_conf.ciphersuites; if (conf_ciphersuites && !SSL_CTX_set_ciphersuites(ctx, conf_ciphersuites)) { memprintf(err, "%sProxy '%s': unable to set TLS 1.3 cipher suites to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_ciphersuites, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #endif #ifndef OPENSSL_NO_DH /* If tune.ssl.default-dh-param has not been set, neither has ssl-default-dh-file and no static DH params were in the certificate file. */ if (global_ssl.default_dh_param == 0 && global_dh == NULL && (ssl_dh_ptr_index == -1 || SSL_CTX_get_ex_data(ctx, ssl_dh_ptr_index) == NULL)) { /* default to dh-param 2048 */ global_ssl.default_dh_param = 2048; } if (global_ssl.default_dh_param >= 1024) { if (local_dh_1024 == NULL) { local_dh_1024 = ssl_get_dh_1024(); } if (global_ssl.default_dh_param >= 2048) { if (local_dh_2048 == NULL) { local_dh_2048 = ssl_get_dh_2048(); } if (global_ssl.default_dh_param >= 4096) { if (local_dh_4096 == NULL) { local_dh_4096 = ssl_get_dh_4096(); } } } } #endif /* OPENSSL_NO_DH */ SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk); #if HA_OPENSSL_VERSION_NUMBER >= 0x00907000L SSL_CTX_set_msg_callback(ctx, ssl_sock_msgcbk); #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->npn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.npn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, ssl_conf_cur); #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->alpn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.alpn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_alpn_select_cb(ctx, ssl_sock_advertise_alpn_protos, ssl_conf_cur); #endif #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) conf_curves = (ssl_conf && ssl_conf->curves) ? ssl_conf->curves : bind_conf->ssl_conf.curves; if (conf_curves) { if (!SSL_CTX_set1_curves_list(ctx, conf_curves)) { memprintf(err, "%sProxy '%s': unable to set SSL curves list to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_curves, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } (void)SSL_CTX_set_ecdh_auto(ctx, 1); } #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) if (!conf_curves) { int i; EC_KEY *ecdh; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : NULL); if (ecdhe == NULL) { (void)SSL_CTX_set_ecdh_auto(ctx, 1); return cfgerr; } #else const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); #endif i = OBJ_sn2nid(ecdhe); if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) { memprintf(err, "%sProxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } else { SSL_CTX_set_tmp_ecdh(ctx, ecdh); EC_KEY_free(ecdh); } } #endif return cfgerr; } static int ssl_sock_srv_hostcheck(const char *pattern, const char *hostname) { const char *pattern_wildcard, *pattern_left_label_end, *hostname_left_label_end; size_t prefixlen, suffixlen; /* Trivial case */ if (strcmp(pattern, hostname) == 0) return 1; /* The rest of this logic is based on RFC 6125, section 6.4.3 * (http://tools.ietf.org/html/rfc6125#section-6.4.3) */ pattern_wildcard = NULL; pattern_left_label_end = pattern; while (*pattern_left_label_end != '.') { switch (*pattern_left_label_end) { case 0: /* End of label not found */ return 0; case '*': /* If there is more than one wildcards */ if (pattern_wildcard) return 0; pattern_wildcard = pattern_left_label_end; break; } pattern_left_label_end++; } /* If it's not trivial and there is no wildcard, it can't * match */ if (!pattern_wildcard) return 0; /* Make sure all labels match except the leftmost */ hostname_left_label_end = strchr(hostname, '.'); if (!hostname_left_label_end || strcmp(pattern_left_label_end, hostname_left_label_end) != 0) return 0; /* Make sure the leftmost label of the hostname is long enough * that the wildcard can match */ if (hostname_left_label_end - hostname < (pattern_left_label_end - pattern) - 1) return 0; /* Finally compare the string on either side of the * wildcard */ prefixlen = pattern_wildcard - pattern; suffixlen = pattern_left_label_end - (pattern_wildcard + 1); if ((prefixlen && (memcmp(pattern, hostname, prefixlen) != 0)) || (suffixlen && (memcmp(pattern_wildcard + 1, hostname_left_label_end - suffixlen, suffixlen) != 0))) return 0; return 1; } static int ssl_sock_srv_verifycbk(int ok, X509_STORE_CTX *ctx) { SSL *ssl; struct connection *conn; struct ssl_sock_ctx *ssl_ctx; const char *servername; const char *sni; int depth; X509 *cert; STACK_OF(GENERAL_NAME) *alt_names; int i; X509_NAME *cert_subject; char *str; if (ok == 0) return ok; ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_ex_data(ssl, ssl_app_data_index); ssl_ctx = conn->xprt_ctx; /* We're checking if the provided hostnames match the desired one. The * desired hostname comes from the SNI we presented if any, or if not * provided then it may have been explicitly stated using a "verifyhost" * directive. If neither is set, we don't care about the name so the * verification is OK. */ servername = SSL_get_servername(ssl_ctx->ssl, TLSEXT_NAMETYPE_host_name); sni = servername; if (!servername) { servername = __objt_server(conn->target)->ssl_ctx.verify_host; if (!servername) return ok; } /* We only need to verify the CN on the actual server cert, * not the indirect CAs */ depth = X509_STORE_CTX_get_error_depth(ctx); if (depth != 0) return ok; /* At this point, the cert is *not* OK unless we can find a * hostname match */ ok = 0; cert = X509_STORE_CTX_get_current_cert(ctx); /* It seems like this might happen if verify peer isn't set */ if (!cert) return ok; alt_names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL); if (alt_names) { for (i = 0; !ok && i < sk_GENERAL_NAME_num(alt_names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(alt_names, i); if (name->type == GEN_DNS) { #if HA_OPENSSL_VERSION_NUMBER < 0x00907000L if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.ia5) >= 0) { #else if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { #endif ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(alt_names, GENERAL_NAME_free); } cert_subject = X509_get_subject_name(cert); i = -1; while (!ok && (i = X509_NAME_get_index_by_NID(cert_subject, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(cert_subject, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } /* report the mismatch and indicate if SNI was used or not */ if (!ok && !conn->err_code) conn->err_code = sni ? CO_ER_SSL_MISMATCH_SNI : CO_ER_SSL_MISMATCH; return ok; } /* prepare ssl context from servers options. Returns an error count */ int ssl_sock_prepare_srv_ctx(struct server *srv) { struct proxy *curproxy = srv->proxy; int cfgerr = 0; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; int verify = SSL_VERIFY_NONE; SSL_CTX *ctx = NULL; struct tls_version_filter *conf_ssl_methods = &srv->ssl_ctx.methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); cfgerr++; } /* Automatic memory computations need to know we use SSL there */ global.ssl_used_backend = 1; /* Initiate SSL context for current server */ if (!srv->ssl_ctx.reused_sess) { if ((srv->ssl_ctx.reused_sess = calloc(1, global.nbthread*sizeof(*srv->ssl_ctx.reused_sess))) == NULL) { ha_alert("Proxy '%s', server '%s' [%s:%d] out of memory.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; return cfgerr; } } if (srv->use_ssl == 1) srv->xprt = &ssl_sock; ctx = SSL_CTX_new(SSLv23_client_method()); if (!ctx) { ha_alert("config : %s '%s', server '%s': unable to allocate ssl context.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr++; return cfgerr; } if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("config : %s '%s': no-sslv3/no-tlsv1x are ignored for server '%s'. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id); else flags = conf_ssl_methods->flags; /* Real min and max should be determinate with configuration and openssl's capabilities */ if (conf_ssl_methods->min) flags |= (methodVersions[conf_ssl_methods->min].flag - 1); if (conf_ssl_methods->max) flags |= ~((methodVersions[conf_ssl_methods->max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("config : %s '%s': SSL/TLS versions range not contiguous for server '%s'. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("config : %s '%s': all SSL/TLS versions are disabled for server '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr += 1; } #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any surprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_CLIENT); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; SSL_CTX_set_options(ctx, options); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); srv->ssl_ctx.ctx = ctx; if (srv->ssl_ctx.client_crt) { if (SSL_CTX_use_PrivateKey_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt, SSL_FILETYPE_PEM) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load SSL private key from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_use_certificate_chain_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load ssl certificate from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_check_private_key(srv->ssl_ctx.ctx) <= 0) { ha_alert("config : %s '%s', server '%s': inconsistencies between private key and certificate loaded from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } } if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) verify = SSL_VERIFY_PEER; switch (srv->ssl_ctx.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER; break; } SSL_CTX_set_verify(srv->ssl_ctx.ctx, verify, (srv->ssl_ctx.verify_host || (verify & SSL_VERIFY_PEER)) ? ssl_sock_srv_verifycbk : NULL); if (verify & SSL_VERIFY_PEER) { if (srv->ssl_ctx.ca_file) { /* set CAfile to verify */ if (!ssl_set_verify_locations_file(srv->ssl_ctx.ctx, srv->ssl_ctx.ca_file)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to set CA file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ca_file); cfgerr++; } } else { if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled by default but no CA file specified. If you're running on a LAN where you're certain to trust the server's certificate, please set an explicit 'verify none' statement on the 'server' line, or use 'ssl-server-verify none' in the global section to disable server-side verifications by default.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); else ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled but no CA file specified.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; } #ifdef X509_V_FLAG_CRL_CHECK if (srv->ssl_ctx.crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(srv->ssl_ctx.ctx); if (!ssl_set_cert_crl_file(store, srv->ssl_ctx.crl_file)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to configure CRL file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.crl_file); cfgerr++; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif } SSL_CTX_set_session_cache_mode(srv->ssl_ctx.ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE); SSL_CTX_sess_set_new_cb(srv->ssl_ctx.ctx, ssl_sess_new_srv_cb); if (srv->ssl_ctx.ciphers && !SSL_CTX_set_cipher_list(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphers)) { ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set SSL cipher list to '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphers); cfgerr++; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (srv->ssl_ctx.ciphersuites && !SSL_CTX_set_ciphersuites(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphersuites)) { ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set TLS 1.3 cipher suites to '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphersuites); cfgerr++; } #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) if (srv->ssl_ctx.npn_str) SSL_CTX_set_next_proto_select_cb(ctx, ssl_sock_srv_select_protos, srv); #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation if (srv->ssl_ctx.alpn_str) SSL_CTX_set_alpn_protos(ctx, (unsigned char *)srv->ssl_ctx.alpn_str, srv->ssl_ctx.alpn_len); #endif return cfgerr; } /* Walks down the two trees in bind_conf and prepares all certs. The pointer may * be NULL, in which case nothing is done. Returns the number of errors * encountered. */ int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node; struct sni_ctx *sni; int err = 0; int errcode = 0; char *errmsg = NULL; /* Automatic memory computations need to know we use SSL there */ global.ssl_used_frontend = 1; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); err++; } /* Create initial_ctx used to start the ssl connection before do switchctx */ if (!bind_conf->initial_ctx) { err += ssl_sock_initial_ctx(bind_conf); /* It should not be necessary to call this function, but it's necessary first to check and move all initialisation related to initial_ctx in ssl_sock_initial_ctx. */ errcode |= ssl_sock_prepare_ctx(bind_conf, NULL, bind_conf->initial_ctx, &errmsg); } if (bind_conf->default_ctx) errcode |= ssl_sock_prepare_ctx(bind_conf, bind_conf->default_ssl_conf, bind_conf->default_ctx, &errmsg); node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ errcode |= ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx, &errmsg); node = ebmb_next(node); } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) { /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ errcode |= ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx, &errmsg); } node = ebmb_next(node); } if (errcode & ERR_WARN) { ha_warning("%s", errmsg); } else if (errcode & ERR_CODE) { ha_alert("%s", errmsg); err++; } free(errmsg); return err; } /* Prepares all the contexts for a bind_conf and allocates the shared SSL * context if needed. Returns < 0 on error, 0 on success. The warnings and * alerts are directly emitted since the rest of the stack does it below. */ int ssl_sock_prepare_bind_conf(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; int alloc_ctx; int err; if (!bind_conf->is_ssl) { if (bind_conf->default_ctx) { ha_warning("Proxy '%s': A certificate was specified but SSL was not enabled on bind '%s' at [%s:%d] (use 'ssl').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } return 0; } if (!bind_conf->default_ctx) { if (bind_conf->strict_sni && !bind_conf->generate_certs) { ha_warning("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d], ssl connections will fail (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } else { ha_alert("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d] (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); return -1; } } if (!ssl_shctx && global.tune.sslcachesize) { alloc_ctx = shctx_init(&ssl_shctx, global.tune.sslcachesize, sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE, -1, sizeof(*sh_ssl_sess_tree), ((global.nbthread > 1) || (!global_ssl.private_cache && (global.nbproc > 1))) ? 1 : 0); if (alloc_ctx <= 0) { if (alloc_ctx == SHCTX_E_INIT_LOCK) ha_alert("Unable to initialize the lock for the shared SSL session cache. You can retry using the global statement 'tune.ssl.force-private-cache' but it could increase CPU usage due to renegotiations if nbproc > 1.\n"); else ha_alert("Unable to allocate SSL session cache.\n"); return -1; } /* free block callback */ ssl_shctx->free_block = sh_ssl_sess_free_blocks; /* init the root tree within the extra space */ sh_ssl_sess_tree = (void *)ssl_shctx + sizeof(struct shared_context); *sh_ssl_sess_tree = EB_ROOT_UNIQUE; } err = 0; /* initialize all certificate contexts */ err += ssl_sock_prepare_all_ctx(bind_conf); /* initialize CA variables if the certificates generation is enabled */ err += ssl_sock_load_ca(bind_conf); return -err; } /* release ssl context allocated for servers. */ void ssl_sock_free_srv_ctx(struct server *srv) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation if (srv->ssl_ctx.alpn_str) free(srv->ssl_ctx.alpn_str); #endif #ifdef OPENSSL_NPN_NEGOTIATED if (srv->ssl_ctx.npn_str) free(srv->ssl_ctx.npn_str); #endif if (srv->ssl_ctx.ctx) SSL_CTX_free(srv->ssl_ctx.ctx); } /* Walks down the two trees in bind_conf and frees all the certs. The pointer may * be NULL, in which case nothing is done. The default_ctx is nullified too. */ void ssl_sock_free_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node, *back; struct sni_ctx *sni; node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); SSL_CTX_free(sni->ctx); if (!sni->order) { /* only free the CTX conf on its first occurrence */ ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); SSL_CTX_free(sni->ctx); if (!sni->order) { /* only free the SSL conf its first occurrence */ ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } SSL_CTX_free(bind_conf->initial_ctx); bind_conf->initial_ctx = NULL; SSL_CTX_free(bind_conf->default_ctx); bind_conf->default_ctx = NULL; bind_conf->default_ssl_conf = NULL; } /* Destroys all the contexts for a bind_conf. This is used during deinit(). */ void ssl_sock_destroy_bind_conf(struct bind_conf *bind_conf) { ssl_sock_free_ca(bind_conf); ssl_sock_free_all_ctx(bind_conf); ssl_sock_free_ssl_conf(&bind_conf->ssl_conf); free(bind_conf->ca_sign_file); free(bind_conf->ca_sign_pass); if (bind_conf->keys_ref && !--bind_conf->keys_ref->refcount) { free(bind_conf->keys_ref->filename); free(bind_conf->keys_ref->tlskeys); LIST_DEL(&bind_conf->keys_ref->list); free(bind_conf->keys_ref); } bind_conf->keys_ref = NULL; bind_conf->ca_sign_pass = NULL; bind_conf->ca_sign_file = NULL; } /* Load CA cert file and private key used to generate certificates */ int ssl_sock_load_ca(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; FILE *fp; X509 *cacert = NULL; EVP_PKEY *capkey = NULL; int err = 0; if (!bind_conf->generate_certs) return err; #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (global_ssl.ctx_cache) { ssl_ctx_lru_tree = lru64_new(global_ssl.ctx_cache); } ssl_ctx_lru_seed = (unsigned int)time(NULL); ssl_ctx_serial = now_ms; #endif if (!bind_conf->ca_sign_file) { ha_alert("Proxy '%s': cannot enable certificate generation, " "no CA certificate File configured at [%s:%d].\n", px->id, bind_conf->file, bind_conf->line); goto load_error; } /* read in the CA certificate */ if (!(fp = fopen(bind_conf->ca_sign_file, "r"))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto load_error; } if (!(cacert = PEM_read_X509(fp, NULL, NULL, NULL))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } rewind(fp); if (!(capkey = PEM_read_PrivateKey(fp, NULL, NULL, bind_conf->ca_sign_pass))) { ha_alert("Proxy '%s': Failed to read CA private key file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } fclose (fp); bind_conf->ca_sign_cert = cacert; bind_conf->ca_sign_pkey = capkey; return err; read_error: fclose (fp); if (capkey) EVP_PKEY_free(capkey); if (cacert) X509_free(cacert); load_error: bind_conf->generate_certs = 0; err++; return err; } /* Release CA cert and private key used to generate certificated */ void ssl_sock_free_ca(struct bind_conf *bind_conf) { if (bind_conf->ca_sign_pkey) EVP_PKEY_free(bind_conf->ca_sign_pkey); if (bind_conf->ca_sign_cert) X509_free(bind_conf->ca_sign_cert); bind_conf->ca_sign_pkey = NULL; bind_conf->ca_sign_cert = NULL; } /* * This function is called if SSL * context is not yet allocated. The function * is designed to be called before any other data-layer operation and sets the * handshake flag on the connection. It is safe to call it multiple times. * It returns 0 on success and -1 in error case. */ static int ssl_sock_init(struct connection *conn, void **xprt_ctx) { struct ssl_sock_ctx *ctx; /* already initialized */ if (*xprt_ctx) return 0; if (!conn_ctrl_ready(conn)) return 0; ctx = pool_alloc(ssl_sock_ctx_pool); if (!ctx) { conn->err_code = CO_ER_SSL_NO_MEM; return -1; } ctx->wait_event.tasklet = tasklet_new(); if (!ctx->wait_event.tasklet) { conn->err_code = CO_ER_SSL_NO_MEM; pool_free(ssl_sock_ctx_pool, ctx); return -1; } ctx->wait_event.tasklet->process = ssl_sock_io_cb; ctx->wait_event.tasklet->context = ctx; ctx->wait_event.events = 0; ctx->sent_early_data = 0; ctx->early_buf = BUF_NULL; ctx->conn = conn; ctx->subs = NULL; ctx->xprt_st = 0; ctx->xprt_ctx = NULL; /* Only work with sockets for now, this should be adapted when we'll * add QUIC support. */ ctx->xprt = xprt_get(XPRT_RAW); if (ctx->xprt->init) { if (ctx->xprt->init(conn, &ctx->xprt_ctx) != 0) goto err; } if (global.maxsslconn && sslconns >= global.maxsslconn) { conn->err_code = CO_ER_SSL_TOO_MANY; goto err; } /* If it is in client mode initiate SSL session in connect state otherwise accept state */ if (objt_server(conn->target)) { int may_retry = 1; retry_connect: /* Alloc a new SSL session ctx */ ctx->ssl = SSL_new(__objt_server(conn->target)->ssl_ctx.ctx); if (!ctx->ssl) { if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } ctx->bio = BIO_new(ha_meth); if (!ctx->bio) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } BIO_set_data(ctx->bio, ctx); SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio); /* set connection pointer */ if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) { SSL_free(ctx->ssl); ctx->ssl = NULL; conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } SSL_set_connect_state(ctx->ssl); if (__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { const unsigned char *ptr = __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr; SSL_SESSION *sess = d2i_SSL_SESSION(NULL, &ptr, __objt_server(conn->target)->ssl_ctx.reused_sess[tid].size); if (sess && !SSL_set_session(ctx->ssl, sess)) { SSL_SESSION_free(sess); free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } else if (sess) { SSL_SESSION_free(sess); } } /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; _HA_ATOMIC_ADD(&sslconns, 1); _HA_ATOMIC_ADD(&totalsslconns, 1); *xprt_ctx = ctx; /* Start the handshake */ tasklet_wakeup(ctx->wait_event.tasklet); return 0; } else if (objt_listener(conn->target)) { int may_retry = 1; retry_accept: /* Alloc a new SSL session ctx */ ctx->ssl = SSL_new(__objt_listener(conn->target)->bind_conf->initial_ctx); if (!ctx->ssl) { if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } ctx->bio = BIO_new(ha_meth); if (!ctx->bio) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } BIO_set_data(ctx->bio, ctx); SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio); /* set connection pointer */ if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (__objt_listener(conn->target)->bind_conf->ssl_conf.early_data) { b_alloc(&ctx->early_buf); SSL_set_max_early_data(ctx->ssl, /* Only allow early data if we managed to allocate * a buffer. */ (!b_is_null(&ctx->early_buf)) ? global.tune.bufsize - global.tune.maxrewrite : 0); } #endif SSL_set_accept_state(ctx->ssl); /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) conn->flags |= CO_FL_EARLY_SSL_HS; #endif _HA_ATOMIC_ADD(&sslconns, 1); _HA_ATOMIC_ADD(&totalsslconns, 1); *xprt_ctx = ctx; /* Start the handshake */ tasklet_wakeup(ctx->wait_event.tasklet); return 0; } /* don't know how to handle such a target */ conn->err_code = CO_ER_SSL_NO_TARGET; err: if (ctx && ctx->wait_event.tasklet) tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); return -1; } /* This is the callback which is used when an SSL handshake is pending. It * updates the FD status if it wants some polling before being called again. * It returns 0 if it fails in a fatal way or needs to poll to go further, * otherwise it returns non-zero and removes itself from the connection's * flags (the bit is provided in by the caller). */ static int ssl_sock_handshake(struct connection *conn, unsigned int flag) { struct ssl_sock_ctx *ctx = conn->xprt_ctx; int ret; if (!conn_ctrl_ready(conn)) return 0; if (!conn->xprt_ctx) goto out_error; #if HA_OPENSSL_VERSION_NUMBER >= 0x10101000L /* * Check if we have early data. If we do, we have to read them * before SSL_do_handshake() is called, And there's no way to * detect early data, except to try to read them */ if (conn->flags & CO_FL_EARLY_SSL_HS) { size_t read_data = 0; while (1) { ret = SSL_read_early_data(ctx->ssl, b_tail(&ctx->early_buf), b_room(&ctx->early_buf), &read_data); if (ret == SSL_READ_EARLY_DATA_ERROR) goto check_error; if (read_data > 0) { conn->flags |= CO_FL_EARLY_DATA; b_add(&ctx->early_buf, read_data); } if (ret == SSL_READ_EARLY_DATA_FINISH) { conn->flags &= ~CO_FL_EARLY_SSL_HS; if (!b_data(&ctx->early_buf)) b_free(&ctx->early_buf); break; } } } #endif /* If we use SSL_do_handshake to process a reneg initiated by * the remote peer, it sometimes returns SSL_ERROR_SSL. * Usually SSL_write and SSL_read are used and process implicitly * the reneg handshake. * Here we use SSL_peek as a workaround for reneg. */ if (!(conn->flags & CO_FL_WAIT_L6_CONN) && SSL_renegotiate_pending(ctx->ssl)) { char c; ret = SSL_peek(ctx->ssl, &c, 1); if (ret <= 0) { /* handshake may have not been completed, let's find why */ ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ if (!(ctx->wait_event.events & SUB_RETRY_SEND)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake may have been completed but we have * no more data to read. */ if (!SSL_renegotiate_pending(ctx->ssl)) { ret = 1; goto reneg_ok; } /* SSL handshake needs to read, L4 connection is ready */ if (!(ctx->wait_event.events & SUB_RETRY_RECV)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER) /* do not handle empty handshakes in BoringSSL or LibreSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) /* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */ OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)ctx->ssl); empty_handshake = state == TLS_ST_BEFORE; #else /* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */ empty_handshake = !ctx->ssl->packet_length; #endif if (empty_handshake) { if (!errno) { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif /* BoringSSL or LibreSSL */ } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } /* read some data: consider handshake completed */ goto reneg_ok; } ret = SSL_do_handshake(ctx->ssl); check_error: if (ret != 1) { /* handshake did not complete, let's find why */ ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ if (!(ctx->wait_event.events & SUB_RETRY_SEND)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* SSL handshake needs to read, L4 connection is ready */ if (!(ctx->wait_event.events & SUB_RETRY_RECV)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER) /* do not handle empty handshakes in BoringSSL or LibreSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) /* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */ OSSL_HANDSHAKE_STATE state = SSL_get_state(ctx->ssl); empty_handshake = state == TLS_ST_BEFORE; #else /* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */ empty_handshake = !ctx->ssl->packet_length; #endif if (empty_handshake) { if (!errno) { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif /* BoringSSL or LibreSSL */ } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) else { /* * If the server refused the early data, we have to send a * 425 to the client, as we no longer have the data to sent * them again. */ if ((conn->flags & CO_FL_EARLY_DATA) && (objt_server(conn->target))) { if (SSL_get_early_data_status(ctx->ssl) == SSL_EARLY_DATA_REJECTED) { conn->err_code = CO_ER_SSL_EARLY_FAILED; goto out_error; } } } #endif reneg_ok: #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* ASYNC engine API doesn't support moving read/write * buffers. So we disable ASYNC mode right after * the handshake to avoid buffer overflow. */ if (global_ssl.async) SSL_clear_mode(ctx->ssl, SSL_MODE_ASYNC); #endif /* Handshake succeeded */ if (!SSL_session_reused(ctx->ssl)) { if (objt_server(conn->target)) { update_freq_ctr(&global.ssl_be_keys_per_sec, 1); if (global.ssl_be_keys_per_sec.curr_ctr > global.ssl_be_keys_max) global.ssl_be_keys_max = global.ssl_be_keys_per_sec.curr_ctr; } else { update_freq_ctr(&global.ssl_fe_keys_per_sec, 1); if (global.ssl_fe_keys_per_sec.curr_ctr > global.ssl_fe_keys_max) global.ssl_fe_keys_max = global.ssl_fe_keys_per_sec.curr_ctr; } } /* The connection is now established at both layers, it's time to leave */ conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN); return 1; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); /* free resumed session if exists */ if (objt_server(conn->target) && __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } /* Fail on all other handshake errors */ conn->flags |= CO_FL_ERROR; if (!conn->err_code) conn->err_code = CO_ER_SSL_HANDSHAKE; return 0; } /* Called from the upper layer, to subscribe to events . The * event subscriber is not allowed to change from a previous call as long * as at least one event is still subscribed. The must only be a * combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0, * unless the transport layer was already released. */ static int ssl_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) { struct ssl_sock_ctx *ctx = xprt_ctx; if (!ctx) return -1; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(ctx->subs && ctx->subs != es); ctx->subs = es; es->events |= event_type; /* we may have to subscribe to lower layers for new events */ event_type &= ~ctx->wait_event.events; if (event_type && !(conn->flags & CO_FL_SSL_WAIT_HS)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event); return 0; } /* Called from the upper layer, to unsubscribe from events . * The pointer is not allowed to differ from the one passed to the * subscribe() call. It always returns zero. */ static int ssl_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) { struct ssl_sock_ctx *ctx = xprt_ctx; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(ctx->subs && ctx->subs != es); es->events &= ~event_type; if (!es->events) ctx->subs = NULL; /* If we subscribed, and we're not doing the handshake, * then we subscribed because the upper layer asked for it, * as the upper layer is no longer interested, we can * unsubscribe too. */ event_type &= ctx->wait_event.events; if (event_type && !(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) conn_unsubscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event); return 0; } /* Use the provided XPRT as an underlying XPRT, and provide the old one. * Returns 0 on success, and non-zero on failure. */ static int ssl_add_xprt(struct connection *conn, void *xprt_ctx, void *toadd_ctx, const struct xprt_ops *toadd_ops, void **oldxprt_ctx, const struct xprt_ops **oldxprt_ops) { struct ssl_sock_ctx *ctx = xprt_ctx; if (oldxprt_ops != NULL) *oldxprt_ops = ctx->xprt; if (oldxprt_ctx != NULL) *oldxprt_ctx = ctx->xprt_ctx; ctx->xprt = toadd_ops; ctx->xprt_ctx = toadd_ctx; return 0; } /* Remove the specified xprt. If if it our underlying XPRT, remove it and * return 0, otherwise just call the remove_xprt method from the underlying * XPRT. */ static int ssl_remove_xprt(struct connection *conn, void *xprt_ctx, void *toremove_ctx, const struct xprt_ops *newops, void *newctx) { struct ssl_sock_ctx *ctx = xprt_ctx; if (ctx->xprt_ctx == toremove_ctx) { ctx->xprt_ctx = newctx; ctx->xprt = newops; return 0; } return (ctx->xprt->remove_xprt(conn, ctx->xprt_ctx, toremove_ctx, newops, newctx)); } static struct task *ssl_sock_io_cb(struct task *t, void *context, unsigned short state) { struct ssl_sock_ctx *ctx = context; /* First if we're doing an handshake, try that */ if (ctx->conn->flags & CO_FL_SSL_WAIT_HS) ssl_sock_handshake(ctx->conn, CO_FL_SSL_WAIT_HS); /* If we had an error, or the handshake is done and I/O is available, * let the upper layer know. * If no mux was set up yet, then call conn_create_mux() * we can't be sure conn_fd_handler() will be called again. */ if ((ctx->conn->flags & CO_FL_ERROR) || !(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) { int ret = 0; int woke = 0; /* On error, wake any waiter */ if (ctx->subs) { tasklet_wakeup(ctx->subs->tasklet); ctx->subs->events = 0; woke = 1; ctx->subs = NULL; } /* If we're the first xprt for the connection, let the * upper layers know. If we have no mux, create it, * and once we have a mux, call its wake method if we didn't * woke a tasklet already. */ if (ctx->conn->xprt_ctx == ctx) { if (!ctx->conn->mux) ret = conn_create_mux(ctx->conn); if (ret >= 0 && !woke && ctx->conn->mux && ctx->conn->mux->wake) ctx->conn->mux->wake(ctx->conn); return NULL; } } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) /* If we have early data and somebody wants to receive, let them */ else if (b_data(&ctx->early_buf) && ctx->subs && ctx->subs->events & SUB_RETRY_RECV) { tasklet_wakeup(ctx->subs->tasklet); ctx->subs->events &= ~SUB_RETRY_RECV; if (!ctx->subs->events) ctx->subs = NULL; } #endif return NULL; } /* Receive up to bytes from connection 's socket and store them * into buffer . Only one call to recv() is performed, unless the * buffer wraps, in which case a second call may be performed. The connection's * flags are updated with whatever special event is detected (error, read0, * empty). The caller is responsible for taking care of those events and * avoiding the call if inappropriate. The function does not call the * connection's polling update function, so the caller is responsible for this. */ static size_t ssl_sock_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags) { struct ssl_sock_ctx *ctx = xprt_ctx; ssize_t ret; size_t try, done = 0; if (!ctx) goto out_error; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (b_data(&ctx->early_buf)) { try = b_contig_space(buf); if (try > b_data(&ctx->early_buf)) try = b_data(&ctx->early_buf); memcpy(b_tail(buf), b_head(&ctx->early_buf), try); b_add(buf, try); b_del(&ctx->early_buf, try); if (b_data(&ctx->early_buf) == 0) b_free(&ctx->early_buf); return try; } #endif if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS)) /* a handshake was requested */ return 0; /* read the largest possible block. For this, we perform only one call * to recv() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. A new attempt is made on * EINTR too. */ while (count > 0) { try = b_contig_space(buf); if (!try) break; if (try > count) try = count; ret = SSL_read(ctx->ssl, b_tail(buf), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { b_add(buf, ret); done += ret; count -= ret; } else { ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* handshake is running, and it needs to enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } else if (ret == SSL_ERROR_WANT_READ) { if (SSL_renegotiate_pending(ctx->ssl)) { ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); /* handshake is running, and it may need to re-enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } break; } else if (ret == SSL_ERROR_ZERO_RETURN) goto read0; /* For SSL_ERROR_SYSCALL, make sure to clear the error * stack before shutting down the connection for * reading. */ if (ret == SSL_ERROR_SYSCALL && (!errno || errno == EAGAIN)) goto clear_ssl_error; /* otherwise it's a real error */ goto out_error; } } leave: return done; clear_ssl_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); read0: conn_sock_read0(conn); goto leave; out_error: conn->flags |= CO_FL_ERROR; /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); goto leave; } /* Send up to pending bytes from buffer to connection 's * socket. may contain some CO_SFL_* flags to hint the system about * other pending data for example, but this flag is ignored at the moment. * Only one call to send() is performed, unless the buffer wraps, in which case * a second call may be performed. The connection's flags are updated with * whatever special event is detected (error, empty). The caller is responsible * for taking care of those events and avoiding the call if inappropriate. The * function does not call the connection's polling update function, so the caller * is responsible for this. The buffer's output is not adjusted, it's up to the * caller to take care of this. It's up to the caller to update the buffer's * contents based on the return value. */ static size_t ssl_sock_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags) { struct ssl_sock_ctx *ctx = xprt_ctx; ssize_t ret; size_t try, done; done = 0; if (!ctx) goto out_error; if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS | CO_FL_EARLY_SSL_HS)) /* a handshake was requested */ return 0; /* send the largest possible block. For this we perform only one call * to send() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. */ while (count) { #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) size_t written_data; #endif try = b_contig_data(buf, done); if (try > count) try = count; if (!(flags & CO_SFL_STREAMER) && !(ctx->xprt_st & SSL_SOCK_SEND_UNLIMITED) && global_ssl.max_record && try > global_ssl.max_record) { try = global_ssl.max_record; } else { /* we need to keep the information about the fact that * we're not limiting the upcoming send(), because if it * fails, we'll have to retry with at least as many data. */ ctx->xprt_st |= SSL_SOCK_SEND_UNLIMITED; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (!SSL_is_init_finished(ctx->ssl) && conn_is_back(conn)) { unsigned int max_early; if (objt_listener(conn->target)) max_early = SSL_get_max_early_data(ctx->ssl); else { if (SSL_get0_session(ctx->ssl)) max_early = SSL_SESSION_get_max_early_data(SSL_get0_session(ctx->ssl)); else max_early = 0; } if (try + ctx->sent_early_data > max_early) { try -= (try + ctx->sent_early_data) - max_early; if (try <= 0) { conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; tasklet_wakeup(ctx->wait_event.tasklet); break; } } ret = SSL_write_early_data(ctx->ssl, b_peek(buf, done), try, &written_data); if (ret == 1) { ret = written_data; ctx->sent_early_data += ret; if (objt_server(conn->target)) { conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN | CO_FL_EARLY_DATA; /* Initiate the handshake, now */ tasklet_wakeup(ctx->wait_event.tasklet); } } } else #endif ret = SSL_write(ctx->ssl, b_peek(buf, done), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { /* A send succeeded, so we can consider ourself connected */ conn->flags &= ~CO_FL_WAIT_L4L6; ctx->xprt_st &= ~SSL_SOCK_SEND_UNLIMITED; count -= ret; done += ret; } else { ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { if (SSL_renegotiate_pending(ctx->ssl)) { /* handshake is running, and it may need to re-enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } break; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake is running, and it needs to enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } goto out_error; } } leave: return done; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); conn->flags |= CO_FL_ERROR; goto leave; } static void ssl_sock_close(struct connection *conn, void *xprt_ctx) { struct ssl_sock_ctx *ctx = xprt_ctx; if (ctx) { if (ctx->wait_event.events != 0) ctx->xprt->unsubscribe(ctx->conn, ctx->xprt_ctx, ctx->wait_event.events, &ctx->wait_event); if (ctx->subs) { ctx->subs->events = 0; tasklet_wakeup(ctx->subs->tasklet); } if (ctx->xprt->close) ctx->xprt->close(conn, ctx->xprt_ctx); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) { OSSL_ASYNC_FD all_fd[32], afd; size_t num_all_fds = 0; int i; SSL_get_all_async_fds(ctx->ssl, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(ctx->ssl, all_fd, &num_all_fds); /* If an async job is pending, we must try to to catch the end using polling before calling SSL_free */ if (num_all_fds && SSL_waiting_for_async(ctx->ssl)) { for (i=0 ; i < num_all_fds ; i++) { /* switch on an handler designed to * handle the SSL_free */ afd = all_fd[i]; fdtab[afd].iocb = ssl_async_fd_free; fdtab[afd].owner = ctx->ssl; fd_want_recv(afd); /* To ensure that the fd cache won't be used * and we'll catch a real RD event. */ fd_cant_recv(afd); } tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); _HA_ATOMIC_ADD(&jobs, 1); return; } /* Else we can remove the fds from the fdtab * and call SSL_free. * note: we do a fd_remove and not a delete * because the fd is owned by the engine. * the engine is responsible to close */ for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); } #endif SSL_free(ctx->ssl); b_free(&ctx->early_buf); tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); _HA_ATOMIC_SUB(&sslconns, 1); } } /* This function tries to perform a clean shutdown on an SSL connection, and in * any case, flags the connection as reusable if no handshake was in progress. */ static void ssl_sock_shutw(struct connection *conn, void *xprt_ctx, int clean) { struct ssl_sock_ctx *ctx = xprt_ctx; if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS)) return; if (!clean) /* don't sent notify on SSL_shutdown */ SSL_set_quiet_shutdown(ctx->ssl, 1); /* no handshake was in progress, try a clean ssl shutdown */ if (SSL_shutdown(ctx->ssl) <= 0) { /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); } } /* used for ppv2 pkey algo (can be used for logging) */ int ssl_sock_get_pkey_algo(struct connection *conn, struct buffer *out) { struct ssl_sock_ctx *ctx; X509 *crt; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; crt = SSL_get_certificate(ctx->ssl); if (!crt) return 0; return cert_get_pkey_algo(crt, out); } /* used for ppv2 cert signature (can be used for logging) */ const char *ssl_sock_get_cert_sig(struct connection *conn) { struct ssl_sock_ctx *ctx; __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; X509 *crt; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; crt = SSL_get_certificate(ctx->ssl); if (!crt) return NULL; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); return OBJ_nid2sn(OBJ_obj2nid(algorithm)); } /* used for ppv2 authority */ const char *ssl_sock_get_sni(struct connection *conn) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name); #else return NULL; #endif } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_cipher_name(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_cipher_name(ctx->ssl); } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_proto_version(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_version(ctx->ssl); } void ssl_sock_set_alpn(struct connection *conn, const unsigned char *alpn, int len) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return; ctx = conn->xprt_ctx; SSL_set_alpn_protos(ctx->ssl, alpn, len); #endif } /* Sets advertised SNI for outgoing connections. Please set to NULL * to disable SNI. */ void ssl_sock_set_servername(struct connection *conn, const char *hostname) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct ssl_sock_ctx *ctx; char *prev_name; if (!ssl_sock_is_ssl(conn)) return; ctx = conn->xprt_ctx; /* if the SNI changes, we must destroy the reusable context so that a * new connection will present a new SNI. As an optimization we could * later imagine having a small cache of ssl_ctx to hold a few SNI per * server. */ prev_name = (char *)SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name); if ((!prev_name && hostname) || (prev_name && (!hostname || strcmp(hostname, prev_name) != 0))) SSL_set_session(ctx->ssl, NULL); SSL_set_tlsext_host_name(ctx->ssl, hostname); #endif } /* Extract peer certificate's common name into the chunk dest * Returns * the len of the extracted common name * or 0 if no CN found in DN * or -1 on error case (i.e. no peer certificate) */ int ssl_sock_get_remote_common_name(struct connection *conn, struct buffer *dest) { struct ssl_sock_ctx *ctx; X509 *crt = NULL; X509_NAME *name; const char find_cn[] = "CN"; const struct buffer find_cn_chunk = { .area = (char *)&find_cn, .data = sizeof(find_cn)-1 }; int result = -1; if (!ssl_sock_is_ssl(conn)) goto out; ctx = conn->xprt_ctx; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(ctx->ssl); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; result = ssl_sock_get_dn_entry(name, &find_cn_chunk, 1, dest); out: if (crt) X509_free(crt); return result; } /* returns 1 if client passed a certificate for this session, 0 if not */ int ssl_sock_get_cert_used_sess(struct connection *conn) { struct ssl_sock_ctx *ctx; X509 *crt = NULL; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(ctx->ssl); if (!crt) return 0; X509_free(crt); return 1; } /* returns 1 if client passed a certificate for this connection, 0 if not */ int ssl_sock_get_cert_used_conn(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; return SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0; } /* returns result from SSL verify */ unsigned int ssl_sock_get_verify_result(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return (unsigned int)X509_V_ERR_APPLICATION_VERIFICATION; ctx = conn->xprt_ctx; return (unsigned int)SSL_get_verify_result(ctx->ssl); } /* Returns the application layer protocol name in and when known. * Zero is returned if the protocol name was not found, otherwise non-zero is * returned. The string is allocated in the SSL context and doesn't have to be * freed by the caller. NPN is also checked if available since older versions * of openssl (1.0.1) which are more common in field only support this one. */ static int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, const char **str, int *len) { #if defined(TLSEXT_TYPE_application_layer_protocol_negotiation) || \ defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) struct ssl_sock_ctx *ctx = xprt_ctx; if (!ctx) return 0; *str = NULL; #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation SSL_get0_alpn_selected(ctx->ssl, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) SSL_get0_next_proto_negotiated(ctx->ssl, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif #endif return 0; } /* "issuers-chain-path" load chain certificate in global */ int ssl_load_global_issuer_from_BIO(BIO *in, char *fp, char **err) { X509 *ca; X509_NAME *name = NULL; ASN1_OCTET_STRING *skid = NULL; STACK_OF(X509) *chain = NULL; struct issuer_chain *issuer; struct eb64_node *node; char *path; u64 key; int ret = 0; while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) { if (chain == NULL) { chain = sk_X509_new_null(); skid = X509_get_ext_d2i(ca, NID_subject_key_identifier, NULL, NULL); name = X509_get_subject_name(ca); } if (!sk_X509_push(chain, ca)) { X509_free(ca); goto end; } } if (!chain) { memprintf(err, "unable to load issuers-chain %s : pem certificate not found.\n", fp); goto end; } if (!skid) { memprintf(err, "unable to load issuers-chain %s : SubjectKeyIdentifier not found.\n", fp); goto end; } if (!name) { memprintf(err, "unable to load issuers-chain %s : SubjectName not found.\n", fp); goto end; } key = XXH64(ASN1_STRING_get0_data(skid), ASN1_STRING_length(skid), 0); for (node = eb64_lookup(&cert_issuer_tree, key); node; node = eb64_next(node)) { issuer = container_of(node, typeof(*issuer), node); if (!X509_NAME_cmp(name, X509_get_subject_name(sk_X509_value(issuer->chain, 0)))) { memprintf(err, "duplicate issuers-chain %s: %s already in store\n", fp, issuer->path); goto end; } } issuer = calloc(1, sizeof *issuer); path = strdup(fp); if (!issuer || !path) { free(issuer); free(path); goto end; } issuer->node.key = key; issuer->path = path; issuer->chain = chain; chain = NULL; eb64_insert(&cert_issuer_tree, &issuer->node); ret = 1; end: if (skid) ASN1_OCTET_STRING_free(skid); if (chain) sk_X509_pop_free(chain, X509_free); return ret; } struct issuer_chain* ssl_get0_issuer_chain(X509 *cert) { AUTHORITY_KEYID *akid; struct issuer_chain *issuer = NULL; akid = X509_get_ext_d2i(cert, NID_authority_key_identifier, NULL, NULL); if (akid) { struct eb64_node *node; u64 hk; hk = XXH64(ASN1_STRING_get0_data(akid->keyid), ASN1_STRING_length(akid->keyid), 0); for (node = eb64_lookup(&cert_issuer_tree, hk); node; node = eb64_next(node)) { struct issuer_chain *ti = container_of(node, typeof(*issuer), node); if (X509_check_issued(sk_X509_value(ti->chain, 0), cert) == X509_V_OK) { issuer = ti; break; } } AUTHORITY_KEYID_free(akid); } return issuer; } void ssl_free_global_issuers(void) { struct eb64_node *node, *back; struct issuer_chain *issuer; node = eb64_first(&cert_issuer_tree); while (node) { issuer = container_of(node, typeof(*issuer), node); back = eb64_next(node); eb64_delete(node); free(issuer->path); sk_X509_pop_free(issuer->chain, X509_free); free(issuer); node = back; } } #ifndef OPENSSL_NO_ENGINE static int ssl_check_async_engine_count(void) { int err_code = 0; if (global_ssl.async && (openssl_engines_initialized > 32)) { ha_alert("ssl-mode-async only supports a maximum of 32 engines.\n"); err_code = ERR_ABORT; } return err_code; } #endif /* This function is used with TLS ticket keys management. It permits to browse * each reference. The variable must contain the current node, * point to the root node. */ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static inline struct tls_keys_ref *tlskeys_list_get_next(struct tls_keys_ref *getnext, struct list *end) { struct tls_keys_ref *ref = getnext; while (1) { /* Get next list entry. */ ref = LIST_NEXT(&ref->list, struct tls_keys_ref *, list); /* If the entry is the last of the list, return NULL. */ if (&ref->list == end) return NULL; return ref; } } static inline struct tls_keys_ref *tlskeys_ref_lookup_ref(const char *reference) { int id; char *error; /* If the reference starts by a '#', this is numeric id. */ if (reference[0] == '#') { /* Try to convert the numeric id. If the conversion fails, the lookup fails. */ id = strtol(reference + 1, &error, 10); if (*error != '\0') return NULL; /* Perform the unique id lookup. */ return tlskeys_ref_lookupid(id); } /* Perform the string lookup. */ return tlskeys_ref_lookup(reference); } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int cli_io_handler_tlskeys_files(struct appctx *appctx); static inline int cli_io_handler_tlskeys_entries(struct appctx *appctx) { return cli_io_handler_tlskeys_files(appctx); } /* dumps all tls keys. Relies on cli.i0 (non-null = only list file names), cli.i1 * (next index to be dumped), and cli.p0 (next key reference). */ static int cli_io_handler_tlskeys_files(struct appctx *appctx) { struct stream_interface *si = appctx->owner; switch (appctx->st2) { case STAT_ST_INIT: /* Display the column headers. If the message cannot be sent, * quit the function with returning 0. The function is called * later and restart at the state "STAT_ST_INIT". */ chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries) chunk_appendf(&trash, "# id secret\n"); else chunk_appendf(&trash, "# id (file)\n"); if (ci_putchk(si_ic(si), &trash) == -1) { si_rx_room_blk(si); return 0; } /* Now, we start the browsing of the references lists. * Note that the following call to LIST_ELEM return bad pointer. The only * available field of this pointer is . It is used with the function * tlskeys_list_get_next() for retruning the first available entry */ if (appctx->ctx.cli.p0 == NULL) { appctx->ctx.cli.p0 = LIST_ELEM(&tlskeys_reference, struct tls_keys_ref *, list); appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_LIST; /* fall through */ case STAT_ST_LIST: while (appctx->ctx.cli.p0) { struct tls_keys_ref *ref = appctx->ctx.cli.p0; chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries && appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "# "); if (appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "%d (%s)\n", ref->unique_id, ref->filename); if (appctx->io_handler == cli_io_handler_tlskeys_entries) { int head; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); head = ref->tls_ticket_enc_index; while (appctx->ctx.cli.i1 < TLS_TICKETS_NO) { struct buffer *t2 = get_trash_chunk(); chunk_reset(t2); /* should never fail here because we dump only a key in the t2 buffer */ if (ref->key_size_bits == 128) { t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO), sizeof(struct tls_sess_key_128), t2->area, t2->size); chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1, t2->area); } else if (ref->key_size_bits == 256) { t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO), sizeof(struct tls_sess_key_256), t2->area, t2->size); chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1, t2->area); } else { /* This case should never happen */ chunk_appendf(&trash, "%d.%d \n", ref->unique_id, appctx->ctx.cli.i1); } if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); si_rx_room_blk(si); return 0; } appctx->ctx.cli.i1++; } HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); appctx->ctx.cli.i1 = 0; } if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ si_rx_room_blk(si); return 0; } if (appctx->ctx.cli.i0 == 0) /* don't display everything if not necessary */ break; /* get next list entry and check the end of the list */ appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_FIN; /* fall through */ default: appctx->st2 = STAT_ST_FIN; return 1; } return 0; } /* sets cli.i0 to non-zero if only file lists should be dumped */ static int cli_parse_show_tlskeys(char **args, char *payload, struct appctx *appctx, void *private) { /* no parameter, shows only file list */ if (!*args[2]) { appctx->ctx.cli.i0 = 1; appctx->io_handler = cli_io_handler_tlskeys_files; return 0; } if (args[2][0] == '*') { /* list every TLS ticket keys */ appctx->ctx.cli.i0 = 1; } else { appctx->ctx.cli.p0 = tlskeys_ref_lookup_ref(args[2]); if (!appctx->ctx.cli.p0) return cli_err(appctx, "'show tls-keys' unable to locate referenced filename\n"); } appctx->io_handler = cli_io_handler_tlskeys_entries; return 0; } static int cli_parse_set_tlskeys(char **args, char *payload, struct appctx *appctx, void *private) { struct tls_keys_ref *ref; int ret; /* Expect two parameters: the filename and the new new TLS key in encoding */ if (!*args[3] || !*args[4]) return cli_err(appctx, "'set ssl tls-key' expects a filename and the new TLS key in base64 encoding.\n"); ref = tlskeys_ref_lookup_ref(args[3]); if (!ref) return cli_err(appctx, "'set ssl tls-key' unable to locate referenced filename\n"); ret = base64dec(args[4], strlen(args[4]), trash.area, trash.size); if (ret < 0) return cli_err(appctx, "'set ssl tls-key' received invalid base64 encoded TLS key.\n"); trash.data = ret; if (ssl_sock_update_tlskey_ref(ref, &trash) < 0) return cli_err(appctx, "'set ssl tls-key' received a key of wrong size.\n"); return cli_msg(appctx, LOG_INFO, "TLS ticket key updated!\n"); } #endif static int cli_parse_set_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private) { #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) char *err = NULL; int i, j, ret; if (!payload) payload = args[3]; /* Expect one parameter: the new response in base64 encoding */ if (!*payload) return cli_err(appctx, "'set ssl ocsp-response' expects response in base64 encoding.\n"); /* remove \r and \n from the payload */ for (i = 0, j = 0; payload[i]; i++) { if (payload[i] == '\r' || payload[i] == '\n') continue; payload[j++] = payload[i]; } payload[j] = 0; ret = base64dec(payload, j, trash.area, trash.size); if (ret < 0) return cli_err(appctx, "'set ssl ocsp-response' received invalid base64 encoded response.\n"); trash.data = ret; if (ssl_sock_update_ocsp_response(&trash, &err)) { if (err) return cli_dynerr(appctx, memprintf(&err, "%s.\n", err)); else return cli_err(appctx, "Failed to update OCSP response.\n"); } return cli_msg(appctx, LOG_INFO, "OCSP Response updated!\n"); #else return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n"); #endif } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) { { "show", "tls-keys", NULL }, "show tls-keys [id|*]: show tls keys references or dump tls ticket keys when id specified", cli_parse_show_tlskeys, NULL }, { { "set", "ssl", "tls-key", NULL }, "set ssl tls-key [id|keyfile] : set the next TLS key for the or listener to ", cli_parse_set_tlskeys, NULL }, #endif { { "set", "ssl", "ocsp-response", NULL }, NULL, cli_parse_set_ocspresponse, NULL }, { { NULL }, NULL, NULL, NULL } }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); /* transport-layer operations for SSL sockets */ struct xprt_ops ssl_sock = { .snd_buf = ssl_sock_from_buf, .rcv_buf = ssl_sock_to_buf, .subscribe = ssl_subscribe, .unsubscribe = ssl_unsubscribe, .remove_xprt = ssl_remove_xprt, .add_xprt = ssl_add_xprt, .rcv_pipe = NULL, .snd_pipe = NULL, .shutr = NULL, .shutw = ssl_sock_shutw, .close = ssl_sock_close, .init = ssl_sock_init, .prepare_bind_conf = ssl_sock_prepare_bind_conf, .destroy_bind_conf = ssl_sock_destroy_bind_conf, .prepare_srv = ssl_sock_prepare_srv_ctx, .destroy_srv = ssl_sock_free_srv_ctx, .get_alpn = ssl_sock_get_alpn, .name = "SSL", }; enum act_return ssl_action_wait_for_hs(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *conn; struct conn_stream *cs; conn = objt_conn(sess->origin); cs = objt_cs(s->si[0].end); if (conn && cs) { if (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS)) { cs->flags |= CS_FL_WAIT_FOR_HS; s->req.flags |= CF_READ_NULL; return ACT_RET_YIELD; } } return (ACT_RET_CONT); } static enum act_parse_ret ssl_parse_wait_for_hs(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { rule->action_ptr = ssl_action_wait_for_hs; return ACT_RET_PRS_OK; } static struct action_kw_list http_req_actions = {ILH, { { "wait-for-handshake", ssl_parse_wait_for_hs }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) static void ssl_sock_sctl_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (ptr) { chunk_destroy(ptr); free(ptr); } } #endif static void ssl_sock_capture_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { pool_free(pool_head_ssl_capture, ptr); } __attribute__((constructor)) static void __ssl_sock_init(void) { #if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION)) STACK_OF(SSL_COMP)* cm; int n; #endif if (global_ssl.listen_default_ciphers) global_ssl.listen_default_ciphers = strdup(global_ssl.listen_default_ciphers); if (global_ssl.connect_default_ciphers) global_ssl.connect_default_ciphers = strdup(global_ssl.connect_default_ciphers); #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (global_ssl.listen_default_ciphersuites) global_ssl.listen_default_ciphersuites = strdup(global_ssl.listen_default_ciphersuites); if (global_ssl.connect_default_ciphersuites) global_ssl.connect_default_ciphersuites = strdup(global_ssl.connect_default_ciphersuites); #endif xprt_register(XPRT_SSL, &ssl_sock); #if HA_OPENSSL_VERSION_NUMBER < 0x10100000L SSL_library_init(); #endif #if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION)) cm = SSL_COMP_get_compression_methods(); n = sk_SSL_COMP_num(cm); while (n--) { (void) sk_SSL_COMP_pop(cm); } #endif #if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) ssl_locking_init(); #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) sctl_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_sctl_free_func); #endif ssl_app_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); ssl_capture_ptr_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_capture_free_func); #ifndef OPENSSL_NO_ENGINE ENGINE_load_builtin_engines(); hap_register_post_check(ssl_check_async_engine_count); #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) hap_register_post_check(tlskeys_finalize_config); #endif global.ssl_session_max_cost = SSL_SESSION_MAX_COST; global.ssl_handshake_max_cost = SSL_HANDSHAKE_MAX_COST; hap_register_post_deinit(ssl_free_global_issuers); #ifndef OPENSSL_NO_DH ssl_dh_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL); hap_register_post_deinit(ssl_free_dh); #endif #ifndef OPENSSL_NO_ENGINE hap_register_post_deinit(ssl_free_engines); #endif /* Load SSL string for the verbose & debug mode. */ ERR_load_SSL_strings(); ha_meth = BIO_meth_new(0x666, "ha methods"); BIO_meth_set_write(ha_meth, ha_ssl_write); BIO_meth_set_read(ha_meth, ha_ssl_read); BIO_meth_set_ctrl(ha_meth, ha_ssl_ctrl); BIO_meth_set_create(ha_meth, ha_ssl_new); BIO_meth_set_destroy(ha_meth, ha_ssl_free); BIO_meth_set_puts(ha_meth, ha_ssl_puts); BIO_meth_set_gets(ha_meth, ha_ssl_gets); HA_SPIN_INIT(&ckch_lock); /* Try to register dedicated SSL/TLS protocol message callbacks for * heartbleed attack (CVE-2014-0160) and clienthello. */ hap_register_post_check(ssl_sock_register_msg_callbacks); /* Try to free all callbacks that were registered by using * ssl_sock_register_msg_callback(). */ hap_register_post_deinit(ssl_sock_unregister_msg_callbacks); } /* Compute and register the version string */ static void ssl_register_build_options() { char *ptr = NULL; int i; memprintf(&ptr, "Built with OpenSSL version : " #ifdef OPENSSL_IS_BORINGSSL "BoringSSL"); #else /* OPENSSL_IS_BORINGSSL */ OPENSSL_VERSION_TEXT "\nRunning on OpenSSL version : %s%s", OpenSSL_version(OPENSSL_VERSION), ((OPENSSL_VERSION_NUMBER ^ OpenSSL_version_num()) >> 8) ? " (VERSIONS DIFFER!)" : ""); #endif memprintf(&ptr, "%s\nOpenSSL library supports TLS extensions : " #if HA_OPENSSL_VERSION_NUMBER < 0x00907000L "no (library version too old)" #elif defined(OPENSSL_NO_TLSEXT) "no (disabled via OPENSSL_NO_TLSEXT)" #else "yes" #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports SNI : " #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME "yes" #else #ifdef OPENSSL_NO_TLSEXT "no (because of OPENSSL_NO_TLSEXT)" #else "no (version might be too old, 0.9.8f min needed)" #endif #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports :", ptr); for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option) memprintf(&ptr, "%s %s", ptr, methodVersions[i].name); hap_register_build_opts(ptr, 1); } INITCALL0(STG_REGISTER, ssl_register_build_options); #ifndef OPENSSL_NO_ENGINE void ssl_free_engines(void) { struct ssl_engine_list *wl, *wlb; /* free up engine list */ list_for_each_entry_safe(wl, wlb, &openssl_engines, list) { ENGINE_finish(wl->e); ENGINE_free(wl->e); LIST_DEL(&wl->list); free(wl); } } #endif #ifndef OPENSSL_NO_DH void ssl_free_dh(void) { if (local_dh_1024) { DH_free(local_dh_1024); local_dh_1024 = NULL; } if (local_dh_2048) { DH_free(local_dh_2048); local_dh_2048 = NULL; } if (local_dh_4096) { DH_free(local_dh_4096); local_dh_4096 = NULL; } if (global_dh) { DH_free(global_dh); global_dh = NULL; } } #endif __attribute__((destructor)) static void __ssl_sock_deinit(void) { #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (ssl_ctx_lru_tree) { lru64_destroy(ssl_ctx_lru_tree); HA_RWLOCK_DESTROY(&ssl_ctx_lru_rwlock); } #endif #if (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) ERR_remove_state(0); ERR_free_strings(); EVP_cleanup(); #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x00907000L) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) CRYPTO_cleanup_all_ex_data(); #endif BIO_meth_free(ha_meth); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */